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2Outline

§ Nuclear structure and reactions from first principles

§ New chiral NN N4LO + 3N

§ Beta decays of light nuclei in NCSM

§ No-Core Shell Model with Continuum (NCSMC)

§ n-4He scattering and D+T fusion

§ 11Be parity inversion in low-lying states, photo-dissociation

§ Synergy between ab initio theory and TRIUMF experiments

§ 11N and 10C(p,p) scattering - IRIS

§ 12N, 11C(p,p) scattering and 11C(p,γ)12N capture - TUDA

§ Quadrupole moment of 12C 2+ state - TIGRESS



3What is meant by ab initio in nuclear physics?

§ First principles for Nuclear Physics:
QCD
§ Non-perturbative at low energies
§ Lattice QCD in the future

§ Degrees of freedom: NUCLEONS
§ Nuclei made of nucleons
§ Interacting by nucleon-nucleon and three-nucleon potentials

• Ab initio
² All nucleons are active
² Exact Pauli principle
² Realistic inter-nucleon interactions

² Accurate description of NN (and 3N) data

² Controllable approximations
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From QCD to nuclei

Low-energy QCD

Nuclear structure and reactions

NN+3N interactions 
from chiral EFT

…or accurate 
meson-exchange 

potentials



5Chiral Effective Field Theory

§ Inter-nucleon forces from chiral effective field theory
§ Based on the symmetries of QCD

§ Chiral symmetry of QCD (mu»md»0), spontaneously 
broken with pion as the Goldstone boson

§ Degrees of freedom: nucleons + pions
§ Systematic low-momentum expansion to a given order 

(Q/Λχ)
§ Hierarchy
§ Consistency
§ Low energy constants (LEC)

§ Fitted to data
§ Can be calculated by lattice QCD

Λχ~1 GeV : 
Chiral symmetry breaking scale

N3LO NN+N2LO 3N 
(NN+3N400, NN+3N500)

N4LO500 NN

N2LOsat
NN+3N

+ N2LO 3N



6The NN interaction from chiral EFT

§ Chiral NN potential up to N4LO 

§ Set of five potentials constructed 

§ Sequence of LO, NLO,…,N4LO

§ Uncertainty quantification

§ At N3LO and N4LO: 

§ 24 LECs fitted to the np scattering data 

and the deuteron properties

§ Including ci LECs (i=1-4) from pion-

nucleon scattering

§ N4LO NN fitted to data up to pion production 

threshold with !2/datum∼1.15

D. R. ENTEM, R. MACHLEIDT, AND Y. NOSYK PHYSICAL REVIEW C 96, 024004 (2017)
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FIG. 2. Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P , and D waves and mixing parameters
ϵ1 and ϵ2. Five orders ranging from LO to N4LO are shown as denoted. A cutoff " = 500 MeV is applied in all cases. The filled and open
circles represent the results from the Nijmegen multienergy np phase-shift analysis [80] and the GWU single-energy np analysis SP07 [102],
respectively.

Our fit procedures differ also substantially from the ones
used in the recent chiral NN potential constructions of
Refs. [23,24], where the potentials are fitted to phase shifts.
Already in the early 1990s, the Nijmegen group has pointed
out repeatedly and demonstrated clearly [96] that fitting to
experimental data should be preferred over fitting to phase
shifts, because a seemingly good fit to phase shifts can result
in a bad reproduction of the data. Note that phase shifts are not
experimental data.

C. Results for NN scattering

The χ2/datum for the reproduction of the NN data at various
orders of chiral EFT are shown in Table V for different energy
intervals below 290 MeV laboratory energy (Tlab). The bottom
line of Table V summarizes the essential results. For the close
to 5000 pp plus np data below 290 MeV (pion-production
threshold), the χ2/datum is 51.4 at NLO and 6.3 at NNLO.
Note that the number of NN contact terms is the same for
both orders. The improvement is entirely due to an improved
description of the 2PE contribution, which is responsible for
the crucial intermediate-range attraction of the nuclear force.
At NLO, only the uncorrelated 2PE is taken into account,
which is insufficient. From the classic meson-theory of nuclear
forces [101], it is well known that π -π correlations and nucleon

resonances need to be taken into account for a realistic model
of 2PE that provides a sufficient amount of intermediate
attraction to properly bind nucleons in nuclei. In the chiral
theory, these contributions are encoded in the subleading πN
vertexes with LECs denoted by ci . These enter at NNLO and
are the reason for the substantial improvements we encounter
at that order. This is the best proof that, starting at NNLO, the
chiral approach to nuclear forces is getting the physics right.

To continue on the bottom line of Table V, after NNLO, the
χ2/datum then further improves to 1.63 at N3LO and, finally,
reaches the almost perfect value of 1.15 at N4LO—a fantastic
convergence.

Corresponding np phase shifts are displayed in Fig. 2,
which reflect what the χ2 have already proven, namely, an
excellent convergence when going from NNLO to N3LO and,
finally, to N4LO. However, at LO and NLO there are large
discrepancies between the predictions and the empirical phase
shifts as to be expected from the corresponding χ2 values.
This fact renders applications of the LO and NLO nuclear
force useless for any realistic calculation (but they could be
used to demonstrate truncation errors).

For order N4LO (with " = 500 MeV), we also provide
the numerical values for the phase shifts in the appendix.
Our pp phase shifts are the phase shifts of the nuclear plus
relativistic Coulomb interaction with respect to Coulomb

024004-10
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High-quality two-nucleon potentials up to fifth order of the chiral expansion

D. R. Entem,1,* R. Machleidt,2,† and Y. Nosyk2
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(Received 20 March 2017; revised manuscript received 30 May 2017; published 10 August 2017)

We present NN potentials through five orders of chiral effective field theory ranging from leading order (LO)
to next-to-next-to-next-to-next-to-leading order (N4LO). The construction may be perceived as consistent in
the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders.
Moreover, the long-range parts of these potentials are fixed by the very accurate πN low-energy constants (LECs)
as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira, and coworkers. In fact, the
uncertainties of these LECs are so small that a variation within the errors leads to effects that are essentially
negligible, reducing the error budget of predictions considerably. The NN potentials are fit to the world NN data
below the pion-production threshold of the year 2016. The potential of the highest order (N4LO) reproduces
the world NN data with the outstanding χ 2/datum of 1.15, which is the highest precision ever accomplished
for any chiral NN potential to date. The NN potentials presented may serve as a solid basis for systematic ab
initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular,
the consistent order by order development of the potentials will make possible a reliable determination of the
truncation error at each order. Our family of potentials is nonlocal and, generally, of soft character. This feature
is reflected in the fact that the predictions for the triton binding energy (from two-body forces only) converges to
about 8.1 MeV at the highest orders. This leaves room for three-nucleon-force contributions of moderate size.

DOI: 10.1103/PhysRevC.96.024004

I. INTRODUCTION

The quest for a practically feasible, and yet fundamental,
theory of hadronic interactions at low energy (where QCD is
nonperturbative) has spanned several decades. At the present
time, there exists a general consensus that chiral effective field
theory (chiral EFT) may provide the best answer to the quest.
By its nature, chiral EFT is a model-independent approach with
firm roots in QCD, due to the fact that interactions are subjected
to the constraints of the broken chiral symmetry of low-energy
QCD. Moreover, the approach is systematic in the sense that
the various contributions to a particular dynamical process can
be arranged as an expansion in terms of a suitable parameter.
The latter is chosen to be the ratio of a typical external
momentum (soft scale) to the chiral symmetry-breaking scale
(≈1 GeV, hard scale). Recent comprehensive reviews on the
subject can be found in Refs. [1,2].

In its early stages, chiral perturbation theory (ChPT) was
applied mostly to ππ [3] and πN [4] dynamics, because,
due to the Goldstone-boson nature of the pion, these are the
most natural scenarios for a perturbative expansion to exist.
In the meantime, though, chiral EFT has been applied in nu-
cleonic systems by numerous groups [1,2,5– 30]. Derivations
of the nucleon-nucleon (NN) interaction up to fourth order
(next-to-next-to-next-to-leading order, N3LO) can be found
in Refs. [7,9,10,12,13,15], with quantitative NN potentials
making their appearance in the early 2000s [16,17].

Since then, a wealth of applications of N3LO NN potentials
together with chiral three-nucleon forces (3NFs) have been

*entem@usal.es
†machleid@uidaho.edu

reported. These investigations include few-nucleon reactions
[31– 34], structure of light- and medium-mass nuclei [35– 38],
and infinite matter [39– 44]. Although satisfactory predictions
have been obtained in many cases, persistent problems
continue to pose serious challenges, such as the well-known
Ay puzzle of nucleon-deuteron scattering [45]. Naturally, one
would invoke 3NFs as the most likely mechanism to solve this
problem. Unfortunately, the chiral 3NF at NNLO does very
little to improve the situation with nucleon-deuteron scattering
[31,33], while inclusion of the N3LO 3NF produces an effect
in the wrong direction [34]. The next step is then to proceed
systematically in the expansion, namely to look at N4LO (or
fifth order). This order is interesting for diverse reasons. From
studies of some of the 3NF topologies at N4LO [46,47], we
know that a complete set of isospin-spin-momentum 3NF
structures (a total of 20) are present at this order [48] and that
contributions can be of substantial size. Even more promising,
at this order a new set of 3NF contact interactions appears,
which has recently been derived by the Pisa group [49]. Contact
terms are relatively easy to work with and, most importantly,
come with free coefficients and thus provide larger flexibility
and a great likelihood to solve persistent problems such as the
Ay puzzle as well as other issues (like the radius problem [50]
and the overbinding of intermediate-mass nuclei [51]).

A principle of all EFTs is that, for meaningful predictions, it
is necessary to include all contributions that appear at the order
at which the calculation is conducted. Thus, when nuclear
structure problems require for their solution the inclusion of
3NFs at N4LO, then also the two-nucleon force involved in
the calculation has to be of order N4LO. This is one reason
why in Ref. [52] we derived the N4LO two-pion exchange
(2PE) and three-pion exchange (3PE) contributions to the NN
interaction and tested them in peripheral partial waves. In this

2469-9985/2017/96(2)/024004(19) 024004-1 ©2017 American Physical Society



7Currents in chiral EFT

§ Meson-exchange current

§ weak axial current
§ one-body: LO - Gamow-Teller

§ two-body: MEC

Parameter-free effective field theory calculation for the solar proton-fusion and hep processes
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Spurred by the recent complete determination of the weak currents in two-nucleon systems up to O(Q3) in
heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold S factors for
the solar pp !proton-fusion" and hep processes in an effective field theory !EFT" that combines the merits of
the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is
that one can correlate in a unified formalism the weak-current matrix elements of two-, three-, and four-nucleon
systems. Using the tritium #-decay rate as an input to fix the only unknown parameter in the theory, we can
evaluate the threshold S factors with drastically improved precision; the results are Spp(0)!3.94"(1
#0.004)"10$25 MeV b and Shep(0)!(8.6#1.3)"10$20 keV b. The dependence of the calculated S factors
on the momentum cutoff parameter $ has been examined for a physically reasonable range of $ . This
dependence is found to be extremely small for the pp process, and to be within acceptable levels for the hep
process, substantiating the consistency of our calculational scheme.

DOI: 10.1103/PhysRevC.67.055206 PACS number!s": 12.39.Fe, 24.85.%p, 26.20.%f, 26.65.%t

I. INTRODUCTION

The standard approach to nuclear physics %1&anchored on
wave functions obtained from the Schrödinger !or Lippman-
Schwinger" equation with ‘‘realistic’’ phenomenological po-
tentials has scored impressive quantitative successes in de-
scribing systems with two or more nucleons, achieving in
some cases accuracy that defies the existing experimental
precision. We refer to this approach as SNPA !standard
nuclear physics approach". The advent of quantum chromo-
dynamics !QCD" as the theory of strong interactions raises a
logical question: What is the status of SNPA in the context of
the fundamental theory QCD? Put more bluntly, is SNPA
!despite its undeniable success" just a model-dependent ap-
proach unrelated to the fundamental theory? In our view this
is one of the most important issues in nuclear physics today.
In this paper we investigate a possible way to identify SNPA
as a legitimate component in the general edifice of QCD. We
describe an attempt to find a scheme which includes SNPA as
an approximation, and which allows us to control and evalu-
ate correction terms. Such a systematic treatment equipped
with error estimation, which is not feasible with SNPA alone,
can be profitably studied with the effective field theory
!EFT" of QCD. We study here a formalism which exploits
simultaneously the merit of EFT in classifying interaction
vertices unambiguously, and the high accuracy of nuclear
wave functions available in SNPA. We demonstrate that this
formalism enables us to make parameter-free predictions
with accompanying error estimates for electroweak transi-

tions in light nuclei. For a variant approach towards the EFT
description of nuclear matter and heavy nuclei, we refer to
Refs. %2–5&.
To be concrete, we shall consider the following two solar

nuclear fusion processes

pp: p%p→d%e%%'e , !1"

hep: p% 3He→ 4He%e%%'e . !2"

We stress that in our EFT approach these processes in-
volving different numbers of nucleons can be treated on the
same footing. A concise account of the present study was
previously given in Ref. %6&for the pp process and in Ref.
%7&for the hep process.
The reactions !1" and !2" figure importantly in astrophys-

ics and particle physics; they have much bearing upon issues
of great current interest such as, for example, the solar neu-
trino problem and nonstandard physics in the neutrino sector.
Since the thermal energy of the interior of the Sun is of the
order of keV, and since no experimental data is available for
such low-energy regimes, one must rely on theory for deter-
mining the astrophysical S factors of the solar nuclear pro-
cesses. Here we concentrate on the threshold S factor S(0)
for the reactions !1" and !2". The necessity of a very accurate
estimate of the threshold S factor for the pp process Spp(0)
comes from the fact that pp fusion essentially governs the
solar burning rate and the vast majority of the solar neutrinos
come from this reaction. Meanwhile, the hep process is im-

PHYSICAL REVIEW C 67, 055206 !2003"
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!!3. Two-body tree currents with " i! i!1, which corre-
spond to the hard-pion current, considered in CRSW91 #16$
and SWPC92 #17$. These are leading corrections to the
GT and V0 operators carrying an even orbital angular
momentum.

!!4. All the components of the electroweak current re-
ceive contributions of this order. They consist of two-body
one-loop corrections as well as leading-order %tree& three-
body corrections. Among the three-body currents, however,
there are no six-fermion contact terms proportional to
(N̄N)3, because there is no derivative at the vertex and
hence no external field.
It is noteworthy that the counting rule for V is the same as

for A0, and the counting rules for V0 and A are the same.
The behavior of V and A0 summarized in Table I represents
the chiral filter mechanism #12$, and V and A0 are referred to
as chiral-filter-protected currents. By contrast, V0 and A be-
long to chiral-filter-unprotected currents.
We now discuss the explicit expressions for the relevant

currents. For the 1B currents, for both the vector and axial
cases, one can simply carry over the expressions obtained in
MSVKRB. Up to N3LO, the 1B currents in coordinate rep-
resentation are given as

Vl
0!' l

"e"iq•rl! 1#iq•!l$pl
2(V"1

4mN
2 " ,

Vl!' l
"e"iq•rl! p̄lmN

# 1"
p̄l
2

2mN
2 $

#i
(V

2mN
q$!l#i!l$ p̄lq0

2(V"1

4mN
2 " ,

Al
0!"gA' l

"e"iq•rl!!l• p̄l
mN

# 1"
p̄l
2

2mN
2 $ " ,

Al!"gA' l
"e"iq•rl!!l#

2%p̄l!l• p̄l"!l p̄l
2&#iq$ p̄l

4mN
2 " ,

%17&

where (V%4.70 is the isovector anomalous magnetic mo-
ment of the nucleon and pl!"i)l and p̄l!"(i/2)()! l")" l)
act on the wave functions. Equation %17&gives the isospin-
lowering currents

J(*J(
a!1"iJ(

a!2 %18&

and ' l
"* 1

2 (' l
x"i' l

y).
We next discuss the 2B currents. The expressions for the

V2B and A2B
0 operators can be found in Refs. #20,36$. The

V2B
0 operator does not appear up to the order under consid-
eration. The derivation of the 2B axial current A2B in HB+PT
is described in Appendix A. In momentum space, A2B reads

A2B! "
l%m

A

Alm ,

A12!
gA

2mNf ,
2

1

m,
2#k2

!"
i
2 '$

"p%!1"!2&•k

#4 ĉ3kk•%'1
"!1#'2

"!2&## ĉ4# 1
4 $ '$

"k$#!$$k$"
#

gA
mNf,

2 #2 d̂1%'1
"!1#'2

"!2&# d̂2'$
a !$$, %19&

with k*(k2"k1)/2, kl*pl!"pl , p*( p̄1" p̄2)/2, p̄l*(pl
#pl!)/2, ' l

"* 1
2 (' l

x"i' l
y), '$

a *('1$'2)x"i('1$'2)y, and
similarly for -$ ; ĉ’s and d̂’s are the LECs explained in
PKMR98. The values of ĉ’s in Eq. %19&have been deter-
mined from ,-N data #37$: ĉ3!"3.66&0.08 and ĉ4!2.11
&0.08. The two constants d̂1 and d̂2 remain to be fixed but
it turns out %see Appendix C 2&that, thanks to Fermi-Dirac
statistics, only one combination of them

d̂R* d̂1#2 d̂2#
1
3 ĉ3#

2
3 ĉ4#

1
6 %20&

is relevant in the present context #38$.
It should be noted that the two-body currents given in Eq.

%19&are valid only up to a certain cutoff . . This implies that,
when we go to coordinate space, the currents must be regu-
lated. This is a key point in our approach. Specifically, in
performing Fourier transformation to derive the r-space rep-
resentation of a transition operator, we use the Gaussian
regularization %see Appendix C&. This is, to good accuracy,
equivalent to replacing the delta and Yukawa functions with
the corresponding regulated functions

/.
(3)%r&*& d3k

%2,&3
S.
2 %k2&eik•r,

y0.
, %r&*& d3k

%2,&3
S.
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1
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0
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1
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2 r
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0r
1
r

0

0r y0.
, %r&, %21&

where the cutoff function S.(k2) is defined as

S.%k2&!exp# "
k2

2.2$ . %22&

The resulting r-space expressions of the currents in the
center-of-mass %c.m.&frame that are of N3LO are
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and SWPC92 #17$. These are leading corrections to the
GT and V0 operators carrying an even orbital angular
momentum.

!!4. All the components of the electroweak current re-
ceive contributions of this order. They consist of two-body
one-loop corrections as well as leading-order %tree& three-
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(N̄N)3, because there is no derivative at the vertex and
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PKMR98. The values of ĉ’s in Eq. %19&have been deter-
mined from ,-N data #37$: ĉ3!"3.66&0.08 and ĉ4!2.11
&0.08. The two constants d̂1 and d̂2 remain to be fixed but
it turns out %see Appendix C 2&that, thanks to Fermi-Dirac
statistics, only one combination of them

d̂R* d̂1#2 d̂2#
1
3 ĉ3#

2
3 ĉ4#

1
6 %20&

is relevant in the present context #38$.
It should be noted that the two-body currents given in Eq.

%19&are valid only up to a certain cutoff . . This implies that,
when we go to coordinate space, the currents must be regu-
lated. This is a key point in our approach. Specifically, in
performing Fourier transformation to derive the r-space rep-
resentation of a transition operator, we use the Gaussian
regularization %see Appendix C&. This is, to good accuracy,
equivalent to replacing the delta and Yukawa functions with
the corresponding regulated functions

/.
(3)%r&*& d3k

%2,&3
S.
2 %k2&eik•r,

y0.
, %r&*& d3k

%2,&3
S.
2 %k2&eik•r

1

k2#m,
2 ,

y1.
, %r&*"r

0

0r y0.
, %r&,

y2.
, %r&*

1

m,
2 r

0

0r
1
r

0

0r y0.
, %r&, %21&

where the cutoff function S.(k2) is defined as

S.%k2&!exp# "
k2

2.2$ . %22&

The resulting r-space expressions of the currents in the
center-of-mass %c.m.&frame that are of N3LO are

PARAMETER-FREE EFFECTIVE FIELD THEORY . . . PHYSICAL REVIEW C 67, 055206 %2003&

055206-5

Application to Heavier Nuclei

Does inclusion of the MEC explain gA quenching?
The e↵ect of the inclusion is greater in heavier nuclei
SRG evolved matrix elements used in coupled-cluster and IM-SRG methods (up to Sn100)

Peter Gysbers (UBC/TRIUMF) Ab Initio 2018 Feb 28, 2018 9 / 11

MEC 3N (NCSM)
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From QCD to nuclei
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meson-exchange 

potentials

Unitary/similarity
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Identity or SRG
or OLS or UCOM …

Softens NN, induces 3N
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Similarity Renormalization Group (SRG) evolution

§ Continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis

§ Unitary transformation

§ Setting                          with Hermitian

§ Customary choice in nuclear physics                …kinetic energy operator
§ band-diagonal in momentum space plane-wave basis

§ Initial condition

§ Induces many-body forces 
§ In applications to chiral interactions three-body induced terms large, four-body small

Hα =Uα HUα
+ UαUα

+ =Uα
+Uα =1

dHα

dα
=
dUα

dα
HUα

+ +UαH
dUα

+

dα
=
dUα

dα
Uα

+UαHUα
+ +UαHUα

+Uα

dUα
+

dα

=
dUα

dα
Uα

+Hα +HαUα

dUα
+

dα
= ηα,Hα[ ]

anti-Hermitian
generator

ηα ≡
dUα

dα
Uα

+ = −ηα
+

ηα = Gα,Hα[ ] Gα

dHα

dα
= Gα,Hα[ ],Hα
!" #$

Gα = T

Hα=0 = Hλ=∞ = H λ 2 =1/ α



10SRG evolution for A-nucleon system

§ Evolution induces many-nucleon terms (up to A) 

§ SRG “magic” – determined completely in A=2 system,            determined completely in A=3 system, etc.

§ In actual calculations so far only terms up to            kept

§ Three types of SRG-evolved Hamiltonians used 
§ NN only: Start with initial T+VNN and keep  
§ NN+3N-induced: Start with initial T+VNN and keep
§ NN+3N-full: Start with initial T+VNN+VNNN and keep

Hα = Hα
[1] + Hα

[2] + Hα
[3] + Hα

[4] +...+ Hα
[A]

Hα
[3]

Hα
[1] + Hα

[2]

Hα
[1] + Hα

[2] + Hα
[3]

Hα
[1] + Hα

[2] + Hα
[3]

α variation (Λ variation) provides a diagnostic tool to asses the contribution 
of omitted many-body terms, tests the unitarity of the SRG transformation 

Hα
[3]
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From QCD to nuclei

Low-energy QCD

Nuclear structure and reactions

NN+3N interactions 
from chiral EFT

…or accurate 
meson-exchange 

potentials

Unitary/similarity
transformations

Identity or SRG
or OLS or UCOM …

Softens NN, induces 3N

Many-Body methodsH Ψ = E Ψ
NCSM, NCSMC, CCM, 
SCGF, IM-SRG, GFMC, 

HH, Nuclear Lattice EFT…



12Conceptually simplest ab initio method: No-Core Shell Model (NCSM)

§ Basis expansion method
§ Harmonic oscillator (HO) basis truncated in a particular way (Nmax)
§ Why HO basis? 

§ Lowest filled HO shells match magic numbers of light nuclei 
(2, 8, 20 – 4He, 16O, 40Ca)

§ Equivalent description in relative-coordinate and Slater 
determinant basis

§ Short- and medium range correlations
§ Bound-states, narrow resonances

1max += NN

NCSM

ΨSD
A = cSDNjΦSDNj

HO (!r 1,
!r 2 , ... ,

!r A )
j
∑

N=0

Nmax

∑ =ΨA ϕ000 (
!
RCM )

ΨA = cNiΦNi
HO ( !η 1,

!
η 2 ,...,

!
η A−1)

i
∑

N=0

Nmax

∑
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14Results: �-decay 3H!3He

Ô = GT (1) ! Ô↵ = GT (1) + GT (2)
↵ + . . .

Operator:

Gamow-Teller (1-body)
hGT (2)

↵ iA=2 = h(GT (1))↵iA=2 � hGT (1)iA=2

Potential: “N4LO NN”

chiral NN @ N4LO, Machleidt
PRC96 (2017), 500MeV cuto↵
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|M
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N4LO500 NN, h̄⌦ = 20MeV

3H!3He

� = 1, h̄⌦ = 28

� = 1.6
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� = 2.0

GT (1)

GT (1) +GT (2)
�

Expt= 1.656

Peter Gysbers (UBC/TRIUMF) Ab Initio 2018 Feb 28, 2018 7 / 11

3Hè3He β decay

Hamiltonian:
chiral NN with SRG 2- and 3-body induced

(except orange line: bare chiral NN)



153Hè3He β decay

Determination of the cD parameter
relevant to chiral 3N force cD=-1.8         

(3N attractive)
Original EM 2003 N3LO NN cD=+0.8

(3N repulsive)

Results: �-decay 3H!3He

Ô = GT (1) +MEC (2) ! Ô↵ = GT (1) + GT (2)
↵ +MEC (2)

↵ + . . .

Operator:

Gamow-Teller (1-body) + chiral
meson exchange current (2-body)
Park (2003)

Potential: “N4LO NN”

chiral NN @ N4LO, Machleidt
PRC96 (2017), 500MeV cuto↵

LEC cD = �1.8 determined
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N4LO500 NN (cD = �1.8 in MEC), h̄⌦ = 20MeV

� = 1, h̄⌦ = 28

� = 1.6

� = 1.8

� = 2.0

GT (1) +GT (2)
�

GT (1) +MEC(2)

GT (1) +GT (2)
� +MEC(2)

�

Peter Gysbers (UBC/TRIUMF) Ab Initio 2018 Feb 28, 2018 8 / 11



166Heè6Li β decay
Results: �-decay 3H!3He

Ô = GT (1) +MEC (2) ! Ô↵ = GT (1) + GT (2)
↵ +MEC (2)

↵ + . . .

Operator:

Gamow-Teller (1-body) + chiral
meson exchange current (2-body)
Park (2003)

Potential: “N4LO NN”

chiral NN @ N4LO, Machleidt
PRC96 (2017), 500MeV cuto↵

LEC cD = �1.8 determined
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Nmax
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N4LO500 NN (cD = �1.8 in MEC), h̄⌦ = 20MeV
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GT (1) +GT (2)
�

GT (1) +MEC(2)

GT (1) +GT (2)
� +MEC(2)

�
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)|
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(2)                          l=1.8 fm-1

GT(1)+GTl
(2)+MECl

(2) l=1.8 fm-1 

GT(1) l=2.0 fm-1

GT(1)+GTl
(2) l=2.0 fm-1

GT(1)+GTl
(2)+MECl

(2) l=2.0 fm-1

Expt

NN N4LO+3Nlnl
hW=20 MeV

6He->6Li

Determination of the cD parameter
from 3H beta decay                                     

cD=-1.8 (3N D-term attractive)
cE from 3H binding energy

cE=-0.31 (3N E-term repulsive)



17Applications to β decays in p-shell nuclei and beyond 

§ Does inclusion of the MEC explain gA quenching?
§ In light nuclei correlations present in ab initio (NCSM) 

wave functions explain almost all of the quenching 
compared to the standard shell model
§ MEC inclusion overall improves agreement with 

experiment
§ The effect of the MEC inclusion is greater in heavier 

nuclei
§ SRG evolved matrix elements used in coupled-cluster 

and IM-SRG calculations (up to 100Sn) 

Application to Heavier Nuclei

Does inclusion of the MEC explain gA quenching?
The e↵ect of the inclusion is greater in heavier nuclei
SRG evolved matrix elements used in coupled-cluster and IM-SRG methods (up to Sn100)

Peter Gysbers (UBC/TRIUMF) Ab Initio 2018 Feb 28, 2018 9 / 11

MEC 3N (NCSM)

Hollow symbols – GT
Filled symbols – GT+MEC
Both Hamiltonian and operators SRG evolved
Hamiltonian and current consistent parameters

0.8 0.9 1.0 1.1
ratio to experiment

14O0 !14 N1

10C0 !10 B1

8He0 !8 Li1

7Be 3
2

!7 Li 3
2

7Be 3
2

!7 Li 1
2

6He0 !6 Li1

3H 1
2

!3 He 1
2

GT only

GT + 2BC

NN N4LO + 3Nlnl



18NCSM calculations of 6He g.s. energy

• Soft SRG evolved NN potential
ü Nmax convergence OK

ü Extrapolation feasible

12 13 14 15 16 17 18 19 20 21 22
hW [MeV]

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

E gs
 [M

eV
]

Nmax= 2
Nmax= 4
Nmax= 6
Nmax= 8
Nmax=10
Nmax=12
extrap

6He SRG-N3LO NN 
L=2.02 fm-1 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In

0
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E x [M
eV

]

6He
SRG-N3LO  Λ = 2.02 fm−1

h- Ω = 16 MeV
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.

Dependence on:
Basis size       – Nmax

HO frequency – hΩ



19NCSM calculations of 6He and 7He g.s. energies

• 7He unbound 
• Expt. Eth=+0.430(3) MeV: NCSM Eth≈ +1 MeV

• Expt. width 0.182(5) MeV: NCSM no 
information about the width

12 13 14 15 16 17 18 19 20 21 22
hW [MeV]

-30

-28
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-14

-12

E gs
 [M

eV
]

Nmax= 2
Nmax= 4
Nmax= 6
Nmax= 8
Nmax=10
Nmax=12
extrap

6He SRG-N3LO NN 
L=2.02 fm-1 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.

Dependence on:
Basis size       – Nmax

HO frequency – hΩ
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20Extending no-core shell model beyond bound states

A
ΨA = cNiΦNi

A

i
∑

N=0

Nmax

∑

Include more many nucleon correlations…
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21Unified approach to bound & continuum states; to nuclear structure & reactions

§ No-core shell model (NCSM)
§ A-nucleon wave function expansion in the harmonic-

oscillator (HO) basis
§ short- and medium range correlations
§ Bound-states, narrow resonances

§ NCSM with Resonating Group Method (NCSM/RGM)
§ cluster expansion, clusters described by NCSM
§ proper asymptotic behavior 
§ long-range correlations

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r

Unknowns

NCSM

NCSM/RGM

§ Most efficient: ab initio no-core shell model with continuum (NCSMC)
NCSMC

S. Baroni, P. Navratil, and S. Quaglioni, 
PRL 110, 022505 (2013); PRC 87, 034326 (2013).
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Coupled NCSMC equations
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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23Binary cluster basis

§ Working in partial waves (                                         )

§ Introduce a dummy variable    with the help of the delta function

§ Allows to bring the wave function of the relative motion in front of the antisymmetrizer

ψ JπT = Âν A− a α1I1
π1T1 a α2I2

π2T2( )
(sT )
Yℓ(r̂A−a,a )

⎡
⎣⎢

⎤
⎦⎥

(JπT ) gν
JπT (rA−a,a )
rA−a,aν

∑

A− a( )
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r −
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Norm kernel (Pauli principle): Single-nucleon projectile

A−1( )

a =1( )′r r
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J
π
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J
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∑

Direct term:
Treated exactly!
(in the full space)

Exchange term:
Obtained in the model space!
(Many-body correction due to
the exchange part of the inter-

cluster antisymmetrizer )
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Target wave functions expanded in the SD basis, the CM motion exactly removed    



25Microscopic R-matrix theory on a Lagrange mesh – Coupled channels

§ Separation into “internal” and “external” regions at the channel radius a

§ Matching achieved through the Bloch operator:

§ System of Bloch-Schrödinger equations:  
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§ Internal region: expansion on square-integrable basis

§ External region: asymptotic form for large r
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Abstract
The description of nuclei starting from the constituent nucleons and the realistic interactions
among them has been a long-standing goal in nuclear physics. In addition to the complex nature
of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces
the quantum-mechanical many-nucleon problem governed by an interplay between bound and
continuum states. In recent years, significant progress has been made in ab initio nuclear
structure and reaction calculations based on input from QCD-employing Hamiltonians
constructed within chiral effective field theory. After a brief overview of the field, we focus on
ab initio many-body approaches—built upon the no-core shell model—that are capable of
simultaneously describing both bound and scattering nuclear states, and present results for
resonances in light nuclei, reactions important for astrophysics and fusion research. In particular,
we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon
scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of
9Be. Further, we discuss applications to the 7Be p, B8( )H radiative capture. Finally, we highlight
our efforts to describe transfer reactions including the 3H d, n 4( ) He fusion.
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few-nucleon systems, three-nucleon forces, radiative capture
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1. Introduction

Understanding the structure and the dynamics of nuclei as
many-body systems of protons and neutrons interacting
through the strong (as well as electromagnetic and weak)
forces is one of the central goals of nuclear physics. One of
the major reasons why this goal has yet to be accomplished
lies in the complex nature of the strong nuclear force, emer-
ging form the underlying theory of quantum chromodynamics
(QCD). At the low energies relevant to the structure and
dynamics of nuclei, QCD is non-perturbative and very diffi-
cult to solve. The relevant degrees of freedom for nuclei are

nucleons, i.e., protons and neutrons, that are not fundamental
particles but rather complex objects made of quarks, anti-
quarks and gluons. Consequently, the strong interactions
among nucleons is only an ‘effective’ interaction emerging
non-perturbatively from QCD. Our knowledge of the
nucleon–nucleon (NN) interactions is limited at present to
models. The most advanced and most fundamental of these
models rely on a low-energy effective field theory (EFT) of
the QCD, chiral EFT [1]. This theory is built on the sym-
metries of QCD, most notably the approximate chiral sym-
metry. However, it is not renormalizable and has an infinite
number of terms. Chiral EFT involves unknown parameters,
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1. Introduction

Understanding the structure and the dynamics of nuclei as
many-body systems of protons and neutrons interacting
through the strong (as well as electromagnetic and weak)
forces is one of the central goals of nuclear physics. One of
the major reasons why this goal has yet to be accomplished
lies in the complex nature of the strong nuclear force, emer-
ging form the underlying theory of quantum chromodynamics
(QCD). At the low energies relevant to the structure and
dynamics of nuclei, QCD is non-perturbative and very diffi-
cult to solve. The relevant degrees of freedom for nuclei are

nucleons, i.e., protons and neutrons, that are not fundamental
particles but rather complex objects made of quarks, anti-
quarks and gluons. Consequently, the strong interactions
among nucleons is only an ‘effective’ interaction emerging
non-perturbatively from QCD. Our knowledge of the
nucleon–nucleon (NN) interactions is limited at present to
models. The most advanced and most fundamental of these
models rely on a low-energy effective field theory (EFT) of
the QCD, chiral EFT [1]. This theory is built on the sym-
metries of QCD, most notably the approximate chiral sym-
metry. However, it is not renormalizable and has an infinite
number of terms. Chiral EFT involves unknown parameters,
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Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces
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We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N )
interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions
for the 3N -force integration kernels, and discuss computational aspects of two alternative implementations. The
extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-
group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze
the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution
parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of
the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2− and 1/2− resonances and leads to
an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon
experimental data. We find remarkably good agreement with measured differential cross sections at various
energies below the d-3H threshold, while analyzing powers manifest larger deviations from experiment for
certain energies and angles.

DOI: 10.1103/PhysRevC.88.054622 PACS number(s): 21.60.De, 25.10.+s, 27.10.+h, 27.20.+n

I. INTRODUCTION

Recent progress in ab initio nuclear theory has been helping
us reach a basic understanding of nuclear properties while
paving the way to accurate predictions in the domain of
light nuclei. This has been made possible by simultaneous
advances in the fundamental description of the nuclear
interaction, many-body techniques, and scientific computing.
Today, accurate nucleon-nucleon (NN ) and three-nucleon
(3N ) interactions from chiral effective field theory (χEFT)
[1,2] offer a much-desired link to the underlying theory of
quantum chromodynamics at low energies. At the same time,
a first-principles solution of the many-body problem starting
from realistic Hamiltonians is not only being achieved for well-
bound states [3– 7], but also is becoming possible for scattering
and reactions as successful ab initio bound-state techniques
are being extended to the description of dynamical processes
between light nuclei [8– 11]. In techniques based on large-scale
expansions over many-body basis states, this success is in
part enabled by the use of similarity-renormalization-group
(SRG) [12– 15] transformations of the input Hamiltonian,
where interactions can be softened in exchange for induced
many-body terms [16– 19].

One of the emerging techniques in the area of ab initio
light-nucleus reactions is the no-core shell model combined
with the resonating-group method, or NCSM/RGM [9,20].
Here RGM [21– 26] expansions in (A− a, a) binary-cluster
wave functions, where each cluster of nucleons is described

*hupin1@llnl.gov
†joachim.langhammer@physik.tu-darmstadt.de
‡navratil@triumf.ca
§quaglioni1@llnl.gov
∥angelo.calci@physik.tu-darmstadt.de
¶robert.roth@physik.tu-darmstadt.de

within the ab initio NCSM [27– 30], are used to describe the
dynamics between nuclei made of interacting nucleons starting
from realistic Hamiltonians. In the recent past, this technique
has been successfully applied to compute nucleon [31] and
deuteron [32] scattering on light nuclei, based on accurate
NN potentials obtained by SRG softening of the χEFT NN
potential at next-to-next-to-next-to-leading order (N3LO) by
Entem and Machleidt [33]. In these first applications, the
omission of many-body forces induced by the renormalization
of the input NN potential introduced a dependence on the SRG
resolution scale λ. Also neglected was the 3N component
of the initial chiral Hamiltonian. Nevertheless, by choosing
an appropriate value of λ that reproduced the observed
particle separation energies, the NCSM/RGM was capable
of providing a promising realistic description of scattering
data and even complex reactions such as the 7Be(p,γ )8B
radiative capture [34] or the 3H(d,n)4He and 3He(d,p)4He
fusion rates [35]. In addition, nucleon-nucleus NCSM/RGM
wave functions combined with NCSM eigenstates of the com-
posite A-nucleon system have been successfully used to
compute the low-lying spectrum of the unbound 7He nucleus
within the more complete framework of the no-core shell
model with continuum (NCSMC) [11,36]. However, a truly
accurate ab initio description demands the inclusion of both
induced and initial chiral 3N interactions.

In this paper we present an extension of the ab initio
NCSM/RGM to include explicit 3N -force components of the
Hamiltonian in the description of nucleon-nucleus collisions,
and discuss two alternative implementations of the approach.
The extended formalism is then applied to the study of nucleon-
4He scattering using SRG-evolved NN + 3N Hamiltonians
derived from the N3LO NN interaction of Ref. [33] along with
the local form of the chiral 3N force at next-to-next-to-leading
order (N2LO) of Ref. [37] entirely constrained in the NN and
3N systems [38]. We account for target-polarization effects

054622-10556-2813/2013/88(5)/054622(16) ©2013 American Physical Society
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4He

p

p-4He scattering phase-shifts for NN+3N500 potential: 
Convergence

Differential p-4He cross section with NN+3N potentials2

The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio
no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to Nmax HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {

4He �↵J
⇡↵
↵ T↵; p

1
2

+ 1
2 ; s`} associated with the con-

tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5
(1 �

P4
i=1 Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2

�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5Li h̄

h̄ H

◆✓
c

�

◆
= E

✓
I5Li ḡ

ḡ I

◆✓
c

�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5Li)��0 = ���0E� [(I5Li)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2

HN
�1/2)⌫⌫0(r, r0)

[I⌫⌫0(r, r0) = �⌫⌫0�(r � r
0)/(rr0)], which are obtained

from N⌫⌫0(r, r0)= h�J⇡T
⌫r |A⌫A⌫0 |�J⇡T

⌫0r0 i and H⌫⌫0(r, r0)=
h�J⇡T

⌫r |A⌫HA⌫0 |�J⇡T
⌫0r0 i, appear in the lower diagonal

block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h

5Li�J⇡
T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h
5Li�J⇡

T |HA⌫ |�J⇡T
⌫r i. The scattering matrix (and from

it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
Nmax = 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at Nmax = 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2

P3/2 and
2
P1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+10, 0
+
20, 0

-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that

Predictive power in the 3/2- resonance region:
Applications to material science

3

0.0

1.0

2.0

3.0

d
σ

/d
Ω

p
 [

b
/s

r] Barnard et al.
Freier et al.
Kreger et al.

0 3 6 9 12
E

p
 [MeV]

0.1

0.2

d
σ

/d
Ω

p
 [

b
/s

r] Barnard et al.
Freier et al.
Miller et al.
Nurmela et al.

θ
p
= 141

o

4
He(p,p)

4
He

θ
p
= 25

o

(a)

(b)

FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J

⇡↵
↵ T↵ = 0-0, 2-0, 2-1 and 1-1

(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(Ekin) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2

P3/2 and 2
P1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at Nmax = 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at Nmax = 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-
tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized

NCSM/RGM
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Predictive theory for elastic scattering and recoil of protons from 4He
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.

DOI: 10.1103/PhysRevC.90.061601 PACS number(s): 21.60.De, 24.10.Cn, 25.40.Cm, 27.10.+h

Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[( ∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉) (sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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29Deuterium-Tritium fusion

§ The d+3H®n+4He reaction
§ The most promising for the production of fusion energy in the near future
§ Used to achieve inertial-confinement (laser-induced) fusion at NIF, and 

magnetic-confinement fusion at ITER
§ With its mirror reaction, 3He(d,p)4He, important for Big Bang nucleosynthesis NIF

ITER
Resonance at Ecm =48 keV (Ed=105 keV) 
in the J=3/2+ channel
Cross section at the peak: 4.88 b

17.64 MeV energy released:
14.1 MeV neutron and 3.5 MeV alpha



30Big Bang nucleosythesis

Key reactions

7Li puzzle



31n-4He scattering and 3H+d fusion within NCSMC
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The d-3H fusion takes place through a transition
of d+3H is S-wave to n+4He in D-wave: 
Importance of the tensor and 3N force

4He+n

4He+n -> 3H+d
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323H(d,n)4He with chiral NN+3N500 interaction
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33NCSMC phenomenology

Eλ
NCSM energies treated as 
adjustable parameters 

Cluster excitation energies 
set to experimental values

Lawrence Livermore National Laboratory 9 LLNL#PRES#650082 

… to be simultaneously determined  
by solving the coupled NCSMC equations 
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343H(d,n)4He with chiral NN+3N500 interaction
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353H(d,n)4He with chiral NN+3N500 interaction
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37NCSM calculations of 6He and 7He g.s. energies

• 7He unbound 

• Expt. Eth=+0.430(3) MeV: NCSM Eth≈ +1 MeV

• Expt. width 0.182(5) MeV: NCSM no 
information about the width
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E gs
 [M

eV
]

Nmax= 2
Nmax= 4
Nmax= 6
Nmax= 8
Nmax=10
Nmax=12
extrap

6He SRG-N3LO NN 
L=2.02 fm-1 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.

Dependence on:
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38NCSM with continuum: 7He        6He+n

NCSMC
with three 6He states
and ten 7He eigenstates

More 7-nucleon correlations
Fewer 6He-core states needed
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Experimental controversy: 
Existence of low-lying 1/2- state 
… not seen in these calculations

4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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tion for the 6He + n threshold energy is within ∼ 1 MeV
from the experimental value when a low-momentum res-
olution λ = 2.02 fm−1 is used. This allows us to per-
form qualitatively and quantitatively meaningful calcu-
lations and to discuss the physics involved in the scat-
tering process. All calculations shown in this work are
done with λ = 2.02 fm−1 two-body low-momentum inter-
actions, while the implementation of 3NF is in progress
[Ref.] and its inclusion is left for the future. At variance
with effective interactions that change as a function of
the model-space size (i.e., through the Lee-Suzuki renor-
malization, [Ref.]), the SRG potential enters unaltered
all the calculations. This makes the theories variational.

The NCSM/RGM and the NCSMC phase shifts for
the 7He negative-parity states up to J = 5/2 and for
the Jπ = 1/2+ state are shown in Fig. 2. We adopt
the standard notation 2s+1ℓJπ for the channel quantum
numbers, where the total spin s of the two clusters and
the relative orbital angular momentum ℓ add up to give
the total spin of the system J⃗ = s⃗+ ℓ⃗ (cf. Eq. 2). All the
phase shifts in Fig. 2 have been obtained using the lowest
three 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states). The NCSMC basis includes
also the lowest six (four) 7He negative- (positive-) parity
eigenstates. The neutron kinetic energy corresponding
to a phase shift of π/2 is taken as the resonance centroid
and it is plotted in Fig. 1, while the resonance width is
computed as [Ref.]

Γ =
2

∂δ(Ekin)/∂Ekin

∣

∣

∣

∣

Ekin=ER

(38)

evaluated at the resonance centroid ER and with the
phase shift in radians. Computed centroids and widths
are reported in Tab. I, together with the available ex-
perimental data. While the above procedure to extract
centroid energy and resonance width is safely applicable
to sharp resonances, broad resonances would require an
analysis of the scattering matrix in the complex plane.
As we are more interested in a qualitative discussion of
the results, we extend here the above extraction proce-
dure to broad resonances.

As expected for a variational theory, the introduction
of the additional A-body basis states |AλJπT ⟩ and the
coupling to the continuum lead to lower centroid values
for all 7He resonances when going from NCSM/RGM
to NCSMC. In particular, the 7He 3/2− ground state
and 5/2− excited state are sensitevely pushed toward the
6He + n threshold, getting closer to the experiment. The
resonance widths also shrink toward the observed data.

NCSM/RGM and NCSMC theories predict a 1/2− res-
onance above the 5/2− excited state, in contrast with the
NCSM. The latter, though, is not expected to provide a
reliable description for broad resonances, as this requires
a correct description of the coupling to the continuum.

The NCSM and the NCSM/RGM centroid energies for
the 3/2- and 5/2- resonances are just ! 200 keV apart,
while a significant energy shift is brought by the coupling
to the continuum, with a compression of the separation
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FIG. 2: NCSM/RGM (a) and NCSMC (b) 6He + n phase
shifts as a function of the kinetic energy of the impinging
neutron projectile. The phase shifts are taken from the diag-
onal matrix elements of the scattering matrix (see Sect. IID).
The dashed vertical area centered at 0.44 MeV indicates the
experimental centroid and width of the 7He ground state [29].
In all calculations the lowest three 6He states have been in-
cluded in the construcction of the basis states (cf. Eq. 2).

Jπ experiment NCSM NCSM/RGM NCSMC
E Γ Ref. E E Γ E Γ

3/2− 0.44(3) 0.16(3) [29] 1.30 1.42 0.52 0.75 0.31

5/2− 2.9(3) 2.2(3) [30] 4.56 4.58 3.06 3.69 2.57

1/2− 3.54 10 [42] 3.26 4.96 14.95 4.01 15.15

3.04 2 [38]

TABLE I: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He.

energy of about 0.4 MeV, closer to the experimental find-
ings.

All these results show that the coupling to the contin-
uum is strong, which leads to an overcompleteness of the
NCSMC basis. This overcompleteness is at the heart of
the method, which is then able to get converged results
with fewer cluster states than the NCSM/RGM. The lat-
ter often requires many target states |A − a α1I

π1
1 T1⟩ to

7He unbound

r
+



39Neutron-rich halo nucleus 11Be

§ Z=4, N=7
§ In the shell model picture g.s. expected to be Jπ=1/2-

§ Z=6, N=7 13C and Z=8, N=7 15O have Jπ=1/2- g.s.
§ In reality, 11Be g.s. is Jπ=1/2+ - parity inversion
§ Very weakly bound: Eth=-0.5 MeV

§ Halo state – dominated by 10Be-n in the S-wave
§ The 1/2- state also bound – only by 180 keV

§ Can we describe 11Be in ab initio calculations?
§ Continuum must be included
§ Does the 3N interaction play a role in the parity inversion?

0s1/2

0p1/2

1s1/2

0p3/2



4010C(p,p) @ IRIS with solid H2 target

§ Experiment at TRIUMF with the novel IRIS solid H2 target
§ First re-accelerated 10C beam at TRIUMF
§ 10C(p,p) angular distributions measured at ECM ~ 4.15 MeV and 4.4 MeV
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of bound 10C whose isotonic neighbors 9B, 8Be, and 11N
are unbound, is a testament of the complicated strong
interaction. Secondly, ab initio Green’s function
Monte Carlo [7] and no-core shell model [8,9] calculations
have shown the three-nucleon force to be important for
explaining the structure of mass number A ¼ 10nuclei.
Recent advances in ab initio nuclear reaction theory now
allow us to compute the 10Cðp; pÞ scattering cross section
based on chiral forces. Thirdly, with the low-energy
reaccelerated beam available at TRIUMF, our investigation
was carried out at low center-of-mass energies of
∼4.1–4.4MeV for pþ 10C, since here the low-level
density of the composite (unbound) nucleus 11N minimizes
the number of phase shifts influencing the diffraction
pattern, and hence facilitates the identification of nuclear
force effects more transparently than what is possible with
stable nuclei. Furthermore, no transfer reaction channels
are open at low energy for this system, thereby simplifying
the ab initio reaction calculation.
The experiment was performed in inverse kinematics at

the ISAC rare isotope beam facility at TRIUMF [10,11] by
bombarding a proton target with a 10C beam. The beam
with an average intensity of 2000 particles per second
reaccelerated using ISAC-II superconducting linear accel-
erator [10,12], impinged on a solid hydrogen target at the
IRIS reaction spectroscopy station [13]. A schematic of the
setup is shown in Fig. 1. Energy loss measured in a low-
pressure ionization chamber allowed for clean identifica-
tion of 10C from the 10B contaminant. The beam energies at
midtarget were 4.54A MeV and 4.82A MeV, correspond-
ing to pþ 10C center-of-mass energies of Ec:m: ¼ 4.15 and
4.4 MeV, respectively. These energies were chosen to be
around the location of the 5=2þ and 3=2− resonances in the
11N compound system (¼ 10Cþ p) because preliminary
calculations suggested that variation of the nuclear force
alters the D5=2 and P3=2 phase shifts and hence the cross
sections significantly. Our selected energies were chosen to
be below and above the 3=2− resonance, which is placed at
4.35(3) MeV in the evaluation in Ref. [14]. We note here,
however, that conflicting experimental data exist on this

resonance position. Reference [15] places the 3=2− reso-
nance at 4.56(1) MeV, which is higher than both the beam
energies, in which case the cross sections at the two
measured energies may be similar.
The scattered protons were identified using the correla-

tion between energy loss in an annular array of segmented
silicon detectors and the remaining energy deposited in
CsI(Tl) detectors covering angles θlab ∼ 26°–52°. The
selected proton events show a very clear locus of elastic
scattering [Fig. 2(a)]. The inelastic scattering locus is only
slightly visible around θlab ∼ 26°–28°, as most of this
channel occurs at smaller θlab and was hence outside the
detector coverage. The excitation energy spectrum of 10C
[Fig. 2(b)] was reconstructed from the measured energies
and scattering angles of the protons using the missing mass
technique. A small background, seen under the elastic peak,
estimated by a linear fit to be ∼1%–3%, was subtracted to
obtain the elastic scattering cross sections at the different
scattering angles.
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FIG. 1. Schematic view of the experiment setup at the IRIS
reaction spectroscopy station.
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FIG. 2. (a) The measured kinematic loci, proton energy as a
function of proton scattering angle, for 10Cðp; pÞ10Cgs at
Ec:m: ¼ 4.15 MeV. (b) Measured excitation energy spectrum
of 10C.
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§ NCSMC calculations with chiral NN+3N (N3LO NN+N2LO 3NF400, NNLOsat)
§ p-10C    +   11N

§ 10C:   0+, 2+, 2+ NCSM eigenstates
§ 11N:   ≥4 π = -1 and ≥3 π = +1 NCSM eigenstates

p+10C scattering: structure of 11N resonances
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How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the
Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics
has been the greatest challenge in answering this question. The chiral effective field theory description of
the nuclear force now makes this possible but requires certain parameters that are not uniquely determined.
Defining the nuclear force needs identification of observables sensitive to the different parametrizations.
From a measurement of proton elastic scattering on 10C at TRIUMF and ab initio nuclear reaction
calculations, we show that the shape and magnitude of the measured differential cross section is strongly
sensitive to the nuclear force prescription.

DOI: 10.1103/PhysRevLett.118.262502

Understanding the strong nuclear force is of fundamental
importance to decipher nature’s way of building visible
matter in our Universe. Yet, more than a century after the
discovery of the nucleus, our knowledge of the nuclear
force is still incomplete. The formulation by Weinberg of
chiral effective field theory [1] enabled a major break-
through in arriving at a fundamental understanding of the
low-energy nuclear interactions of protons and neutrons, by
forging the missing link with quantum chromodynamics.
However, the question of how to best implement the theory
and constrain it with experimental data remains an active
topic of research, and has already led to several para-
metrizations of the nuclear force [2–6]. It is, therefore,
important to identify experimental observables that are
sensitive to different parametrizations of the chiral forces in
order to reach a definitive description of the nuclear force.
The study of many-nucleon systems enables a more
complete understanding of the nuclear force. In particular,
proton-rich and neutron-rich nuclei located at the edges of
nuclear stability (drip lines) can amplify less-constrained
features of the nuclear force, such as its dependence on the
proton-neutron asymmetry. However, there is a lack of
experimental data on the properties of these systems.

Among the properties of the drip-line nuclei, we hypoth-
esize in this work that the nucleon-nucleus scattering
differential cross section is highly sensitive to the details
of the nuclear force and, hence, can be used for con-
straining it. Indeed, it should reveal both the spectroscopic
properties of the reacting system, such as phase shifts and
their interference, as well as the effect of exotic nucleon
distributions. This confluence brings a greater selectivity in
the elastic scattering differential cross section than is
possible by independently investigating resonance ener-
gies, binding energies, or radii. The observations reported
here show that the shape and magnitude of the elastic
scattering angular distribution places stringent constraints
on the chiral interactions, while a study of resonance
energies alone could lead to incomplete and/or misleading
conclusions. The study of elastic scattering for drip-line
nuclei is, however, challenging because of the low-beam
intensities and formulation of the ab initio structure and
reaction theory.
We report the first investigation probing the nuclear force

through proton elastic scattering from 10C, located at the
proton drip line. This is an ideal system to test the effect of
the nuclear force. This is because, firstly, the very existence
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How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the
Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics
has been the greatest challenge in answering this question. The chiral effective field theory description of
the nuclear force now makes this possible but requires certain parameters that are not uniquely determined.
Defining the nuclear force needs identification of observables sensitive to the different parametrizations.
From a measurement of proton elastic scattering on 10C at TRIUMF and ab initio nuclear reaction
calculations, we show that the shape and magnitude of the measured differential cross section is strongly
sensitive to the nuclear force prescription.
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Understanding the strong nuclear force is of fundamental
importance to decipher nature’s way of building visible
matter in our Universe. Yet, more than a century after the
discovery of the nucleus, our knowledge of the nuclear
force is still incomplete. The formulation by Weinberg of
chiral effective field theory [1] enabled a major break-
through in arriving at a fundamental understanding of the
low-energy nuclear interactions of protons and neutrons, by
forging the missing link with quantum chromodynamics.
However, the question of how to best implement the theory
and constrain it with experimental data remains an active
topic of research, and has already led to several para-
metrizations of the nuclear force [2–6]. It is, therefore,
important to identify experimental observables that are
sensitive to different parametrizations of the chiral forces in
order to reach a definitive description of the nuclear force.
The study of many-nucleon systems enables a more
complete understanding of the nuclear force. In particular,
proton-rich and neutron-rich nuclei located at the edges of
nuclear stability (drip lines) can amplify less-constrained
features of the nuclear force, such as its dependence on the
proton-neutron asymmetry. However, there is a lack of
experimental data on the properties of these systems.

Among the properties of the drip-line nuclei, we hypoth-
esize in this work that the nucleon-nucleus scattering
differential cross section is highly sensitive to the details
of the nuclear force and, hence, can be used for con-
straining it. Indeed, it should reveal both the spectroscopic
properties of the reacting system, such as phase shifts and
their interference, as well as the effect of exotic nucleon
distributions. This confluence brings a greater selectivity in
the elastic scattering differential cross section than is
possible by independently investigating resonance ener-
gies, binding energies, or radii. The observations reported
here show that the shape and magnitude of the elastic
scattering angular distribution places stringent constraints
on the chiral interactions, while a study of resonance
energies alone could lead to incomplete and/or misleading
conclusions. The study of elastic scattering for drip-line
nuclei is, however, challenging because of the low-beam
intensities and formulation of the ab initio structure and
reaction theory.
We report the first investigation probing the nuclear force

through proton elastic scattering from 10C, located at the
proton drip line. This is an ideal system to test the effect of
the nuclear force. This is because, firstly, the very existence
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How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the
Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics
has been the greatest challenge in answering this question. The chiral effective field theory description of
the nuclear force now makes this possible but requires certain parameters that are not uniquely determined.
Defining the nuclear force needs identification of observables sensitive to the different parametrizations.
From a measurement of proton elastic scattering on 10C at TRIUMF and ab initio nuclear reaction
calculations, we show that the shape and magnitude of the measured differential cross section is strongly
sensitive to the nuclear force prescription.
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Understanding the strong nuclear force is of fundamental
importance to decipher nature’s way of building visible
matter in our Universe. Yet, more than a century after the
discovery of the nucleus, our knowledge of the nuclear
force is still incomplete. The formulation by Weinberg of
chiral effective field theory [1] enabled a major break-
through in arriving at a fundamental understanding of the
low-energy nuclear interactions of protons and neutrons, by
forging the missing link with quantum chromodynamics.
However, the question of how to best implement the theory
and constrain it with experimental data remains an active
topic of research, and has already led to several para-
metrizations of the nuclear force [2–6]. It is, therefore,
important to identify experimental observables that are
sensitive to different parametrizations of the chiral forces in
order to reach a definitive description of the nuclear force.
The study of many-nucleon systems enables a more
complete understanding of the nuclear force. In particular,
proton-rich and neutron-rich nuclei located at the edges of
nuclear stability (drip lines) can amplify less-constrained
features of the nuclear force, such as its dependence on the
proton-neutron asymmetry. However, there is a lack of
experimental data on the properties of these systems.

Among the properties of the drip-line nuclei, we hypoth-
esize in this work that the nucleon-nucleus scattering
differential cross section is highly sensitive to the details
of the nuclear force and, hence, can be used for con-
straining it. Indeed, it should reveal both the spectroscopic
properties of the reacting system, such as phase shifts and
their interference, as well as the effect of exotic nucleon
distributions. This confluence brings a greater selectivity in
the elastic scattering differential cross section than is
possible by independently investigating resonance ener-
gies, binding energies, or radii. The observations reported
here show that the shape and magnitude of the elastic
scattering angular distribution places stringent constraints
on the chiral interactions, while a study of resonance
energies alone could lead to incomplete and/or misleading
conclusions. The study of elastic scattering for drip-line
nuclei is, however, challenging because of the low-beam
intensities and formulation of the ab initio structure and
reaction theory.
We report the first investigation probing the nuclear force

through proton elastic scattering from 10C, located at the
proton drip line. This is an ideal system to test the effect of
the nuclear force. This is because, firstly, the very existence
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How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the
Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics
has been the greatest challenge in answering this question. The chiral effective field theory description of
the nuclear force now makes this possible but requires certain parameters that are not uniquely determined.
Defining the nuclear force needs identification of observables sensitive to the different parametrizations.
From a measurement of proton elastic scattering on 10C at TRIUMF and ab initio nuclear reaction
calculations, we show that the shape and magnitude of the measured differential cross section is strongly
sensitive to the nuclear force prescription.
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Understanding the strong nuclear force is of fundamental
importance to decipher nature’s way of building visible
matter in our Universe. Yet, more than a century after the
discovery of the nucleus, our knowledge of the nuclear
force is still incomplete. The formulation by Weinberg of
chiral effective field theory [1] enabled a major break-
through in arriving at a fundamental understanding of the
low-energy nuclear interactions of protons and neutrons, by
forging the missing link with quantum chromodynamics.
However, the question of how to best implement the theory
and constrain it with experimental data remains an active
topic of research, and has already led to several para-
metrizations of the nuclear force [2–6]. It is, therefore,
important to identify experimental observables that are
sensitive to different parametrizations of the chiral forces in
order to reach a definitive description of the nuclear force.
The study of many-nucleon systems enables a more
complete understanding of the nuclear force. In particular,
proton-rich and neutron-rich nuclei located at the edges of
nuclear stability (drip lines) can amplify less-constrained
features of the nuclear force, such as its dependence on the
proton-neutron asymmetry. However, there is a lack of
experimental data on the properties of these systems.

Among the properties of the drip-line nuclei, we hypoth-
esize in this work that the nucleon-nucleus scattering
differential cross section is highly sensitive to the details
of the nuclear force and, hence, can be used for con-
straining it. Indeed, it should reveal both the spectroscopic
properties of the reacting system, such as phase shifts and
their interference, as well as the effect of exotic nucleon
distributions. This confluence brings a greater selectivity in
the elastic scattering differential cross section than is
possible by independently investigating resonance ener-
gies, binding energies, or radii. The observations reported
here show that the shape and magnitude of the elastic
scattering angular distribution places stringent constraints
on the chiral interactions, while a study of resonance
energies alone could lead to incomplete and/or misleading
conclusions. The study of elastic scattering for drip-line
nuclei is, however, challenging because of the low-beam
intensities and formulation of the ab initio structure and
reaction theory.
We report the first investigation probing the nuclear force
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How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the
Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics
has been the greatest challenge in answering this question. The chiral effective field theory description of
the nuclear force now makes this possible but requires certain parameters that are not uniquely determined.
Defining the nuclear force needs identification of observables sensitive to the different parametrizations.
From a measurement of proton elastic scattering on 10C at TRIUMF and ab initio nuclear reaction
calculations, we show that the shape and magnitude of the measured differential cross section is strongly
sensitive to the nuclear force prescription.
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Understanding the strong nuclear force is of fundamental
importance to decipher nature’s way of building visible
matter in our Universe. Yet, more than a century after the
discovery of the nucleus, our knowledge of the nuclear
force is still incomplete. The formulation by Weinberg of
chiral effective field theory [1] enabled a major break-
through in arriving at a fundamental understanding of the
low-energy nuclear interactions of protons and neutrons, by
forging the missing link with quantum chromodynamics.
However, the question of how to best implement the theory
and constrain it with experimental data remains an active
topic of research, and has already led to several para-
metrizations of the nuclear force [2–6]. It is, therefore,
important to identify experimental observables that are
sensitive to different parametrizations of the chiral forces in
order to reach a definitive description of the nuclear force.
The study of many-nucleon systems enables a more
complete understanding of the nuclear force. In particular,
proton-rich and neutron-rich nuclei located at the edges of
nuclear stability (drip lines) can amplify less-constrained
features of the nuclear force, such as its dependence on the
proton-neutron asymmetry. However, there is a lack of
experimental data on the properties of these systems.

Among the properties of the drip-line nuclei, we hypoth-
esize in this work that the nucleon-nucleus scattering
differential cross section is highly sensitive to the details
of the nuclear force and, hence, can be used for con-
straining it. Indeed, it should reveal both the spectroscopic
properties of the reacting system, such as phase shifts and
their interference, as well as the effect of exotic nucleon
distributions. This confluence brings a greater selectivity in
the elastic scattering differential cross section than is
possible by independently investigating resonance ener-
gies, binding energies, or radii. The observations reported
here show that the shape and magnitude of the elastic
scattering angular distribution places stringent constraints
on the chiral interactions, while a study of resonance
energies alone could lead to incomplete and/or misleading
conclusions. The study of elastic scattering for drip-line
nuclei is, however, challenging because of the low-beam
intensities and formulation of the ab initio structure and
reaction theory.
We report the first investigation probing the nuclear force

through proton elastic scattering from 10C, located at the
proton drip line. This is an ideal system to test the effect of
the nuclear force. This is because, firstly, the very existence
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How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the
Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics
has been the greatest challenge in answering this question. The chiral effective field theory description of
the nuclear force now makes this possible but requires certain parameters that are not uniquely determined.
Defining the nuclear force needs identification of observables sensitive to the different parametrizations.
From a measurement of proton elastic scattering on 10C at TRIUMF and ab initio nuclear reaction
calculations, we show that the shape and magnitude of the measured differential cross section is strongly
sensitive to the nuclear force prescription.
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Understanding the strong nuclear force is of fundamental
importance to decipher nature’s way of building visible
matter in our Universe. Yet, more than a century after the
discovery of the nucleus, our knowledge of the nuclear
force is still incomplete. The formulation by Weinberg of
chiral effective field theory [1] enabled a major break-
through in arriving at a fundamental understanding of the
low-energy nuclear interactions of protons and neutrons, by
forging the missing link with quantum chromodynamics.
However, the question of how to best implement the theory
and constrain it with experimental data remains an active
topic of research, and has already led to several para-
metrizations of the nuclear force [2–6]. It is, therefore,
important to identify experimental observables that are
sensitive to different parametrizations of the chiral forces in
order to reach a definitive description of the nuclear force.
The study of many-nucleon systems enables a more
complete understanding of the nuclear force. In particular,
proton-rich and neutron-rich nuclei located at the edges of
nuclear stability (drip lines) can amplify less-constrained
features of the nuclear force, such as its dependence on the
proton-neutron asymmetry. However, there is a lack of
experimental data on the properties of these systems.

Among the properties of the drip-line nuclei, we hypoth-
esize in this work that the nucleon-nucleus scattering
differential cross section is highly sensitive to the details
of the nuclear force and, hence, can be used for con-
straining it. Indeed, it should reveal both the spectroscopic
properties of the reacting system, such as phase shifts and
their interference, as well as the effect of exotic nucleon
distributions. This confluence brings a greater selectivity in
the elastic scattering differential cross section than is
possible by independently investigating resonance ener-
gies, binding energies, or radii. The observations reported
here show that the shape and magnitude of the elastic
scattering angular distribution places stringent constraints
on the chiral interactions, while a study of resonance
energies alone could lead to incomplete and/or misleading
conclusions. The study of elastic scattering for drip-line
nuclei is, however, challenging because of the low-beam
intensities and formulation of the ab initio structure and
reaction theory.
We report the first investigation probing the nuclear force

through proton elastic scattering from 10C, located at the
proton drip line. This is an ideal system to test the effect of
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Here, ~R(A�a)
c.m. and ~R(a)

c.m. are the c.m. coordinates the (A � a)- and a-nucleon systems,

respectively, and ~rA�a,a = ~R(A�a)
c.m. � ~R(a)

c.m. is the relative displacement vector between

the two clusters, while Z(A�a) and Z(a) represent respectively the charge numbers of the

target and of the projectile. It can be easily demonstrated that Eqs. (77) and (79) are

exactly equivalent.

The reduced matrix elements of the ~E1 dipole operator between two bound states

of an A-body nucleus with spin Ji, parity ⇡i, isospin Ti, energy Ei in the initial state

and Jf , ⇡f , Tf , Ef in the final state are given by:
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In the second line of Eq. (80) we have introduced the short notation f(i) for the group

of quantum numbers {J⇡f(i)

f(i) Tf(i)} that will be used throughout the rest of this section.

In the NCSMC formalism the matrix element of Eq. (80) is given by the sum of four

components, specifically, the reduced matrix element in the NCSM sector of the wave

function, the “coupling” reduced matrix elements between NCSM and NCSM/RGM

(and vice versa) basis states, and the reduced matrix element in the NCSM/RGM sector:
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The algebraic expression for the reduced matrix elements in the NCSM sector

hA�0J
⇡f

f Tf || ~E1||A�J⇡i
i Tii can be easily obtained working in the single-particle SD

harmonic oscillator basis. In the following, we consider the reduced matrix elements
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~E1Â⌫ ||�i

⌫ri
�i
⌫(r)

r
. (81)

The algebraic expression for the reduced matrix elements in the NCSM sector

hA�0J
⇡f

f Tf || ~E1||A�J⇡i
i Tii can be easily obtained working in the single-particle SD

harmonic oscillator basis. In the following, we consider the reduced matrix elements

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν
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Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11Be?
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The weakly bound exotic 11Be nucleus, famous for its ground-state parity inversion and distinct
nþ 10Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces.
An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be
spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are
capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition
between the bound states is reproduced. We compare our photodisintegration calculations to conflicting
experimental data and predict a distinct dip around the 3=2−1 resonance energy. Finally, we predict
low-lying 3=2þ and 9=2þ resonances that are not or not sufficiently measured in experiments.

DOI: 10.1103/PhysRevLett.117.242501

The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
the regular shell structure. The spectrum of 11Be has some
very peculiar features. The 1=2þ ground state (g.s.) is loosely
bound by 502 keVwith respect to the nþ 10Be threshold and
is separated by only 320 keV from its parity-inverted 1=2−

partner [1], which would be the expected g.s. in the standard
shell-model picture. Such parity inversion, already noticed by
Talmi and Unna [2] in the early 1960s, is one of the best
examples of the disappearance of the N ¼ 8 magic number
with an increasing neutron to proton ratio. The next
(nþ nþ 9Be) breakup threshold appears at 7.31 MeV [3],
such that the rich resonance structure at low energies is
dominated by the nþ 10Be dynamics. Peculiar also is the
electric-dipole transition strength between the two bound
states, which has attracted much attention since its first
measurement in 1971 [4] and was remeasured in 1983 [5]
and2014 [6]. It is the strongest known transitionbetween low-
lying states, attributed to the halo character of 11Be.
An accurate description of this complex spectrum is

anticipated to be sensitive to the details of the nuclear force
[7], such that a precise knowledge of the nucleon-nucleon
(NN) interaction, desirably obtained from first principles,
is crucial. Moreover, the inclusion of three-nucleon (3N)
effects has been found to be indispensable for an accurate
description of nuclear systems [8,9]. The chiral effective
field theory constitutes one of the most promising candi-
dates for deriving the nuclear interaction. Formulated by
Weinberg [10–12], it is based on the fundamental sym-
metries of QCD and uses pions and nucleons as relevant
degrees of freedom. Within this theory, NN, 3N, and
higher many-body interactions arise in a natural hierarchy

[10–16]. The details of these interactions depend on the
specific choices made during the construction. In particular,
the way the interactions are constrained to experimental
data can have a strong impact [17].
In this Letter, we tackle the question if ab initio

calculations can provide an accurate description of the
11Be spectrum and reproduce the experimental ground
state. Pioneering ab initio investigations of 11Be did not
account for the important effects of 3N forces and were
incomplete in the treatment of either long- [18] or short-
range [19,20] correlations, both of which are crucial to
arrive at an accurate description of this system.
In this Letter, we report the first complete ab initio

calculations of the 11Be nucleus using the framework of
the no-core shell model with continuum (NCSMC) [21–23],
which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
Many-body approach.—The general idea of the NCSMC

is to represent the A-nucleon wave function as the gener-
alized cluster expansion [21–23]

jΨJπT
A i ¼

X
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Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in 11Be?
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The weakly bound exotic 11Be nucleus, famous for its ground-state parity inversion and distinct
nþ 10Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces.
An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be
spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are
capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition
between the bound states is reproduced. We compare our photodisintegration calculations to conflicting
experimental data and predict a distinct dip around the 3=2−1 resonance energy. Finally, we predict
low-lying 3=2þ and 9=2þ resonances that are not or not sufficiently measured in experiments.
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The theoretical understanding of exotic neutron-rich nuclei
constitutes a tremendous challenge. These systems often
cannot be explained bymean-field approaches and contradict
the regular shell structure. The spectrum of 11Be has some
very peculiar features. The 1=2þ ground state (g.s.) is loosely
bound by 502 keVwith respect to the nþ 10Be threshold and
is separated by only 320 keV from its parity-inverted 1=2−

partner [1], which would be the expected g.s. in the standard
shell-model picture. Such parity inversion, already noticed by
Talmi and Unna [2] in the early 1960s, is one of the best
examples of the disappearance of the N ¼ 8 magic number
with an increasing neutron to proton ratio. The next
(nþ nþ 9Be) breakup threshold appears at 7.31 MeV [3],
such that the rich resonance structure at low energies is
dominated by the nþ 10Be dynamics. Peculiar also is the
electric-dipole transition strength between the two bound
states, which has attracted much attention since its first
measurement in 1971 [4] and was remeasured in 1983 [5]
and2014 [6]. It is the strongest known transitionbetween low-
lying states, attributed to the halo character of 11Be.
An accurate description of this complex spectrum is

anticipated to be sensitive to the details of the nuclear force
[7], such that a precise knowledge of the nucleon-nucleon
(NN) interaction, desirably obtained from first principles,
is crucial. Moreover, the inclusion of three-nucleon (3N)
effects has been found to be indispensable for an accurate
description of nuclear systems [8,9]. The chiral effective
field theory constitutes one of the most promising candi-
dates for deriving the nuclear interaction. Formulated by
Weinberg [10–12], it is based on the fundamental sym-
metries of QCD and uses pions and nucleons as relevant
degrees of freedom. Within this theory, NN, 3N, and
higher many-body interactions arise in a natural hierarchy

[10–16]. The details of these interactions depend on the
specific choices made during the construction. In particular,
the way the interactions are constrained to experimental
data can have a strong impact [17].
In this Letter, we tackle the question if ab initio

calculations can provide an accurate description of the
11Be spectrum and reproduce the experimental ground
state. Pioneering ab initio investigations of 11Be did not
account for the important effects of 3N forces and were
incomplete in the treatment of either long- [18] or short-
range [19,20] correlations, both of which are crucial to
arrive at an accurate description of this system.
In this Letter, we report the first complete ab initio

calculations of the 11Be nucleus using the framework of
the no-core shell model with continuum (NCSMC) [21–23],
which combines the capability to describe the extended
nþ 10Be configurations of Refs. [19,20] with a robust
treatment of many-body short-range correlations. We adopt
a family of chiral interactions in which theNN component is
constrained, in a traditional sense, to two-nucleon properties
[24] and the 3N force is fitted in three- and sometimes four-
body systems [25–28]. In addition, we also employ a newer
chiral interaction, obtained from a simultaneous fit of NN
and 3N components to nucleon-nucleon scattering data and
selected properties of nuclei as complex as 25O [29–31].
Many-body approach.—The general idea of the NCSMC

is to represent the A-nucleon wave function as the gener-
alized cluster expansion [21–23]
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information of the ab initio approach. In the following, we
use a phenomenology-inspired approach indicated by
NCSMC-pheno that has been already applied in
Refs. [36,55]. In this approach, we adjust the 10Be and
11Be excitation energies of the NCSM eigenstates entering
expansion (1) to reproduce the experimental energies of the
first low-lying states. Note that the obtained NCSMC-
pheno energies are fitted to the experiment, while the
theoretical widths, quoted in Table I, are predictions.
An intuitive interpretation of the 11Be g.s. wave function

is provided in Fig. 4 by the overlap of the full solution for the
g.s. jΨJπT

ν i in (1) with the cluster portion jΦJπT
ν;r i given by

rhΦJπT
ν;r jAνjΨJπT

A i. A clearly extended halo structure beyond
20 fm can be identified for the S wave of the 10Beð0þÞ þ n
relative motion. The phenomenological energy adjustment
only slightly influences the asymptotic behavior of the S
wave, as seen by comparing the solid and dashed black
curves, while other partial waves are even indistinguishable
on the plot resolution. The corresponding spectroscopic
factors for the NCSMC-pheno approach, obtained by
integrating the squared cluster form factors in Fig. 4, are
S ¼ 0.90 (S wave) and S ¼ 0.16 (D wave). The S-wave
asymptotic normalization coefficient is 0.786 fm−1=2.

The BðE1Þ transitions are summarized in Table II.
Calculations without continuum effects predict the wrong
g.s. and underestimate the E1 strength by several orders
of magnitude. For the NCSMC calculations with the
NN þ 3Nð400Þ interaction, the 1=2þ state is very weakly
bound, leading to an unrealistic E1 transition. The
N2LOSAT interaction successfully reproduces the strong
E1 transition, albeit the latest measurement [6] is slightly
overestimated, even after the phenomenological energy
adjustment. There might be small effects arising from a
formally necessary SRG evolution of the transition oper-
ator. Works along these lines for 4He suggest a slight
reduction of the dipole strength [56,57]. A similar effect
would bring the calculated E1 transition in better agree-
ment with the experiment [6].
Finally, we study the photodisintegration of the 11Be g.s.

into nþ 10Be in Fig. 5. This is proportional to dipole
strength distribution dBðE1Þ=dE. In all approaches, a peak
of nonresonant nature (see Fig. 3) is present at about
800 keV above the nþ 10Be threshold, particularly pro-
nounced in the 3=2− partial wave. The strong peak for
the NCSMC with the N2LOSAT interaction is caused by
the slightly extended S-wave tail in Fig. 4 and hence the
underestimated binding energy of the 1=2þ state. The
theoretical predictions are compared to indirect measure-
ments of the photodissociation process extracted from the
scattering experiments of 11Be on lead [58–60] and carbon

TABLE I. Excitation spectrum of 11Be with respect to the
nþ 10Be threshold. Energies and widths are in MeV. The
calculations are carried out at Nmax ¼ 9.

NCSMC NCSMC-pheno

NN þ 3Nð400Þ N2LOSAT N2LOSAT Experiment

Jπ E Γ E Γ E Γ E Γ
1=2þ −0.001 % % % −0.40 % % % −0.50 % % % −0.50 % % %
1=2− −0.27 % % % −0.35 % % % −0.18 % % % −0.18 % % %
5=2þ 3.03 0.44 1.47 0.12 1.31 0.10 1.28 0.1
3=2−1 2.34 0.35 2.14 0.21 2.15 0.19 2.15 0.21
3=2þ 3.48 % % % 2.90 0.014 2.92 0.06 2.898 0.122
5=2− 3.43 0.001 2.25 0.0001 3.30 0.0002 3.3874 <0.008
3=2−2 5.52 0.20 6.62 0.29 5.72 0.19 3.45 0.01
9=2þ 7.44 2.30 5.42 0.80 5.59 0.62 % % % % % %

FIG. 4. Comparison of the cluster form factors with the
N2LOSAT interaction at Nmax ¼ 9. Note the coupling between
the 10Be target and neutron in the cluster state jΦJπT

ν;r i ∼
½ðj10Be∶Iπ11 T1ijn∶1=2þ1=2iÞsTYlðr̂Þ'J

πT .

TABLE II. Reduced transition probability BðE1∶1=2−→1=2þ)
between 11Be bound states in e2 fm2.

NCSM NCSMC NCSMC-pheno Experiment

NN þ 3Nð400Þ 0.0005 % % % 0.146
0.102(2) [6]

N2LOSAT 0.0005 0.127 0.117

FIG. 5. Dipole strength distribution dBðE1Þ=dE of the photo-
disintegration process as a function of the photon energy. Theo-
retical dipole strength distributions for two chiral interactions with
(solid line) and without (dashed line) the phenomenological energy
adjustment are compared to the experimental measurements at GSI
[58,61] (black dots) and RIKEN [58–60] (violet dots).
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54p+11C scattering and 11C(p,γ)12N capture

§ 11C(p,γ)12N capture relevant in hot p-p chain: Link between pp chain and the CNO 
cycle - bypass of slow triple alpha capture 4He(αα,γ)12C

TRIUMF EEC New Letter of Intent Detailed Statement of Proposed Research for Experiment #: 1691

Study of the 11C+p compound system via resonant elastic scattering in inverse kinematics

The scientific motivation behind this measurement is twofold. Firstly, the 11C(p,�)12N reaction has been considered
for decades as a potentially important reaction in astrophysics, as linking reaction between the hot-pp chain and the
CNO cycles. Considerable uncertainty exists in the properties of the low energy cross section of that reaction in the
energy region of interest for astrophysics. Secondly, this system has currently become within reach of ab-initio theory
calculations, some of which are pioneered here at TRIUMF. Having precise scattering and reaction data to compare
the theoretical calculations to over as wide a variety of light systems as possible is imperative to constrain and develop
the theory, in the hope that one day a consistent ab-initio theory will be able to make accurate predictions of cross
sections over a wide range of astrophysically important reactions at energies inaccessible to experiments.

(a) Scientific value of the experiment
Astrophysical importance: The formation of very massive, low-metallicity stars occurred in early stages of
the Universe (Population III stars) when the only existing seed material consisted of hydrogen and helium.
Initially, those stars existed in a quasi-static stage in an equilibrium between thermal expansion and gravita-
tional contraction. Fuller et. al. [1] investigated the evolution of super-massive stars under consideration of the
pp-chains, the triple-↵ process, the CNO cycles and the rp-process. The question whether the early, massive
stars contributed substantial amounts of material to later generations of stars, however, is still open. Fryer et.
al. [2] suggested that massive, non-rotating stars (�260 M�) with zero metallicity would undergo direct gravi-
tational collapse into black holes without losing mass after burning their pp-chain fuel, as the triple-↵ process
would be initiated too late to prevent the collapse. But Fuller et. al. [1] found that the presence of only a small
amount (fraction of 10�8) of CNO seed nuclei prior to helium burning would slow down the collapse process
and the energy release of the hot CNO cycle could change the density of the star, thus permitting it to explode.
Therefore, the presence of CNO seed material might turn the scale to whether a very massive, low-metallicity
star will turn into a core collapse super nova or not.

Traditionally, the triple-↵ ! 12C reaction is the main link between the pp-chains and the CNO cycle. However,
there may be an alternative way. The astrophysical 11C(p,�)12N reaction could be one of the key reactions in
the hot pp-chain since the relatively long half life of 11C allows for further proton capture, and thus this capture
reaction could re-link the pp-V branch with the breakout processes [3]. Evidently, this reaction is thought to be
an important branch point as it bypasses the slow triple-↵ process by producing CNO seed nuclei in supermassive
low-metallicity stars. In particular, the following reaction sequences in the hot pp-chain [3] called rap-II and
rap-III are of relevance for the path from helium to carbon isotopes:

3He(↵, �)7Be(↵, �)11C(p, �)12N(p, �)13O(�+, ⌫)13N(p, �)14O (1)

3He(↵, �)7Be(↵, �)11C(p, �)12N(�+, ⌫)12C(p, �)13N(p, �)14O (2)

The rap-II as well as the rap-III reaction sequences include the 11C(p,�)12N reaction responsible for bypassing
the competing �-decay of 11C and the decay back to 4He (11C(�+ ⌫)11B(p,↵)8Be(4He,4He)) via proton capture
into the A�12 mass region at T9 >0.2 (compare Fig. 1). This means that the speed at which 3He is transformed
into CNO material largely depends on the 11C(p,�)12N reaction rate. The high influence of this reaction on the
evolution of metal-deficient massive stars is why substantial e↵ort, both experimentally and theoretically, has
been put into determining the energy dependence of the stellar reaction cross section for this linking reaction.
Due to the low reaction Q-value, the cross section at astrophysically relevant energies for the 11C(p,�)12N re-
action is mainly governed by direct capture into the 12N ground state as well as by resonant capture into the
low-lying excited states of 12N. In addition, interference between direct and resonant processes is present and
must be considered in any derivation of the cross section from indirectly determined nuclear structure parame-
ters. While the contribution of the narrow first excited state to the overall (p,�) capture rate may be minor, the
large width of the second excited state has significant impact on the rate. Since the 11C(p,�)12N reaction may
play an important role in the synthesis of elements with masses of A�12 and the evolution of metal-deficient
stars, the nuclear astrophysics interest in 12N around the 11C+p threshold at Sp=0.6012(14) MeV [5] is driven
by the necessity to gain detailed insight into the low-lying level structure of 12N (T1/2=11.0 ms [5]) in order to
determine the 11C(p,�)12N reaction rate.

1

p-p chain

TRIUMF EEC New Letter of Intent Detailed Statement of Proposed Research for Experiment #: 1691

Study of the 11C+p compound system via resonant elastic scattering in inverse kinematics

The scientific motivation behind this measurement is twofold. Firstly, the 11C(p,�)12N reaction has been considered
for decades as a potentially important reaction in astrophysics, as linking reaction between the hot-pp chain and the
CNO cycles. Considerable uncertainty exists in the properties of the low energy cross section of that reaction in the
energy region of interest for astrophysics. Secondly, this system has currently become within reach of ab-initio theory
calculations, some of which are pioneered here at TRIUMF. Having precise scattering and reaction data to compare
the theoretical calculations to over as wide a variety of light systems as possible is imperative to constrain and develop
the theory, in the hope that one day a consistent ab-initio theory will be able to make accurate predictions of cross
sections over a wide range of astrophysically important reactions at energies inaccessible to experiments.

(a) Scientific value of the experiment
Astrophysical importance: The formation of very massive, low-metallicity stars occurred in early stages of
the Universe (Population III stars) when the only existing seed material consisted of hydrogen and helium.
Initially, those stars existed in a quasi-static stage in an equilibrium between thermal expansion and gravita-
tional contraction. Fuller et. al. [1] investigated the evolution of super-massive stars under consideration of the
pp-chains, the triple-↵ process, the CNO cycles and the rp-process. The question whether the early, massive
stars contributed substantial amounts of material to later generations of stars, however, is still open. Fryer et.
al. [2] suggested that massive, non-rotating stars (�260 M�) with zero metallicity would undergo direct gravi-
tational collapse into black holes without losing mass after burning their pp-chain fuel, as the triple-↵ process
would be initiated too late to prevent the collapse. But Fuller et. al. [1] found that the presence of only a small
amount (fraction of 10�8) of CNO seed nuclei prior to helium burning would slow down the collapse process
and the energy release of the hot CNO cycle could change the density of the star, thus permitting it to explode.
Therefore, the presence of CNO seed material might turn the scale to whether a very massive, low-metallicity
star will turn into a core collapse super nova or not.

Traditionally, the triple-↵ ! 12C reaction is the main link between the pp-chains and the CNO cycle. However,
there may be an alternative way. The astrophysical 11C(p,�)12N reaction could be one of the key reactions in
the hot pp-chain since the relatively long half life of 11C allows for further proton capture, and thus this capture
reaction could re-link the pp-V branch with the breakout processes [3]. Evidently, this reaction is thought to be
an important branch point as it bypasses the slow triple-↵ process by producing CNO seed nuclei in supermassive
low-metallicity stars. In particular, the following reaction sequences in the hot pp-chain [3] called rap-II and
rap-III are of relevance for the path from helium to carbon isotopes:

3He(↵, �)7Be(↵, �)11C(p, �)12N(p, �)13O(�+, ⌫)13N(p, �)14O (1)

3He(↵, �)7Be(↵, �)11C(p, �)12N(�+, ⌫)12C(p, �)13N(p, �)14O (2)

The rap-II as well as the rap-III reaction sequences include the 11C(p,�)12N reaction responsible for bypassing
the competing �-decay of 11C and the decay back to 4He (11C(�+ ⌫)11B(p,↵)8Be(4He,4He)) via proton capture
into the A�12 mass region at T9 >0.2 (compare Fig. 1). This means that the speed at which 3He is transformed
into CNO material largely depends on the 11C(p,�)12N reaction rate. The high influence of this reaction on the
evolution of metal-deficient massive stars is why substantial e↵ort, both experimentally and theoretically, has
been put into determining the energy dependence of the stellar reaction cross section for this linking reaction.
Due to the low reaction Q-value, the cross section at astrophysically relevant energies for the 11C(p,�)12N re-
action is mainly governed by direct capture into the 12N ground state as well as by resonant capture into the
low-lying excited states of 12N. In addition, interference between direct and resonant processes is present and
must be considered in any derivation of the cross section from indirectly determined nuclear structure parame-
ters. While the contribution of the narrow first excited state to the overall (p,�) capture rate may be minor, the
large width of the second excited state has significant impact on the rate. Since the 11C(p,�)12N reaction may
play an important role in the synthesis of elements with masses of A�12 and the evolution of metal-deficient
stars, the nuclear astrophysics interest in 12N around the 11C+p threshold at Sp=0.6012(14) MeV [5] is driven
by the necessity to gain detailed insight into the low-lying level structure of 12N (T1/2=11.0 ms [5]) in order to
determine the 11C(p,�)12N reaction rate.

1



55p+11C scattering and 11C(p,γ)12N capture

§ Measurement of 11C(p,p) resonance scattering planned at TRIUMF
§ TUDA facility
§ 11C beam of sufficient intensity produced

§ NCSMC calculations of 11C(p,p) with chiral NN+3N under way

§ Obtained wave functions will be used to calculate 11C(p,γ)12N capture 
relevant for astrophysics



56p+11C scattering and 11C(p,γ)12N capture

• NCSMC calculations of 11C(p,p) with chiral NN+3N under way
§ 11C:   3/2-, 1/2-, 5/2-, 3/2- NCSM eigenstates
§ 12N:   ≥6 π = +1 and ≥4 π = -1 NCSM eigenstatesTRIUMF EEC New Letter of Intent Detailed Statement of Proposed Research for Experiment #: 1691

Figure 2: Top: Microscopic calculation with NCSM and NCSMC for the
12
N system in relation to the ENDSF data. The spectrum

further shows the phenomenological fits of the NCSM
12
N energies. The excitation energies for

11
C are taken from the ENDSF

data base [6]. Bottom: The corresponding NCSMC eigenphase shifts for positive and negative parity to illustrate the e↵ect of the

phenomenological NCSMC adjustment. Figures from Ref. [7].

incomplete and the novel NCSMC (no-core shell model with continuum) [11] method becomes mandatory. For
instance, when applying the conventional NCSM calculation, the negative parity states in 12N converge signifi-
cantly slower than the positive parity states, whereas a more realistic description is accomplished by performing
NCSMC calculations (compare Fig. 2). The phase shifts as presented in Fig. 2 give additional information about
the resonances, i.e., they show the additional channels (2sLJ) of the 11C+p system for each particular resonance.

Generally speaking the low-lying 12N spectrum is an ideal candidate for the NCSMC calculations because it is
dominated by the p+11C channel and the dense excitation spectrum in 11C (after 6.34 MeV), as well as other
break-up channels (8B+↵ at (8.007-0.601) MeV) opening up at higher energies. Nevertheless, 12N is a compli-
cated and computationally demanding system. In particular, the necessary inclusion of the first four excited
states of 11C makes the calculations very expensive, however, a new method to include the three-nucleon forces

3
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Figure 3: Elastic cross sections around the 2
�
, 1

�
resonances (energy scan around the theoretically predicted resonance position)

calculated using the NCSMC and the phenomenological calculation. Figures from Ref. [7].

and Ex=3.6 MeV (J⇡=(2)+) were assigned. The J⇡=3� assignment was consistent with a previous 12C(p,n)12N
experiment carried out by Anderson et. al. in 1996 [14] (compare Tab. 1), which concluded that either J⇡=2+

or J⇡=3� were possibilities. However, the J⇡=(2)+ assignment for the Ex=3.6 MeV level was only adopted
tentatively as the calculations performed to reproduce the experimental spectrum did not take contributions
from higher levels into account.

The second 11C+p experiment [17] was realized a few years later in form of a measurement campaign at two
di↵erent facilities, namely at the Berkeley Experiments with Accelerated Radioactive Species (BEARS) coupled
cyclotron system [18] and the Texas A&M University (TAMU) with the magnetic separator MARS [19]. This
was done in order to cover the energy range from Ex=2.2 MeV up to Ex=11.0 MeV. The use of a gaseous target
in comparison to a solid target opened up the opportunity to analyze the contribution of inelastic scattering
in the solid target. In total 16 levels in 12N were identified and the analysis of the excitation functions was
performed based on an R-matrix framework. However, the choice of input parameters relied strongly on the
properties of known levels in the mirror nucleus 12B, assuming a shift of 200 keV of the energy levels towards
lower energies and allowing 500 keV variation. Further, the resonance widths for the levels in 12B were utilized
as initial parameters for the determination of all widths in the level structure of 12N. The data for resonance
widths within the excitation energy of Ex=3.37 MeV to 5.49 MeV in 12B were based on the neutron decay to
the ground state of 11B. Thus, the widths in 12B had to be converted to 12N widths by making use of a potential
model (also employed in Ref. [20]) before the parameters were applied to describe the proton decay widths to
the 11C ground state.

The authors of Ref. [17] further state that any conclusions regarding potential resonance states above Ex=5.6 MeV
are merely speculative due to the uncertainties in the theoretical predictions resulting from the constrains of
the shell model space. In addition, the cross sections generated from the R-matrix calculations were too large

5

NCSMC calculations to be validated by 
measured cross sections and applied to 

calculate the 11C(p,γ)12N capture 
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60Conclusions and outlook

§ Ab initio calculations of nuclear structure and reactions with 
predictive power becoming feasible beyond the latest nuclei

§ Ab initio structure calculations can even reach (selected) medium 
& medium-heavy mass nuclei

§ These calculations make the connection between the low-energy 
QCD, many-body systems, and nuclear astrophysics
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