∂TRIUMF

Nuclear structure and dynamics from *ab initio* theory

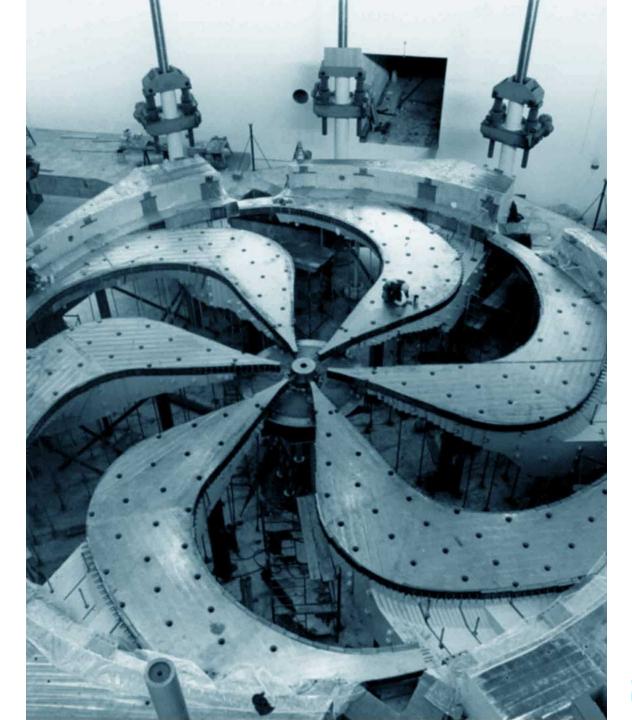
1st APCTP-TRIUMF JOINT WORKSHOP on

Understanding Nuclei from Different Theoretical Approaches Pohang, South Korea, September 14-19, 2018

Petr Navratil

TRIUMF

Collaborators: S. Quaglioni, C. Romero-Redondo (LLNL), G. Hupin (Orsay), M. Vorabbi, P. Gysbers, A. Calci (TRIUMF), J. Dohet-Eraly (ULB), R. Roth (TU Darmstadt)



Φ

Φ

2018-09-18

- Nuclear structure and reactions from first principles
- New chiral NN N⁴LO + 3N
 - Beta decays of light nuclei in NCSM
- No-Core Shell Model with Continuum (NCSMC)
- n-⁴He scattering and D+T fusion
- ¹¹Be parity inversion in low-lying states, photo-dissociation
- Synergy between ab initio theory and TRIUMF experiments
 - ¹¹N and ¹⁰C(p,p) scattering IRIS
 - ¹²N, ¹¹C(p,p) scattering and ¹¹C(p, γ)¹²N capture TUDA
 - Quadrupole moment of ¹²C 2⁺ state TIGRESS

What is meant by ab initio in nuclear physics?

First principles for Nuclear Physics:

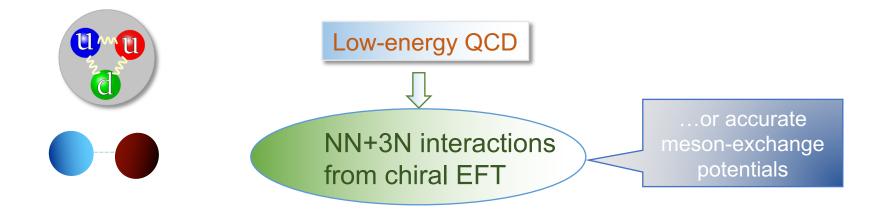
QCD

- Non-perturbative at low energies
- Lattice QCD in the future

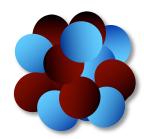
Degrees of freedom: NUCLEONS

- Nuclei made of nucleons
- Interacting by nucleon-nucleon and three-nucleon potentials
 - Ab initio
 - \diamond All nucleons are active
 - ♦ Exact Pauli principle
 - ♦ Realistic inter-nucleon interactions
 - ♦ Accurate description of NN (and 3N) data
 - ♦ Controllable approximations

From QCD to nuclei



4

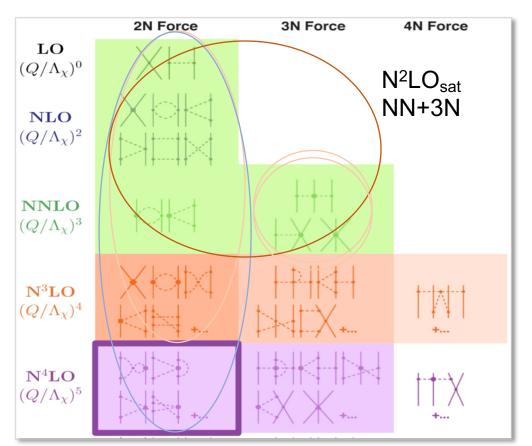


Nuclear structure and reactions

Chiral Effective Field Theory

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

Λ_x~1 GeV : Chiral symmetry breaking scale



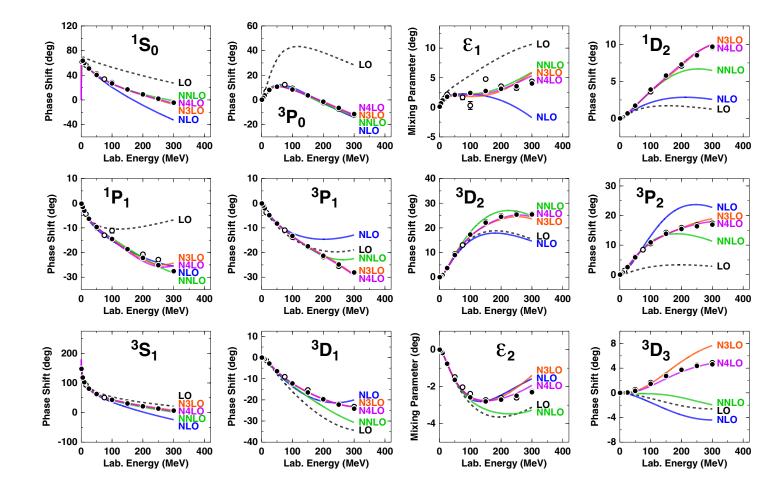
N⁴LO500 NNN³LO NN+N²LO 3N (NN+3N400, NN+3N500) + N²LO 3N

The NN interaction from chiral EFT

PHYSICAL REVIEW C 96, 024004 (2017)

High-quality two-nucleon potentials up to fifth order of the chiral expansion

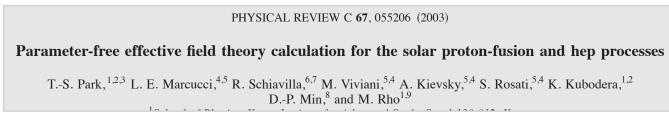
D. R. Entem,^{1,*} R. Machleidt,^{2,†} and Y. Nosyk²



- Chiral NN potential up to N⁴LO
- Set of five potentials constructed
 - Sequence of LO, NLO,...,N⁴LO
 - Uncertainty quantification
- At N³LO and N⁴LO:
 - 24 LECs fitted to the *np* scattering data and the deuteron properties
 - Including c_i LECs (i=1-4) from pionnucleon scattering
- N⁴LO NN fitted to data up to pion production threshold with χ²/datum~1.15

Currents in chiral EFT

Meson-exchange current

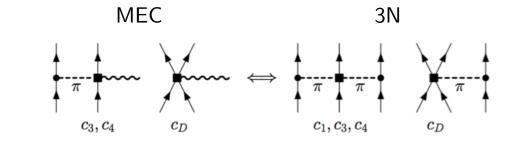


- weak axial current
 - one-body: LO Gamow-Teller

$$\boldsymbol{A}_{l} = -g_{A}\tau_{l}^{-}e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_{l}}\left[\boldsymbol{\sigma}_{l} + \frac{2(\boldsymbol{\bar{p}}_{l}\boldsymbol{\sigma}_{l}\cdot\boldsymbol{\bar{p}}_{l} - \boldsymbol{\sigma}_{l}\boldsymbol{\bar{p}}_{l}^{2}) + i\boldsymbol{q}\times\boldsymbol{\bar{p}}_{l}}{4m_{N}^{2}}\right]$$

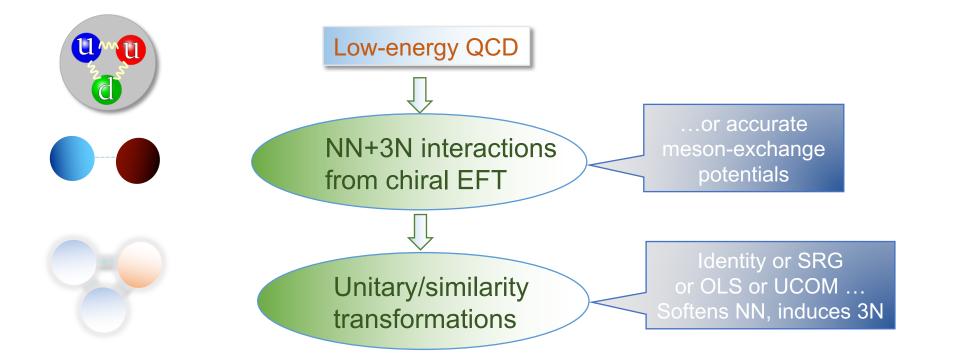
two-body: MEC

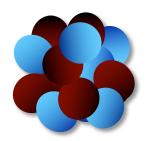
$$A_{12} = \frac{g_A}{2m_N f_\pi^2} \frac{1}{m_\pi^2 + k^2} \bigg[-\frac{i}{2} \tau_{\times} \boldsymbol{p} (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2) \cdot \boldsymbol{k} \\ + 4\hat{c}_3 \boldsymbol{k} \boldsymbol{k} \cdot (\tau_1^- \boldsymbol{\sigma}_1 + \tau_2^- \boldsymbol{\sigma}_2) + \left(\hat{c}_4 + \frac{1}{4}\right) \tau_{\times} \boldsymbol{k} \times [\boldsymbol{\sigma}_{\times} \times \boldsymbol{k}] \\ + \frac{g_A}{m_N f_\pi^2} [2\hat{d}_1(\tau_1^- \boldsymbol{\sigma}_1 + \tau_2^- \boldsymbol{\sigma}_2) + \hat{d}_2 \tau_{\times}^a \boldsymbol{\sigma}_{\times}],$$



7

From QCD to nuclei





Nuclear structure and reactions

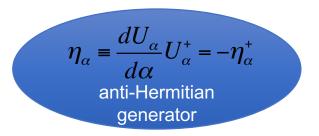
Similarity Renormalization Group (SRG) evolution

- Continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis
- Unitary transformation $H_{\alpha} = U_{\alpha} H U_{\alpha}^{+}$ $U_{\alpha} U_{\alpha}^{+} = U_{\alpha}^{+} U_{\alpha} = 1$

$$\frac{dH_{\alpha}}{d\alpha} = \frac{dU_{\alpha}}{d\alpha}HU_{\alpha}^{+} + U_{\alpha}H\frac{dU_{\alpha}^{+}}{d\alpha} = \frac{dU_{\alpha}}{d\alpha}U_{\alpha}^{+}U_{\alpha}HU_{\alpha}^{+} + U_{\alpha}HU_{\alpha}^{+}U_{\alpha}\frac{dU_{\alpha}^{+}}{d\alpha}$$

$$=\frac{dU_{\alpha}}{d\alpha}U_{\alpha}^{+}H_{\alpha}+H_{\alpha}U_{\alpha}\frac{dU_{\alpha}^{+}}{d\alpha}=\left[\eta_{\alpha},H_{\alpha}\right]$$

- Setting $\eta_{\alpha} = [G_{\alpha}, H_{\alpha}]$ with Hermitian G_{α} $\frac{dH_{\alpha}}{d\alpha} = [[G_{\alpha}, H_{\alpha}], H_{\alpha}]$
- Customary choice in nuclear physics $G_{\alpha} = T$...kinetic energy operator
 - band-diagonal in momentum space plane-wave basis
- Initial condition $H_{\alpha=0} = H_{\lambda=\infty} = H$ $\lambda^2 = 1/\sqrt{\alpha}$
- Induces many-body forces
 - In applications to chiral interactions three-body induced terms large, four-body small



SRG evolution for A-nucleon system

Evolution induces many-nucleon terms (up to A)

$$\tilde{H}_{\alpha} = \tilde{H}_{\alpha}^{[1]} + \tilde{H}_{\alpha}^{[2]} + \tilde{H}_{\alpha}^{[3]} + \tilde{H}_{\alpha}^{[4]} + \dots + \tilde{H}_{\alpha}^{[A]}$$

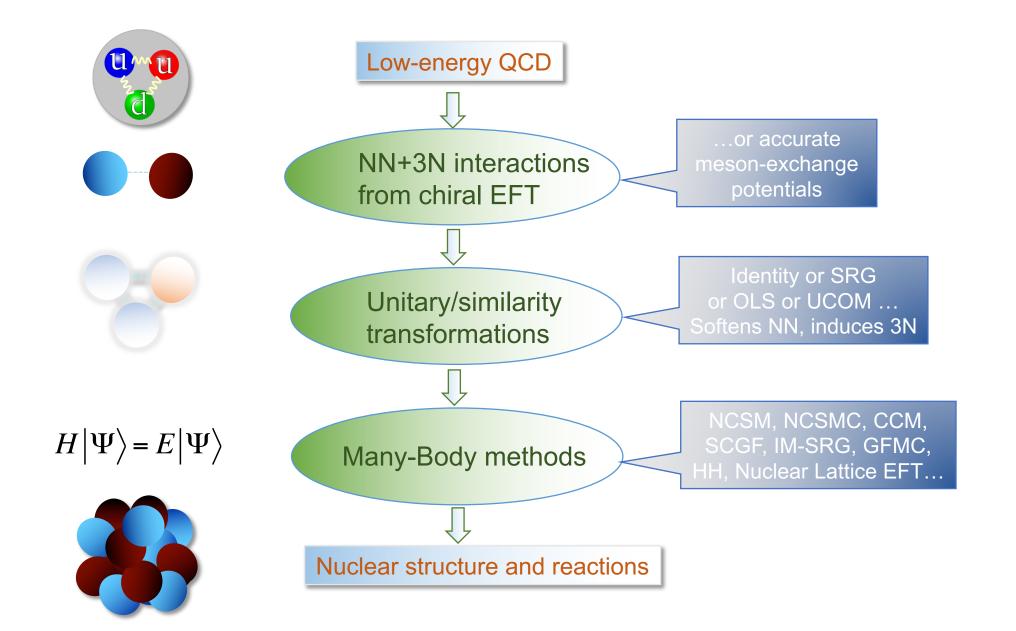
• SRG "magic" – $\tilde{H}_{\alpha}^{[2]}$ determined completely in A=2 system, $\tilde{H}_{\alpha}^{[3]}$ determined completely in A=3 system, etc.

- In actual calculations so far only terms up to $\, ilde{H}^{[3]}_lpha \,$ kept
- Three types of SRG-evolved Hamiltonians used
 - **NN only**: Start with initial T+V_{NN} and keep
 - **NN+3N-induced**: Start with initial T+V_{NN} and keep
 - **NN+3N-full**: Start with initial T+V_{NN}+V_{NNN} and keep

$$\begin{split} \tilde{H}_{\alpha}^{[1]} + \tilde{H}_{\alpha}^{[2]} \\ \tilde{H}_{\alpha}^{[1]} + \tilde{H}_{\alpha}^{[2]} + \tilde{H}_{\alpha}^{[3]} \\ \tilde{H}_{\alpha}^{[1]} + \tilde{H}_{\alpha}^{[2]} + \tilde{H}_{\alpha}^{[3]} \end{split}$$

 α variation (\wedge variation) provides a diagnostic tool to asses the contribution of omitted many-body terms, tests the unitarity of the SRG transformation

From QCD to nuclei



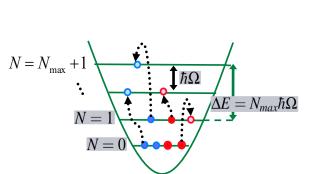
11

Conceptually simplest *ab initio* method: No-Core Shell Model (NCSM)

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

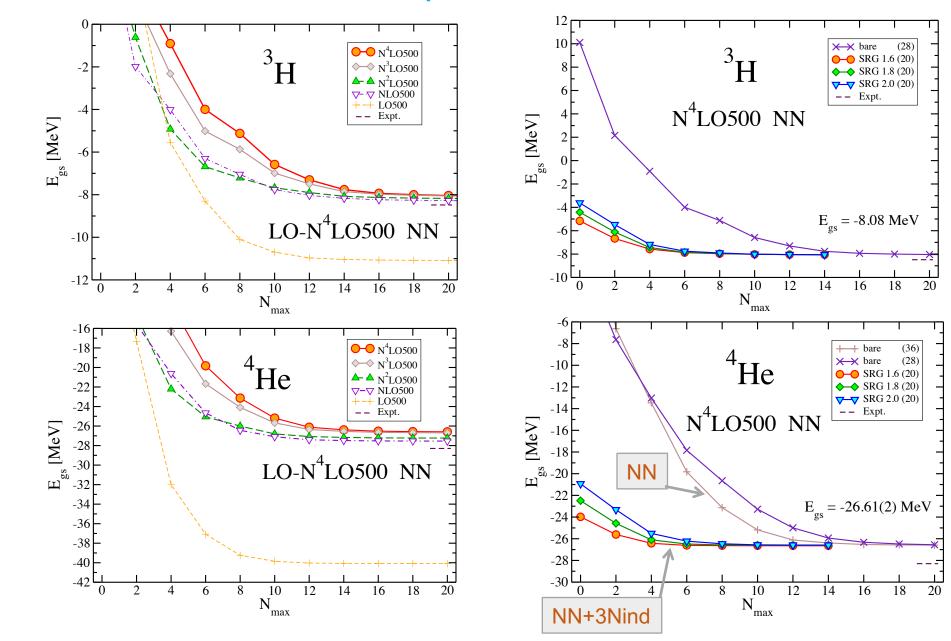
(A)
$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$(A) \bigotimes_{SD} \Psi_{SD}^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$



NCSM

95



³H and ⁴He with chiral EFT interactions up to N⁴LO

³H \rightarrow ³He β decay

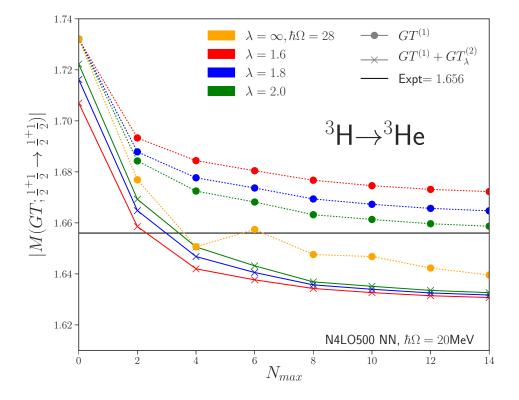
 $\hat{O} = GT^{(1)} \rightarrow \hat{O}_{\alpha} = GT^{(1)} + GT^{(2)}_{\alpha} + \dots$

Operator:

Gamow-Teller (1-body) $\langle GT_{\alpha}^{(2)} \rangle_{A=2} = \langle (GT^{(1)})_{\alpha} \rangle_{A=2} - \langle GT^{(1)} \rangle_{A=2}$

Potential: "N⁴LO NN"

 chiral NN @ N⁴LO, Machleidt PRC96 (2017), 500MeV cutoff



Hamiltonian: chiral NN with SRG 2- and 3-body induced (except orange line: bare chiral NN)

$^{3}H \rightarrow ^{3}He \beta decay$

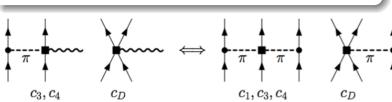
$$\hat{O} = GT^{(1)} + MEC^{(2)} \rightarrow \hat{O}_{\alpha} = GT^{(1)} + GT^{(2)}_{\alpha} + MEC^{(2)}_{\alpha} + \dots$$

Operator:

Gamow-Teller (1-body) + chiral meson exchange current (2-body) Park (2003)

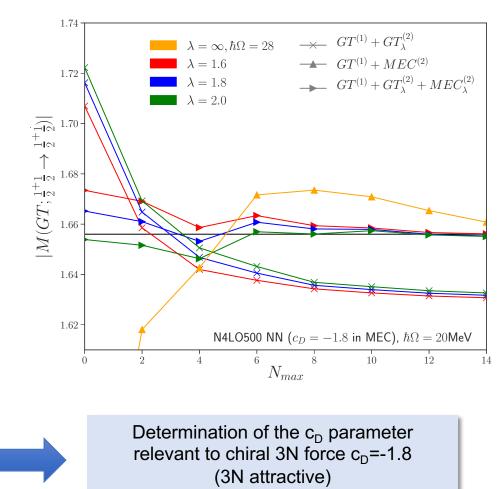
Potential: "N⁴LO NN"

- chiral NN @ N⁴LO, Machleidt PRC96 (2017), 500MeV cutoff
- LEC $c_D = -1.8$ determined



Original EM 2003 N³LO NN c_D=+0.8

(3N repulsive)



⁶He**→**⁶Li β decay

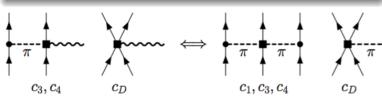
$$\hat{O} = GT^{(1)} + MEC^{(2)} \rightarrow \hat{O}_{\alpha} = GT^{(1)} + GT^{(2)}_{\alpha} + MEC^{(2)}_{\alpha} + \dots$$

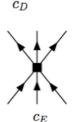
Operator:

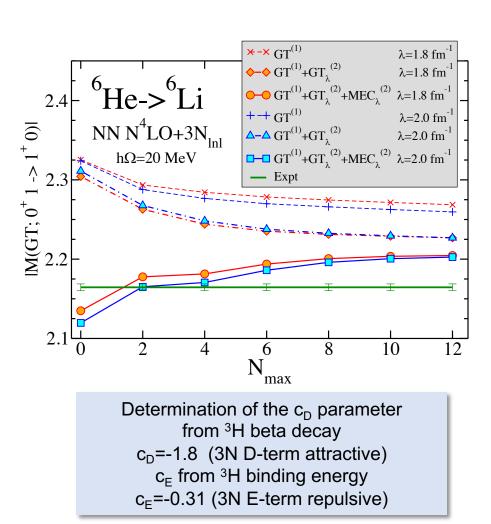
Gamow-Teller (1-body) + chiral meson exchange current (2-body) Park (2003)

Potential: "N⁴LO NN"

- chiral NN @ N⁴LO, Machleidt PRC96 (2017), 500MeV cutoff
- LEC $c_D = -1.8$ determined

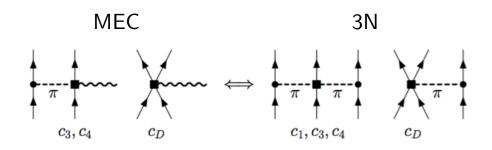




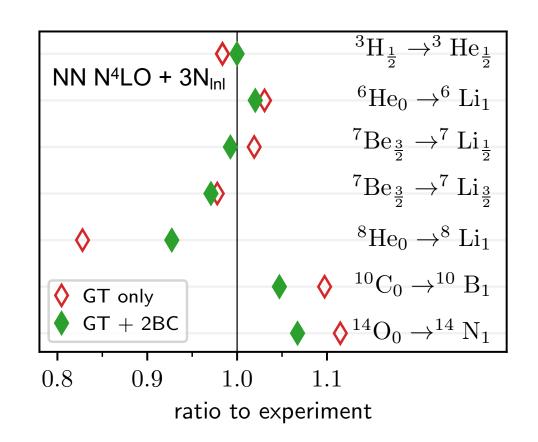


Applications to β decays in p-shell nuclei and beyond

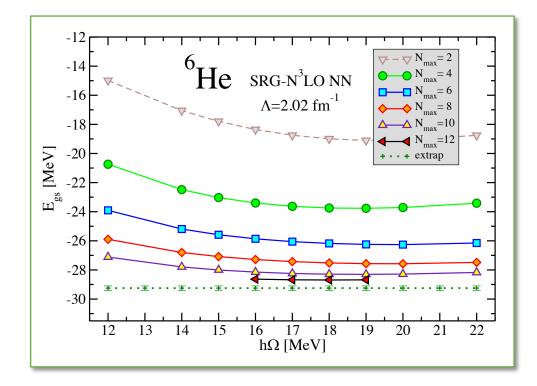
- Does inclusion of the MEC explain g_A quenching?
- In light nuclei correlations present in *ab initio* (NCSM) wave functions explain almost all of the quenching compared to the standard shell model
 - MEC inclusion overall improves agreement with experiment
- The effect of the MEC inclusion is greater in heavier nuclei
- SRG evolved matrix elements used in coupled-cluster and IM-SRG calculations (up to ¹⁰⁰Sn)



Hollow symbols – GT Filled symbols – GT+MEC Both Hamiltonian and operators SRG evolved Hamiltonian and current consistent parameters

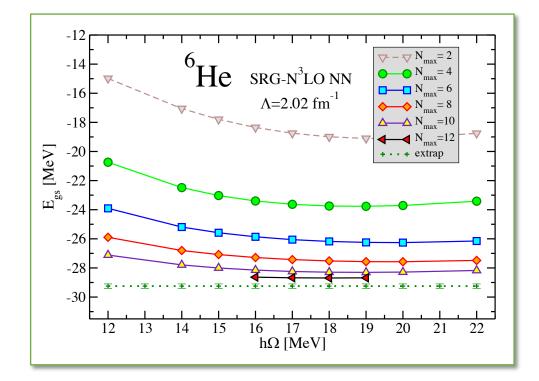


NCSM calculations of ⁶He g.s. energy

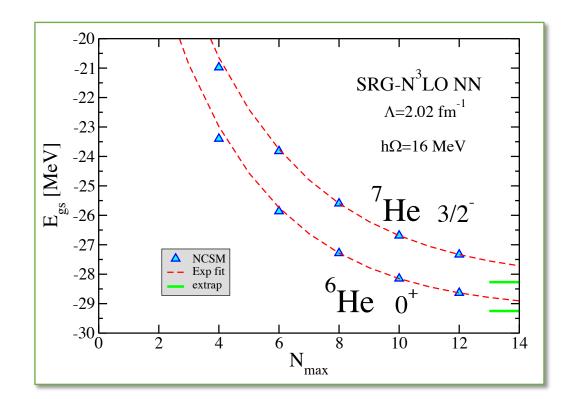


$E_{\rm g.s.} [{\rm MeV}]$	⁴ He	⁶ He
NCSM $N_{\text{max}}=12$	-28.05	-28.63
NCSM extrap.	-28.22(1)	-29.25(15)
Expt.	-28.30	-29.27

- Soft SRG evolved NN potential
 - ✓ N_{max} convergence OK
 - Extrapolation feasible



NCSM calculations of ⁶He and ⁷He g.s. energies



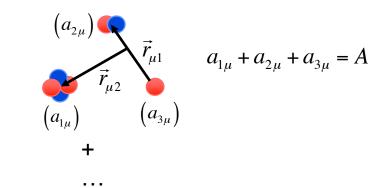
- ⁷He unbound
 - Expt. *E*_{th}=+0.430(3) MeV: NCSM *E*_{th}≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

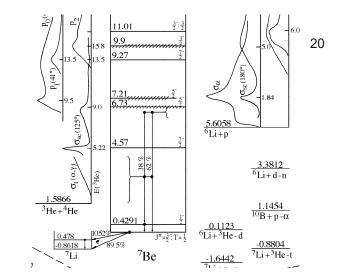
$E_{\rm g.s.}$ [MeV]	$^{4}\mathrm{He}$	⁶ He	$^{7}\mathrm{He}$
NCSM $N_{\rm max}=12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

⁷He unbound

Extending no-core shell model beyond bound states

Include more many nucleon correlations... A $\Psi^{A} = \sum_{N=0}^{N_{max}} \sum_{i} c_{Ni} \Phi^{A}_{Ni}$ + (A-a) $\vec{r}_{A-a,a}$ (a) +





...using the Resonating Group Method (RGM) ideas

Unified approach to bound & continuum states; to nuclear structure & reactions

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonicoscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances
- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion, clusters described by NCSM
 - proper asymptotic behavior
 - Iong-range correlations
- Most efficient: ab initio no-core shell model with continuum (NCSMC)

21

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

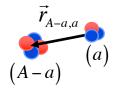
NCSM

Coupled NCSMC equations

$$H \Psi^{(A)} = E \Psi^{(A)} \qquad \Psi^{(A)} = \sum_{\lambda} c_{\lambda} | A \rangle \Rightarrow, \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} | A_{\nu} | A_{\nu} | A_{\alpha} \rangle$$

$$E_{\lambda}^{NCSM} \delta_{\lambda\lambda'} \qquad \begin{pmatrix} (A) \Rightarrow |H \hat{A}_{\nu}| \hat{r} \\ (A-a) \rangle \\ \downarrow \\ \downarrow \\ H_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| \hat{A}_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| \hat{A}_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| \hat{A}_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| \hat{A}_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| \hat{A}_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| A_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| A_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| A_{\nu} | A_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| A_{\nu} | A_{\nu} | A_{\nu} | A_{\nu} | A_{\alpha} \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle (A) \Rightarrow |A_{\nu}| A_{\nu} | A_{\nu} |$$

Binary cluster basis



• Working in partial waves ($v = \{A - a \alpha_1 I_1^{\pi_1} T_1; a \alpha_2 I_2^{\pi_2} T_2; s\ell\}$)

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \hat{A}_{\nu} \left[\left(\left| A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \left| a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} \frac{g_{\nu}^{J^{\pi}T}(r_{A-a,a})}{r_{A-a,a}}$$
Target
Projectile

• Introduce a dummy variable \vec{r} with the help of the delta function

$$\psi^{J^{\pi}T} \rangle = \sum_{v} \int \frac{g_{v}^{J^{\pi}T}(r)}{r} \hat{A}_{v} \left[\left(\left| A - a \, \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \, \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right]^{(sT)} Y_{\ell}(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \, r^{2} dr \, d\hat{r}$$

Allows to bring the wave function of the relative motion in front of the antisymmetrizer

$$\sum_{v} \int d\vec{r} \, \gamma_{v}(\vec{r}) \, \hat{A}_{v} \bigg| \underbrace{\overset{\vec{r}}{\overset{\mathbf{a}}{\Rightarrow}}}_{(A-a)} (a), v \bigg\rangle$$

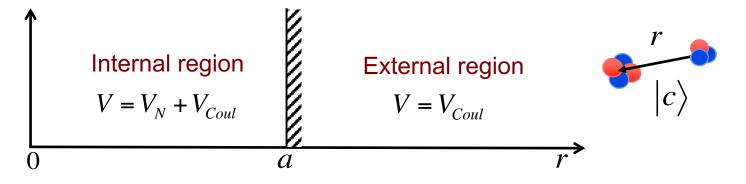
Norm kernel (Pauli principle): Single-nucleon projectile

$$\left\langle \Phi_{v'r'}^{J^{\pi}T} \left| \hat{A}_{v} \hat{A}_{v} \right| \Phi_{vr}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ (a'=1) \end{array} \right| 1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \left| \begin{array}{c} (A-1) \\ (a=1) \end{array} \right\rangle \\ N_{v'v}^{J^{\pi}T} (r',r) = \delta_{v'v} \frac{\delta(r'-r)}{r'r} - (A-1) \sum_{n'n} R_{n'\ell'}(r') R_{n\ell}(r) \left\langle \Phi_{v'n'}^{J^{\pi}T} \right| \hat{P}_{A-1,A} \left| \Phi_{vn}^{J^{\pi}T} \right\rangle \\ \sum_{n'v'} \left\langle V' \right\rangle \\ Direct term: \\ Treated exactly! \\ (n the full space) \\ (A-1) \\ (a=1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (a=1) \\ (a=1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (a=1) \\ (a=1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (a=1) \\ (a=1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (a=1) \\ (a=1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ (a=1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ (A-1) \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} (A-1) \\ (A-1) \\$$

Target wave functions expanded in the SD basis, the CM motion exactly removed

Microscopic R-matrix theory on a Lagrange mesh – Coupled channels

Separation into "internal" and "external" regions at the channel radius a



- Matching achieved through the Bloch operator: $L_c = \frac{\hbar^2}{2\mu} \delta(r-a) \left(\frac{d}{dr} \frac{B_c}{r}\right)$
- System of Bloch-Schrödinger equations:

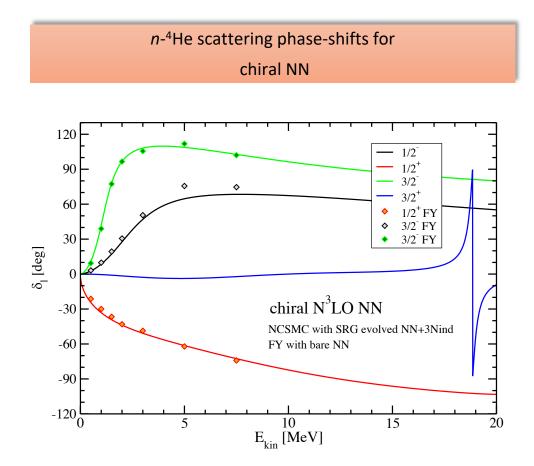
$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right] u_c(r) + \sum_{c'} \int dr' r' W_{cc'}(r, r') u_{c'}(r') = L_c u_c(r)$$

- Internal region: expansion on square-integrable basis $u_c(r) = \sum A_{cn} f_n(r)$
- External region: asymptotic form for large rBound state $u_c(r) \sim C_c W(k_c r)$ Scattering state $u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) - U_{ci} O_c(k_c r) \right]$

Lagrange basis associated with Lagrange mesh: $\{ax_n \in [0,a]\}$ $\int_0^1 g(x)dx \approx \sum_{n=1}^N \lambda_n g(x_n)$ $\int_0^a f_n(r) f_{n'}(r)dr \approx \delta_{nn'}$

Scattering matrix

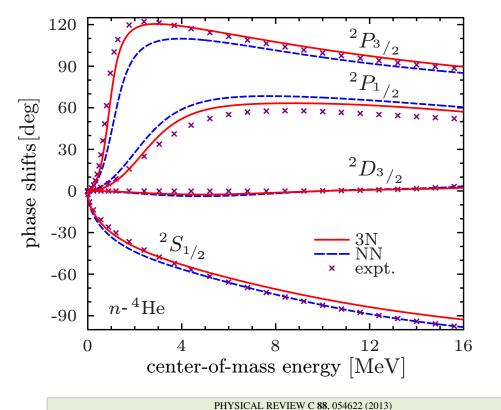
n-⁴He scattering within NCSMC



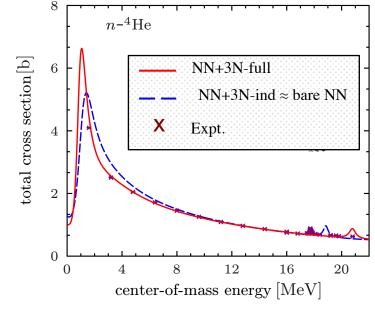
n-⁴He scattering within NCSMC

n-⁴He scattering phase-shifts for chiral NN and NN+3N500 potential

Total *n*-⁴He cross section with NN and NN+3N potentials



Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}



3N force enhances $1/2^- \leftrightarrow 3/2^$ splitting: Essential at low energies!

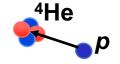
⁴He

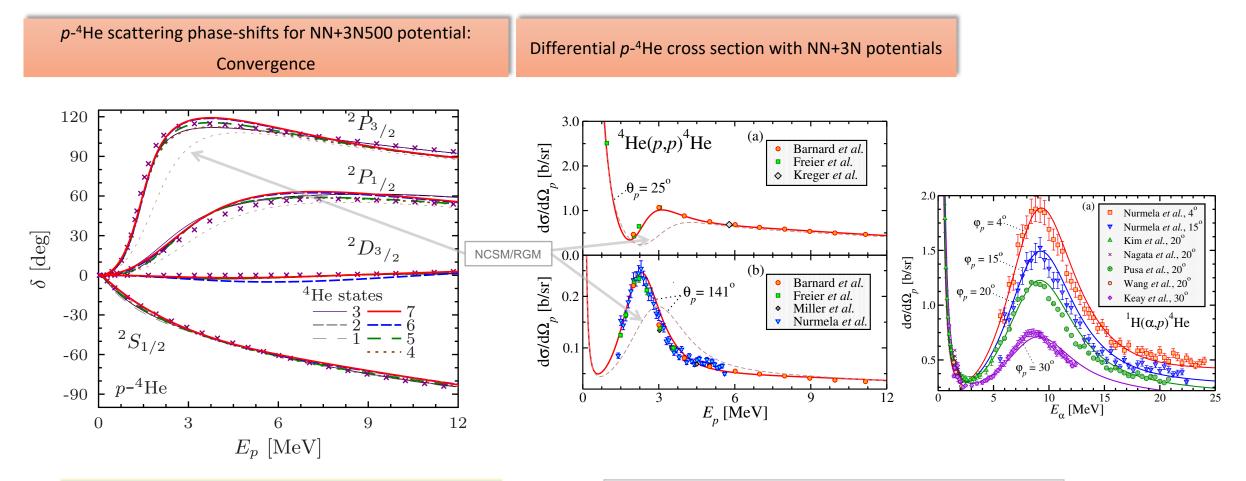
Unified ab initio approaches to nuclear Ab initio many-body calculations of nucleon-⁴He scattering with three-nucleon forces

structure and reactions

Petr Navrátil¹ Sofia Quadioni² Guillaume Hunin

p-⁴He scattering within NCSMC





PHYSICAL REVIEW C 90, 061601(R) (2014)

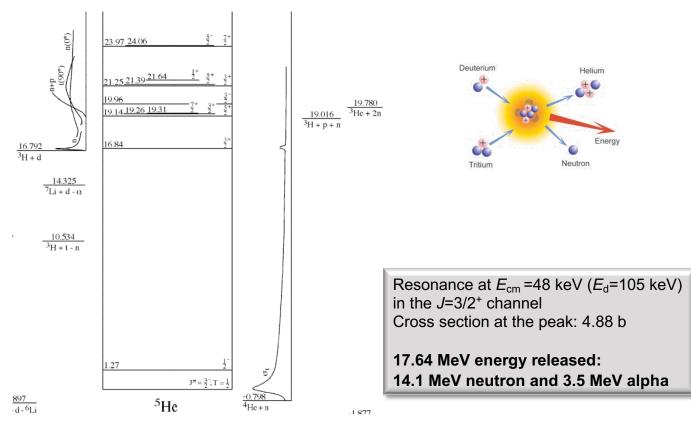
Predictive theory for elastic scattering and recoil of protons from ⁴He

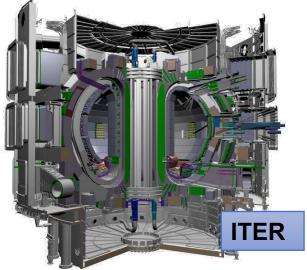
Guillaume Hupin,^{1,*} Sofia Quaglioni,^{1,†} and Petr Navrátil^{2,‡}

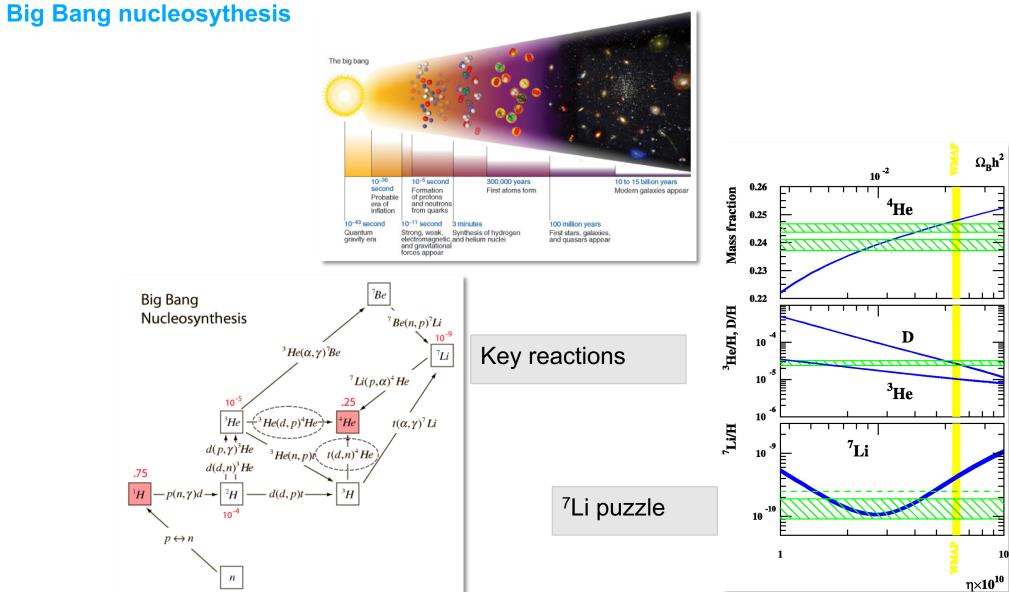
Predictive power in the 3/2⁻ resonance region: Applications to material science

Deuterium-Tritium fusion

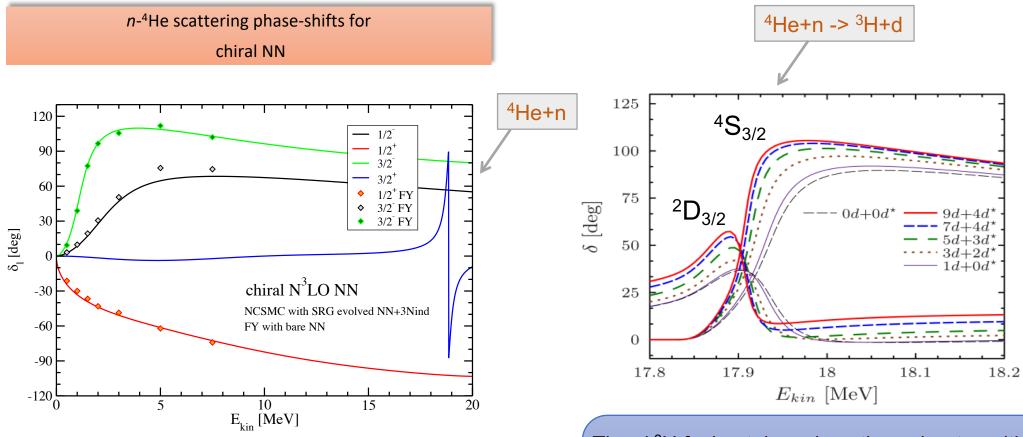
- The $d+^{3}H \rightarrow n+^{4}He$ reaction
 - The most promising for the production of fusion energy in the near future
 - Used to achieve inertial-confinement (laser-induced) fusion at NIF, and magnetic-confinement fusion at ITER
 - With its mirror reaction, ${}^{3}\text{He}(d,p){}^{4}\text{He}$, important for Big Bang nucleosynthesis





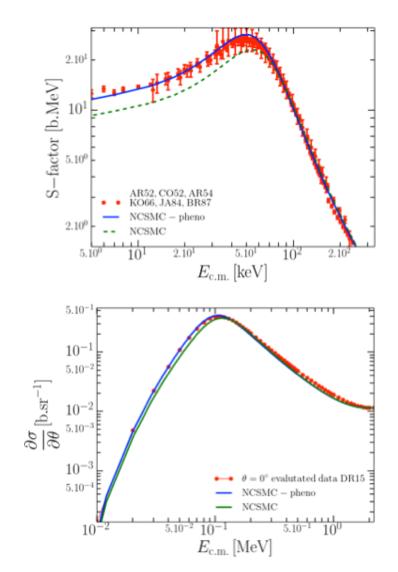


n-⁴He scattering and ³H+d fusion within NCSMC

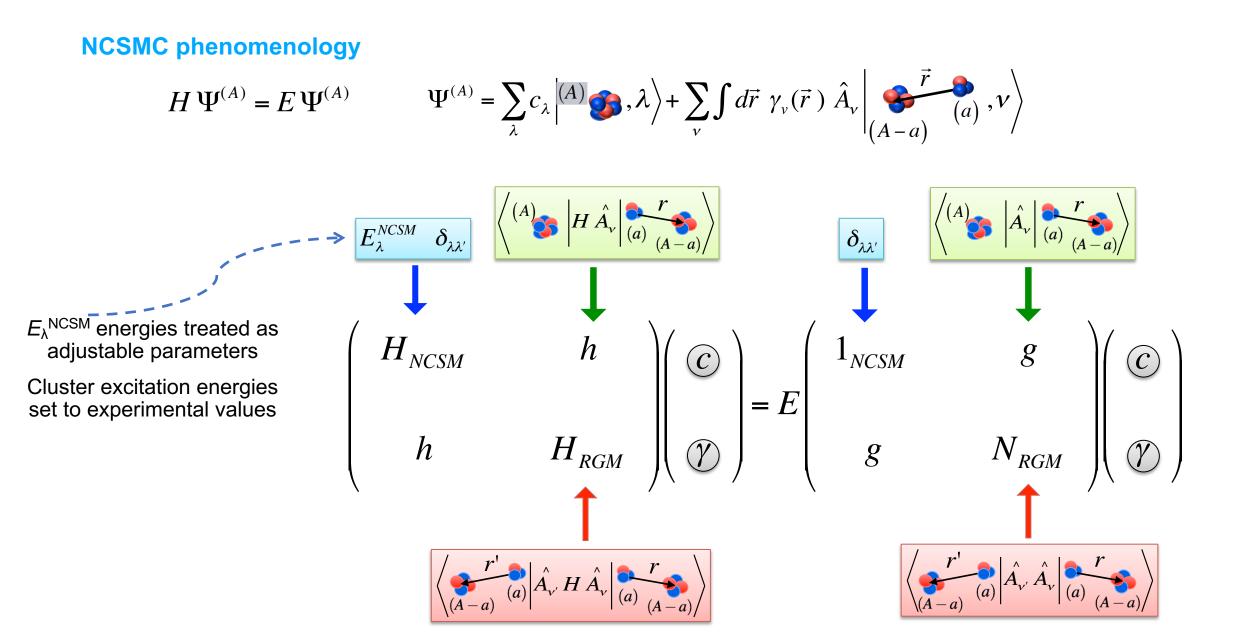


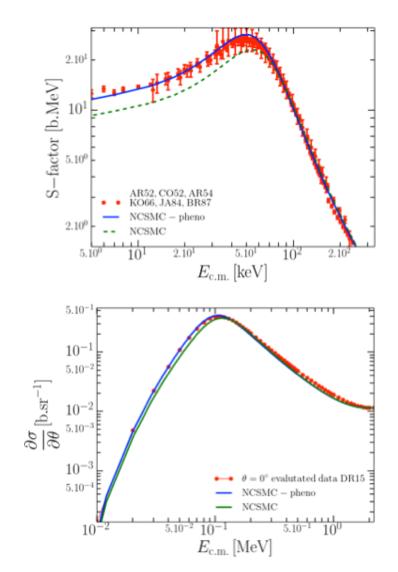
FY: Faddeev-Yakubovsky method - Rimantas Lazauskas

The d-³H fusion takes place through a transition of d+³H is *S*-wave to n+⁴He in *D*-wave: Importance of the **tensor and 3N force**



 $S(E) = E\sigma(E) \exp[2\pi\eta(E)]$ $\eta(E) = Z_{A-a}Z_a e^2 / \hbar v_{A-a,a}$





 $S(E) = E\sigma(E) \exp[2\pi\eta(E)]$ $\eta(E) = Z_{A-a}Z_a e^2 / \hbar v_{A-a,a}$

Ab initio predictions for polarized DT thermonuclear fusion arXiv:1803.11378 Guillaume Hupin^{1,2,3}, Sofia Quaglioni³ and Petr Navrátil⁴

³H(d,n)⁴He with chiral NN+3N500 interaction

 2.10^{1}

 5.10^{0}

 2.10^{0}

 5.10^{-1}

 10^{-}

 5.10^{-1}

 10^{-}

 5.10°

 10^{-3}

 5.10^{-4}

 10^{-2}

 $\frac{\partial \sigma}{\partial \theta} \left[\mathrm{b.sr}^{-1} \right]$

 5.10^{0}

AR52, CO52, AR54 KO66, JA84, BR87

NCSMC - pheno

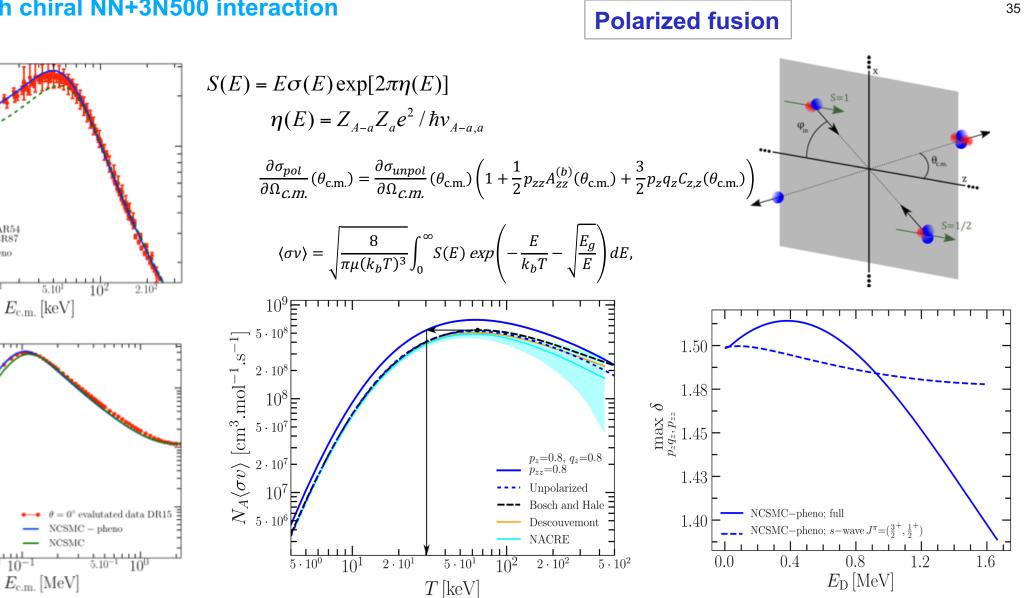
 2.10^{1}

 5.10^{-2} 10^{-1}

 5.10^{1}

NCSMC $\frac{11}{10^{1}}$

S-factor [b.MeV]



Ab initio predictions for polarized DT thermonuclear fusion arXiv:1803.11378 Guillaume Hupin^{1,2,3}, Sofia Quaglioni³ and Petr Navrátil⁴

³H(d,n)⁴He with chiral NN+3N500 interaction

 2.10^{1}

 5.10^{0}

 2.10^{0}

 5.10^{-1}

 10^{-}

 5.10^{-1}

 10^{-}

 5.10°

 10^{-3}

 5.10^{-4}

 10^{-3}

 $\frac{\partial \sigma}{\partial \theta} \left[\mathrm{b.sr}^{-1} \right]$

 5.10^{0}

AR52, CO52, AR54 KO66, JA84, BR87

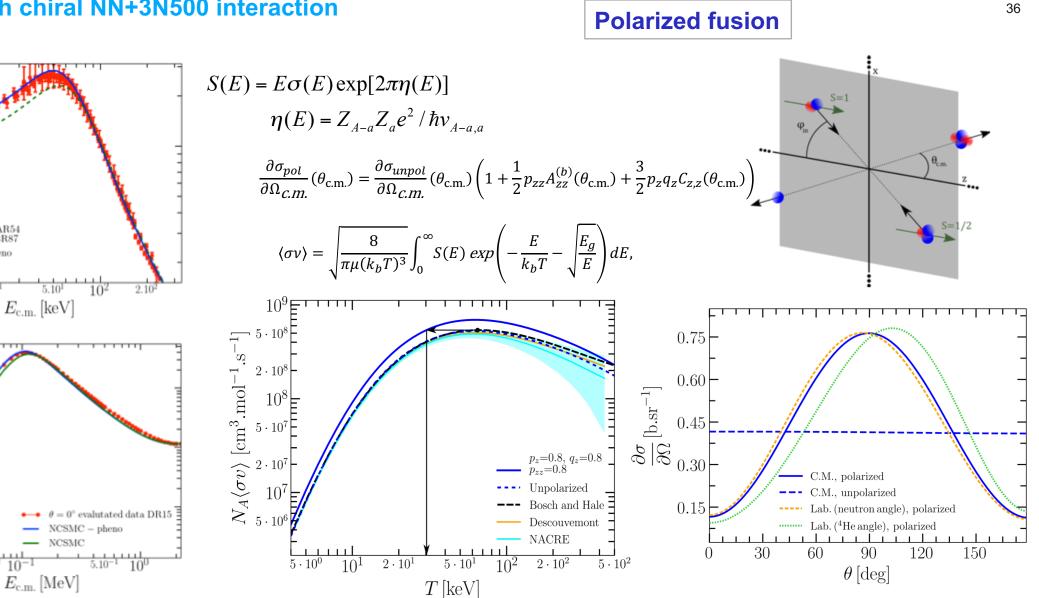
NCSMC - pheno

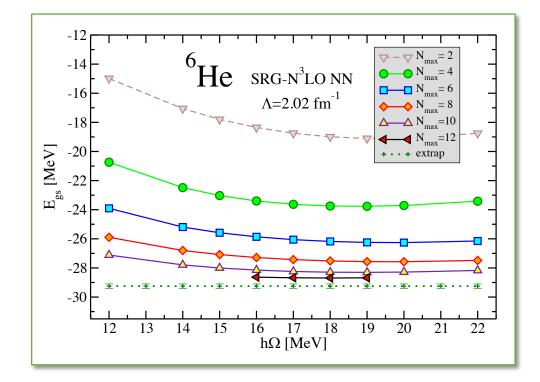
 2.10^{1}

 5.10^{-2} 10^{-1}

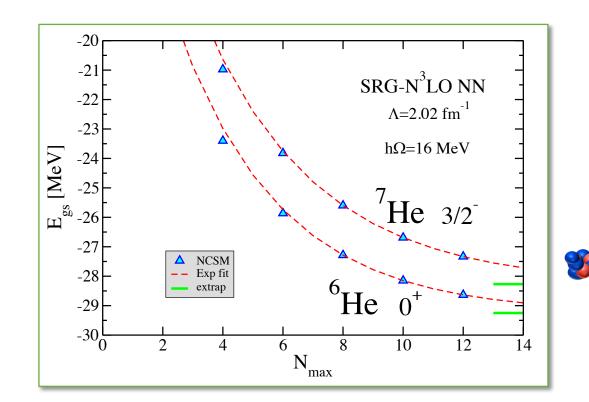
NCSMC 101

S-factor [b.MeV]





NCSM calculations of ⁶He and ⁷He g.s. energies

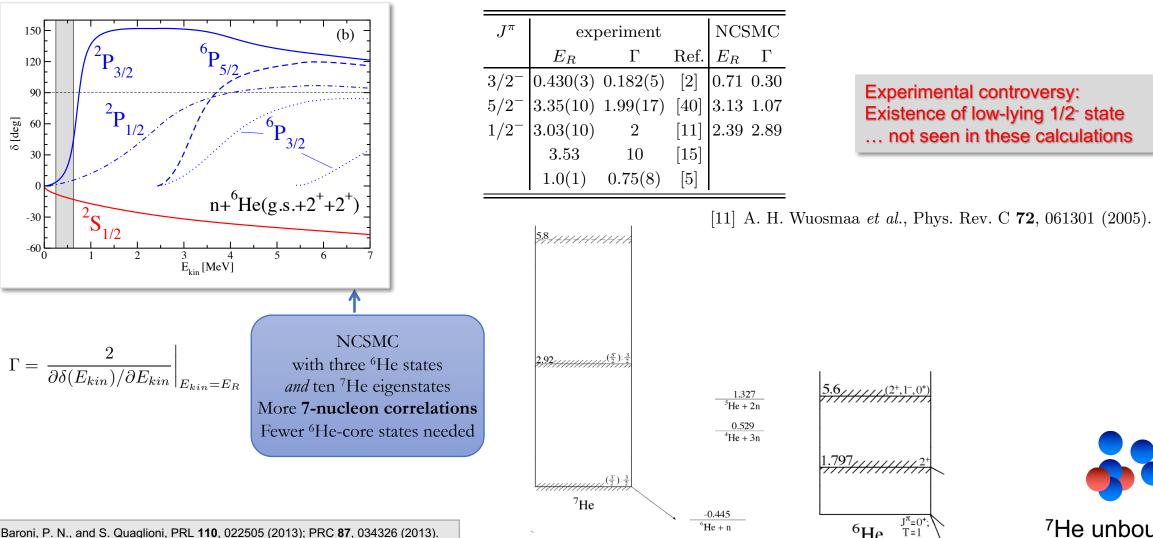


- ⁷He unbound
 - Expt. *E*_{th}=+0.430(3) MeV: NCSM *E*_{th}≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

$E_{\rm g.s.}$ [MeV]	$^{4}\mathrm{He}$	⁶ He	⁷ He
NCSM $N_{\rm max}=12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

⁷He unbound

NCSM with continuum: ⁷He \leftrightarrow ⁶He+*n*



r

 6 He + n

⁶He

Experimental controversy: Existence of low-lying 1/2⁻ state ... not seen in these calculations 38

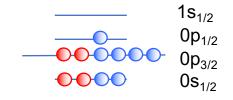
S. Baroni, P. N., and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013).

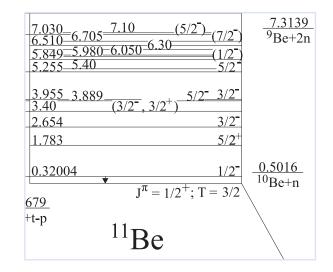
⁷He unbound

Neutron-rich halo nucleus¹¹Be

Z=4, N=7

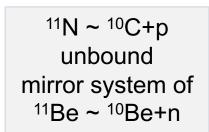
- In the shell model picture g.s. expected to be J^π=1/2⁻
 - Z=6, N=7 ¹³C and Z=8, N=7 ¹⁵O have J^π=1/2⁻ g.s.
- In reality, ¹¹Be g.s. is J^π=1/2⁺ parity inversion
- Very weakly bound: E_{th}=-0.5 MeV
 - Halo state dominated by ¹⁰Be-n in the S-wave
- The 1/2⁻ state also bound only by 180 keV
- Can we describe ¹¹Be in *ab initio* calculations?
 - Continuum must be included
 - Does the 3N interaction play a role in the parity inversion?

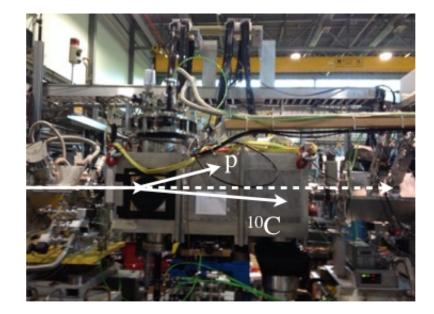


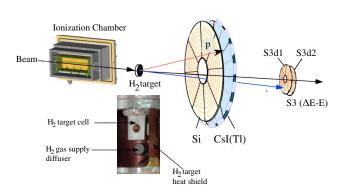


¹⁰C(p,p) @ IRIS with solid H₂ target

- Experiment at TRIUMF with the novel IRIS solid H₂ target
 - First re-accelerated ¹⁰C beam at TRIUMF
 - ${}^{10}C(p,p)$ angular distributions measured at $E_{CM} \sim 4.15$ MeV and 4.4 MeV



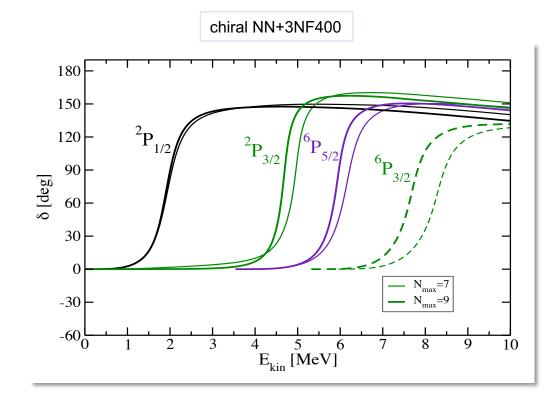


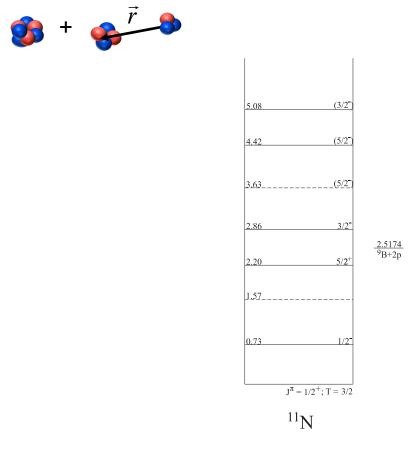


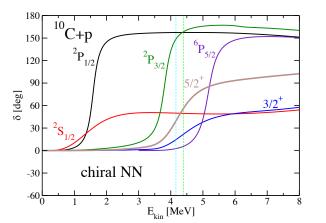
IRIS collaboration: A. Kumar, R. Kanungo, A. Sanetullaev *et al.*

p+¹⁰C scattering: structure of ¹¹N resonances

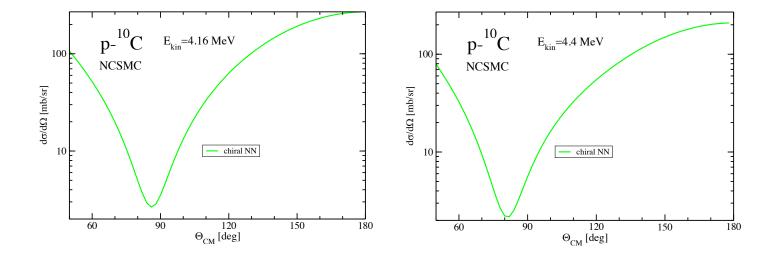
- NCSMC calculations with chiral NN+3N (N³LO NN+N²LO 3NF400, NNLOsat)
 - p-¹⁰C + ¹¹N
 - ¹⁰C: 0⁺, 2⁺, 2⁺ NCSM eigenstates
 - ¹¹N: $\geq 4 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates





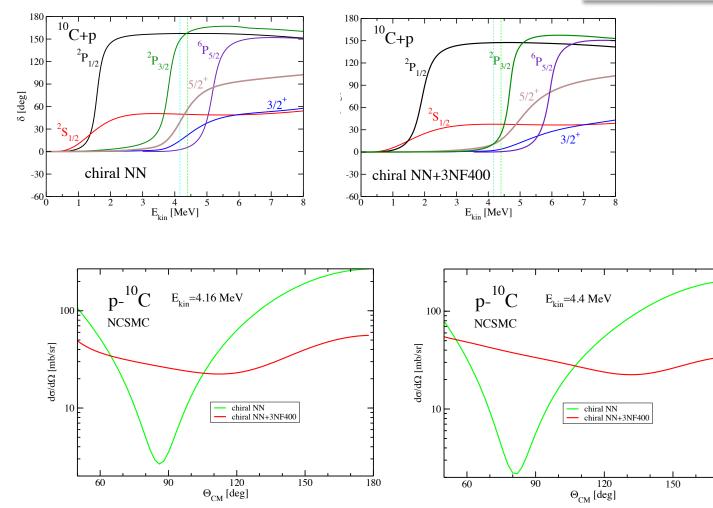


p+¹⁰C scattering: structure of ¹¹N resonances



A. Kumar,¹ R. Kanungo,^{1*} A. Calci,² P. Navrátil,^{2†} A. Sanetullaev,^{1,2} M. Alcorta,² V. Bildstein,³ G. Christian,²
 B. Davids,² J. Dohet-Eraly,²⁴ J. Fallis,² A. T. Gallant,² G. Hackman,² B. Hadinia,³ G. Hupin,⁵⁶ S. Ishimoto,⁷
 R. Krücken,²⁸ A. T. Laffoley,³ J. Lighthall,² D. Miller,² S. Quaglioni,⁹ J. S. Randhawa,¹ E. T. Rand,³
 A. Rojas,² R. Roth,¹⁰ A. Shotter,¹¹ J. Tanaka,¹² I. Tanihata,^{12,13} and C. Unsworth²

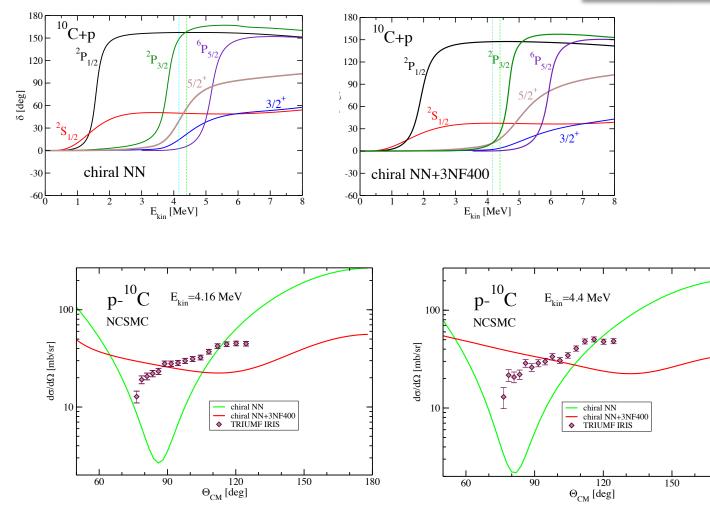
180



p+¹⁰C scattering: structure of ¹¹N resonances

180

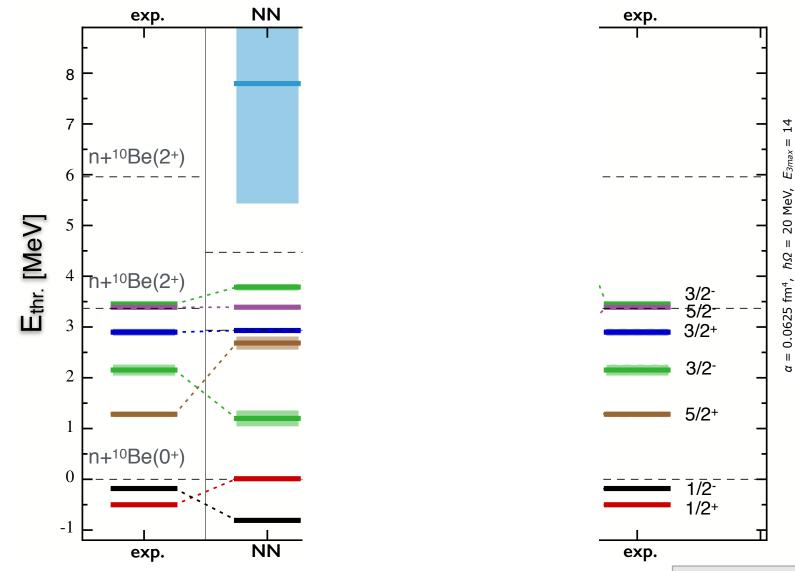
A. Kumar,¹ R. Kanungo,^{1*} A. Calci,² P. Navrátil,^{2†} A. Sanetullaev,^{1,2} M. Alcorta,² V. Bildstein,³ G. Christian,²
 B. Davids,² J. Dohet-Eraly,²⁴ J. Fallis,² A. T. Gallant,² G. Hackman,² B. Hadinia,³ G. Hupin,⁵⁶ S. Ishimoto,⁷
 R. Krücken,²⁸ A. T. Laffoley,³ J. Lighthall,² D. Miller,² S. Quaglioni,⁹ J. S. Randhawa,¹ E. T. Rand,³
 A. Rojas,² R. Roth,¹⁰ A. Shotter,¹¹ J. Tanaka,¹² I. Tanihata,^{12,13} and C. Unsworth²



p+¹⁰C scattering: structure of ¹¹N resonances

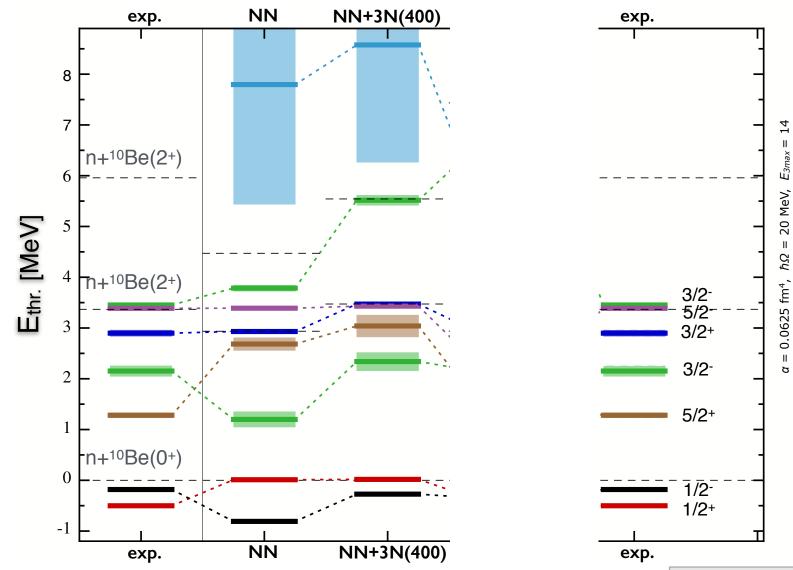
44

¹¹Be within NCSMC: Discrimination among chiral nuclear forces



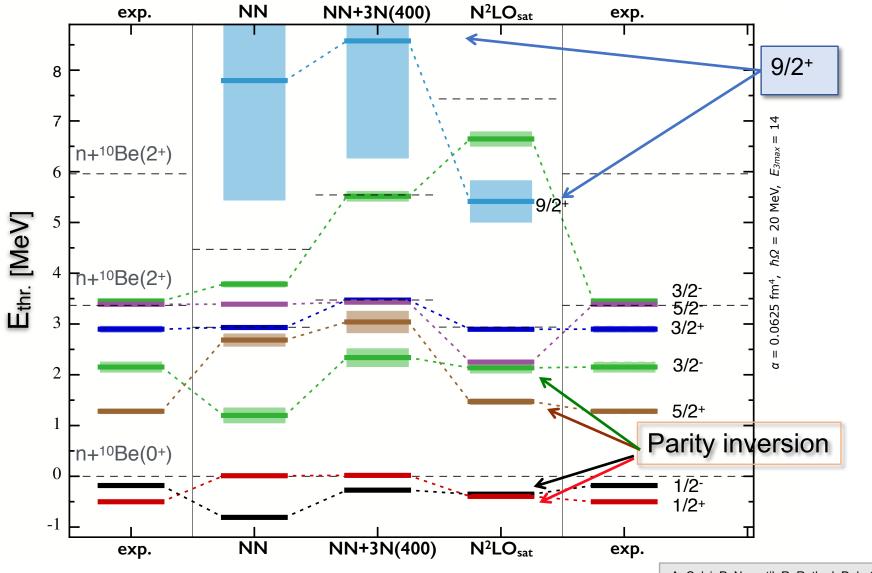
A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

¹¹Be within NCSMC: Discrimination among chiral nuclear forces



A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

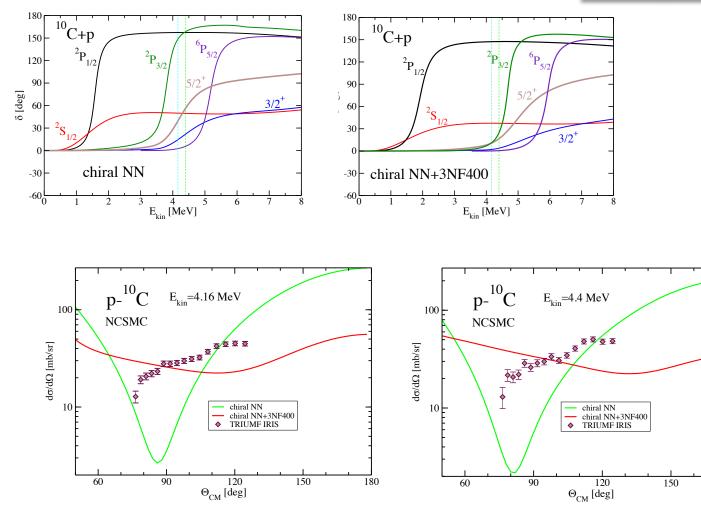
¹¹Be within NCSMC: Discrimination among chiral nuclear forces



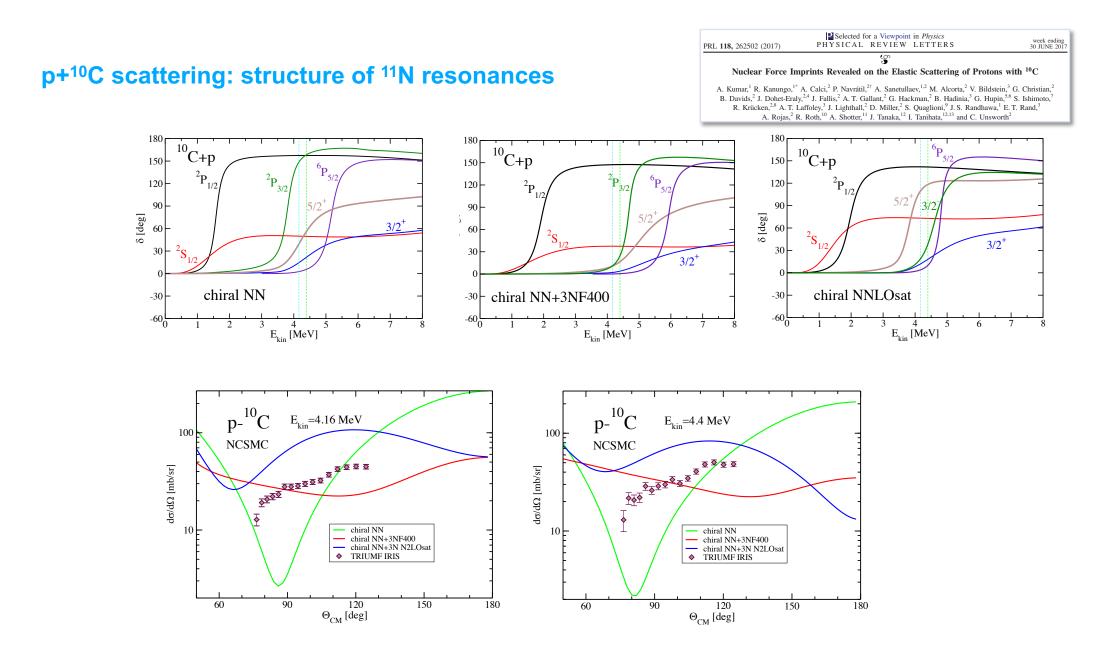
A. Calci, P. Navratil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, PRL 117, 242501 (2016)

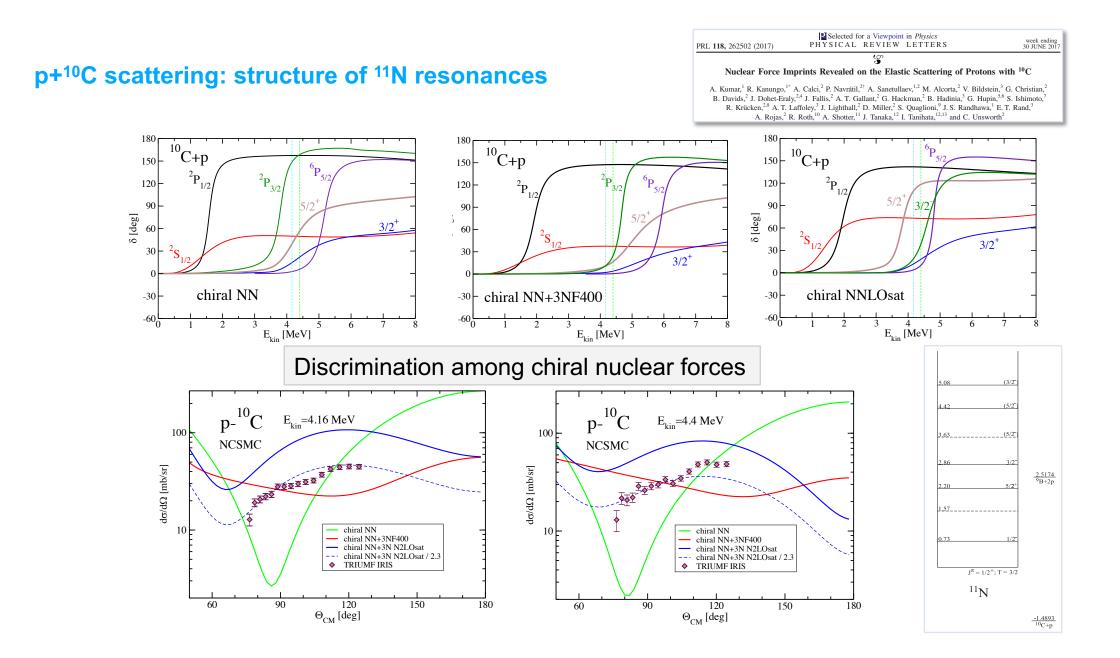
A. Kumar,¹ R. Kanungo,^{1*} A. Calci,² P. Navrátil,^{2†} A. Sanetullaev,^{1,2} M. Alcorta,² V. Bildstein,³ G. Christian,²
 B. Davids,² J. Dohet-Eraly,²⁴ J. Fallis,² A. T. Gallant,² G. Hackman,² B. Hadinia,³ G. Hupin,⁵⁶ S. Ishimoto,⁷
 R. Krücken,²⁸ A. T. Laffoley,³ J. Lighthall,² D. Miller,² S. Quaglioni,⁹ J. S. Randhawa,¹ E. T. Rand,³
 A. Rojas,² R. Roth,¹⁰ A. Shotter,¹¹ J. Tanaka,¹² I. Tanihata,^{12,13} and C. Unsworth²

180



p+¹⁰C scattering: structure of ¹¹N resonances





E1 transitions in NCSMC

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\Longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\underbrace{}}_{(A-a)}^{\vec{r}}, \nu \right\rangle$$

$$\vec{E1} = e \sum_{i=1}^{A-a} \frac{1 + \tau_i^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(A-a)} \right) + e \sum_{j=A-a+1}^{A} \frac{1 + \tau_j^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(a)} \right) + e \frac{Z_{(A-a)}a - Z_{(a)}(A-a)}{A} \vec{r_{A-a,a}}$$

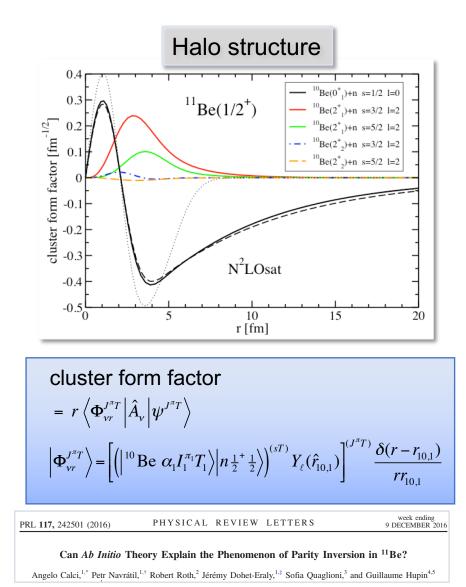
$$\begin{split} M_{fi}^{E1} &= \sum_{\lambda\lambda'} c_{\lambda'}^{*f} \langle A\lambda' J_f^{\pi_f} T_f ||\vec{E1}||A\lambda J_i^{\pi_i} T_i \rangle c_{\lambda}^i \\ &+ \sum_{\lambda'\nu} \int dr r^2 c_{\lambda'}^{*f} \langle A\lambda' J_f^{\pi_f} T_f ||\vec{E1} \hat{\mathcal{A}}_{\nu}|| \Phi_{\nu r}^i \rangle \frac{\gamma_{\nu}^i(r)}{r} \\ &+ \sum_{\lambda\nu'} \int dr' r'^2 \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^f ||\hat{\mathcal{A}}_{\nu'} \vec{E1}||A\lambda J_i^{\pi_i} T_i \rangle c_{\lambda}^i \\ &+ \sum_{\nu\nu'} \int dr' r'^2 \int dr r^2 \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^f ||\hat{\mathcal{A}}_{\nu'r'}||\hat{\mathcal{A}}_{\nu'} \vec{E1} \hat{\mathcal{A}}_{\nu}|| \Phi_{\nu r}^i \rangle \frac{\gamma_{\nu}^i(r)}{r} \end{split}$$

Photo-disassociation of ¹¹Be

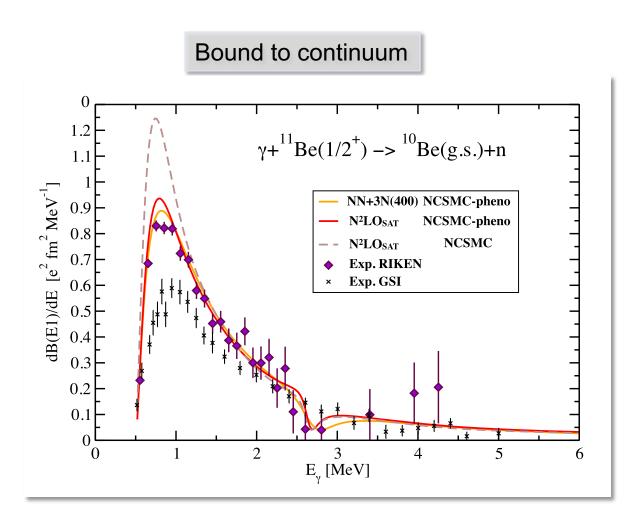
Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; 1/2 ⁺ →1/2 ⁻) [e ² fm ²]	0.0005	0.117	0.102(2)

PRL 117, 242501 (2016)	PHYSICAL REVIEW	LETTERS	week ending 9 DECEMBER 2016		
Can <i>Ab Initio</i> Theory Explain the Phenomenon of Parity Inversion in ¹¹ Be?					
Can Ab Initio T	heory Explain the Phenomen	on of Parity Inve	sion in ¹¹ Be?		

Photo-disassociation of ¹¹Be

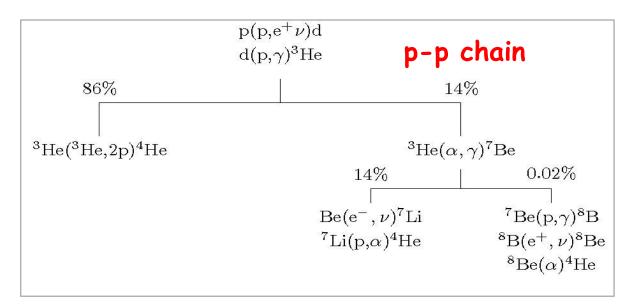


Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; 1/2 ⁺ →1/2 ⁻) [e ² fm ²]	0.0005	0.117	0.102(2)



p+¹¹C scattering and ¹¹C(p,γ)¹²N capture

¹¹C(p,γ)¹²N capture relevant in hot *p*-*p* chain: Link between pp chain and the CNO cycle - bypass of slow triple alpha capture ⁴He(αα,γ)¹²C



 ${}^{3}He(\alpha,\gamma){}^{7}Be(\alpha,\gamma){}^{11}C(p,\gamma){}^{12}N(p,\gamma){}^{13}O(\beta^{+},\nu){}^{13}N(p,\gamma){}^{14}O(\beta^{+},\nu){}^{14}$

 ${}^{3}He(\alpha,\gamma){}^{7}Be(\alpha,\gamma){}^{11}C(p,\gamma){}^{12}N(\beta^{+},\nu){}^{12}C(p,\gamma){}^{13}N(p,\gamma){}^{14}O$ ${}^{11}C(\beta^{+}\nu){}^{11}B(p,\alpha){}^{8}Be({}^{4}He,{}^{4}He)$

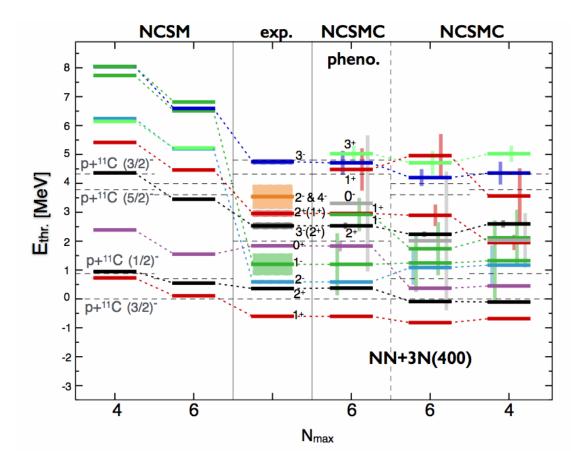
p+¹¹C scattering and ${}^{11}C(p,\gamma){}^{12}N$ capture

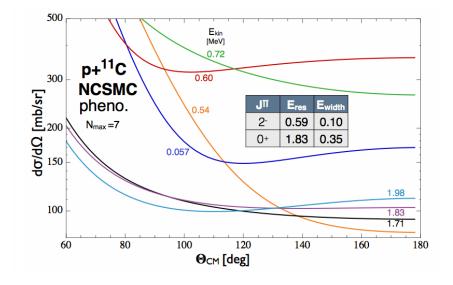
- Measurement of ¹¹C(p,p) resonance scattering planned at TRIUMF
 TUDA facility
 - ¹¹C beam of sufficient intensity produced
- NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way
- Obtained wave functions will be used to calculate ¹¹C(p,γ)¹²N capture relevant for astrophysics

p+¹¹C scattering and ${}^{11}C(p,\gamma){}^{12}N$ capture

NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way

- ¹¹C: 3/2⁻, 1/2⁻, 5/2⁻, 3/2⁻ NCSM eigenstates
- ¹²N: $\geq 6 \pi = +1$ and $\geq 4 \pi = -1$ NCSM eigenstates



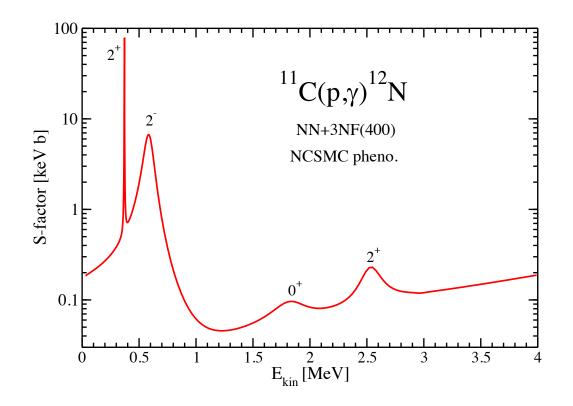


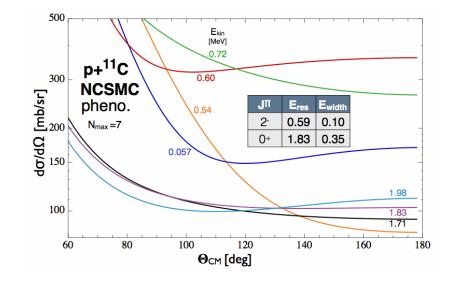
NCSMC calculations to be validated by measured cross sections and applied to calculate the ${}^{11}C(p,\gamma){}^{12}N$ capture

$p+^{11}C$ scattering and $^{11}C(p,\gamma)^{12}N$ capture

NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way

- ¹¹C: 3/2⁻, 1/2⁻, 5/2⁻, 3/2⁻ NCSM eigenstates
- ¹²N: $\geq 6 \pi = +1$ and $\geq 4 \pi = -1$ NCSM eigenstates





NCSMC calculations to be validated by measured cross sections and applied to calculate the ${}^{11}C(p,\gamma){}^{12}N$ capture

- Ab initio calculations of nuclear structure and reactions with predictive power becoming feasible beyond the latest nuclei
- Ab initio structure calculations can even reach (selected) medium
 & medium-heavy mass nuclei
- These calculations make the connection between the low-energy QCD, many-body systems, and nuclear astrophysics

∂TRIUMF

Thank you! Merci!

