12th APCTP-BLTP JINR Joint Workshop "Modern problems in nuclear and elementary particle physics" Centum Premier Hotel, Busan, Korea, August 20-24, 2018

Status of LAMPS at RAON

Byungsik Hong (Korea University)

Location of RAON RIB Complex

APCTP-BLTP JINR (2018)

Photo taken in April 2018

Layout of RAON

Layout of RAON

Expected RIBs at RAON

RAON aims to provide an access to unexplored regions of nuclear chart.

Accelerator Systems

20-24 August 2018

APCTP-BLTP JINR (2018)

Experimental Systems

Major Achievements

ltems	Major achievements				
	 Technical Design Report (TDR, 2013.06) Updated baseline design summary (BDS), Established system requirement (SR) Superconducting RF test facility (2016.06) → QWR cryomodule test complete! (2017.05) 				
TDR/ Test facilities		CH			
	Demonstration of SC Linac	Cryogenic Plant	Cavity Performance Test		
	 Technical Designs for SRF cavities, ECR Ion source, LEBT, RFQ, etc. (2012.06~2013.06) Prototyping of RFQ (2013.10~) Prototyping of RF power systems (2013.10~) Prototyping of SRF cavities & modules(QWR, HWR) (2013.09~) 1st Oxygen Ion beam Injection with ECR IS (2015.03) 1st Oxygen beam acceleration with RFQ (0.5MeV/u, 2016.12) 				
Components for Accelerating system			120 100 5 5 5 6 0 0 0 0 0 0 0 1 0 20 0 0 0 1 0 20 0 0 1 0 20 0 0 0		
	Performance test of prototype QWR SRF cavity	Performance test of prototype QWR module	Heavy Ion Beam Injection with 28GHz superconducting ECR ion source		

Major Achievements

Items	Major achievements				
	 Optimization of optical design for in-flight fragments separator system (2012.06 ~ 2014.02) Performance test of single-slice graphite target using electron beam (2012.10 ~ 2013.10) Design, manufacture and test of LTS quadrupole magnet (2012.06 ~ 2014.04) Manufacture and test of HTS coil (2013.10 ~ 2014.04) Successful low temperature test for LTS quadrupole prototype magnet (2016.01) 				
IF System					
	Engineering design for IF target system	Performance test for LTS quadrupole prototype magnet	Engineering design for IF beam dump system		
	 Construction of ISOL offline test facility (2012.06 ~ 2013.05) Optimization of ISOL beamline optical design (2013.06 ~ 2015.04) Manufacture of Surface ion source and FEBIAD-type ion source (2015.04) High purity Sn beam extraction using RILIS for the first time in Korea (2015.12) 				
ISOL System			$\int_{10}^{10} \frac{Sn \text{ isotopes}}{10} \frac{137}{120} \frac{137}{120} \frac{137}{120} \frac{137}{140}$		
	Installation of ISOL test f	acility Extraction and s	separation of Sn and Cs ion beams		

Major Achievements

Items	Major achievements				
	 Manufacture of TPC, neutron detector prototypes for nuclear physics (2013.10 ~ 2014.12) Manufacture and performance test of PPAC prototype detector for beam tracking (2013.10 ~ 2015.03) Installation of laser cooled Calcium ion system (2015.04) Manufacturing DAQ module prototype for µSR (2013.10 ~ 2015.04) Performance test of neutron detector for LAMPS (2015.10) 				
Experimental system	Previous dange restrictions of the second s	Fortyre Tr			
	Engineering design of KOBRA system	Manufacture and performance test of TPC for LAMPS	Engineering design of application Expt. systems (µSR, NDPS, BIS)		
	 Start the purchasing process of SCL3 (18.5 MeV/u) cryoplant (4.2 kW) (2017.03) Building the control infrastructure with EPICS (2013.01 ~ 2015.04) Solid state power amp (SSPA) testing for superconducting & normal conducting cavities (2013.01 ~ 2016.01) 				
Cryo-, control, RF systems		Ver Nende Ter hande Wer Nende Ver Nende Ter hande Ter hande	Combane SSPA		
	Cryogenic System (Warm pumping system for 2K)	Control system testbed	Prototype RF system		

Major Milestones

LAMPS: Large Acceptance Multi-Purpose Spectrometer

20-24 August 2018

APCTP-BLTP JINR (2018)

Overview of LAMPS

Overview of LAMPS

Prototype TPC: Design

Prototype TPC: Components

[Readout Pads] Tested pads with the two different dimensions $3 \times 10 \text{ mm}^2$: 357 Ch./Oct. $4 \times 15 \text{ mm}^2$: 175 Ch./Oct. Multi-layer PCB board

[GEM Foil] Trapezoidal shape Thickness: 75 μ m Area: 166 × 118 mm² Triple layers for each plane

[Field Cage]

35 μ m thick and 2 mm wide Cu strips 500 μ m gap between adjacent strips Mirror strips on the back 1 M Ω resistors with 0.1% var. TPC body: G10 + Aramid honeycomb

20-24 August 2018

APCTP-BLTP JINR (2018)

Prototype TPC: Assembly

Inner Field Cage installed

Outer Field Cage installed

Prototype TPC assembled

Prototype TPC: Test at ELPH

ELPH: Research Center for Electron Photon Science at Tohoku University, Japan

Dates: November 2016
Beams: e⁺ beams at 500 MeV
Gas: Ar(90%)+CH₄(10%) (P10) Ar(90%)+CO₂(10%) (ArCO₂)
Purpose: To study the detailed characteristics, such as v_{drift} , diffusion and σ_x , of LAMPS TPC

Prototype TPC: Event Displays

Prototype TPC: Drift Velocity

Maximum distance: 512 timing bins \times 0.04 μ s/bin \times 5 cm/ μ s \cong 100 cm

Tested P20 with cosmic muons: $v_{drift} > 6 \text{ cm}/\mu \text{s}$ that will be suitable for LAMPS TPC if read out from only one endcap side.

Prototype TPC: Diffusion

 $\sigma_0:$ coefficient depending on the amplification system

Prototype TPC: Position Resolution

Neutron Detector Array (NDA)

- Constructed the real-size prototype detectors and tested their performances using
 - Radiation sources: ⁶⁰Co and ²⁵²Cf
 - Neutron beams at RCNP, Japan (this talk)

NDA: Beam Test at RCNP

- E479 approved in B-PAC in March 2016
 -] Date: May 2016
 - Beam specifications
 - Protons on Li production target (p+⁷Li \rightarrow n + ⁷Be)
 - Neutron energies: 65 and 392 MeV in N0 beamline
 - 10 nA flux \times 1/9 chopping
 - Background neutron above 3MeV is less than 1% [NIMA629, 43 (2011)]

NDA: RCNP-E479

Distance from target to the detector: 15 m
 Gap between stations: 60 cm
 Dim. of each S1 detector: 10 × 10 × 100 cm³
 Dim. of each S2 detector: 10 × 10 × 200 cm³
 Beam size at S1: 25 × 30 cm²

20-24 August 2018

NDA: Energy Resolution for Neutrons

NDA: Position Resolution for Neutrons & Cosmics

• Hit position difference between *D*1 and *D*2 for neutrons: $\Delta x_{S1} \equiv x_{D1} - x_{D2}$ for 10 MeV threshold and $\delta t < 3$ ns Relative position resolution for neutrons for one bar: $\sigma_n = \frac{\sigma(\Delta x_{S1})}{\sqrt{2}} = 3.1$ cm

Preliminary

• Position difference between the projected hit position and the hit position for D3 for cosmic muons: $\Delta x_{S2} \equiv x_{D3,proj} - x_{D3,hit}$

Relative position resolution for cosmic muons for one bar:

$$\sigma_{\mu} = \frac{\sigma(\Delta x_{S2})}{1.87} = 3.1 \text{ cm}$$

NDA: Assembly

Curing UV glue

Fixing light guide with vice

Closeup view of the interface between scintillator & lightguide

Assembly facility at Sejong Campus of Korea University which is close to the RAON site

Summary

- Rare Isotope Science Project (RISP) at IBS, Korea is moving forward.
- The construction and civil engineering for RAON has begun.
- LAMPS is a dedicated spectrometer for nuclear symmetry energy at RAON.
- Performance tests of the prototype TPC and the neutron-detector-array modules with accelerator beams were done.
- Assembly of neutron-detector-array modules recently started. Plan to finish the construction this year.