

Ab initio calculations for exotic nuclei

Understanding Nuclei from Different Theoretical Approaches APCTP, Pohang, Korea – Sep 18, 2018

Matteo Vorabbi | TRIUMF

Collaborators:

Michael Gennari, Petr Navratil (TRIUMF) Sofia Quaglioni (LLNL) Guillaume Hupin (CNRS)

Outline

1. No-core shell model with continuum

- a. Structure of the exotic ⁹He system
- b. Study of A=7 systems

2. Microscopic optical potentials for intermediate energies with nonlocal *ab initio* densities

- Results for stable nuclei
- Results for ⁶He and ⁸He

Structure of the exotic ⁹He

1a.

Neutron-rich nuclei

- Theory
 - Importance of many-body forces at extreme neutron excesses
 - Challenge to our current computational techniques
- Experiment
 - Difficult to produce in sufficient quantities
 - Challenging to analyze

			¹² O	¹³ O	¹⁴ O	¹⁵ O	$^{16}\mathrm{O}$
		^{10}N	^{11}N	$^{12}\mathrm{N}$	$^{13}\mathrm{N}$	^{14}N	$^{15}\mathrm{N}$
es	⁸ C	⁹ C	¹⁰ C	¹¹ C	$^{12}\mathrm{C}$	¹³ C	$^{14}\mathrm{C}$
	⁷ B	⁸ B	⁹ B	¹⁰ B	¹¹ B	$^{12}\mathrm{B}$	$^{13}\mathrm{B}$
⁵ Be	⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be
⁴ Li	⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li	11 Li
³ He	⁴ He	⁵ He	⁶ He	⁷ He	⁸ He	⁹ He	$^{10}\mathrm{He}$
$^{2}\mathrm{H}$	$^{3}\mathrm{H}$	$^{4}\mathrm{H}$	$^{5}\mathrm{H}$	$^{6}\mathrm{H}$			

 $^{1}\mathrm{H}$

The He isotopic chain

 One of the few chains accessible to both detailed theoretical and experimental studies

			¹² O	¹³ O	¹⁴ O	$^{15}\mathrm{O}$	¹⁶ O
		¹⁰ N	^{11}N	$^{12}\mathrm{N}$	$^{13}\mathrm{N}$	^{14}N	$^{15}\mathrm{N}$
	⁸ C	⁹ C	¹⁰ C	¹¹ C	$^{12}\mathrm{C}$	¹³ C	$^{14}\mathrm{C}$
	$^{7}\mathrm{B}$	⁸ B	⁹ B	¹⁰ B	¹¹ B	$^{12}\mathrm{B}$	$^{13}\mathrm{B}$
⁵ Be	⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be
$^{4}\mathrm{Li}$	⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li	11 Li
³ He	4 He	${}^{5}\mathrm{He}$	⁶ He	$^{7}\mathrm{He}$	⁸ He	⁹ He	10 He
² H	$^{3}\mathrm{H}$	$^{4}\mathrm{H}$	$^{5}\mathrm{H}$	$^{6}\mathrm{H}$			

 $^{1}\mathrm{H}$

The ⁹He system

- Characterized by N/Z = 3.5
- One of the most neutron extreme systems studied so far

			¹² O	¹³ O	¹⁴ O	¹⁵ O	¹⁶ O
		$^{10}\mathrm{N}$	$^{11}\mathrm{N}$	$^{12}\mathrm{N}$	$^{13}\mathrm{N}$	$^{14}\mathrm{N}$	$^{15}\mathrm{N}$
	⁸ C	$^{9}\mathrm{C}$	$^{10}\mathrm{C}$	$^{11}\mathrm{C}$	$^{12}\mathrm{C}$	$^{13}\mathrm{C}$	$^{14}\mathrm{C}$
	⁷ B	⁸ B	⁹ B	¹⁰ B	¹¹ B	¹² B	$^{13}\mathrm{B}$
⁵ Be	⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be
⁴ Li	⁵ Li	⁶ Li	$^{7}\mathrm{Li}$	⁸ Li	⁹ Li	$^{10}\mathrm{Li}$	$^{11}\mathrm{Li}$
³ He	⁴ He	⁵ He	⁶ He	⁷ He	⁸ He	$^{9}\mathrm{He}$	$^{10}\mathrm{He}$
$^{2}\mathrm{H}$	³ H	$^{4}\mathrm{H}$	$^{5}\mathrm{H}$	$^{6}\mathrm{H}$			

 $^{1}\mathrm{H}$

The ⁹He system

- Characterized by N/Z = 3.5
- One of the most neutron extreme systems studied so far
- Possible candidate for a positive parity ground state Famous example: ¹¹Be ¹H

			¹² O	¹³ O	¹⁴ O	$^{15}\mathbf{O}$	¹⁶ O
		$^{10}\mathrm{N}$	$^{11}\mathrm{N}$	$^{12}\mathrm{N}$	$^{13}\mathrm{N}$	$^{14}\mathbf{N}$	$^{15}\mathrm{N}$
	⁸ C	⁹ C	¹⁰ C	¹¹ C	¹² C	$^{13}\mathbf{C}$	$^{14}\mathrm{C}$
	⁷ B	⁸ B	⁹ B	¹⁰ B	¹¹ B	$^{12}\mathbf{B}$	$^{13}\mathrm{B}$
⁵ Be	⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	11 Be	¹² Be
⁴ Li	⁵ Li	⁶ Li	$^{7}\mathrm{Li}$	⁸ Li	⁹ Li	10 Li	$^{11}\mathrm{Li}$
³ He	⁴ He	$^{5}\mathrm{He}$	⁶ He	⁷ He	⁸ He	⁹ He	$^{10}\mathrm{He}$
$^{2}\mathrm{H}$	$^{3}\mathrm{H}$	$^{4}\mathrm{H}$	$^{5}\mathrm{H}$	$^{6}\mathrm{H}$			

Experimental history of ⁹He

Controversial experimental situation

From talk by Nigel Orr at ECT* (2013)

- No bound state
- Most experiments see a 1/2⁻ resonance at ~ 1 MeV
- Is there a 1/2⁺ resonance? Is the ground state 1/2⁺ or 1/2⁻?
 - a₀ ~ -10 fm (Chen et al.)
 - a₀ ~ -3 fm (Al Falou et al.)
- Any higher-lying resonances?
- Recent ⁸He(p,p) measurement at TRIUMF by Rogachev Found no T= 5/2 resonances [PLB **754** (2016) 323]

Experimental history of ⁹He

From talk by Nigel Orr at ECT* (2013)

Two longstanding problems affect the physics of the ⁹He system

- 1. The existence of the 1/2⁺ resonance
- 2. The width of the 1/2⁻ resonance
 - Experimentally ~ 0.1 MeV
 - Theoretically ~ 1 MeV

From QCD to nuclei

No-core shell model

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic oscillator (HO) basis
 - Short- and medium-range correlations
 - Bound-states, narrow resonances

No-core shell model with RGM

- NCSM with Resonating Group Method (NCSM/RGM)
 - Cluster expansion, clusters described by NCSM
 - Proper asymptotic behavior
 - Long-range correlations

Unified approach to bound & continuum states; to nuclear structure and reactions

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic oscillator (HO) basis
 - Short- and medium-range correlations
 - Bound-states, narrow resonances
- NCSM with Resonating Group Method (NCSM/RGM)
 - Cluster expansion, clusters described by NCSM
 - Proper asymptotic behavior
 - Long-range correlations
- Most efficient: *ab initio* no-core shell model with continuum (NCSMC)

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

NCSMC

NCSMC ⁹He calculations

NCSMC calculations with several interactions

- N²LO_{sat} NN + 3N
- NN N³LO + 3N N²LO
- NN SRG-N⁴LO500

Calculations with NN SRG-N⁴LO500

• ${}^{9}\text{He} \sim ({}^{9}\text{He})_{\text{NCSM}} + (n - {}^{8}\text{He})_{\text{NCSM/RGM}}$

⁹He: 4 negative-parity NCSM eigenstates 6 positive-parity NCSM eigenstates

Importance of large N_{max} basis:

> NN SRG-N⁴LO500 with λ = 2.4 fm⁻¹

up to N_{max} = 11 with ⁹He NCSM (m-scheme basis of 350 million)

Phase shift convergence with NN SRG-N⁴LO500 λ =2.4 fm⁻¹

Vorabbi, Calci, Navratil, Kruse, Quaglioni, Hupin, PRC **97**, 034314 (2018)

Phase shift convergence with NN SRG-N⁴LO500 λ =2.4 fm⁻¹

Vorabbi, Calci, Navratil, Kruse, Quaglioni, Hupin, PRC 97, 034314 (2018)

Phase shift convergence with NN SRG-N⁴LO500 λ =2.4 fm⁻¹

Vorabbi, Calci, Navratil, Kruse, Quaglioni, Hupin, PRC 97, 034314 (2018)

Phase shifts with NN SRG-N⁴LO500 λ =2.4 fm⁻¹

Vorabbi, Calci, Navratil, Kruse, Quaglioni, Hupin, PRC 97, 034314 (2018)

Eigenphase shifts with NN SRG-N⁴LO500 λ =2.4 fm⁻¹

Vorabbi, Calci, Navratil, Kruse, Quaglioni, Hupin, PRC 97, 034314 (2018)

Summary

Robust results for $1/2^{-}$ (~ 1MeV) and $3/2^{-}$ (~4 MeV) **P-wave** resonances ($3/2^{-}$ resonance in n-⁸He(2⁺) channel)

1/2⁺ S-wave with vanishing scattering length: $a_s = 0 \sim -1$ fm

No evidence for other higher lying resonances

J^{π}	NCSMC		NCSMC-pheno	
$1/2^{-}$	$E_R = 0.69$	$\Gamma = 0.83$	$E_R = 0.68$	$\Gamma = 0.37$
$3/2^{-}$	$E_{R} = 4.70$	$\Gamma = 0.74$	$E_R = 3.72$	$\Gamma = 0.95$

1b. Study of A=7 systems

⁷Be system

Analyzed mass partitions

- ³He + ⁴He
- p + ⁶Li

Exp.	$J^{\pi} = 3/2^{-1}$
E [MeV]	-37.60

³ He + ⁴ He	$J^{\pi} = 3/2^{-1}$	$J^{\pi} = 1/2^{-}$
E _{bound}	-1.519	-1.256
E [MeV]	-36.98	-36.71

p + ⁶ Li	$J^{\pi} = 3/2^{-1}$	J ^π = 1/2 ⁻
E_{bound}	-5.729	-5.389
E [MeV]	-36.47	-36.13

6.0

⁷Li system

Analyzed mass partitions

• ³H + ⁴He

• n + ⁶Li

• p + ⁶He

Exp.J^π = 3/2⁻E [MeV]-39.245

³ H + ⁴ He	$J^{\pi} = 3/2^{-1}$	$J^{\pi} = 1/2^{-1}$	9.9754
E_{bound}	-2.432	-2.153	⁶ He+p
E [MeV]	-38.65	-38.37	

n + ⁶ Li	$J^{\pi} = 3/2^{-1}$	$J^{\pi} = 1/2^{-1}$
E _{bound}	-7.381	-7.048
E [MeV]	-38.13	-37.79

р + ⁶ Не	$J^{\pi} = 3/2^{-1}$	J ^π = 1/2⁻
E_{bound}	-10.40	-10.06
E [MeV]	-38.06	-37.73

⁷Li – New negative-parity states

⁷Li – New negative-parity states

⁷Li – New negative-parity states

⁷Li – New positive-parity states

⁷Li – New positive-parity states

S-factor for ${}^{6}\text{He}(p,\gamma){}^{7}\text{Li}$ reaction

S-factor for ${}^{3}H(\alpha,\gamma){}^{7}Li$ and ${}^{3}He(\alpha,\gamma){}^{7}Be$ reactions

2.

Microscopic optical potentials for intermediate energies

Nuclear reaction theory relies on reducing the many-body problem to a problem with few degrees of freedom: **optical potentials**.

Phenomenological

Unfortunately, currently used optical potentials for low-energy reactions are phenomenological, and primarily constrained by elastic scattering. Unreliable when extrapolated beyond their fitted range in energy and nuclei

Microscopical

Existing microscopic optical potentials are *usually* developed in an high-energy regime (≥ 100 MeV) and not applicable for lower energy reactions.

No fitting

Lippmann-Schwinger (LS) equation for the nucleon-nucleus transition amplitude

$$T = V + VG_0(E)T$$

$$\frac{All \text{ two nucleon interactions}}{V = \sum_{i=1}^{A} v_{0i}}$$

$$V = \sum_{i=1}^{A} v_{0i}$$

$$Green function propagator}{G_0(E) = (E - H_0 + i\epsilon)^{-1}}$$
where

$$H_0 = h_0 + H_A$$

$$h_0$$
kinetic term of the projectile

 $H_A \left| \Phi_A \right\rangle = E_A \left| \Phi_A \right\rangle \qquad {
m target} \ {
m Hamiltonian}$

Lippmann-Schwinger (LS) equation for the nucleon-nucleus transition amplitude

$$T = V + VG_0(E)T$$

Let's introduce the optical potential U

Projection operators

P + Q = 1 $[G_0, P] = 0$

In the case of elastic scattering, *P* projects onto the elastic channel

$$P = \frac{|\Phi_A\rangle \langle \Phi_A|}{\langle \Phi_A | \Phi_A \rangle}$$

 $T = U + UG_0(E)PT$ $U = V + VG_0(E)QU$

Lippmann-Schwinger (LS) equation for the nucleon-nucleus transition amplitude

$$T = V + VG_0(E)T$$
Transition amplitude *T* for elastic scattering

$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$
we need to calculate *PUP*

Lippmann-Schwinger (LS) equation for the nucleon-nucleus elastic transition amplitude

$$T_{el} = PUP + PUPG_{0}(E)T_{el}$$
Spectator expansion for U
Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)
$$T_{el} = PUP + PUPG_{0}(E)T_{el}$$

$$U = \sum_{i=1}^{A} \tau_i + \sum_{i,j\neq i}^{A} \tau_{ij} + \sum_{i,j\neq i,k\neq i,j}^{A} \tau_{ijk} + \cdots$$

Single scattering approximation

Lippmann-Schwinger (LS) equation for the nucleon-nucleus elastic transition amplitude

Impulse approximation

Lippmann-Schwinger (LS) equation for the nucleon-nucleus elastic transition amplitude

$$T_{\rm el} = PUP + PUPG_0(E)T_{\rm el}$$

Spectator expansion for U

Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)

Impulse approximation

$$U = \sum_{i=1}^{A} t_{0i} \qquad \begin{cases} t_{0i} = v_{0i} + v_{0i}g_i t_{0i} \\ g_i = \frac{1}{E - h_0 - h_i + i\epsilon} \end{cases}$$

The interaction between the projectile and the target nucleon is considered as free

The first-order optical potential

$$\begin{split} U(\boldsymbol{q},\boldsymbol{K};E) &= \sum_{\alpha=n,p} \int d^{3}\boldsymbol{P} \ \eta(\boldsymbol{P},\boldsymbol{q},\boldsymbol{K}) t_{p\alpha} \left[\boldsymbol{q}, \frac{1}{2} \left(\frac{A+1}{A} \boldsymbol{K} - \boldsymbol{P} \right); E \right] \\ &\times \rho_{\alpha} \left(\boldsymbol{P} - \frac{A-1}{2A} \boldsymbol{q}, \boldsymbol{P} + \frac{A-1}{2A} \boldsymbol{q} \right) \qquad \boldsymbol{q} = \boldsymbol{k}' - \boldsymbol{k} \\ & \boldsymbol{K} = \frac{1}{2} (\boldsymbol{k}' + \boldsymbol{k}) \end{split}$$
Basic incredients

Dasic IIIYI EUIEIIIS

- Nucleon-nucleon scattering matrix t_{NN}
- Non-local nuclear densities

$$\rho_{\rm op} = \sum_{i=1}^{A} \delta(\boldsymbol{r} - \boldsymbol{r}_i) \delta(\boldsymbol{r}' - \boldsymbol{r}'_i)$$

The matrix elements between a general initial and final state are obtained from the NCSM Extension of: Navratil, PRC 70, 014317 (2004)

Non-local densities

Gennari, Vorabbi, Calci, Navratil, PRC 97, 034619 (2018)

Scattering observables – Stable nuclei

Gennari, Vorabbi, Calci, Navratil, PRC 97, 034619 (2018)

Scattering observables – Stable nuclei

Scattering observables – Stable nuclei

Scattering observables – Halo nuclei

Scattering observables – Halo nuclei

Outlook

- Investigation of the ⁹He structure with the inclusion of the three-nucleon interaction
 - Introducing a controlled approximation for the 3N terms
- Calculation of the p+⁸He scattering process
 - New TRIUMF experiment for ⁸He(p,p) reaction
- Coupling between different mass partitions for A=7 systems
- Improvement of the optical potential
 - Inclusion of three-nucleon interaction
 - Inclusion of medium effects