Gravitational Waves and Tidal Deformability of Neutron Stars

Chang-Hwan Lee / Pusan National University

In collaboration with Young-Min Kim, Kyujin Kwak (UNIST) Y. Lim (Texas A&M), C.H. Hyun (Daegu)

Gravitational waves from neutron star binaries

- B1913+16 / Hulse & Taylor (1975) •
- change in the orbital period due to GW radiation
- 1993 Nobel Prize
- LIGO is based on • NS binary mergers
- GW expected in **2019** • d = O(100 Mpc)

GRB and Kilonova from NS binaries

Metzger and Berger 2012

Heavy Elements from NS mergers

Sources of Heavy Elements

solar pattern vs NS-merger

 Supernovae: neutrino-driven wind
 r-process peak at A~130

NS mergers:
 r-process peak at A~195

Press Release Oct 16, 2017 GW from Binary NS Mergers

GW 170817 (**d=40 Mpc**) GRB 170817A by Fermi-GBM Kilonova/X-ray/Optical Afterglows

soon after the announcement of 2017 Nobel Prize

Credit: NSF/LIGO/SSU/A.Simonnet

LVT151012 ~~~~~

GW170104

GW170814 /////////

GW170817

Masses in the Stellar Graveyard

GW170817 / GRB170817A

First event of Multi-messenger Astronomy

ApJL.848.L12(2017)

TIMELINE 중성자별 충돌에서 발생한 중력파, 감마선, 가시광선, 엑스선 및 전파 관측

http://horizon.kias.re.kr

LETTER

A gravitational-wave standard siren measurement of the Hubble constant

The LIGO Scientific Collaboration and The Virgo Collaboration*, The 1M2H Collaboration*, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration*, The DLT40 Collaboration*, The Las Cumbres Observatory Collaboration*, The VINROUGE Collaboration* & The MASTER Collaboration*

 $H_0 = 70.0^{+12.0}_{-8.0} \text{ km s}^{-1} \text{ Mpc}^{-1}$

2 NOVEMBER 2017 | VOL 551 | NATURE | 85

Gravitational-Wave & Multi-Messenger Astronomy

- First direct detection of GW in 2015
- First detection of BHs with masses 30 ~ 60 solar mass
- GW, Gamma-ray, Optical, X-ray, Radio from NS mergers
- New era for GW Astronomy & Multi-Messenger Astronomy

NS in new era of GW & multi-messenger astronomy

Tidal Love number & Deformability

Response of NS to GW during Inspiral

Tidal deformability & Love number

Selected references

.

- A.E.H. Love (1909) The Yielding of the Earth to Disturbing Forces
- K.S. Thorne & A. Campolattaro (1967) non-radial pulsation of NS
- J.B. Hartle & K.S. Thorne (1969) stability of rotating NS
- K.S. Thorne (1998) Tidal stabilization of rigid rotating, fully relativistic neutron star

Tidal deformability & Love number

$$-\frac{(1+g_{tt})}{2} = -\frac{m}{r} - \frac{3Q_{ij}}{2r^3} \left(n^i n^j - \frac{1}{3} \delta^{ij} \right) + \mathcal{O}\left(\frac{1}{r^3}\right) + \frac{\mathcal{E}_{ij}}{2} r^2 n^i n^j + \mathcal{O}(r^3)$$

 \mathcal{E}_{ij} : external quadrupole tidal field Q_{ij} : quadrupole moment of NS

$$\lambda$$
: Tidal deformability
 $Q_{ij} = -\lambda \mathcal{E}_{ij}$

$$Q_{ij} = \int d^3x \delta\rho(x) \left(x_i x_j - \frac{1}{3} r^2 \delta_{ij} \right)$$
$$n^i = \frac{x^i}{r}$$

dimensionless parameter

$$k_2: l = 2$$
 Tidal Love number $k_2 = \frac{3}{2}G\lambda R^{-5}$

Hinderer et al. PRD 81 (2010)

Systematic Parameter Errors in Inspiraling Neutron Star Binaries

Marc Favata^{*}

Systematic Parameter Errors in Inspiraling Neutron Star Binaries

Marc Favata*

phase shift vs deformability

$$\frac{d\Phi}{dx}\Big|_{T} = -\frac{195}{8} \frac{x^{3/2}}{\eta} \frac{\tilde{\lambda}}{M^5} \propto \frac{\tilde{\lambda}}{M^5}$$
$$x = (\omega M)^{2/3} \Rightarrow \left(\omega \frac{GM}{c^3}\right)^{2/3}$$
dimensionless
$$\eta = m_1 m_2 / M^2$$

$$\Lambda = \frac{\lambda}{m^5} \Rightarrow G\lambda \left(\frac{c^2}{Gm}\right)^5 \approx 950.5 \left(\frac{m_{\odot}}{m}\right)^5 \left(\frac{\lambda}{10^{36} \text{ g cm}^2 \text{ s}^2}\right)$$
$$\Lambda = G \left(\frac{c^2}{Gm}\right)^5 \times \frac{2}{3} \frac{R^5}{G} k_2 = \frac{2}{3} \left(\frac{Rc^2}{Gm}\right)^5 k_2 \approx 9495 \left(\frac{R_{10\text{km}}}{m_{M_{\odot}}}\right)^5 k_2$$

accumulated GW phase

PHYSICAL REVIEW D 81, 123016 (2010)

Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral

Tanja Hinderer,¹ Benjamin D. Lackey,² Ryan N. Lang,^{3,4} and Jocelyn S. Read⁵

 $|\Delta \phi_{\rm GW}(f)| = |\Phi_{3.5,\rm pp}(f_{\rm GW}) - \Phi_{3.5,\lambda}(f_{\rm GW})|$

Accumulated GW phase

the number of wave cycles in frequency domain

$$\Delta N_{\text{cyc},\Psi} = \frac{1}{2\pi} \left[\Psi(f_2) - \Psi(f_1) + (f_1 - f_2) \frac{d\Psi}{df_1} \right]$$

f₁ = 10 Hz, the low frequency cutoff for Advanced LIGO due to seismic noises

Waveform models: TaylorT2 for ΔN_{cyc} TaylorF2(SPA) ΔN_{cyc,Ψ}

Moore et al., PRD.93.124061(2016)

 $1.4M_{\odot} + 1.4M_{\odot}, f_2 = 1000 \text{ Hz}$ PN order $\Delta N_{
m cyc,\Psi}$ $\Delta N_{\rm useful}^{\rm norm}$ $\Delta N_{\rm cyc}$ 0PN(circ) 16 031 986 372 1821 0PN(ecc) -463-36137-6.371PN(circ) 439 21743 125 -0.332-11931PN(ecc) -15.8-94.81.5PN(circ) -208-85201.5PN(ecc)1.67 103 0.113 2PN(circ) 6.70 9.54 294 -0.215-15.4-0.008172PN(ecc) 2.5PN(circ) -10.6-218-10.62.5PN(ecc)0.0443 2.61 0.00473 2.02 18.2 2.803PN(circ) 3PN(ecc) 0.002 00 0.119 -0.0002383.5PN(circ) -0.662-4.39-0.977962 445 15785 1843 Total

accumulated GW phase

Measurement error vs. source distance

Y.B. Choi, H.S. Cho, C.-H. Lee

G

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

G

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

TABLE I. Source properties for GW170817: we give ranges encompassing the 90% credible intervals for different assumptions of the waveform model to bound systematic uncertainty. The mass values are quoted in the frame of the source, accounting for uncertainty in the source redshift.

	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.36-1.60 M_{\odot}$	$1.36-2.26 M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	$0.86 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7-1.0	0.4-1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01} M_{\odot}$	$2.82^{+0.47}_{-0.09} {M}_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot}c^{2}$	$> 0.025 M_{\odot}c^{2}$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	≤ 55°	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	<u>≤</u> 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

(revised) properties of GW170817

Abbott et al. (LSC and Virgo), arxiv:1805.11579

	Low-spin prior ($\chi \leq 0.05$)	High-spin prior ($\chi \leq 0.89$)
Binary inclination $\theta_{\rm JN}$	$146^{+25}_{-27} \deg$	$152^{+21}_{-27} \deg$
Binary inclination $\theta_{\rm JN}$ using EM distance constraint [104]	$151^{+15}_{-11} \deg$	$153^{+15}_{-11} \deg$
Detector frame chirp mass \mathcal{M}^{det}	$1.1975^{+0.0001}_{-0.0001}{ m M}_{\odot}$	$1.1976^{+0.0004}_{-0.0002}{ m M}_{\odot}$
Chirp mass \mathcal{M}	$1.186^{+0.001}_{-0.001}{ m M}_{\odot}$	$1.186^{+0.001}_{-0.001}{ m M}_{\odot}$
Primary mass m_1	$(1.36,\ 1.60)\ { m M}_{\odot}$	$(1.36, 1.89) \mathrm{M_{\odot}}$
Secondary mass m_2	$(1.16, 1.36) \mathrm{M_{\odot}}$	$(1.00, 1.36) \mathrm{M_{\odot}}$
Total mass m	$2.73^{+0.04}_{-0.01}{ m M}_{\odot}$	$2.77^{+0.22}_{-0.05}{ m M}_{\odot}$
Mass ratio q	(0.73, 1.00)	(0.53, 1.00)
Effective spin χ_{eff}	$0.00\substack{+0.02\\-0.01}$	$0.02\substack{+0.08\\-0.02}$
Primary dimensionless spin χ_1	$(0.00, \ 0.04)$	(0.00, 0.50)
Secondary dimensionless spin χ_2	$(0.00, \ 0.04)$	(0.00, 0.61)
Tidal deformability $ ilde{\Lambda}$ with flat prior	300^{+500}_{-190} (symmetric)/ 300^{+420}_{-230} (HPD)	(0, 630)

A new constraint by GW Observation

Tidal Deformability of Neutron Stars with Realistic Nuclear Energy Density Functionals

Young-Min Kim,¹ Yeunhwan Lim,² Kyujin Kwak,¹ Chang Ho Hyun,³ and Chang-Hwan Lee⁴

 ¹School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
 ²Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA
 ³Department of Physics Education, Daegu University, Gyeongsan 38453, Korea
 ⁴Department of Physics, Pusan National University, Busan 46241, Korea

Constraints on Nuclear EoS

- Nuclear data: hundreds of models (Skyrme force, RMF, ...)
- Neutron star maximum mass
 - 1.97 ± 0.04 M_☉ [Nature 467, 1081 (2010)]
 - 2.01 ± 0.04 M_☉ [Science 340, 448 (2013)]
- II experimental/empirical data for nuclear matter around saturation density [Phys.Rev. C 85, 035201 (2012)]

Constraint	Quantity	Eq.	Density Region	Range of constraint	Range of constraint	Ref.
				\exp/emp	from CSkP	
SM1	Ko	(7),(15)	$ ho_{\rm o}~({\rm fm}^{-3})$	$200-260~{\rm MeV}$	$202.0 - 240.3 { m MeV}$	[64]
SM2	$\mathrm{K}'=-\mathrm{Q}_{\mathrm{o}}$	(8),(16)	$ ho_{\rm o}~({\rm fm}^{-3})$	$200-1200~{\rm MeV}$	$362.5 - 425.6 { m MeV}$	[65]
SM3	$\mathrm{P}(ho)$	(6)	$2 < \frac{\rho}{\rho_o} < 3$	Band Region	see Fig. 1	[78]
SM4	$\mathrm{P}(ho)$	(6)	$1.2 < \frac{\rho}{\rho_o} < 2.2$	Band Region	see Fig. 2	[80]
PNM1	$\frac{E_{PNM}}{E_{PNM}^{\circ}}$	(31)	$0.014 < \frac{\rho}{ ho_{ m o}} < 0.106$	Band Region	see Fig. 3	[<u>39</u> , <u>40</u>]
PNM2	$\mathrm{P}(ho)$	(6)	$2 < \frac{\rho}{\rho_o} < 3$	Band Region	see Fig. 5	[78]
MIX1	J	(9)	$ ho_{\rm o}~({\rm fm}^{-3})$	$30-35~{\rm MeV}$	$30.0 - 35.5 { m MeV}$	[44]
MIX2	L	(10)	$ ho_{\rm o}~({\rm fm}^{-3})$	40 – $76~{\rm MeV}$	$48.6 - 67.1 { m MeV}$	[101]
MIX3	$K_{ au,\mathrm{v}}$	(21)	$ ho_{\rm o}~({\rm fm}^{-3})$	-760 $ -372~{\rm MeV}$	-407.1 $-$ -360.1 ${\rm MeV}$	[107]
MIX4	$rac{\mathcal{S}(ho_{ m o}/2)}{J}$	-	$ ho_{\rm o}~({\rm fm}^{-3})$	0.57 - 0.86	0.61 - 0.67	[110]
MIX5	$\frac{3P_{PNM}}{L\rho_{\rm o}}$	(41)	$ ho_{ m o}~({ m fm}^{-3})$	0.90 - 1.10	1.02 - 1.10	[112]

Selected EoSs

- Skyrme force models
- Basically fitted to properties of well-known nuclei
- Good saturation properties
- Mmax more than 2Msun

Model	$ ho_0$	E_0	K_0	$-Q_0$	J	L	$-K_{\tau}$	$M_{\rm max}$
Exp/Emp	$\simeq 0.16$	$\simeq 16.0$	$200 \sim 260$	$200 \sim 1200$	$30 \sim 35$	$40 \sim 76$	$372 \sim 760$	$\geq 1.93 \sim 2.05$
CSkP	-	-	$202.0\sim240.3$	$362.5\sim425.6$	$30.0 \sim 35.5$	$48.6\sim67.1$	$360.1\sim407.1$	-
GSkI	0.159	16.02	230.2	405.6	32.0	63.5	364.2	1.98
SLy4	0.160	15.97	229.9	363.1	32.0	45.9	322.8	2.07
SkI4	0.160	15.95	248.0	331.2	29.5	60.4	322.2	2.19
\mathbf{SGI}	0.154	15.89	261.8	297.9	28.3	63.9	362.5	2.25
KIDS	0.160	16.00	240.0	372.7	32.8	49.1	375.1	2.14

2000

1500

 $\mathsf{P}\left[\mathsf{MeV}\cdot\mathsf{fm}^{-3}\right]$

500

0[⊾]0

GSkl SLy4 Skl4

SGI KIDS

500

1500

 $E [MeV \cdot fm^{-3}]$

1000

2000

2500

KIDS (Korea: IBS-Daegu-Sungkyunkwan): A new systematic expansion scheme for nuclear EDF [Phys. Rev. C 97, 014312 (2018)]

Kim et al., arxiv:1805.00219

Tidal deformability of a NS

Central Density at M_{NS}=1.4 M_☉

Tidal deformability in BNS

Comparison with recent works

Red line: Λ (1.4M_o) = 2.88 * 10⁻⁶ (R/km)^{7.5} (fitting function in [C])

Prospects

Both Masses & Tidal Deformability of NS

can be measured simultaneously by GW generated from NS mergers

Expecting more GWs from NS binary mergers

Binary interactions are always interesting

Thanks

