

A new mechanism to bind hadronic molecules

Lisheng Geng（耿立升）

In collaboration with：Jun－Xu Lu，Manuel Pavon Valderrama（Beihang U．） Xiu－Lei Ren（PKU \＆Bochum）
Mario Sanchez Sanchez（IPNO），Tetsuo Hyodo（YITP）
$\underline{1704.06123} \underline{1705.00516} \underline{1707.03802}$

Contents

\square Where all these started-the pentaquark states
\square A two-channel study of the $P_{c}(4450)$
> An Efimov like effect
> A new (long range) binding mechanism
\square Two recent extensions
$>$ Near-threshold Coulomb-like Baryonia: $\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 5 9 5}) \boldsymbol{\Sigma}_{\boldsymbol{c}}\left(\overline{\Sigma_{c}}\right)$
$>$ Exotic doubly charmed $D_{s 0}^{*}(2317) D$ and $D_{s 1}(2460) D^{*}$ molecules
\square Summary and outlook

Contents

\square Where all these started-the pentaquark states
\square A two-channel study of the $P_{c}(4450)$
> An Efimov like effect
> A new (long range) binding mechanism
\square Two recent extensions
$>$ Near-threshold Coulomb-like Baryonia: $\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 5 9 5}) \boldsymbol{\Sigma}_{\boldsymbol{c}}\left(\overline{\Sigma_{c}}\right)$
$>$ Exotic doubly charmed $D_{s 0}^{*}(2317) D$ and $D_{s 1}(2460) D^{*}$ molecules
\square Summary and outlook

The pentaquark states

Two Breit-Wigner states

$$
\begin{gathered}
\mathrm{Pc}(4380): M=4380 \pm 8 \pm 29 \mathrm{MeV} ; \\
\Gamma=205 \pm 18 \pm 86 \mathrm{MeV} \\
\mathrm{Pc}(4450): M=4449.8 \pm 1.7 \pm 2.5 \mathrm{MeV} ; \\
\Gamma=39 \pm 5 \pm 19 \mathrm{MeV}
\end{gathered}
$$

The preferred JP assignments are of opposite parity, with one state having spin $3 / 2$ and the other 5/2: $\left(3 / 2^{-}, 5 / 2^{+}\right),\left(3 / 2^{+}, 5 / 2^{-}\right),\left(5 / 2^{+}, 3 / 2^{-}\right)$

The pentaquark states

Two Breit-Wigner states

$\mathrm{Pc}(4380): M=4380 \pm 8 \pm 29 \mathrm{MeV}$; $\Gamma=205 \pm 18 \pm 86 \mathrm{MeV}$
Pc(44450): $M=4449.8 \pm 1.7 \pm 2.5 \mathrm{MeV}$;
$\Gamma=39 \pm 5 \pm 19 \mathrm{MeV}$

Phys.Rev.Lett. 115 (2015) 072001

The pentaquark states

Even before the experimental discovery
\square Heavy-light diquarks.
> L. Maiani et al., Phys. Rev. D 71, 014028 (2005).

- Diquark-diquark-antiquark
> R. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, 232003 (2003).
> A. Chandra et al., Mod. Phys. Lett. A 27, 1250006 (2012).
- Diquark- triquark
> M. Karliner and H. J. Lipkin, Phys. Lett. B 575, 249 (2003).
\square Coupled channel
$>$ J.-J. Wu et al., Phys. Rev. Lett. 105, 232001 (2010).
- Weakly bound "molecules" of a baryon plus a meson
> M. B. Voloshin and L. B. Okun, JETP Lett. 23, 333 (1976)
> A. De Rujula et al., Phys. Rev. Lett. 38, 317 (1977)
> N. A. Törnqvist, Phys. Rev. Lett. 67, 556 (1991); N.A. Törnqvist, Z. Phys. C 61, 525 (1994)
$>$ Z.-C. Yang et al., Chin. Phys. C 36, 6 (2012)
$>$ W. L. Wang et al., Phys. Rev. C 84, 015203 (2011)
> M. Karliner and J. L. Rosner, Phys.Rev.Lett. 115, 122001 (2015)

Phys.Rev.Lett. 115 (2015) 072001

Citation history from Inspire: a total of 599 as of August 22, 2018

Nature of the pentaquark states

\square Tightly bound multiquark states
\square Loosely bound multiquark sates-molecules
\square Kinematical effects—triangle singularities

DOne pion exchange or one boson exchange
\square Unitary chiral coupled channels and their extensions
\square Contact interactions formulated in an EFT language

Not easy to discriminate different scenarios, see, e.g., the debate on X(3872)

The pentaquark states

T.J. Burns

Eur. Phys. J. A (2015) 51: 152

		$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
	Mass	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
	Width	$205 \pm 18 \pm 86$	$35 \pm 5 \pm 19$
	Assignment 1	$3 / 2^{-}$	$5 / 2^{+}$
	Assignment 2	$3 / 2^{+}$	$5 / 2^{-}$
	Assignment 3	$5 / 2^{+}$	$3 / 2^{-}$
			2
	$\Sigma_{c}^{*+} \bar{D}^{0}$	4382.3 ± 2.4	
	$\chi_{c 1} p$		4448.93 ± 0.07
	$\Lambda_{c}^{*+} D^{0}$		4457.09 ± 0.35
	$\Sigma_{c}^{+} \bar{D}^{* 0}$		4459.9 ± 0.5
	$\Sigma_{c}^{+} \bar{D}^{0} \pi^{0}$		4452.7 ± 0.5
Analogy	X(3872)		Pc(4450)
	$\bar{D}^{*}+D^{*} i$		$\Sigma_{c} \bar{D}^{*}-\Lambda_{c 1} \bar{D}$

Contents

\square Where all these started-the pentaquark states
\square A two-channel study of the $P_{c}(4450)$
> An Efimov like effect
> A new (long range) binding mechanism
\square Two recent applications
$>$ Near-threshold Coulomb-like Baryonia: $\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 5 9 5}) \boldsymbol{\Sigma}_{\boldsymbol{c}}\left(\overline{\Sigma_{c}}\right)$
$>$ Exotic doubly charmed $D_{s 0}^{*}(2317) D$ and $D_{s 1}(2460) D^{*}$ molecules
\square Summary and outlook

A two channel study of the $P_{c}(4450)$

A two channel study of the $P_{c}(4450)$

-There is standard one-pion exchange in the $\Sigma_{c} \bar{D}^{*}$ channel but no one-pion exchange in the $\Lambda_{c 1} D$ channel-not our concern here
-In the off diagonal channel

$$
\begin{gathered}
\left\langle\Lambda_{c 1} \bar{D}\right| V_{\mathrm{OPE}}(\vec{r})\left|\Sigma_{c} \bar{D}^{*}\right\rangle=\omega_{\pi} \tau \vec{\epsilon} \cdot \hat{r} W_{E}(r) \\
\tau=\sqrt{3} \text { for } \mathrm{I}=1 / 2 ; \tau=0 \text { for } \mathrm{I}=3 / 2
\end{gathered}
$$

$$
W_{E}(r)=\frac{g_{1} h_{2} \mu_{\pi}^{2}}{4 \pi \sqrt{2} f_{\pi}^{2}} \frac{e^{-\mu_{\pi} r}}{\mu_{\pi} r}\left(1+\frac{1}{\mu_{\pi} r}\right)
$$

$$
\begin{array}{r}
\omega_{\pi}=m\left(\Lambda_{c 1}\right)-m\left(\Sigma_{c}\right) \\
\mu_{\pi}=\sqrt{\left|m_{\pi}^{2}-\omega_{\pi}^{2}\right|}
\end{array}
$$

A two channel study of the $P_{c}(4450)$

-There are standard one-pion exchange in the $\Sigma_{c} \bar{D}^{*}$ channel but no one-pion exchange in the $\Lambda_{c 1} D$ channel-not our concern here

■In the off diagonal channel

$$
\left|\mu_{\pi}\right|=\sqrt{\left|\omega_{\pi}^{2}-m_{\pi}^{2}\right|}=5 \sim 35 \mathrm{MeV} \ll m_{\pi}
$$

\square In the $\mu_{\pi}=0$ limit, for $I=1 / 2$, one has the following potential

$$
\left\langle\Lambda_{c 1} \bar{D}\right| V_{\mathrm{OPE}}(\vec{r})\left|\Sigma_{c} \bar{D}^{*}\right\rangle=\frac{g_{1} h_{2} \omega_{\pi}}{4 \pi f_{\pi}^{2}} \sqrt{\frac{3}{2}} \frac{\vec{\epsilon} \cdot \hat{r}}{r^{2}}+\mathcal{O}\left(\mu_{\pi}^{2} r^{2}\right)
$$

A $1 / \mathbf{r}^{2}$ potential and Efimov effect

\square At zero energy the reduced Schroedinger equation for the s-wave

$$
-u^{\prime \prime}(r)+\frac{g}{r^{2}} u(r)=0
$$

For a finite energy analysis, see M. Bawin and S. A. Coon, Phys. Rev. A 67, 042712 (2003).
$>$ The above equation is scale invariant under the transformation $r \rightarrow \lambda_{0} r$,
$>$ The consequence is if E_{n} is the binding energy, so is $E_{n+1}=E_{n} / \lambda_{0}^{2}$
$>$ This resembles the three-body system if thinking of r as the hyper-radius ρ
\square For $g>-1 / 4$, the above equation has a power law solution

$$
u(r)=c_{+} r^{\frac{1}{2}+\nu}+c_{-} r^{\frac{1}{2}-\nu} \quad \nu=\sqrt{1 / 4+g}
$$

\square For $g<-1 / 4$, the solution enjoys discrete scale invariance

$$
u(r)=c r^{1 / 2} \sin \left(\nu \log \Lambda_{2} r\right) \quad \nu=\sqrt{-1 / 4-g} \quad \lambda_{0}=e^{\pi / v}
$$

Λ_{2} encodes short-distance physics and breaks the exact scale invariance

A surprising finding

The $\Sigma_{c} \bar{D}^{*}-\Lambda_{c 1} D$ interaction behaves like a $1 / r^{2}$ potential, which may lead to discrete scale invariance in a two-body hadronic system—an Efimov like effect

$J^{p}=3 / 2^{-}$

\square Four coupled-channels

$$
\Sigma_{c} \bar{D}^{*}\left({ }^{2} D_{3 / 2}\right) \quad \Sigma_{c} \bar{D}^{*}\left({ }^{4} S_{3 / 2}\right), \Sigma_{c} \bar{D}^{*}\left({ }^{4} D_{3 / 2}\right) \text { and } \Lambda_{c 1} \bar{D}\left({ }^{2} P_{3 / 2}\right)
$$

- The Schroedinger equation reads

$J^{p}=3 / 2^{-}:$no discrete scale invariance

\square Four coupled-channels

$$
\Sigma_{c} \bar{D}^{*}\left({ }^{2} D_{3 / 2}\right) \quad \Sigma_{c} \bar{D}^{*}\left({ }^{4} S_{3 / 2}\right), \Sigma_{c} \bar{D}^{*}\left({ }^{4} D_{3 / 2}\right) \text { and } \Lambda_{c 1} \bar{D}\left({ }^{2} P_{3 / 2}\right)
$$

\square The Schroedinger equation reads

$$
-u_{i}^{\prime \prime}+\frac{g_{i}}{r^{2}} u_{i}=0
$$

$$
g_{i}=\left\{6,2,3+\sqrt{9+3 g^{2}}, 3-\sqrt{9+3 g^{2}}\right\}
$$

\square Negative $\boldsymbol{g}_{\boldsymbol{i}}\left(<-\frac{1}{4}\right)$ can trigger discrete scale invariance, which means $|g|>\frac{5}{4 \sqrt{3}} \sim 0.7217$.
\square With $g_{1}=0.59 \pm 0.01 \pm 0.07$ from $D^{*} \rightarrow D \pi / \gamma$, this requires $\left|h_{2}\right|>1.21_{-0.19}^{+0.25}$, well above $h_{2}=0.60 \pm 0.07$ from the CDF value extracted from $\Lambda_{c 1} \rightarrow \Sigma_{c} \pi$
\square For $J^{p}=1 / 2^{-}, 3 / 2^{+}, 5 / 2^{+}, 5 / 2^{-}$the same conclusion

$J^{p}=1 / 2^{+}$: discrete scale invariance likely

- Three coupled-channels

$$
\Sigma_{c} \bar{D}^{*}\left({ }^{2} P_{1 / 2}\right) \quad \Sigma_{c} \bar{D}^{*}\left({ }^{4} P_{1 / 2}\right) \text { and } \Lambda_{c 1} \overline{\bar{D}}\left({ }^{2} S_{1 / 2}\right)
$$

The Schroedinger equation reads

$$
\mathbf{g}\left(\frac{1}{2}\right)=\left(\begin{array}{ccc}
2 & 0 & g \\
0 & 2 & -\sqrt{2} g \\
g & -\sqrt{2} g & 0
\end{array}\right)
$$

\square The attractive eigenvalue is $1-\sqrt{1+3 g^{2}}$, which requires $|g|>\frac{\sqrt{3}}{4} \sim 0.4330$ and $h_{2}=$ $0.73_{-0.06}^{+0.11}$, marginally overlapping with that of CDF $h_{2}=0.60 \pm 0.07$

Long and short range consequences

- The approximate scale invariance of the Schroedinger equations has two consequences: long range and short range
\square The long range consequence leads to the appearance of a geometric spectrum, depending on how far the systems are from $\mu_{\boldsymbol{\pi}}=\mathbf{0}$
\square For $\mu_{\pi} \neq 0$, scale invariance holds for

$$
R_{s}<r<\frac{1}{\left|\mu_{\pi}\right|}
$$

The existence of a geometric excited state requires the relative size of the scale invariant window to be bigger than the discrete scaling factor
\square For the $\mathrm{Pc}^{*},\left|R_{s} \mu_{\pi}\right| \simeq 10 \sim 20$, requiring $\left|g_{-}\right| \geq 1$, which is considerably larger than $1 / 4$

Long and short range consequences

-The observation of geometric states in hadron and atomic physics shares a similar difficulty: the finetuning of the pion mass (hadrons) or the scattering length (atoms).

DIn atomic physics, one can turn to a magnetic field
-In hadron physics, one can fine-tune the pion mass in the lattice or increase $\left|g_{-}\right|$, by having a larger reduced mass (two bottom hadrons) or exchanging a kaon.
> For the first way out, we strongly encourage our lattice QCD
colleagues to pursue such a study
$>$ We will explore the $2^{\text {nd }}$ and $3^{\text {rd }}$ options in the following.
(1) To have a larger reduced mass

$\Lambda_{c 1} \overline{\Xi_{b}}-\Sigma_{c}{\overline{\Xi_{b}}}^{\prime}$ baryonia system

\square The potential

$$
\left\langle\Sigma_{c} \bar{\Xi}_{b}^{\prime}\right| V_{\mathrm{OPE}}(\vec{r})\left|\Lambda_{c 1} \bar{\Xi}_{b}\right\rangle=\frac{g_{3} h_{2} \omega_{\pi}}{8 \pi f_{\pi}^{2}} \frac{\sigma_{2} \cdot \hat{r}}{r^{2}}+\mathcal{O}\left(\mu_{\pi}^{2} r^{2}\right) g_{3}:{\overline{\Xi_{b}}}_{\bar{\Xi}_{b}^{\prime}}{ }^{\prime} \pi
$$

- Considering the following partial wave channels

$$
\begin{gathered}
0^{+}=\Sigma_{c} \bar{\Xi}_{b}\left({ }^{3} P_{0}\right)-\Lambda_{c 1} \bar{\Xi}_{b}\left({ }^{1} S_{0}\right), \\
0^{-}=\Sigma_{c} \overline{\bar{\Xi}}_{b}^{\prime}\left({ }^{1} S_{0}\right)-\Lambda_{c 1} \bar{\Xi}_{b}\left({ }^{3} P_{0}\right), \\
1^{-}=\Sigma_{c} \bar{\Xi}_{b}{ }^{\prime}\left({ }^{3} S_{1}-{ }^{3} D_{1}\right)-\Lambda_{c 1} \bar{\Xi}_{b}\left({ }^{1} P_{1}-{ }^{3} P_{1}\right),
\end{gathered}
$$

For $|g|>3 / 4$, the attractive eigenvalues will trigger discrete scale invariance, which with $g_{3}=0.973_{-0.042}^{+0.019}$ requires $\left|\boldsymbol{h}_{2}\right|>0.67_{-0.02}^{+0.03}$, overlapping with the CDF value
$\mathbf{g}\left(0^{+}\right)=\left(\begin{array}{ll}2 & g \\ g & 0\end{array}\right)$,
$\mathbf{g}\left(0^{-}\right)=\left(\begin{array}{ll}0 & g \\ g & 2\end{array}\right)$,
$\mathbf{g}\left(1^{-}\right)=\left(\begin{array}{cccc}0 & 0 & \frac{1}{\sqrt{3}} g & -\sqrt{\frac{2}{3}} g \\ 0 & 6 & -\sqrt{\frac{2}{3}} g & -\frac{1}{\sqrt{3}} g \\ \frac{1}{\sqrt{3}} g & -\sqrt{\frac{2}{3}} g & 2 & 0 \\ -\sqrt{\frac{2}{3}} g & -\frac{1}{\sqrt{3}} g & 0 & 2\end{array}\right)$

Long and short range consequences

\square Even if the vector force is not enough to trigger discrete scale invariance it will still play a remarkable role in binding
\square Suppose the binding mechanism is s-wave short range physics, one has for $\left|r \leq R_{s}\right|$

$$
V(r)=V_{\mathrm{OPE}}(r) \theta\left(r-R_{s}\right)+\frac{C_{0}\left(R_{s}\right)}{4 \pi R_{s}^{2}} \delta\left(r-R_{s}\right)
$$

$>$ In the one-channel problem of $g>-\frac{1}{4}$ and in the absence of tensor OPE, the relative strength of C_{0} is $v+1 / 2$ of that required to bind if $g=0$ (for $\left|\mu_{\pi} \mathrm{R}_{s}\right|<$),
$>$ Thus if $v=0(g \rightarrow-1 / 4)$ the short-range potential only has to be half the normal strength to be able to bind the system.

- If the binding mechanism is standard OPE or other intermediate physics, the number will change a bit but not the qualitative effect
$>$ For the $3 / 2^{-} \mathrm{Pc}^{*}$, the number is 70%;
$>$ For the heavy baryonium, the number is $46 \%\left(0^{-}\right)$or $53 \%\left(1^{-}\right)$

For the $1 / r^{2}$ force to work

$\square H_{1}$ and H_{1}^{\prime} are of opposite parity but with the same spin
$\square H_{2}$ and H_{2}^{\prime} are of the same parity and their spin differs by one
$\square m\left(H_{1 / 2}\right)-m\left(H_{1 / 2}^{\prime}\right) \approx m(\phi)$, implying long range interaction
\square The larger $g_{1}, g_{2}, m(\phi)$, the smaller $m\left(H_{1 / 2}\right)-m\left(H_{1 / 2}^{\prime}\right)-m(\phi)$, the stronger the attraction

Contents

\square Where all these started-the pentaquark states
\square A two-channel study of the $P_{c}(4450)$
> An Efimov like effect
> A new (long range) binding mechanism
\square Two recent applications
$>$ Near-threshold Coulomb-like Baryonia: $\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 5 9 5}) \boldsymbol{\Sigma}_{\boldsymbol{c}}\left(\overline{\Sigma_{c}}\right)$
$>$ Exotic doubly charmed $D_{s 0}^{*}(2317) D$ and $D_{s 1}(2460) D^{*}$ molecules
\square Summary and outlook

A coulomb like force: a modification of the $1 / \mathbf{r}^{2}$ case

$\square H_{1}$ and H_{1}^{\prime} are of opposite parity but with the same spin
$\square \boldsymbol{H}_{2}$ and $\boldsymbol{H}_{\mathbf{2}}^{\prime}$ are of opposite parity but with the same spin
$\square m\left(H_{1 / 2}\right)-m\left(H_{1 / 2}^{\prime}\right) \approx m(\phi)$, implying long range interaction
\square The larger $g_{1}, g_{2}, \boldsymbol{m}(\phi)$, the smaller $m\left(H_{1 / 2}\right)-m\left(H_{1 / 2}^{\prime}\right)$ $\mathrm{m}(\phi)$, the stronger the attraction

A doubly charmed baryon $Y_{c c}$ (5050)

$$
V_{\mathrm{OPE}}(r)=-\frac{h_{2}^{2} \omega_{\pi}^{2}}{4 \pi f_{\pi}^{2}} \frac{e^{-\mu_{\pi} r}}{r}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where $\mu_{\pi}^{2}=m_{\pi}^{2}-\omega_{\pi}^{2}$ with $\omega_{\pi}=m_{\Lambda_{c 1}}-m_{\Sigma_{c}}$

Attraction appears in spin 0 channel:

$$
\left|Y_{c c}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|\Lambda_{c 1} \Sigma_{c}\right\rangle+\left|\Sigma_{c} \Lambda_{c 1}\right\rangle\right\}
$$

A doubly charmed baryon $Y_{c c}$ (5050)

Assuming again, that the one-baryon exchange is only valid above a certain cutoff radius

$$
V(r)=V_{\mathrm{OPE}}(r) \theta\left(r-R_{c}\right)+\frac{C_{0}}{4 \pi R_{c}^{2}} \delta\left(r-R_{c}\right)
$$

Introducing a reduced coupling

$$
c_{0}=-\frac{2 \mu_{Y} C_{0}}{4 \pi R_{c}}
$$ and $c_{0} \geq 1$ generates a bound state with binding momentum $\gamma=\left(c_{0}-1\right) / R_{c}$

- $c_{0} \rightarrow-\infty, E_{B}=-0.09_{-0.08}^{+0.06} \mathrm{MeV}$
- $c_{0} \rightarrow 1, E_{B}=-1.9_{-0.6}^{+0.5} \mathrm{MeV}$
- $c_{0}>0.9_{-0.4}^{+0.2} 1$, a shallow excited state appears
$R_{c}=1 \mathrm{fm}$ probably lies in an intermediate zone dominated by two-pion exchange and other contributions which might be attractive. Hence we expect the fundamental state of the doubly charmed Ycc to be deeper than the predictions from OPE alone

A hidden charmed baryon $Y_{c \bar{c}}$ (5050)

Replacing Σ_{c} with $\overline{\Sigma_{c}}$ will lead to a formation of hidden charmed baryon $Y_{c \bar{c}}(\mathbf{5 0 5 0})$ in both spin 0 and 1. The discussion is more involved because it involves annihilation.

PHYSICAL REVIEW D 97, 091501(R) (2018)
Rapid Communications

> Are there near-threshold Coulomb-like Baryonia?
> Li-Sheng Geng, ${ }^{1, *}$ Jun-Xu Lu, ${ }^{1}$ M. Pavon Valderrama, ${ }^{1, \dagger}$ and Xiu-Lei Ren ${ }^{2,3}$
> ${ }^{1}$ School of Physics and Nuclear Energy Engineering, International Research Center for Nuclei and Particles in the Cosmos and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
> ${ }^{2}$ State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
> ${ }^{3}$ Institut fïr Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
> (0) (Received 6 May 2017; published 2 May 2018)
> https://crossmark.crossetetorg/lialog/?
of the $\Lambda_{c}(2590)$ and Σ_{c}, the pion is exenangea in J -wave. This gives rise to a Coulomb-like force that might
be able to bind the system. If one takes into account that the pion is not exactly on the mass shell, there is a
shallow S-wave state, which we generically call the $Y_{c c}(5045)$ and $Y_{c \bar{c}}(5045)$ for the $\Lambda_{c}(2590) \Sigma_{c}$ and
$\Lambda_{c}(2590) \bar{\Sigma}_{c}$ systems respectively. For the baryon-antibaryon case this Coulomb-like force is independent
of spin: the $Y_{c \bar{c}}(5045)$ baryonia will appear either in the spin $S=0$ or $S=1$ configurations with G-parities
$G=(-1)^{L+S+1}$. For the baryon-baryon case the Coulomb-like force is attractive in the spin $S=0$
configuration, for which a doubly charmed molecule is expected to form near the threshold. This type of
spectrum might be very well realized in other molecular states composed of two opposite parity hadrons
with the same spin and a mass difference close to that of a pseudo-Goldstone boson, of which a few
examples include the $\Lambda(1405) N, \Lambda(1520) \Sigma^{*}, \Xi(1690) \Sigma, D_{s 0}^{*}(2317) D$ and $D_{s 1}^{*}(2460) D^{*}$ molecules.

Contents

\square Where all these started--the pentaquark states
\square A two-channel study of the $P_{c}(4450)$
> An Efimov like effect
> A new (long range) binding mechanism
\square Two recent applications
$>$ Near-threshold Coulomb-like Baryonia: $\boldsymbol{\Lambda}_{\boldsymbol{c}}(\mathbf{2 5 9 0}) \boldsymbol{\Sigma}_{\boldsymbol{c}}\left(\overline{\Sigma_{c}}\right)$
$>$ Exotic doubly charmed $D_{s 0}^{*}(2317) D$ and $D_{s 1}(2460) D^{*}$ molecules
\square Summary and outlook

Exotic doubly charmed mesons

\square A straightforward extension of the above idea is investigating the exchange of the kaon-large attraction
\square In such a case, $D_{s 0}^{*}(2317) D$ and $D_{s 1}(2460) D^{*}$ are two interesting systems

Using the $D_{\text {s } 0}^{*}(2317) D$ system as one example

Exotic doubly charmed mesons

- In the following basis: $\left\{D D_{s 0}^{*}, D_{s 0}^{*} D\right\}\left\{D^{*} D_{s 1}^{*}, D_{s 1}^{*} D^{*}\right\}$

$$
\begin{aligned}
V(\vec{q})=-h^{2} \frac{\omega_{K}^{2}}{f_{\pi}^{2}} \frac{1}{m_{K}^{2}-\omega_{K}^{2}+\vec{q}^{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\omega_{K}=m_{D_{s 0}^{*}}-m_{D} \text { or } m_{D_{11}^{*}}-m_{D^{*}}
\end{aligned}
$$

ㅁ The effective range is set by $\mu_{K}^{2}=m_{K}^{2}-\omega_{K}^{2}$, about $200 \mathbf{M e V}$

- For the following linear combinations, the interaction is attractive

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left[\left|D D_{s 0}^{*}\right\rangle+\left|D_{s 0}^{*} D\right\rangle\right], \\
& \frac{1}{\sqrt{2}}\left[\left|D^{*} D_{s 1}^{*}\right\rangle+\left|D_{s 1}^{*} D^{*}\right\rangle\right]
\end{aligned} \quad V(r)=-h^{2} \frac{\omega_{K}^{2}}{f_{\pi}^{2}} \frac{e^{-\mu_{K} r}}{4 \pi r}
$$

Exotic doubly charmed mesons

ㅁ. The system will bind for $\quad \lambda_{B}=\frac{2 \mu_{H}}{\mu_{K}} \frac{\omega_{K}^{2}}{4 \pi f_{\pi}^{2}} h^{2} \geq 1.68$ which means for $\mathrm{DD}_{\mathrm{s} 0}^{*}$ and $\mathrm{DD}_{\mathrm{s} 1},|h|>0.43$ and 0.40 , respectively
\square The requirement is satisfied, because $h \approx 0.5 \sim 0.9$ as deduced from the D meson decay

$$
\begin{aligned}
\Gamma\left(D_{0} \rightarrow D \pi\right) & =\Gamma\left(D_{0} \rightarrow D \pi^{0}\right)+\Gamma\left(D_{0} \rightarrow D \pi^{ \pm}\right) \\
& =\frac{3}{2} \Gamma\left(D_{0} \rightarrow D \pi^{ \pm}\right) \\
& =\frac{3}{2} \frac{m_{D}}{m_{D_{0}}} \frac{q_{\pi}}{2 \pi} \frac{h^{2}}{f_{\pi}^{2}}\left(m_{D_{0}}-m_{D}\right)^{2},
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}_{0}^{0} \rightarrow h=0.61 \pm 0.07 \\
& \mathrm{D}_{0}^{+} \rightarrow h=0.50 \pm 0.06 \\
& \mathrm{D}_{1}^{0} \rightarrow h=0.8 \pm 0.2 \\
& \quad \text { arXiv: } 1207.6940
\end{aligned}
$$

ㅁ Concretely, one has $E_{B}=-40_{-50}^{+30} \mathrm{MeV} \quad E_{B}=-50_{-50}^{+30} \mathrm{MeV}$

Understanding the results in EFT

\square The kaon exchange can be rewritten

$$
V_{\mathrm{OKE}}(\vec{q})=-\frac{2 \pi}{\mu_{H} \Lambda_{\mathrm{OKE}}} \frac{\mu_{K}^{2}}{\mu_{K}^{2}+\vec{q}^{2}} \quad \Lambda_{\mathrm{OKE}}=\frac{2 \pi}{\mu_{H}} \frac{f_{\pi}^{2} \mu_{K}^{2}}{h^{2} \omega_{K}^{2}} \simeq 50_{-20}^{+40} \mathrm{MeV}
$$

- We count $\quad V_{\mathrm{OKE}}(\vec{q}) \sim \frac{2 \pi}{M Q}$, which is enhanced
- Heavy quark symmetry implies

$$
\begin{aligned}
& V_{C}\left(\vec{q}, D D_{s 0}^{*}\right)=C_{0 a}, \\
& V_{C}\left(\vec{q}, D^{*} D_{s 1}^{*}\right)=C_{0 a}+\vec{S}_{1} \cdot \vec{S}_{2} C_{0 b} \quad \begin{array}{l}
\text { - } \\
\text { (2017), arXiv: } 17060.02588 \text { [hep-ph]. }
\end{array}
\end{aligned}
$$

Understanding the results in EFT

\square In an natural scaling, the contact terms count as of subleading

$$
C_{0 a} \sim \frac{2 \pi}{M^{2}} \quad, \quad C_{0 b} \sim \frac{2 \pi}{M^{2}}
$$

\square In an unnatural scaling, they also appear at LO (fine tuning)
$>$ Even in a worst case scenario, there exists a repulsive core at the cutoff radius

$$
V_{\mathrm{EFT}}=V_{\mathrm{OKE}}(r) \theta\left(r-R_{c}\right)+C_{0}\left(R_{c}\right) \frac{\delta\left(r-R_{c}\right)}{4 \pi R_{c}^{2}}
$$

The system will still bind for $R_{c} \leq 1.3_{-0.3}^{+0.3} \mathrm{fm}$

Summary and outlook

- We have studied the $\Sigma_{c} \bar{D}^{*}-\Lambda_{c 1} D$ off diagonal interaction in an attempt to better understand the $P_{C}(4450)$ and accidentally identified a new binding mechanism that may lead to discrete scale invariance
\square We have identified two other similar mechanisms that are of long-range nature and can lead to relatively robust predictions of molecular states, namely $\Lambda_{c}(2590) \Sigma_{c}\left(\overline{\bar{\Sigma}_{c}}\right)--Y_{c c / \bar{c}}(5045)$, $D_{s 0}^{*}(2317) D$ and $D_{s 0}^{*}(2317) D^{*}$
\square Many similar but more sophisticated studies are underway to explore/check the proposed mechanisms

Thanks for your attention

August 23rd， 2018

Bottom line

If binding happens for distances in which the present picture is valid，short－range physics is not necessary
$>3 / 2^{-}, 1 / 2^{+}, 0.94 \mathrm{fm}, 0.92 \mathrm{fm}$ two－pion exchange and hadron finite－size effects dominate for $r<\frac{m_{\pi}}{2} \sim 0.7 \mathrm{fm}$ ，
$>0^{-}, 1^{-}, 1^{+}, 0^{+}$baryoia $0.40 \mathrm{fm}, 0.84 \mathrm{fm}, 0.87 \mathrm{fm}, 0.86 \mathrm{fm}$
＞Two systems bind in p－wave，where the vector force effectively induces the existence of a channel behaving much like an s－wave

In short，the vector force induces a series of binding mechanisms which do not require the ratio m_{π} / μ_{π} to be particularly large（a factor of $2-3$ is probably enough）and which in a few cases lead to predictions of new molecules．

Introducing a cutoff

\square Suppose the potential is only valid for large radius

$$
V\left(r ; R_{c}\right)=V(r) \theta\left(r-R_{c}\right)
$$

The system will bind for $R_{c} \leq 1.3 \pm 0.3 \mathrm{fm}$

For $R_{C}=0.5 \mathrm{fm}, E_{B}=-6_{-7}^{+4} \mathrm{MeV}$

Summary and outlook

$$
\begin{array}{ll}
\Xi_{b}^{\prime}(5935)^{-} & J^{P}=\frac{1}{2}^{+} \quad \text { Status: } * * * \\
\hline & \Xi_{\mathbf{b}}^{\prime}(\mathbf{5 9 3 5})^{-} \text {MASS } \\
\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{5 9 3 5 . 0 2} \pm \mathbf{0 . 0 2} \pm \mathbf{0 . 0 5}} & 1 \frac{\text { DOCUMENT ID }}{\text { AAIJ }} \quad 15 \mathrm{H} \\
\frac{\text { TECN }}{\text { LHCB }} \frac{\text { COMMENT }}{\text { pp at } 7,8 \mathrm{TeV}}
\end{array}
$$

${ }^{1}$ Not independent of the mass difference measurement below. Observed in $\bar{E}_{b}^{0} \pi^{-}$channel with $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$and $\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}$.

$$
J^{P}=\frac{3}{2}^{+} \quad \text { Status: } * * *
$$

Quantum numbers are based on quark model expectations.

$\bar{E}_{b}(5945)^{0}$ MASS			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
5949.8 ± 1.4 OUR AVERAGE			
$5949.8 \pm 0.1 \pm 1.4$	${ }^{1}$ AAIJ 16aE	LHCB	$p p$ at 7, 8 TeV
$5948.9 \pm 0.8 \pm 1.4$	2 CHATRCHYAN 12 S	CMS	$p p$ at $7 \mathrm{TeV}, 5.3 \mathrm{fb}{ }^{-1}$

