Transverse momentum distributions of hadrons in heavy-ion and pp collisions with the Tsallis statistics

A.S. Parvan

BLTP, JINR, Dubna, Russia DFT, IFIN-HH, Bucharest, Romania

The Tsallis Statistics

Boltzmann-Gibbs Statistics q = 1	Tsallis-1 Statistics $0 < q < \infty$	Tsallis-2 Statistics $0 < q < \infty$	Tsallis-3 Statistics $0 < q < \infty$
$S = -\sum_{i} p_{i} \ln p_{i}$	$S = -\sum_{i} \frac{p_i - p_i^q}{1 - q}$	$S = -\sum_{i} \frac{p_i - p_i^q}{1 - q}$	$S = -\sum_{i} \frac{p_i - p_i^q}{1 - q}$
$Tr(\hat{\rho}) = \sum_{i} p_{i} = 1$	$Tr(\hat{\rho}) = \sum_{i} p_{i} = 1$	$Tr(\hat{\rho}) = \sum_{i} p_{i} = 1$	$Tr(\hat{\rho}) = \sum_{i} p_{i} = 1$
$\langle A \rangle = Tr(\hat{\rho}\hat{A})$	$\langle A \rangle = Tr(\hat{\rho}\hat{A})$	$\langle A \rangle = Tr(\hat{\rho}^q \hat{A})$	$\langle A \rangle = \frac{Tr(\hat{\rho}^q \hat{A})}{Tr(\hat{\rho}^q)}$
$=\sum_{i}p_{i}A_{i}$	$=\sum_{i}p_{i}A_{i}$	$=\sum_{i}p_{i}^{q}A_{i}$	$= \frac{\sum_{i} p_i^q A_i}{\sum_{i} p_i^q}$

Standard expectation values

- p_i probability of *i*-th microstate of system
- The expectation values of the Tsallis-2 statistics are non-normalized

Generalized expectation values

C. Tsallis, J. Stat. Phys. 52 (1988) 479 C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261 (1998) 534

Equilibrium Statistical Mechanics

• Fundamental statistical ensemble $(x^1,...,x^n)$

$$E = E(x^{1}, ..., x^{n}), \qquad x^{1} = S, \ x^{2} = V, \ x^{3} = N, \ ...$$
$$dE = \sum_{k=1}^{n} u^{k} dx^{k}, \qquad u^{k} = \frac{\partial E}{\partial x^{k}}, \qquad u^{1} = T, \ u^{2} = -p, \ u^{3} = \mu, \ ...$$

- Statistical ensemble $(u^1,\ldots,u^m,x^{m+1},\ldots,x^n)$
 - Legendre transform for the thermodynamic potential:

$$Y = Y(u^1, \dots, u^m, x^{m+1}, \dots, x^n) = E - \sum_{k=1}^m u^k x^k$$

Statistical averages for the fluctuating quantities:

$$x^{k} = \sum_{i} p_{i} x_{i}^{k}, \quad x_{i}^{1} = S_{i}(p_{i}), \ x_{i}^{2} = V_{i}, \ x_{i}^{3} = N_{i}, \ ..$$
$$E = \sum_{i} p_{i} E_{i},$$
$$Y = \sum_{i} p_{i} Y_{i}, \qquad Y_{i} = E_{i} - \sum_{k=1}^{m} u^{k} x_{i}^{k}$$

A.S.P., In Recent Advances in Thermo and Fluid Dynamics, ed. Mod Gorji-Bandpy, InTech, Chapter 11, 2015, pp.303-331

A.S. Parvan

Probability Distribution of Microstates

Principle of the maximum entropy from the second law of thermodynamics (Constrained local extrema of the thermodynamic potential in the method of Lagrange multipliers)

$$\Phi = Y - \lambda \varphi, \qquad \varphi = \sum_{i} p_{i} - 1 = 0, \qquad \frac{\partial \Phi}{\partial p_{i}} = 0$$

Probabilities of microstates and norm function:

$$p_i = F\left(\frac{1}{u^1}\left(\Lambda - E_i + \sum_{k=2}^m u^k x_i^k\right)\right)$$

$$1 = \sum_{i} F\left(\frac{1}{u^{1}}\left(\Lambda - E_{i} + \sum_{k=2}^{m} u^{k} x_{i}^{k}\right)\right) \longrightarrow \Lambda = \Lambda(u^{1}, \dots, u^{m}, x^{m+1}, \dots, x^{n})$$

 $\sim \tau$

> Thermodynamic quantities are partial derivatives of thermodynamic potential :

$$x^{k} = -\frac{\partial Y}{\partial u^{k}} = \sum_{i} p_{i} x_{i}^{k} \qquad (k = 1, \dots, m)$$

$$u^{k} = \frac{\partial Y}{\partial x^{k}} = \sum_{i} p_{i} \frac{\partial E_{i}}{\partial x^{k}} \qquad (k = m + 1, \dots, n)$$

A.S.P., In Recent Advances in Thermo and Fluid Dynamics, ed. Mod Gorji-Bandpy, InTech, Chapter 11, 2015, pp.303-331

Microcanonical Ensemble (E,V,N)

$$\Phi = S - \lambda \varphi, \qquad \varphi = \sum_{i} p_{i} - 1 = 0, \qquad \frac{\partial \Phi}{\partial p_{i}} = 0 \qquad \left[Y = S\right]$$

Boltzmann-Gibbs Statistics

q=1

Tsallis-1 Statistics

 $0 < q < \infty$

Tsallis-2 Statistics $0 < q < \infty$

C. Tsallis, J. Stat. Phys. 52 (1988) 479 C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261 (1998) 534 A.S.P., Phys.Lett. A 350 (2006) 331

Canonical Ensemble (T,V,N)

$$\begin{split} \Phi &= F - \lambda \varphi, \qquad \varphi = \sum_{i} p_{i} - 1 = 0, \qquad \frac{\partial \Phi}{\partial p_{i}} = 0 \qquad \begin{bmatrix} Y = F = E - TS \end{bmatrix} \\ \begin{aligned} \text{Boltzmann-Gibbs Statistics} & \text{Tsallis-1 Statistics} \\ q = 1 & 0 < q < \infty & 0 < q < \infty \end{aligned} \\ \hline F &= T \sum_{i} p_{i} \begin{bmatrix} \ln p_{i} + \frac{E_{i}}{T} \end{bmatrix} \qquad F = T \sum_{i} p_{i} \begin{bmatrix} \frac{1 - p_{i}^{q-1}}{1 - q} + \frac{E_{i}}{T} \end{bmatrix} \qquad F = T \sum_{i} p_{i} \begin{bmatrix} \frac{p_{i}^{1-q} - 1}{1 - q} + \frac{E_{i}}{T} \end{bmatrix} \end{aligned} \\ \hline F &= T \sum_{i} p_{i} \begin{bmatrix} n p_{i} + \frac{E_{i}}{T} \end{bmatrix} \qquad F = T \sum_{i} p_{i} \begin{bmatrix} \frac{1 - p_{i}^{q-1}}{1 - q} + \frac{E_{i}}{T} \end{bmatrix} \qquad F = T \sum_{i} p_{i}^{q} \begin{bmatrix} \frac{p_{i}^{1-q} - 1}{1 - q} + \frac{E_{i}}{T} \end{bmatrix} \end{aligned}$$
 \\ \hline p_{i} &= \frac{1}{Z} \exp\left(-\frac{E_{i}}{T}\right) \qquad p_{i} = \left[1 + \frac{q - 1}{q} \frac{\Lambda - E_{i}}{T}\right]^{\frac{q}{q-1}} \qquad p_{i} = \frac{1}{Z} \left[1 - (1 - q) \frac{E_{i}}{T}\right]^{\frac{1}{1-q}} \end{aligned} \\ \hline Z &= \sum_{i} \exp\left(-\frac{E_{i}}{T}\right) \qquad 1 = \sum_{i} \left[1 + \frac{q - 1}{q} \frac{\Lambda - E_{i}}{T}\right]^{\frac{1}{q-1}} \qquad Z = \sum_{i} \left[1 - (1 - q) \frac{E_{i}}{T}\right]^{\frac{1}{1-q}} \Biggr
 $\langle A \rangle = \sum_{i} p_{i} A_{i} \qquad \langle A \rangle = \sum_{i} p_{i} A_{i} \qquad \langle A \rangle = \sum_{i} p_{i} A_{i} \end{aligned}$

C. Tsallis, J. Stat. Phys. 52 (1988) 479 C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261 (1998) 534 A.S.P., Phys.Lett. A 360 (2006) 26 • The expectation values of the Tsallis-2 statistics are non-normalized

Grand Canonical Ensemble (T,V,µ)

$$\begin{split} \Phi &= \Omega - \lambda \varphi, \quad \varphi = \sum_{i} p_{i} - 1 = 0, \quad \frac{\partial \Phi}{\partial p_{i}} = 0 \quad \left[Y = \Omega = E - TS - \mu N \right] \\ \begin{array}{l} \text{Boltzmann-Gibbs Statistics} & \text{Tsallis-1 Statistics} & \text{Tsallis-2 Statistics} \\ q = 1 & 0 < q < \infty & 0 < q < \infty \\ \end{array} \\ \begin{array}{l} \Omega = T\sum_{i} p_{i} \left[\ln p_{i} + \frac{E_{i} - \mu N_{i}}{T} \right] & \Omega = T\sum_{i} p_{i} \left[\frac{1 - p_{i}^{q-1}}{1 - q} + \frac{E_{i} - \mu N_{i}}{T} \right] & \Omega = T\sum_{i} p_{i}^{q} \left[\frac{p_{i}^{1-q} - 1}{1 - q} + \frac{E_{i} - \mu N_{i}}{T} \right] \\ p_{i} = \frac{1}{Z} \exp \left(-\frac{E_{i} - \mu N_{i}}{T} \right) & p_{i} = \left[1 + \frac{q - 1}{q} \frac{\Lambda - E_{i} + \mu N_{i}}{T} \right]^{\frac{1}{q-1}} & p_{i} = \frac{1}{Z} \left[1 - (1 - q) \frac{E_{i} - \mu N_{i}}{T} \right]^{\frac{1}{1-q}} \\ Z = \sum_{i} \exp \left(-\frac{E_{i} - \mu N_{i}}{T} \right) & 1 = \sum_{i} \left[1 + \frac{q - 1}{q} \frac{\Lambda - E_{i} + \mu N_{i}}{T} \right]^{\frac{1}{q-1}} & Z = \sum_{i} \left[1 - (1 - q) \frac{E_{i} - \mu N_{i}}{T} \right]^{\frac{1}{1-q}} \\ \langle A \rangle = \sum_{i} p_{i} A_{i} & \langle A \rangle = \sum_{i} p_{i} A_{i} & \langle A \rangle = \sum_{i} p_{i}^{q} A_{i} \end{split}$$

A.S.P., Eur. Phys. J. A 51 (2015) 108; Eur. Phys. J. A 53 (2017) 53

• The expectation values of the Tsallis-2 statistics are non-normalized

Transverse Momentum Distribution: Tsallis-2 Statistics

> Ultrarelativistic Maxwell-Boltzmann Ideal Gas in the Grand Canonical Ensemble (m=0)

(Case
$$q > 1$$
)

$$\frac{d^2 N}{dp_T dy} = \frac{V}{\left(2\pi\right)^3} \sum_{\sigma} \int_{0}^{2\pi} d\varphi p_T \varepsilon_{\vec{p}} \langle n_{\vec{p}\sigma} \rangle, \qquad \varepsilon_{\vec{p}} = p_T \cosh y \quad \text{for } m = 0$$

$$\langle n_{\vec{p}\sigma} \rangle = \frac{1}{Z^{q}} \sum_{\{n_{\vec{p}\sigma}\}} n_{\vec{p}\sigma} \frac{1}{\prod_{\vec{p}\sigma} n_{\vec{p}\sigma}!} \left[1 - (1-q) \frac{\sum_{\vec{p}\sigma} n_{\vec{p}\sigma} (\varepsilon_{\vec{p}} - \mu)}{T} \right]^{\frac{q}{1-q}} = \frac{1}{Z^{q}} \sum_{N=0}^{N_{0}} \frac{\tilde{\omega}^{N}}{N!} a_{0}(1) \left[1 + (q-1) \frac{\varepsilon_{\vec{p}} - \mu(N+1)}{T} \right]^{\frac{q}{1-q}+3N} \right]^{\frac{q}{1-q}}$$

$$Z = \sum_{\{n_{\vec{p}\sigma}\}} \frac{1}{\prod_{\vec{p}\sigma} n_{\vec{p}\sigma}!} \left[1 - (1-q) \frac{\sum_{\vec{p}\sigma} n_{\vec{p}\sigma} (\varepsilon_{\vec{p}} - \mu)}{T} \right]^{\frac{1}{1-q}} = \sum_{N=0}^{N_0} \frac{\tilde{\omega}^N}{N!} a_0(0) \left[1 + (1-q) \frac{\mu N}{T} \right]^{\frac{1}{1-q}+3N}$$

$$a_{\eta}(\xi) = \frac{\Gamma\left(\frac{1}{q-1} + \xi - 3(N+\eta)\right)}{(q-1)^{3(N+\eta)}\Gamma\left(\frac{1}{q-1} + \xi\right)}, \qquad \tilde{\omega} = \frac{gVT^{3}}{\pi^{2}}$$

- The expectation values of the Tsallis-2 statistics are non-normalized
- N_0 is a cut-off parameter
- Terms with $N > N_0$ increase and became divergent

A.S.P., Eur. Phys. J. A 53 (2017) 53

Transverse Momentum Distribution: Tsallis-2 Statistics

 \succ Ultrarelativistic Maxwell-Boltzmann Ideal Gas in the Grand Canonical Ensemble (m=0)

(Case
$$q > 1$$
)

Exact Solutions:

A.S.P., Eur. Phys. J. A 53 (2017) 53

$$\frac{d^2 N}{dp_T dy} = \frac{gV}{(2\pi)^2} p_T^2 \cosh y \frac{1}{Z^q} \sum_{N=0}^{N_0} \frac{\tilde{\omega}^N}{N!} \frac{\Gamma\left(\frac{q}{q-1} - 3N\right)}{\left(q-1\right)^{3N} \Gamma\left(\frac{q}{q-1}\right)} \left[1 + \left(q-1\right) \frac{p_T \cosh y - \mu(N+1)}{T}\right]^{\frac{q}{1-q} + 3N}$$

✓ Zeroth term approximation $(N_0 = 0)$

$$\frac{d^2 N}{dp_T dy} = \frac{g V p_T^2 \cosh y}{(2\pi)^2} \left[1 + (q-1) \frac{p_T \cosh y - \mu}{T} \right]^{\frac{q}{1-q}} \quad \text{for } m = 0$$

- The transverse momentum distribution (TMD) of the Tsallis-2 statistics in the zeroth term approximation $(N_0 = 0)$ exactly coincides with **the TMD of the Tsallis-factorized statistics** introduced in **[J. Cleymans, D. Worku, Eur. Phys. J. A 48 (2012) 160]**
- Thus *the TMD of the Tsallis-factorized statistics* corresponds to the Tsallis-2 statistics for which the statistical averages are non-normalized.

Transverse Momentum Distribution: Tsallis-1 Statistics

Ultrarelativistic Maxwell-Boltzmann Ideal Gas in the Grand Canonical Ensemble (m=0)

(Case q < 1)

A.S.P., Eur. Phys. J. A 53 (2017) 53; Eur. Phys. J. A 52 (2016) 355

$$\frac{d^2 N}{dp_T dy} = \frac{V}{\left(2\pi\right)^3} \sum_{\sigma} \int_{0}^{2\pi} d\varphi p_T \varepsilon_{\vec{p}} \langle n_{\vec{p}\sigma} \rangle, \qquad \varepsilon_{\vec{p}} = p_T \cosh y \quad \text{for } m = 0$$

$$\langle n_{\vec{p}\sigma} \rangle = \sum_{\{n_{\vec{p}\sigma}\}} n_{\vec{p}\sigma} \frac{1}{\prod_{\vec{p}\sigma} n_{\vec{p}\sigma}!} \left[1 + \frac{q-1}{q} \frac{\Lambda - \sum_{\vec{p}\sigma} n_{\vec{p}\sigma} (\varepsilon_{\vec{p}} - \mu)}{T} \right]^{\frac{1}{q-1}} = \sum_{N=0}^{N_0} \frac{\tilde{\omega}^N}{N!} h_0(0) \left[1 + \frac{q-1}{q} \frac{\Lambda - \varepsilon_{\vec{p}} + \mu(N+1)}{T} \right]^{\frac{1}{q-1}+3N}$$

$$1 = \sum_{\{n_{\bar{p}\sigma}\}} \frac{1}{\prod_{\bar{p}\sigma} n_{\bar{p}\sigma}!} \left[1 + \frac{q-1}{q} \frac{\Lambda - \sum_{\bar{p}\sigma} n_{\bar{p}\sigma} (\varepsilon_{\bar{p}} - \mu)}{T} \right]^{\frac{1}{q-1}} = \sum_{N=0}^{N_0} \frac{\tilde{\omega}^N}{N!} h_0(0) \left[1 + \frac{q-1}{q} \frac{\Lambda + \mu N}{T} \right]^{\frac{1}{q-1} + 3N}$$

- The expectation values of the Tsallis-1

Transverse Momentum Distribution: Tsallis-1 Statistics

 \succ Ultrarelativistic Maxwell-Boltzmann Ideal Gas in the Grand Canonical Ensemble (m=0)

(Case
$$q < 1$$
)

A.S.P., Eur. Phys. J. A 53 (2017) 53; Eur. Phys. J. A 52 (2016) 355

✓ Exact Solutions:

$$\frac{d^{2}N}{dp_{T}dy} = \frac{gV}{(2\pi)^{2}} p_{T}^{2} \cosh y \sum_{N=0}^{N_{0}} \frac{\tilde{\omega}^{N}}{N!} \frac{\Gamma\left(\frac{1}{1-q} - 3N\right)}{\left(\frac{1-q}{q}\right)^{3N} \Gamma\left(\frac{1}{1-q}\right)} \left[1 + \frac{q-1}{q} \frac{\Lambda - p_{T} \cosh y + \mu(N+1)}{T}\right]^{\frac{1}{q-1} + 3N}$$

✓ Zeroth term approximation $\left(\textit{N}_0 = 0
ight)$

$$\frac{d^2 N}{dp_T dy} = \frac{g V p_T^2 \cosh y}{(2\pi)^2} \left[1 - \frac{q - 1}{q} \frac{p_T \cosh y - \mu}{T} \right]^{\frac{1}{q - 1}} \qquad \text{for } m = 0$$

- The transverse momentum distribution (TMD) of the Tsallis-1 statistics in the zeroth term approximation $(N_0 = 0)$ under the transformation $(q \rightarrow 1/q)$ exactly recovers the TMD of the Tsallis-2 statistics in the zeroth term approximation.
- Thus the TMD of the Tsallis-1 statistics in the zeroth term approximation under the transformation $(q \rightarrow 1/q)$ exactly coincides with **the TMD of the Tsallis-factorized statistics** introduced in **[J. Cleymans, D. Worku, Eur. Phys. J. A 48 (2012) 160]**

The cut-off parameter of the Tsallis-2 statistics

Model A (from the minimum):

 $\min(\ln\phi(N))|_{N=N_0}$

✓ Tsallis-2 statistics:

Model B (from the inflection point):

✓ Boltzmann-Gibbs statistics:

$$Z = \sum_{N=0}^{\infty} \phi(N)$$
$$\phi(N) = \frac{\tilde{\omega}^{N}}{N!} e^{\frac{\mu N}{T}}$$

The cut-off parameter of the Tsallis-1 statistics

Model A (from the minimum):

 $\min(\ln\phi(N))|_{N=N_0}$

✓ Tsallis-1 statistics:

Comparison of Model B of Tsallis statistics with the Tsallis-factorized statistics

Charged pions in *pp* collisions:

A.S.P., Eur. Phys. J. A 52 (2016) 355

- Transverse momentum distributions (TMD) of charged pions produced in *pp* collisions at SPS, RHIC and LHC energies
- The yields were integrated in the experimental rapidity interval $y_0 \le y \le y_1$
- The solid curves are the fits of the experimental data to the ultrarelativistic (m=0) transverse momentum distributions of
 - 1.) Tsallis-1 statistics
 - 2.) Tsallis-2 statistics
 - 3.) Tsallis-factorized statistics

Experimental Data:

NA61/SHINE, EPJC 74 (2014) 2794; PHENIX, PRC 83 (2011) 064903 ALICE, EPJC 71 (2011) 1655; ALICE, EPJC 75 (2015) 226; ALICE, PLB 736 (2014) 196 The curves are the same for all statistics but only the parameters are different.

Temperature for Model B of Tsallis statistics and for Tsallis-factorized statistics

A.S.P., Eur. Phys. J. A 52 (2016) 355

✓ Solid points are the results of the fit by Model B of Tsallis statistics

✓ Open symbols are the results of the fit by Tsallis-factorized statistics

Radius for Model B of Tsallis statistics and for Tsallis-factorized statistics

A.S.P., Eur. Phys. J. A 52 (2016) 355

- ✓ Solid points are the results of the fit by Model B of Tsallis statistics
- ✓ Open symbols are the results of the fit by Tsallis-factorized statistics

Entropic parameter for Model B of Tsallis statistics and for Tsallisfactorized statistics

A.S.P., Eur. Phys. J. A 52 (2016) 355

✓ Solid points are the results of the fit by Model B of Tsallis statistics

✓ Open symbols are the results of the fit by Tsallis-factorized statistics

Applications of the Tsallis-factorized statistics

Identified hadrons in pp collisions

A.S.P., O.V. Teryaev, J. Cleymans, Eur. Phys. J. A 53 (2017) 102

•

- Transverse momentum distributions (TMD) of negatively charged pions produced in pp collisions at SPS, RHIC and LHC energies
- The yields were integrated • in the experimental rapidity interval $y_0 \le y \le y_1$

Experimental Data: NA61/SHINE, EPJC 74 (2014) 2794; PHENIX, PRD 83 (2011) 052004; PHENIX, PRC 83 (2011) 064903;

CMS, JHEP 02 (2010) 041; CMS, PRL 105 (2010) 022002; CMS, EPJC 72 (2012) 2164

The solid curves are the fits of the data to the Tsallis-factorized

2,5

$$\frac{d^2 N}{dp_T dy}\Big|_{y_0}^{y_1} = gV \int_{y_0}^{y_1} dy \frac{p_T m_T \cosh y}{(2\pi)^2} \left[1 - (1 - q) \frac{m_T \cosh y - \mu}{T}\right]^{\frac{q}{1 - q}}$$

A.S. Parvan

Temperature parameter for the Tsallis-factorized statistics

A.S.P., O.V. Teryaev, J. Cleymans, Eur. Phys. J. A 53 (2017) 102

- ✓ Open squares, triangles and circles charged hadron yields from [J. Cleymans, G.I. Lykasov, A.S.P., A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett.B 723 (2013) 351]
- ✓ Open stars -- the fit at y = 0 for the data of NA61/SHINE

Radius parameter for the Tsallis-factorized statistics

A.S.P., O.V. Teryaev, J. Cleymans, Eur. Phys. J. A 53 (2017) 102

- ✓ Open squares, triangles and circles charged hadron yields from [J. Cleymans, G.I. Lykasov, A.S.P., A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett.B 723 (2013) 351]
- ✓ Open stars -- the fit at y = 0 for the data of NA61/SHINE

Entropic parameter for the Tsallis-factorized statistics

- ✓ Open squares, triangles and circles charged hadron yields from [J. Cleymans, G.I. Lykasov, A.S.P., A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett.B 723 (2013) 351]
- ✓ Open stars -- the fit at y = 0 for the data of NA61/SHINE

Heavy-ion collisions: SPS CERN

Transverse mass spectra of identified hadrons with Tsallis-factorized statistics

• mT – distribution in the Tsallisfactorized statistics:

$$\frac{1}{m_T} \frac{d^2 N}{dm_T dy} \bigg|_{y_0}^{y_1} = g V \int_{y_0}^{y_1} dy \frac{m_T \cosh y}{(2\pi)^2} \\ \times \bigg[1 - (1 - q) \frac{m_T \cosh y - \mu}{T} \bigg]^{\frac{q}{1 - q}}$$

• π^- , K^- — mesons

- Central PbPb collisions in the energy range $\sqrt{s_{_{NN}}} = 6.3 17.3 \text{ GeV}$
- The data of π^- are very well described by the Tsallis-factorized statistics
- The data of K⁻ measured by NA49 Collaboration in the energy range 6.3-12.3 GeV contain irregularities and they should be corrected by NICA experiment
- The data of K⁻ at 17.3 GeV fits very well the Tsallis-factorized distribution

Data: NA49, Phys. Rev. C 66 (2002) 054902; Phys. Rev. C 77 (2008) 024903

Heavy-ion collisions: SPS CERN

Transverse mass spectra of identified hadrons with Tsallis-factorized statistics

 mT – distribution in the Tsallisfactorized statistics:

$$\frac{1}{m_T} \frac{d^2 N}{dm_T dy} \bigg|_{y_0}^{y_1} = g V \int_{y_0}^{y_1} dy \frac{m_T \cosh y}{(2\pi)^2} \\ \times \bigg[1 - (1 - q) \frac{m_T \cosh y - \mu}{T} \bigg]^{\frac{q}{1 - q}}$$

• π^+, K^+- mesons

- Central PbPb collisions in the energy range $\sqrt{s_{NN}} = 6.3 17.3 \text{ GeV}$
- The NA49 data for π^+, K^+ are very well described by the Tsallis-factorized statistics in the all its energy range

Data: NA49, Phys. Rev. C 66 (2002) 054902; Phys. Rev. C 77 (2008) 024903

Heavy-ion collisions: RHIC BNL

- Transverse momentum distribution with Tsallisfactorized statistics
- pT distribution in the Tsallisfactorized statistics:

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \bigg|_{y_0}^{y_1} = g V \int_{y_0}^{y_1} dy \frac{m_T \cosh y}{(2\pi)^3} \\ \times \bigg[1 - (1 - q) \frac{m_T \cosh y - \mu}{T} \bigg]^{\frac{q}{1 - q}}$$

- $\pi^-, K^- -$ mesons
- Central AuAu collisions in the energy range $\sqrt{s_{_{NN}}} = 62.4 200 \text{ GeV}$
- The data of π⁻ are very well described by the Tsallis-factorized statistics
- The data of K⁻ measured by STAR Collaboration 62.4 and 130 GeV contain irregularities which should be corrected by another experiment.
- The data of K⁻ at 200 GeV fits very well the Tsallis-factorized distribution

A.S. Parvan

Heavy-ion collisions: RHIC BNL

- \succ **Transverse momentum** distribution with Tsallisfactorized statistics
- pT distribution in the Tsallis-• factorized statistics:

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \bigg|_{y_0}^{y_1} = g V \int_{y_0}^{y_1} dy \frac{m_T \cosh y}{(2\pi)^3} \\ \times \bigg[1 - (1 - q) \frac{m_T \cosh y - \mu}{T} \bigg]^{\frac{q}{1 - q}}$$

- $\pi^+, K^+ -$ mesons
- Central AuAu collisions in the energy range $\sqrt{s_{NN}} = 62.4 - 200 \text{ GeV}$
- The data of π^+ are very well ٠ described by the Tsallis-factorized statistics
- The data of K^+ measured by STAR ٠ Collaboration at 130 GeV contain irregularities which should be corrected by another experiment.
- The data of K^+ at 62.4 and 200 • GeV fits very well the Tsallisfactorized distribution

Data: STAR, Phys. Rev. C 79 (2009) 034909

Heavy-ion collisions: LHC CERN

- \succ **Transverse momentum** distribution with Tsallisfactorized statistics
- pT distribution in the Tsallis-٠ factorized statistics:

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \bigg|_{y_0}^{y_1} = g V \int_{y_0}^{y_1} dy \frac{m_T \cosh y}{(2\pi)^3} \\ \times \bigg[1 - (1 - q) \frac{m_T \cosh y - \mu}{T} \bigg]^{\frac{q}{1 - q}}$$

- $\pi^{\pm}, K^{\pm} -$ mesons
- Central PbPb collisions at ٠ 2.76 TeV
- The data of K^{\pm} at 2.76 TeV are • very well described by the Tsallisfactorized statistics
- The data of π^{\pm} at 2.76 TeV can • not be described by the Tsallisfactorized statistics for low pT momenta

Data: ALICE, Phys. Rev. C 88 (2013) 044910

Temperature and volume for K- and p- mesons

- The experimental transverse momentum distributions from heavy-ion collisions clearly show that K- and pi- mesons have different temperatures T and are emitted from different volumes V.
- The temperature of K- kaons in AA collisions is higher than the temperature of pi- pions.
- However, K- kaons in AA collisions are emitted from the smaller volume than pi- pions.
- The volume for pi- pions in AA collision corresponds to the geometrical volume of two nuclei.
- And the volume for pi- pions in pp collision corresponds to the geometrical volume of two protons.
- The temperatures for pi- pions from AA and pp collisions are close to each other in comparison with the temperature of K-

Parameters of the Tsallis-factorized statistics in AA and pp collisions

- Parameter q and particle chemical potential m for K- and p- mesons
- The value q=1 corresponds to the Boltzmann-Gibbs statistics (exponential function).
- The deviation of the value of the parameter q from unity indicates on the measure of deviation of the power-law distribution from the Gibbs exponential function.
- The deviations from Boltzmann-Gibbs statistics are monotonically growing with beam energy for pipions in pp collisions.
- The transverse momentum distribution of pi- pions in AA collisions deviates essentially from the Gibbs exponent.
- The distribution of K- kaons in AA collisions is close to the Gibbs exponent at low energies.
- The introduction of the nonvanishing particle chemical potential allows to correctly describe the values of the volume of the system.

Parameters of the Tsallis-factorized statistics in AA and pp collisions

Temperature and volume for K+ and p+ mesons

- At NICA energies the temperature and volume for K+ and pi+ have some structures as a function of energy.
- The temperature of K+ kaons in AA collisions is higher than the temperature of pi+ pions.
- However, K+ kaons in AA collisions are emitted from the smaller volume than pi+ pions.
- The volume for pi+ pions in AA collision corresponds to the geometrical volume of two nuclei.
- And the volume for pi+ pions in pp collision corresponds to the geometrical volume of two protons.
- The temperatures for pi+ pions from AA and pp collisions are close to each other in comparison with the temperature of K+ kaon

Parameters of the Tsallis-factorized statistics in AA and pp collisions

- Parameter q and particle chemical potential m for K+ and p+ mesons
- The deviations from Boltzmann-Gibbs statistics are monotonically growing with beam energy for pi+ pions in pp collisions.
- The transverse momentum distribution of pi+ pions in AA collisions deviates essentially from the Gibbs exponent.
- The distribution of K+ kaons in AA collisions is close to the Gibbs exponent at low energies.
- The introduction of the nonvanishing particle chemical potential allows to correctly describe the values of the volume of the system.
- The zero particle chemical potential leads to unphysical values of volume in AA and pp collisions

Conclusions

- 1. We have obtained that the Tsallis statistics (Tsallis-1 statistics at q<1 and Tsallis-2 statistics at q>1) is divergent.
- 2. It is convergent only in the case of *q*=1 which corresponds to the standard Boltzmann-Gibbs statistics.
- 3. However, we have found that a few terms in a series expansion of quantities in the Tsallis statistics at $q \neq 1$ are convergent and they describe very well the experimental data on the transverse momentum distributions (TMD) of hadrons in the *pp* collisions at high energies (the standard Boltzmann-Gibbs statistics fails to describe these experimental data).
- 4. The analytical exact expressions for the ultrarelativistic TMD of the Tsallis-1 and Tsallis-2 statistics were obtained.
- 5. We have demonstrated that the ultrarelativistic TMD of the usual Tsallis-factorized statistics is equivalent to the TMD of the Tsallis-2 statistics in the zeroth term approximation. But the statistical averages of the Tsallis-2 statistics are non-normalized.
- 6. We have demonstrated that the ultrarelativistic TMD of the Tsallis-factorized statistics recovers the TMD of the Tsallis-1 statistics in the zeroth term approximation under the transformation of the parameter q to 1/q.
- 7. The TMD of the Model B of the Tsallis statistics (the cut-off from the inflection point) differs from TMD of Tsallis-factorized statistics only at low energies of NICA and NA61/SHINE.
- 8. The Tsallis-factorized statistics was successfully applied to describe the experimental data on the TMD of hadrons created in the heavy-ion and *pp* collisions at high energies

Thank you for your attention!