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* False vacuum decay 1s an interesting
physical phenomena.

* Decay of a super-heated or super-cooled
liquid to the gas or solid phase are common
examples from tangible physical systems.

* The decay corresponds to quantum
tunnelling transition.
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The amplitude for such a decay i1s
suppressed by the usual exponential of the
classical action: e OE/R

This suppression can be reduced or even
removed by the presence of perturbations or
disturbances which can seed the transition.

Such cases are called induced vacuum
decay.

We consider the situation that the false
vacuum and the true vacuum correspond to
the symmetry broken vacua.

This can be realized in the Skyrme model.



Skyrme Model

* The Skyrme model 1s a non-linear sigma
model where the quantum field takes values

in a topologically non-trivial target
manifold M .

* The vacuum corresponds to one point in the
target manifold, and finite energy
configurations typically achieve the vacuum
configuration at spatial infinity.

* This gives the topological compactification
of space from R% — S°
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e Then finite energy configurations correspond
to correspond to maps from S° or S*to the
target manifold. These correspond to the

homotopy groups: 115 (./\/l)
11, (M)

e These homotopy groups are quite often non-
trivial and the minimum energy configuration
in each homotopy class give rise solutions of
the equations of motion are called topological
solitons.

* These solitons are called Skyrmions.



It can be physically relevant that the
potential energy on the target manifold
contains several minima, but one global
minimum.

The local minima are called false vacua
while the global minimum i1s the true
vacuum.

Topological solitons that asymptotically go
to one of the false minima are
correspondingly called false Skyrmions.

False Skyrmions are metastable, they can
decay quantum mechanically by tunnelling.



We study this decay in the context of the

usual Skyrme model, with rescaling f./(4e) 2/(cf,)

1

L= Tr 0,UT0"U] + 1—16 Tr [UT0, U, UTO,U]

2

with the added mass term:

1
[fmass —

4

(miTr[1—U]+m3Tr [1—U*])

U(x) takes values in: M =53

I5(S3) = Z

The chiral symmetry is:

SU(2) x SU(2)

(VW) : U — VIUW



We could add a mass term (potential) of the

form Lomass = Y Cr Tr [U]

Then writing g

U=e""T =cos¢ +in-Tsin(
we get Lt Z C'i cos(k()

which 1s the Fourier (Tecomposition of an
arbitrary potential V' (() .

In general, we could add a potential which 1s
an essentially arbitrary function on the target
space.

The only constraint 1s that the ensuing pion
mass be small.



With U=e""T =cos+in-Tsin(
The potential becomes:
V(¢) = m7sin® (/2 + m3 sin® ¢

The global minium 1s at ¢ = 0 with energy 0,
while a false minimum appears at ¢ = = with

energy m?.
The Skyrmion field 1s obtained via the ansatz,
1) — oif (AT
and the ensuing equation for f(r) f(0)=2r. f(co)=n
(r* +2Bsin® f) f" + 2f'r +

—|—Sin2f (B(f&—l)_ISanf) Tzé)V_
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« Here na(x) is a mapping from S5°—5° a
so-called rational map and the winding
number of the map corresponds to the
baryon number of the Skyrmion, and 7 1s
an 1ntegral that only depends on the rational
map and approximately 7 ~ 1.28B2.

* Previous work has given the expectation of
thin wall solitons. In this case, we expect
the energy to behave like

61 3
E=aR*+5 - —€R
. +R 97T6



* We find numerically, thin wall solitons for
large baryon number:
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* The energy density 1s localized on the wall:
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Baryon number density
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Effective dynamics of the radius
* The energy of the thin wall Skyrmion
separates 1nto three contributions:

R—A R+A o0
E(R) = / dré + / dré + / dré
0 R—A R+A
. Eint + Ewall + Eext
* One can approximate them easily as

1 1 A
Ein = —— — 3 = — — 3 1 —
e =—5-(R-A)’e=~—R e< +O<R>)

2 [T 7 sin*
Bt — o~ / df\/ (QBsin2 f+ S;; I +R2V)
0

X \/(R2 + 2Bsin? f),




E(R)

* This gives the form of the effective energy
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Tunnelling decay of the false Skyrmion

* The Skyrmion decays by its radius
increasing by quantum tunnelling out
through the barrier.

* We calculate the amplitude via the
Euclidean path integral and the method of

instantons.

The Theory and
Applications of
Instanton Calculations



* The euclidean action is given by just two
terms, the exterior contribution still

vanishes: sZ — / drE;

int —

Swan ~ /der [RQ(F + %) (1 + 2B sin” f)

sin® f

+<23R23m2f+z =3 +R2V(f)>]

* One casily finds, through some tricks and
techniques that are now not new:
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Euclidean time translation invariance yields:

’YEEvvall + Eint = EO

16 ny . _Eint — EO
' J& el

which then allows us to 1solate:

: Ewan \°
R = — 1
\/(Eint - Eo)

Then the tunnelling exponent will be given

by the dlfference
SE
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* We can compute this analytically in the
approximation that the tunnelling to radius
1s much larger than the static metastable
radius and keeping only the leading powers

of R. This gives: 1 .
En—FEy = Epyy=——-R°
p2 313 P2
~ /2 e
Ewan ~ 37 /. dry, (f +V(f)) =
e with

o = / dr(f’2+V(f))%2/ dr f'2
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Then the action for the instanton 1s:
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We determine R; from R|z_z, = 0 which
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with solution Ry =30 /¢
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Tunnelling amplitude

* The instanton method gives;

S’E (§#zero modes) /2 ~
I — A/L(#zero modes—1) ( ) _gE

— e
2T

* Comparing then with the simple (Skyrmion

less) false vacuum decayl,/ we have:
o FE .
[vac V Alvac (—SQV;C) exp (_S\gc)

NTsky am ) 2 .
N A’sky (5—?’) exp (—Ssbf{y)
~ 3/2 ~
\/§Alvac Sanc / SVEac
— exp [ —
(N/V)ASkYy \ 27 2
T using  SE = SE./2 = 48mi/mf



Conclusions

* The induced decay rate can be substantially
higher than the homogeneous false vacuum
decay rate.

* The thin wall limit can be analytically
computed.

« Skyrmions appear in particle (nuclear)
physics but also condensed matter physics.
Concrete examples of vacuum decay due to
Skyrmions should be experimentally
accessible.



