Possibilities of production of new isotopes

G.Adamian, N.Antonenko, Sh.Kalandarov BLTP, JINR

V.Sargsyan *BLTP, JINR / Uni Giessen* Myeong-Hwan Mun, UNIST,

Youngman Kim RISP, IBS

Production of new isotopes

- Fusion reactions, particular with radioactive beams.
- Fission of heavy nuclei.

- Multinucleon transfer reactions (V.V.Volkov et al.). The new neutron-rich nuclei in a wide region of the nuclear chart can be reached by multinucleon transfer reactions with radioactive ion beams at incident energies near the Coulomb barrier. Q_{gg} -systematic

- Quasifission reactions

- Fragmentation reactions.

The cross section of the production of a primary nucleus (Z,N) in the diffusive nucleon transfer reaction is written as a sum over all partial waves J.

$$\begin{split} \sigma_{Z,N}(E_{\text{c.m.}}) &= \sum_{J} \sigma_{Z,N}(E_{\text{c.m.}}, J), \\ \sigma_{Z,N}(E_{\text{c.m.}}, J) &= \int_{0}^{\pi/2} \int_{0}^{\pi/2} d\cos \Theta_{1} d\cos \Theta_{2} \\ &\times \sigma_{c}(E_{\text{c.m.}}, J, \Theta_{i}) Y_{Z,N}(E_{\text{c.m.}}, J, \Theta_{i}). \end{split}$$

The primary charge and mass yields of fragments can be expressed by the product of the formation probability $P_{Z,N}(t)$ of the DNS configuration with charge and mass asymmetries given by *Z* and *N* and of the decay probability of this configuration in *R* represented by the rate A_{ZN}^{qf}

$$Y_{Z,N} = \Lambda_{Z,N}^{qf} \int_0^{t_0} P_{Z,N}(t) dt.$$

$$\begin{split} \frac{d}{dt} P_{Z,N}(t) &= \Delta_{Z+1,N}^{(-,0)} P_{Z+1,N}(t) + \Delta_{Z-1,N}^{(+,0)} P_{Z-1,N}(t) \\ &+ \Delta_{Z,N+1}^{(0,-)} P_{Z,N+1}(t) + \Delta_{Z,N-1}^{(0,+)} P_{Z,N-1}(t) \\ &- \left(\Delta_{Z,N}^{(-,0)} + \Delta_{Z,N}^{(+,0)} + \Delta_{Z,N}^{(0,-)} + \Delta_{Z,N}^{(0,+)} \right. \\ &+ \Lambda_{Z,N}^{qf} + \Lambda_{Z,N}^{\text{fis}} \right) P_{Z,N}(t), \end{split}$$

$$P_{Z,N}(0) = \delta_{Z,Z_i} \delta_{N,N_i}$$
 - initial condition

If the primary nucleus is excited, one should take into consideration its survival probability W_{sur} in the deexcitation process to obtain the evaporation residue cross section as follows

$$\sigma_{Z,N-x}^{ER}(E_{\text{c.m.}}) = \sum_{J} \sigma_{Z,N}(E_{\text{c.m.}},J)W_{\text{sur}}(E_{\text{c.m.}},J,x),$$

In the experiments

S.Heinz et al. EPJ A **38** (2008) 227; EPJ A **43** (2010) 181; V.Comas et al. EPJ A 48 (2012) 48; EPJ A 38 (2013) 49; S.Heinz et al. EPJ A **51** (2015) 140 the clear signatures were observed for the formation of long-living DNS which rotates by

large angles.

The calc. (open circles) cross sections of S isotopes are compared with the exp. ones (solid circles) for the ${}^{40}Ca + {}^{208}Pb$ reaction ($E_{c.m} = 208.8$ MeV) [PRC 71, 044610 (2005)]. ⁵⁸Ni($\dot{E}_{c.m.} = 256.8 \text{ MeV}$)+²⁰⁸Pb L. Corradi *et al.*, Phys. Rev. C **66**, 024606 (2002); J. Phys. G **36**, 113101 (2009). ⁶⁴Ni($E_{c.m.} = 307.4 \text{ MeV}$)+²³⁸U L. Corradi *et al.*, Phys. Rev. C **59**, 261 (1999). In the ⁵⁸Ni+²⁰⁸Pb reaction, ⁵⁰Ti and ⁵²Ti are produced with the cross sections 1 and 0.2 mb, respectively, which are consistent with our calculated cross sections 0.6 and 0.35 mb, respectively. In the ⁶⁴Ni+²³⁸U reaction the

experimental and theoretical production cross sections for ⁵²Ti are 0.5 and 1.6 mb, respectively.

In the ⁴⁸Ca($E_{c.m}$ = 274.6 MeV)+ ²³⁸U reaction the experimental [S. Lunardi, *AIP Conference Proceedings* **1120**, p. 70.] and calculated ratios of secondary yields *Y* (⁶²Fe)/*Y*(⁵⁸Cr) for the neutron-rich ⁶²Fe and ⁵⁸Cr isotopes are about 0.2 and 0.3, respectively.

⁴⁸Ca+²⁴⁴Cm ▲
$$E_{cm}$$
=207 MeV
⁴⁸Ca+²⁴⁶Cm ● E_{cm} =205.5 MeV
⁴⁸Ca+²⁴⁸Cm ■ E_{cm} =204 MeV

PRC 71 (2005) 034603

The possibilities for producing neutron-rich isotopes ^{52,54,56,58}Ca in the transfer reactions with rare-earth targets.

Phys. Rev. C **89** (2014) 034622 Phys. Rev. C **91** (2015) 054610

The predicted cross sections of the production of neutron-rich isotopes 148,150,152 Xe in the transfer reactions with the radioactive beam of 144 Xe. The cross sections correspond to the maxima of 0n evaporation channels.

The expected maximal cross sections of the production of neutron-rich isotopes 202,204,206 Pt in the 0n evaporation channels of the listed transfer reactions.

Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions (suggested by Yu.Oganessian, G.Ter-Akopian, R.Wolski)

<u>Production of unknown</u> <u>neutron-deficient isotopes of</u> <u>U, Np, Pu, Am, Cm, and Cf</u>

N = 126

If the lifetimes of these isotopes are larger than 5μ s, the spectroscopic study becomes possible for them.

Evaporation residue cross sections in the reactions

 $^{24,25,26}Mg + ^{204,206,207,208}Pb \longrightarrow Pu + xn$

 $^{28,30}Si + ^{204,206,207,208}Pb \longrightarrow Cm + xn and \alpha xn$

 $^{27}Al + ^{204,206}Pb \longrightarrow Am + xn$

 40,44,48 Ca + 184,186 W \longrightarrow Pu + xn

 40,44 Ca + 190,192 Os \longrightarrow Cm + xn and α xn

²⁸Si + ¹⁹²Pt, ⁴⁴Ca + ¹⁷⁶Hf \rightarrow U + xn

 $^{34}S + ^{204,206}Pb \longrightarrow Cf + xn$

Reactions	$E_{\rm lab}$ (MeV)	$E_{\rm CN}^*$ (MeV)	J_{\max}	ER	$\sigma_{Z,A}^{expt}$ (μ b)	$\sigma_{Z,A}$ (μ b)	Production channels (weights in %)
⁵⁸ Ni + ⁵⁰ Cr	319	102	75	¹⁰⁰ In	2.6	5.6	ap3n
⁵⁸ Ni + ⁵⁸ Ni	325	96	78	¹⁰⁰ In	0.8	3.1	¹² Cp3n (80%), 3αp3n (20%)
⁵⁸ Ni + ⁵⁸ Ni	348	107	78	¹⁰⁰ In	1.7	5.2	¹² Cp3n (60%), 3αp3n (40%)
⁵⁸ Ni + ⁵⁸ Ni	371	119	78	¹⁰⁰ In	1.7	3.2	¹² Cp3n (40%), 3αp3n (60%)
⁵⁸ Ni + ⁵⁸ Ni	394	131	78	¹⁰⁰ In	1.6	0.86	¹² Cp3n (10%), 3αp3n (90%)
⁵⁸ Ni + ⁵⁰ Cr	249	70	64	¹⁰¹ Sn	$(1.6 \pm 0.4) \times 10^{-2}$	8.2×10^{-2}	$\alpha 3n$
⁵⁸ Ni + ⁵⁸ Ni	325	96	78	¹⁰¹ Sn	$(0.9 \pm 0.4) \times 10^{-2}$	5.0×10^{-2}	¹² C3n (70%), 3α3n (30%)
⁵⁸ Ni + ⁵⁸ Ni	348	107	78	¹⁰¹ Sn	$(1.3 \pm 0.3) \times 10^{-2}$	4.2×10^{-2}	$^{12}C3n$ (50%), $3\alpha 3n$ (50%)
⁵⁸ Ni + ⁵⁸ Ni	371	119	78	¹⁰¹ Sn	$(2.8 \pm 1.0) \times 10^{-2}$	3.6×10^{-2}	¹² C3n (35%), 3α3n (65%)
⁵⁸ Ni + ⁵⁸ Ni	394	131	78	¹⁰¹ Sn	$(0.7 \pm 0.4) \times 10^{-2}$	0.6×10^{-2}	¹² C3n (5%), 3α3n (95%)
⁵⁸ Ni + ⁵⁴ Fe	200	40	27	¹¹⁰ Xe	1.0 ± 0.2	0.7	2n
⁵⁸ Ni + ⁵⁴ Fe	215	47	40	¹⁰⁹ Xe	$(1.0 \pm 0.2) \times 10^{-2}$	5.8×10^{-2}	3n
⁵⁰ Cr + ⁵⁸ Ni	255	92	75	¹⁰⁰ In	1.0	0.8	$\alpha p3n$
⁵⁰ Cr + ⁵⁸ Ni	255	92	75	¹⁰⁰ Sn	$4.0 imes10^{-2}$	$1.0 imes 10^{-2}$	$\alpha 4n$

The comparison of experimental (solid symbols) and calculated (open symbols connected by line) excitation functions for production of indicated isotopes of (a) Te and (b) I in the ⁵⁸Ni+⁵⁴Fe reaction. The experimental data are from [A. Korgul *et al.*, Phys. Rev. C 77, 034301 (2008).].

FIG. 5. The calculated excitation functions for the production of 100 Sn (\blacksquare), 101 Sn (\square), 102 Sn (\blacktriangle), and 103 Sn (\triangle) in cluster emission channels of the reactions (a) 58 Ni + 58 Ni and (b) 56 Ni + 58 Ni.

Summary

1) The production of neutron-rich nuclei in multinucleon transfer reactions is possible at incident energies close to the Coulomb barrier.

2) Multinucleon transfer reactions could be the only way to produce some unknown isotopes of actinides and transactinides.

3) Complete fusion reactions allow us to produce many neutron-deficient isotopes with N close to 126.

Thank you.