THE 12th APCTP-BLTP JINR JOINT WORKSHOP

Study of ¹⁹Ne and ¹⁹F structures for astrophysical implication

Kevin Insik Hahn Ewha Womans University

Ph.D. thesis work by Dahee Kim

Motivation

Classical nova

Binary star system

- X-ray Bursts
- Classical Novae

White dwarf

Accretion disk

M	Otivation Properties of ¹⁸ F	
18	³ F ~110min 180 + v +	e ⁺ e ⁺
	Table 1.1. List of γ -ray emission type	s for CO and ONe nova [7].

Nova type	Isotope	Mean lifetime	Main emission type
CO & ONe	^{13}N	$9.965 \min$	511 keV line & continuum
CO & ONe	18 F	$109.77 \min$	511 keV line & continuum
CO	^{7}Be	77 days	478 keV line
ONe	22 Na	$2.6018 \ yr$	1275 keV line
ONe	26 Al	$10^6 { m yr}$	1809 keV line

¹⁸F(p, α)¹⁵O reaction in nova explosion

Important positron annihilation source

 $^{18}F(p,a)^{15}O$ reaction rate is dominated by

- 1. $3/2^{-}$ resonance at $E_{cm} = 330 \text{keV} \implies \text{clearly measured}$.
- 2. the interference of $3/2^+$ states at E_{cm} = 8 and 38 keV and broad resonance at E_{cm} = 665 keV \Rightarrow still controversial !!

Is γ -Ray Emission from Novae Affected by Interference Effects in the ¹⁸F(p, α)¹⁵O Reaction?

A. M. Laird,^{1,*} A. Parikh,^{2,3} A. St. J. Murphy,⁴ K. Wimmer,^{5,6} A. A. Chen,⁷ C. M. Deibel,^{8,9} T. Faestermann,^{10,11} S. P. Fox,¹ B. R. Fulton,¹ R. Hertenberger,^{11,12} D. Irvine,⁷ J. José,^{2,3} R. Longland,^{2,3} D. J. Mountford,⁴ B. Sambrook,⁷ D. Seiler,^{10,11} and H.-F. Wirth^{11,12}

Present work							
E_x (MeV)	E_{cm} (keV)	J^{π}	$\Gamma_p (\text{keV})^{\text{b}}$	$\Gamma_{\alpha} (\text{keV})^{\text{b}}$			
6.014(2)	-397	3/2-					
6.072(2)	-339 ^c	$(3/2^+, 5/2^-)$	0.143	$6 imes 10^{-4}$			
6.097(3)	-314	$(7/2, 9/2)^+$		•••			
6.132(3)	-282°	$(3/2^+, 5/2^-)$	0.143	7×10^{-4}			
6.289(3)	-122						
6.416(3)	5°	$(3/2^{-}, 5/2^{+})$	$4.7 \times 10^{-50}, \ 1.2 \times 10^{-51}$	0.5, 0.126			
6.440(3)	29	$(11/2^+)$					
6.459(3)	48 ^c	$(5/2^{-})$	$8.4 imes 10^{-14}$	5.5			
6.700(3)	289						
6.742(2)	331 ^c	$(3/2^{-})$	2.22×10^{-3d}	5.2 ^d			
6.862(2)	451	$(7/2^{-})$	1.1×10^{-5d}	1.2 ^d			

None of three states just above the proton threshold are found to be consistent with 3/2+ assignment!

We need to decide <u>the resonance energy and J^{π} of important</u> states around the proton threshold for the determination of the <u>reaction rate</u>.

Low alpha threshold energy! Easy to find the resonances around the proton threshold via ${}^{15}O + \alpha$!

Motivation

• ¹⁸F nucleosynthesis in the classical nova

Previous study

• Interference effect

- Several resonances near the proton threshold (E_x = 6.411 MeV) mainly affect the ¹⁸F(p,α)¹⁵O reaction rate in T₉ = 0.04 ~ 0.4. These states were well investigated by many studies.
- However, the 3/2+ subthreshold states and above the proton threshold have interference, and they affect the reaction rate between T₉ = 0.04 ~ 0.4.

E _r (keV)	J^{π}	Γ_p (keV)	Γ_{α} (keV)	Ref.
8	3/2+	2.2×10^{-37}	0.5	[10]
26	1/2-	1.1×10^{-20}	220.0	[10]
38	3/2+	4.0×10^{-15}	4.0	[10]
287	5/2+	1.2×10^{-5}	1.2	[10]
330	3/2-	2.22×10^{-3}	2.7	[11]
450	7/2-	1.6×10^{-5}	3.1	[12]
664.7	3/2+	15.2	24.0	[8]
827	3/2+	0.35	6.0	[12]
842	$1/2^+$	0.2	23.0	[12]
1009	7/2+	27.0	71.0	[12]
1089	5/2+	1.25	0.24	[12]
1122	5/2-	10.0	21.0	[12]

Astrophysical S- factor of the ¹⁸F(p,a)¹⁵O reaction

_

K. Y. Chae et al.

Previous study

• Missing state

C.D. Nesaraja et al. ¹⁹Ne and ¹⁹F mirror states

- Due to the insufficient experimental results in ¹⁹Ne, important resonance parameters of ¹⁹Ne were extracted from the mirror nucleus ¹⁹F.
- The E_x = 7.054 MeV state in ¹⁹Ne may affect the ¹⁸F(p,α)¹⁵O reaction rate. However, it has not been measured yet.

Previous study

• Alpha cluster states

Excitation energy [MeV] 6.5 5.5 7.5 8.5 45(Data 400 350 R-matrix fit [Js/qu] [Js/qu] [Jb/op 150 R-matrix no new states 100 2.5 3.5 4.5 3 5.5 2 5 .5 E_{com} [MeV]

Otani et al. (2016) Theoretical calculation on the excitation energies of the cluster structure states in ¹⁹Ne D. Torresi et al. (2017)

¹⁵O+alpha excitation function fitting resul t ($\theta_{c.m.} = 180^\circ$) Fitting result used R-matri x code (SAMMY)

Purpose

To study the ¹⁸F(p,α)¹⁵O reaction rate
 Affects the abundance calculation model of ¹⁸F in the classical nova

$^{15}O+\alpha \rightarrow ^{19}Ne^*$

 Find accurate resonance parameters of ¹⁹Ne near the proton threshold

6.419 MeV, 6.449 MeV, ^{Spin, Parity ?} (7.054 MeV), 7.0757 MeV, 7.420 MeV

Missing state

Existence ??

 To investigate the structures of ¹⁹Ne and ¹⁹F in a wide energy range

Experimental set-up

Thick target method

2018.08.23

Reaction reconstruction

Reaction reconstruction

position at the F3 window

Reaction reproduction

• Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{YM(^4He)}{N_{beam}N_A T_{eff}\Delta\Omega}$$

Y:yield (#/s)

M(⁴He) : 4.003 g/mol

N_{beam} : number of ¹⁵O beam particles

N_A: Avogadro number(6.02*10²³#)

T_{eff} : Effective thickness (g/cm²)

 $\Delta\Omega$: solid angle (sr)

Data analysis

Background reduction

Cross section

Cross section

• The obtained ¹⁹F resonance parameters

	This work							
$\mathrm{E}_x \; (\mathrm{MeV} \pm \mathrm{keV})$) Γ_{α} (keV)	$\Gamma (\text{keV})$	J^{π}	Ref.	$E_{c.m.}$ (MeV)	E_x (MeV)	Γ_{α} (keV)	l J
6.536 ± 5^a	245 ± 6	-	$\frac{1}{2}^{-}$	[19,23,25]				
6.838 ± 0.9^b	1.2	-	$\frac{5}{2}^{+}$	[19, 23]	2.82	6.83	2.4 ± 0.6	$3 \frac{5}{2}$
6.989 ± 3^b	96 ± 6	-	$\frac{1}{2}^{-}$	[19, 23]	2.98	6.99	100 ± 32	$0 \frac{1}{2}$
7.114 ± 6^b	~ 30	-	$\frac{3}{2}^{+}$	[19, 21]	3.10	7.11*	32 ± 6	$3(\frac{5}{2})$
	25 ± 4	-	$\frac{5}{2}^{+}$	[23]			23 ± 4	$3(\frac{7}{2})$
	32	-	$\frac{7}{2}^{+}$	[15, 19]				
7.353^a	65	-	$\frac{7}{2}^{+}$	[19, 23]	3.32	7.33	69 ± 10	$3(\frac{5}{2})$
							39 ± 8	$3(\frac{7}{2})$
7.56 ± 10^{b}	-	< 90	$\frac{7}{2}^+$	[19]	3.53	7.56^{*}	78 ± 7	$3 \frac{7}{2}$
7.587	$\Gamma_{lab} < 50$	-	$(\frac{5}{2}^{-})$	[29]	3.58	7.59	49 ± 13	$2 \frac{5}{2}$
7.702 ± 5	-	< 30	$\frac{1}{2}^{-}$	[29]	3.68	7.69	59 ± 25	$2(\frac{3}{2})$
7.88^{c}	-	< 260	-	[19]				

TABLE I: Resonance parameters of the levels in 19 F with $E_x = 6.5 - 7.9$ MeV.

^bfrom Ref. [29]

 $^c{\rm from}$ Ref. [19]

* used for the calibration

Discussion (19F)

- We successfully reproduce the previous experimental result of ¹⁹F.
- The $E_x = 7.114$ MeV state J^{π} could be assigned with 7/2+ and 5/2+. We obtained the best fit with 5/2+, and the J^{π} =3/2+ was ruled out.
- The $E_x = 7.353$ MeV state spin assignment was changed from 7/2+ to 5/2+.
- The $E_x = 7.56$ and 7.58 MeV states were newly determined the alpha width.
- The $E_x = 7.69$ MeV state can be a newly found state in ¹⁹F because we could not find the corresponded J^T and Γ_{α} in the previous results.

• The obtained ¹⁹Ne resonance parameters

Previous study					Tł	nis work	
$E_x^a (MeV \pm keV)$	$E_{\gamma}{}^a$ (keV)	$\Gamma_{\alpha} \; (\mathrm{keV})$	J^{π}	Ref.	$ E_x (MeV)$	$\Gamma_{\alpha} \ (\mathrm{keV})$	J^{π}
6.437	26 ± 9	216 ± 19	$\frac{1}{2}^{-}$	[26, 49]			
6.939	528 ± 309	99 ± 69	$\frac{1}{2}^{-}$	[51]	6.94	138	$\frac{1}{2}^{-}$
(7.054)	643 ± 30	29 ± 25	$(\frac{5}{2}^+, \frac{7}{2}^+)$	[15, 51]	7.03	20	$\frac{5}{2}^+$
7.076	664.7 ± 16	23.8 ± 1.2	$\frac{3}{2}$	[4,10,14,15,18,19,21,22,23]	7.11	38	$\frac{3}{2}^{+}$
7.326	915 ± 11	46 ± 40	$\frac{\overline{1}}{2}^+$	[14, 42, 49]	7.24	- 38	$(\frac{5}{2}^+)$
7.420	1009 ± 14	71 ± 11	$(\frac{\bar{7}}{2}^+)$	[15, 23]	7.35	72	$\frac{7}{2}^{+}$
7.531	1120 ± 11	21 ± 11	$\frac{\overline{5}}{2}$	[4, 23, 49]	7.35	25	$\frac{5}{2}$
7.608	1197 ± 11	43 ± 15	$\frac{3}{2}^{+}$	[4, 51]	7.40	46	(3^{-})
7.644	1233 ± 12	16 ± 6	$(\frac{1}{2}^{-},\frac{3}{2}^{-})$	[4, 22, 51]	• 1.49	40	$(\overline{2})$
7.758	1347 ± 5	5 ± 2	$\frac{3}{2}$	[22]	7.78	308	$\left(\frac{5}{2}^{-}\right)$

Table 3.3. Summary of ¹⁹Ne resonance parameters compared with previous studies.

^afrom Ref. [51]

Discussion (¹⁹Ne)

- The 7.076 MeV state was identified and assigned the J[™] with 3/2+.
- The strong peak was found at $E_x \sim 7.3$ MeV which may consist with four resonances , $E_x = 7.326$, 7.420, 7.531, and 7.644 MeV.
- The 7.326 MeV state was ruled out for the ${}^{18}F(p,\alpha){}^{19}Ne$ reaction rate calculation due to the weak evidence. However, we found the state with a large alpha width, so we suggest that the 7.326 MeV state should be considered to the reaction calculation.

• Mirror states

This diagram shows the presumed mirror states using our analysis results.

- The mirror state of 7.076 MeV state in ¹⁹Ne is still missing.
- The missing state at $E_x = 7.054$ MeV was measured in the present experiment. This state can be corresponded to $E_x = 7.114$ MeV state in ¹⁹F.
- The mirror state of $E_x = 7.56$ MeV in ¹⁹F was found at $E_x = 7.420$ MeV in ¹⁹Ne.
- For the $E_x = 7.608$ MeV state, which may be a new state in ¹⁹Ne, we found the candidate of a mirror state at $E_x = 7.64$ MeV.

Result : ${}^{18}F(p,\alpha){}^{15}O$ reaction rate

- The ¹⁸F(p,α)¹⁵O reaction rate was calculated using our results.
- The $E_x = 7.076$ MeV state is still dominant in the reaction rate.
- We found newly determined E_x = 7.420 and 7.326 MeV states, and these states also affect the ¹⁸F(p, α)¹⁵O reaction rate

Conclusions

- Experimental data for ¹⁹F, which is the mirror nuclei of ¹⁹Ne, were also taken for the analysis of ¹⁹Ne data
- More than 8 peaks in ¹⁹Ne were shown in silicon telescopes with energy resolution of $E_{c.m.} = 40$ keV.
- The ¹⁸F(p,α)¹⁵O reaction rate was calculated using our data, and we found newly observed states which affect the reaction rate.
- Investigation of alpha cluster structures in ¹⁹Ne and ¹⁹F are in progress.

Thank you for your attention