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1.1 Inflation
Inflation is an extremely rapid (exponentially) expansion of
the universe after its creation (t ≃ 10−34 s):

a(t) = aie
H(t−ti)

a(t): the expansion factor; H: Hubble constant

(A. Guth, 1981)



1.1 Inflation (Cont.)
Inflation solves several Big Bang Puzzles:

The Cauchy Problem

The Horizon Problem

The Monopole Problem

The Flatness Problem
...



1.1 Inflation (Cont.)
• All observations carried so far support Inflation

CMB measured by Planck 2015 (arXiv:1502.02114):



1.2 Initial Singularity Problem

However, inflation is also facing various
challenging (theoretical) problems
• Initial Singularity Problem:

General relativity (GR) inevitably leads
inflation to an initial
singularity 1, with
which in principle it is
not clear how to impose
the initial conditions.

1A. Borde and A. Vilenkin, PRL72 (1994) 3305; A. Borde, A. H.

Guth, and A. Vilenkin, PRL90 (2003) 151301.



1.3 The Problem of Initial Conditions

• The Problem of Initial Conditions:
Many inflationary scenarios only work if the fields are
initially very homogeneous and/or start with precise initial
positions and velocities.
Any physical understanding of this “fine-tuning” requires a
more complete formulation with ever-higher energies, such
as string theory.

• ...



1.4 Inflation is sensitive to Planckian physics

•Therefore:
Inflation is very sensitive to Planck-scale physics, and
effects of quantum gravity in the early universe are
important and need to be taken into account 2.

2D. Baumann, TASI Lectures on Inflation, arXiv:0907.5424

C.P. Burgess, M. Cicoli, F. Quevedo, JCAP 1311 (2013) 003

D. Baumann and L. McAllister, Inflation and String Theory

(Cambridge Monographs on Mathematical Physics, Cambridge

University Press, 2015)

E. Silverstein, TASI lectures on cosmological observables and

string theory, arXiv:1606.03640.
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2. A Brief Introduction to LQC
Simple Harmonic Oscillator:

H =
p2

2m
+

1

2
mω2x2 = ℏω

(
N+

1

2

)
N = a†a

a =

√
mω

2ℏ

(
x+

ip

mω

)
a† =

√
mω

2ℏ

(
x− ip

mω

)

Discrete eigenstate:

N |n⟩ = n |n⟩ , H |n⟩ = En |n⟩

H |0⟩ = E0 |0⟩ , En ≡ ℏω
(
n+

1

2

)



2. A Brief Introduction to LQC
In LQC, one can naturally define operators representing
geometric observables.
The area operator Â:

Â |0⟩ = ∆ |0⟩

∆ ≡ 4
√
3πγ: the smallest nonzero eigenvalue

γ: Barbero-Immirzi parameter
∆ represents the fundamental area gap and sets an
energy scale,

ρB ≡ 18π
(mpl
∆

)3
mpl



2. A Brief Introduction to LQC (Cont.)
In GR, the Friedmann equation

H2 =
8πG

3
ρ (1)

always leads to a singularity 3.
For example,

a(t) = ait
α, α > 0

⇒ H2 =

(
ȧ

a

)2

=
α2

t2

⇒ ρ =

(
3

8πG

)
α2

t2
→ ∞, ast → 0 (2)

3A. Borde and A. Vilenkin, PRL72 (1994) 3305; A. Borde, A. H.

Guth, and A. Vilenkin, PRL90 (2003) 151301.



2. A Brief Introduction to LQC (Cont.)
In LQC, the matter density is bounded above 4

ρ ≤ ρB

and the Friedmann equation is modified to

H2 =
8πG

3
ρ

(
1− ρ

ρB

)
, (ρ ≤ ρB) (3)

In LQC, the modifications are purely due to quantum
geometry, and matter satisfies the same field equations, as
in QFTs. For example, for a scalar field, the Klein-Gordon
equation still holds,

ϕ̈+ 3Hϕ̇+ V′(ϕ) = 0

4A. Ashtekar, T. Pawlowski and P. Singh, PRL96 (2006) 141301.



2. A Brief Introduction to LQC (Cont.)
The bib bang singularity is replaced by a quantum bounce,
which naturally happens at
ρ ≃ ρB.

[V ∝ a3. Ashtekar & Barrau, CQG32 (2015) 234001]



2. A Brief Introduction to LQC (Cont.)
By now, a large number of cosmological models have been
studied in detail in LQC 5, including

f(R) universe
the closed FLRW model
FLRW models with Λ with any signs
the Bianchi models
the Gowdy model, which incorporates the simplest types of
inhomogeneities in full GR
...

In ALL cases, the singularity is resolved
Therefore, the first problem is resolved!!!

5A. Ashtekar and P. Singh, CQG 28 (2011) 213001;

I. Agullo and A. Corichi, arXiv:1302.3833.



2. A Brief Introduction to LQC (Cont.)
Does a slow-roll phase compatible with observations rise
naturally from the quantum bounce? or is an enormous
fine tuning needed?
It was found that: the probability for the desired — i.e. in
agreement with CMB measurements — slow roll inflation
not to occur in an LQC solution is less than about one part
in a million 6,

≲ 1.2× 10−6

— Slow-roll inflation is an attractor in LQC!

6P. Singh, K. Vandersloot and G. V. Vereshchagin,

PRD74 (2006) 043510;

X. Zhang and Y. Ling, JCAP08 (2007) 012;

A. Ashtekar A and D. Sloan, GRG43 (2011) 3619;

A. Corichi and A. Karami PRD83 (2011) 104006;

L. Linsefors and A. Barrau, PRD87 (2013) 123509;

L. Chen and J.-Y. Zhu, PRD92 (2015) 084063.



2. A Brief Introduction to LQC (Cont.)
Can one arrive at the BD vacuum at the onset of the
slow-roll inflation?
or is an even more elaborate fine tuning of quantum state
of perturbations necessary in the Planckian regime?
Because of the pre-inflationary dynamics, particles could
be created during the Planckian regime and are carried
over to the BD vacuum. This could source non-Gaussianity
during inflation and give rise to potential effects in CMB.
Can the state at the onset of the slow roll close enough to
the BD vacuum in order to agree with current observations,
and yet to be sufficiently different to give rise observational
signatures of LQC?
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3. Universality of the Background Evolution
In the framework of LQC, the background evolution can be
divided into two classes:

Initially the evolution is dominated by the kinetic energy of
the inflaton:

1

2
ϕ̇2(tB) > V(ϕ(tB))

Initially it is dominated by the potential energy:

1

2
ϕ̇2(tB) < V(ϕ(tB))

However, a potential dominated bounce is either not able
to produce the desired slow-roll inflation or leads to a large
amount of e-folds of expansion 7.

7A. Ashtekar and A. Barrau, CQG32 (2015) 234001



3. Universality of the Background Evolution (Cont.)

In the kinetic energy initially dominated case, the evolution
of the background can always be divided into three
different phases 8:

(a) Bouncing, (b) transition, (c) slow-roll inflation

w(ϕ) ≡ ϕ̇2/2− V(ϕ)

ϕ̇2/2 + V(ϕ)
=


+1, bouncing
− < w(ϕ) < +1, transition
−1, slow-roll inflation

The transition phase is short,
during which the kinetic energy
decreases dramatically:

ϕ̇2/2 ≃ ρB → 10−12ρB ≤ V(ϕ)

Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5

0.1 100 105

-1.0

-0.5

0.0

0.5

1.0

t/tPl

w
ϕ

8Zhu, AW, Cleaver, Kirsten, Sheng, PLB773 (2017) 196; PRD96 (2017)

083520; Shahalam, Sharma, Wu, AW, PRD96 (2017) 123533.



3. Universality of the Background Evolution (Cont.)

The equations for the evolution of the background (the
zeroth-order approximations):

H2 =
8πG

3
ρ

(
1− ρ

ρB

)
, H ≡ ȧ

a

ϕ̈+ 3Hϕ̇+
dV(ϕ)

dϕ
= 0

ρ =
1

2
ϕ̇2 + V(ϕ), ρB =

1

2
ϕ̇2
B + V(ϕB)

The initial conditions,
(
aB, ϕB, ϕ̇B

)
, but we can always

choose aB = 1, and we also have,

ϕ̇B = ±
√
2ρB − V(ϕB)

so the initial conditions are(
aB, ϕB, ϕ̇B

)
⇒ ϕB (4)



3. Universality of the Background Evolution (Cont.)

The three-phase division is universal:
• Quadratic Potential V(ϕ) = λ0ϕ

2:
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3. Universality of the Background Evolution (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
7/4:
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3. Universality of the Background Evolution (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
4/3:
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3. Universality of the Background Evolution (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ:
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3. Universality of the Background Evolution (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
2/3:
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3. Universality of the Background Evolution (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
1/3:
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3. Universality of the Background Evolution (Cont.)

• Starobinsky Potential

V(ϕ) = 3
32πM

2m2Pl ×
(
1− e

−
√

16π
3

ϕ
mPl

)2
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3. Universality of the Background Evolution (Cont.)

• Monodromy Potential V(ϕ) = V0

∣∣∣ ϕ
mpl

∣∣∣p :



3. Universality of the Background Evolution (Cont.)

• Higgs Potential V(ϕ) = V0
(
ϕ2 − ϕ2

0

)2
:



3. Universality of the Background Evolution (Cont.)
• During the bouncing phase, the evolution of a(t) is
independent of :
(a) the initial conditions ϕB; (b) the inflationary potential; and (c)
is given analytically by

a(t) = aB

(
1 + γB

t2

t2Pl

)1/6

, γB ≡ 24πρB/m
4
Pl

Power-law n=2, ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky ϕB=5
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3. Universality of the Background Evolution (Cont.)

• Evolution of a(t) for different potentials:
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3. Universality of the Background Evolution (Cont.)

• Evolution of a(t) for the Starobinsky Potential:
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3. Universality of the Background Evolution (Cont.)

The main reason is that

1

2
ϕ̇2
B ≫ V(ϕB) ⇒ 1

2
ϕ̇2 ≫ V(ϕ),

holds in the whole bouncing phase, once it holds at the
bounce t = tB.
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3. Universality of the Background Evolution (Cont.)

The evolution during the transition phase is given by,

ϕ(t) = ϕc + tcϕ̇c ln
t

tc
, a(t) = ac

(
1 + tcHc ln

t

tc

)
, (5)

Hc, ac, ϕc: integration constants
During the slow-roll inflation, we have

a(t) = aie
Hinf.t, ϕ ≃ ϕ0 (6)

Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5
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4. Universality of Linear Perturbations
The scalar and tensor perturbations are given by 9,

µ′′
k +

(
k2 − a′′

a
+ U(η)

)
µk = 0 (7)

where a′ ≡ da/dη, dη = dt/a(t), and

U(η) =

{
a2

(
f2V(ϕ) + 2fV,ϕ(ϕ) + V,ϕϕ(ϕ)

)
, scalar

0, tensor

f ≡
√
24πGϕ̇/

√
ρ.

9A. Ashtekar and A. Barrau, CQG32 (2015) 234001



4. Universality of Linear Perturbations (Cont.)

Both of the scalar and tensor perturbations are universal
and independent of the slow-roll inflationary models during
the bouncing phase
This is because the potential U(η) is very small in
comparing with a′′/a, so we have

Ω2
k = k2 − a′′

a
+ U(η) ≃ k2 − a′′

a

during the whole bouncing phase.
Since a(t) is universal during this phase, clearly the mode
functions µ

(s,t)
k ,

µ
(s,t)
k

′′
+Ω2

kµ
(s,t)
k = 0

are also universal.

���������

�����-��� ���� �=�/�

�����������

|���/�|

|�(η)|

-�� -� � � ��

��-�

��-�

��-�

�

�/���

|�
(�
)
�
�
|�
��/
�
|



4. Universality of Linear Perturbations (Cont.)

More interestingly, the term a′′/a can be replaced by a
Pöschl-Teller (PT) potential,

VPT(η) =
V0

cosh2 α(η − ηB)
, V0 = k2B =

α2

6
, V(η) ≡ a′′

a

VPT (η)

V(η)

-2 -1 0 1 2

0

2

4

6

8

10

η-ηB



4. Universality of Linear Perturbations (Cont.)

Then, the mode function has the analytical solution,

µ
(PT)
k (η) = akx

ik/(2α)(1− x)−ik/(2α)

× 2F1(a1 − a3 + 1, a2 − a3 + 1, 2− a3, x)

+bk[x(1− x)]−ik/(2α)
2F1(a1, a2, a3, x).

ak, bk: integration constants, to be determined by initial
conditions. 2F1(a, b, c, x): the hypergeometric function

a1 ≡ 1

2

(
1 +

1√
3

)
− ik√

6 kB
,

a2 ≡ 1

2

(
1− 1√

3

)
− ik√

6 kB
,

a3 ≡ 1− ik√
6 kB

.

Solution with PT potential

Numerical solution
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4. Universality of Linear Perturbations (Cont.)

In the transition phase, the mode functions are given by,

µk(η) =
1√
2k

(
α̃ke

−ikη + β̃ke
ikη

)
α̃k, β̃k: integration constants
In the slow-roll inflation phase, the mode functions are
given by the standard forms,

µ
(s,t)
k (η) ≃

√
−πη

2

[
αkH

(1)
νs,t

(−kη) + βkH
(2)
νs,t

(−kη)
]
,

αk, βk: integration constants.
Three sets of integration constants:

1) Bouncing: (ak, bk)

2) Transition:
(
α̃k, β̃k

)
3) Slow-roll Inflation: (αk, βk)



4. Universality of Linear Perturbations (Cont.)

Matching them together, we find that the Bogoliubov
coefficients, αk, βk, are given by

αk√
2k

=

[
ak

Γ(2− a3)Γ(a1 + a2 − a3)

Γ(a1 − a3 + 1)Γ(a2 − a3 + 1)

+ bk
Γ(a3)Γ(a1 + a2 − a3)

Γ(a1)Γ(a2)

]
eikηB ,

βk√
2k

=

[
ak

Γ(2− a3)Γ(a3 − a1 − a2)

Γ(1− a1)Γ(1− a2)

+ bk
Γ(a3)Γ(a3 − a1 − a2)

Γ(a3 − a1)Γ(a3 − a2)

]
e−ikηB .

Since ai = ai(k/kB), so αk, βk are in general k-dependent.



4. Universality of Linear Perturbations (Cont.)

In general |βk|2 ̸= 0, so particles are generically created at
the onset of inflation.
In GR, we normally impose the BD vacuum at the onset of
the inflation,

αGR
k = 1, βGR

k = 0



4. Universality of Linear Perturbations (Cont.)

Then, the scalar and tensor power spectra are given by,

PR(k) = |αk + βk|2PGR
R (k),

Ph(k) = |αk + βk|2 PGR
h (k),

with

PGR
R (k) ≡ k2

4π3

(
H

aϕ̇

)2

Γ2(νs)

(
−kη

2

)1−2νs

,

PGR
h (k) ≡ k2

π3M2Pl

1

a2
Γ2(νt)

(
−kη

2

)1−2νt



4. Universality of Linear Perturbations (Cont.)

Note that, as mentioned above, αk, βk are usually
k-dependent, so the quantities PR(k) and Ph(k) now also
become k-dependent.

This provides an excellent opportunity to test LQC.

Clearly, such dependence cannot be strong. Otherwise, it
will not be consistent with current observations, which
show that the power spectra are almost scale-invariant 10.

To fix (αk, βk) or (ak, bk), one needs to impose the initial
conditions, which is still a challenging question in LQC.

10P. Collaboration et al., Planck 2015. XX. Constraints on

inflation, arXiv:1502.02114.



4. Universality of Linear Perturbations (Cont.)

In the framework of LQC, various sets of initial conditions
have been investigated. However, this is a subtle issue,
because in general there is not a preferred initial state for a
quantum field in arbitrarily curved space-times.
If the universe is sufficiently spatially flat and evolves
sufficiently slowly so that the characteristic scale for a
perturbation mode
is much larger than
its wavelength, there
is an approximate
definition of the
initial state: the
Bunch-Davies vacuum.
a′′(ts) = 0, λ2 = 2L2H.



4. Universality of Linear Perturbations (Cont.)

However, in the pre-inflationary phases, especially near
the bounce, the wavelengths could be larger, equal, or
smaller than the corresponding characteristic scale. Thus,
it is in general impossible to assume that the universe is in
the Bunch-Davies vacuum at the bounce.
Recently, we considered two different kinds of initial
conditions [Zhu et al, PRD96, 083520 (2017)]:

The fourth-order adiabatic vacuum right at the bounce
The BD vacuum in
contracting phase

Surprisingly, both of
them lead to the same
results:
ak = 0, bk =

eikηB√
2k



4. Universality of Linear Perturbations (Cont.)
• Recently, we also studied the non-Gaussianity and found that
it is consistent with current observations 11.

• But, the non-Gaussianity in the squeezed limit can be
enhanced at superhorizon scales, which can yield a large
statistical anisotropy on the power spectrum.

11T. Zhu, AW, K. Kirsten, G. Cleaver, Q. Sheng, PRD97 (2018) 043501

[arXiv:1709.07479].
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5. Cosmology of Loop Quantum Gravity
Loop quantum gravity (LQG):
A background independent, nonperturbative quantization
of GR by using the Ashtekar variables 12.

Loop quantum cosmology (LQC):
Symmetry reduced quantization of cosmology by
mimicking the constructions used in LQG 13.

LQC has not yet been rigorously derived from LQG, but an
attempt to use LQG-like methods in cosmology.

12C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An

Elementary Introduction to Quantum Gravity and Spinfoam Theory

(Cambridge Monographs on Mathematical Physics, Cambridge, 2015).

13M. Bojowald, Rep. Prog. Phys. 78 (2015) 023901;

I. Agullo and P. Singh, arXiv:1612.01236.



5. Cosmology of Loop Quantum Gravity (Cont.)
In LQG, the elementary classical phase space variables
are the SU(2) Ashtekar-Barbero connection Aia and the
conjugate triad Eai.
In the spatially flat FLRW universe, the only relevant
constraint is the gravitational Hamiltonian constraint, which
is a sum of the Euclidean and Lorentz terms,

Hgrav = H(E)
grav − (1 + γ2)H(L)

grav

H(E)
grav =

1

16πG

∫
d3x ϵijkF

i
ab

EajEbk

|det(q)|

H(L)
grav =

1

8πG

∫
d3x Kj[aK

k
b]

EajEbk

|det(q)|

Fab: the field strength of connection Aia
Kia: the extrinsic curvature
qab: the spatial metric.



5. Cosmology of Loop Quantum Gravity (Cont.)
For spatially flat FLRW universe, we have

H(E)
grav = 2γ2H(L)

grav

Hgrav = H(E)
grav − (1 + γ2)H(L)

grav = − 1

γ2
H(E)

grav

In LQC, using the above relation, instead of quantizing the
Euclidean and Lorentz terms separately, only the
Euclidean term H(E)

grav is quantized.

However, in LQG, these two terms are usually regularized
differently.



5. Cosmology of Loop Quantum Gravity (Cont.)

In particular, if one follows the non-graph-changing
regularization 14, one finds 15

HLQG−I =
3v

8πGλ2

{
sin2(λb)− (γ2 + 1) sin2(2λb)

4γ2

}
+HM

Then, the Hamilton’s equations for the variables v and b,

v̇ =
{
v,H

}
=

3v sin(2λb)

2γλ

{
(γ2 + 1) cos(2λb)− γ2

}
,

ḃ =
{
b,H

}
=

3 sin2(λb)

2γλ2

{
γ2 sin2(λb)− cos2(λb)

}
− 4πGγP (8)

v: the volume; b: momentum; P: pressure
14T. Thiemann, CQG24 (1998) 839; 875.

15J. Yang, Y. Ding, Y. Ma, PLB682 (2009) 1; A. Dapor and K.

Liegener, arXiv:1706.09833.



5. Cosmology of Loop Quantum Gravity (Cont.)

On the other hand, due to the spatial homogeneity and
isotropy, one can also set the spin connection to zero, and
the resulted Hamiltonian takes the form 16,

HLQG−II = − 3v

2πGλ2γ2
sin2

(
λb

2

){
1 + γ2 sin2

(
λb

2

)}
+HM

Then, the Hamilton’s equations for the variables v and b,

v̇ =
{
v,H

}
=

3v sin(λb)

γλ

{
1 + γ2 − γ2 cos (λb)

}
,

ḃ =
{
b,H

}
= −

6 sin2
(
λb
2

)
γλ2

{
1 + γ2 sin2

(
λb

2

)}
− 4πGγP

16J. Yang, Y. Ding, Y. Ma, PLB682 (2009) 1.



5. Cosmology of Loop Quantum Gravity (Cont.)

Therefore, due the quantization ambiguities, so far we
have three different models:

LQC LQG-I LQG-II

However, in all three models, we find the following 17:
the replacement of the big bang singularity by a quantum
bounce is a robust feature against the quantization
ambiguities.
• LQC (red solid curve)
• LQG-I (blue dotted curve)
• LQG-II (green dot-dashed

curve)

17B.F. Li, P. Singh, AW, PRD97 (2018) 084029; Qualitative dynamics

in pre-inflationary universe from loop quantum gravity, arXiv:

1806.xxxxx



5. Cosmology of Loop Quantum Gravity (Cont.)

In each of the three cosmological models, we find universal
properties of the background evolution for the kinetic
dominated bounce, irrespective of the nature of the
inflationary potentials.
In the post-bounce stage but before the Universe enters
the reheating phase, three distinctive phases are identified,

bouncing, transition, slow-roll inflation



5. Cosmology of Loop Quantum Gravity (Cont.)

The evolution of the expansion factor of the universe in the
bouncing phase is independent of the inflationary
potentials and initial conditions, given explicitly by,

a(t) = aB

[
1 +

(
t

tA0

)2
]1/6

, tA0 ≡
(
24πGρAc

)−1/2

ρAc: the critical energy density
(A = 0, I, II)

Slow-roll inflation is a generic outcome in all these three
models.
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6. Conclusions
We study pre-inflationary dynamics in the frameworks of
LQC and LQG and we find:

• The replacement of the big bang singularity by a
quantum bounce is a robust feature against the
quantization ambiguities

• The slow-roll inflation is generic



6. Conclusions (Cont.)
For initially kinetic energy dominated models, we find:

• The evolution of the universe is always divided into three
different phases:

(1) Bouncing (2) transition (3) slow-roll inflation
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6. Conclusions (Cont.)
• The evolution of the expansion factor is universal during the
bouncing phase:

a(t) = aB

[
1 +

(
t

tA0

)2
]1/6

, tA0 ≡
(
24πGρAc

)−1/2

Power-law n=2, ϕB=1.2

Power-law n=1/3, ϕB=25
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6. Conclusions (Cont.)
• During the pre-inflationary phase, the evolutions of the scalar
and tensor perturbations are all universal and independent of
the slow-roll inflationary models.
• In this phase the potentials of the scalar and tensor
perturbations can be well approximated by an effective PT
potential, for which analytic solutions of the mode functions are
known.

• The Bogoliubov coefficients at the onset of the slow-roll
inflation are generically non-zero,

βk ̸= 0,

in contrast to GR where the initial conditions are normally
taken as the BD vacuum,

βGR
k = 0.



6. Conclusions (Cont.)
• The non-Gaussianity is consistent with current observations,
but in the squeezed limit it can be enhanced at superhorizon
scales, which can yield a large statistical anisotropy on the
power spectrum.



Thank You!
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