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Motivations



1.1 Inflation

m Inflation is an extremely rapid (exponentially) expansion of
the universe after its creation (t ~ 10734 s):

a(t) = azeflt—t)

a(t): the expansion factor; H: Hubble constant




1.1 Inflation (Cont.)

m Inflation solves several Big Bang Puzzles:
"y

m The Cauchy Problem

m The Horizon Problem

The Monopole Problem

The Flatness Problem

£BiGBANGTHEORY
PUZZLE

I x Il inches
| EEmnnn



1.1 Inflation (Cont.)

¢ All observations carried so far support Inflation
m CMB measured by Planck 2015 (arXiv:1502.02114):

Angular scale
%0°  18° r 02 0.1 0.07°

2 10 50 500 1000 1500 2000 2500
Multipole moment, ¢




1.2 Initial Singularity Problem

However, inflation is also facing various
challenging (theoretical) problems

« Initial Singularity Problem:

= General relativity (GR) inevitably leads
inflation to an initial 5 :
singularity !, with
which in principle it is

not clear how to impose
the initial conditions.

'A. Borde and A. Vilenkin, PRL72 (1994) 3305; A. Borde, A. M.
Guth, and A. Vilenkin, PRLI0 (2003) 151301.



1.3 The Problem of Initial Conditions

« The Problem of Initial Conditions:

m Many inflationary scenarios only work if the fields are
initially very homogeneous and/or start with precise initial
positions and velocities.

m Any physical understanding of this “fine-tuning” requires a

more complete formulation with ever-higher energies, such
as string theory.



1.4 Inflation is sensitive to Planckian physics

. Therefore:

Inflation is very sensitive to Planck-scale physics, and
effects of quantum gravity in the early universe are
important and need to be taken into account 2.

D. Baumann, TASI Lectures on Inflation, arXiv:0907.5424

C.P. Burgess, M. Cicoli, F. Quevedo, JCAP 1311 (2013) 003

D. Baumann and L. McAllister, Inflation and String Theory
(Cambridge Monographs on Mathematical Physics, Cambridge
University Press, 2015)

E. Silverstein, TASI lectures on cosmological observables and
string theory, arXiv:1606.03640.
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2. A Brief Introduction to LQC

m Simple Harmonic Oscillator:

2
1 1 1
H = %JrimwQXZ:hw <N+2>
N = afa
mw ip
a = 1
2h (X + mw>
t mw ip
| iy 12
2h mw
m Discrete eigenstate: e -
R Pty -
~ . ~ v
Nn) =nin), Hn) =E,|n) [, "
1 | a0 w0



2. A Brief Introduction to LQC

m In LQC, one can naturally define operators representing
geometric observables.

m The area operator A:
Aj0) = A |0)
A = 4/37v: the smallest nonzero eigenvalue

~: Barbero-Immirzi parameter

m A represents the fundamental area gap and sets an
energy scale,

3
pp = 187 (%) My



2. A Brief Introduction to LQC (Cont.)

m In GR, the Friedmann equation

&G
always leads to a singularity °.
m For example,
a(t)=ait*, a>0
L\ 2 2
2= (2) 2%
a t2
3 o
= (=)= t 2
=p (877G)t2_>00’ ast — 0 (2)

*A. Borde and A. Vilenkin, PRL72 (1994) 3305; A. Borde, A. H.
Guth, and A. Vilenkin, PRLI0 (2003) 151301.



2. A Brief Introduction to LQC (Cont.)

= In LQC, the matter density is bounded above *

P = ps

and the Friedmann equation is modified to

H2=8§Gp(1—/f;), (p < ps) (3)

m In LQC, the modifications are purely due to quantum
geometry, and matter satisfies the same field equations, as
in QFTs. For example, for a scalar field, the Klein-Gordon

equation still holds,

b+ 3Hp+V(¢) =0

*A. Ashtekar, T. Pawlowski and P. Singh, PRL96 (2006) 141301.



2. A Brief Introduction to LQC (Cont.)

m The bib bang singularity is replaced by a quantum bounce,
which naturally happens at

P = pPB-

[V o a®. Ashtekar & Barrau, CQG32 (2015) 234001]



2. A Brief Introduction to LQC (Cont.)

m By now, a large number of cosmological models have been
studied in detail in LQC °, including

£(R) universe

the closed FLRW model

FLRW models with A with any signs

the Bianchi models

the Gowdy model, which incorporates the simplest types of
inhomogeneities in full GR

n ...

m In ALL cases, the singularity is resolved

m Therefore, the first problem is resolved!!!

°A. Ashtekar and P. Singh, CQG 28 (2011) 213001;
I. Agullo and A. Corichi, arXiv:1302.3833.



2. A Brief Introduction to LQC (Cont.)

m Does a slow-roll phase compatible with observations rise
naturally from the quantum bounce? or is an enormous
fine tuning needed?

m It was found that: the probability for the desired — i.e. in
agreement with CMB measurements — slow roll inflation
not to occur in an LQC solution is less than about one part
in a million 6,

<1.2x10°°
— Slow-roll inflation is an attractor in LQC!

6p, Singh, K. Vandersloot and G. V. Vereshchagin,
PRD74 (2006) 043510;

. Zhang and Y. Ling, JCAPO8 (2007) 012;

Ashtekar A and D. Sloan, GRG43 (2011) 3619;

Corichi and A. Karami PRD83 (2011) 104006;

. Linsefors and A. Barrau, PRD87 (2013) 123509;

. Chen and J.-Y. Zhu, PRD92 (2015) 084063.

el



2. A Brief Introduction to LQC (Cont.)

m Can one arrive at the BD vacuum at the onset of the
slow-roll inflation?

m Or is an even more elaborate fine tuning of quantum state
of perturbations necessary in the Planckian regime?

m Because of the pre-inflationary dynamics, particles could
be created during the Planckian regime and are carried
over to the BD vacuum. This could source non-Gaussianity
during inflation and give rise to potential effects in CMB.

m Can the state at the onset of the slow roll close enough to
the BD vacuum in order to agree with current observations,
and yet to be sufficiently different to give rise observational
signatures of LQC?
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3. Universality of the Background Evolution

m In the framework of LQC, the background evolution can be
divided into two classes:

m Initially the evolution is dominated by the kinetic energy of
the inflaton:

1.
50 (1) > V(6(t)
m Initially it is dominated by the potential energy:

S5 (1) < V(p(t))

m However, a potential dominated bounce is either not able
to produce the desired slow-roll inflation or leads to a large
amount of e-folds of expansion 7.

TA. Ashtekar and A. Barrau, CQG32 (2015) 234001



3. Universality of the Background Evolution (Cont.)

m In the kinetic energy initially dominated case, the evolution
of the background can always be divided into three
different phases ®:

(a) Bouncing, (b) transition, (c) slow-roll inflation

gi}2/2 V(o) +1, bouncing
W)= =1 — 1, t iti
w(e) 2721 7(0) <w(p) < +1, transi |on- |
-1, slow-roll inflation

10 L Y

m The transition phase is short,
during which the kinetic energy ) ,‘
decreases dramatically: T e

T L

87hu, AW, Cleaver, Kirsten, Sheng, PLB773 (2017) 196; PRD96 (2017)
083520; Shahalam, Sharma, Wu, AW, PRD96 (2017) 123533.



3. Universality of the Background Evolution (Cont.)

m The equations for the evolution of the background (the
zeroth-order approximations):

G ;
H2:8frp<1—p), =2
3 PB a

dV(¢)

¢ + 3Hop + rraie 0
p= %éﬁQ +V(9), pp= %éfﬁ +V(¢s)

m The initial conditions, (aB, o8, qsp,) but we can always
choose ag = 1, and we also have,

¢ = £v/2p5 — V(op)

so the initial conditions are
(as»¢ss<f)3) = ¢ (4)



e Quadratic Potential V(¢) = \g¢?*:

w(g)

08

06}

w 041

021

0.0

. Universality of the Background Evolution (Cont.)

The three-phase division is universal:

I A =12 mp|
AN ‘ ””” ¢5=1.5 mp|
B ‘\‘ “m ¢p=-9mp




e Power-law Potential V(¢) = \gp"/*:

3. Universality of the Background Evolution (Cont.)
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3. Universality of the Background Evolution (Cont.)

e Power-law Potential V(¢) = \gp"/*:
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3. Universality of the Background Evolution (Cont.)

e Power-law Potential V(¢) = \p¢:

[
¢5=0 mp;
0.5
$p=10 mp,
0.0 $p=20 mp,
-0.5
1.0} e s
ty 1 100 10* 10°

08F

0.61

041

0.2

0.05

- ¢p=0mp
~- ¢p=10 mp,
--- $p=20 mp
o
tg 10* 10° 107

t/tm




3. Universality of the Background Evolution (Cont.)

e Power-law Potential V(¢) = \gp?/*:
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3. Universality of the Background Evolution (Cont.)

e Power-law Potential V(¢) = \gp'/*:
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e Starobinsky Potential

7TM2m§,I X <1 —e

3. Universality of the Background Evolution (Cont.)
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3. Universality of the Background Evolution (Cont.)
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3. Universality of the Background Evolution (Cont.)




3. Universality of the Background Evolution (Cont.)
¢ During the bouncing phase, the evolution of a(t) is
independent of :

(a) the initial conditions ¢g; (b) the inflationary potential; and (c)
is given analytically by

2\ /6
a(t) = ag (1 +’VBt2) , 7B = 247ps/mpy
Pl

otk emeeeees Power-law n=2, ¢g=1.2
77777 Power-law n=1/3, ¢3=25
...... Starobinsky ¢s=5

Anaytical

104 108

titp|



3. Universality of the Background Evolution (Cont.)

« Evolution of a(t) for different potentials:

10° n 106 T
"""" $s=12mp| ' seeesees gp=0.1 mp) it
. !
L e ¢p=1.5 mp| P I BT dp=1mp I.".‘
., . IF
ook ™ ¢p=-9 mp| . O e gy 10y ]
i
© = Analytical O B Analytical i
- ) o
& .- g 4
= 100 - = 27
k> - g 100 2
5 /,/}J
1 /—/’//
- 1
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3. Universality of the Background Evolution (Cont.)

« Evolution of a(t) for the Starobinsky Potential:

av/ag

ITCISNRELIL dp=-18 mp
== gp=—12mp i
------ dp=25 mp| rf
104 - Analytical /i
‘;

100

e

/

SHmmmmre

g 100

Utpy

(5 > 0)

104 100 107
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3. Universality of the Background Evolution (Cont.)

m The main reason is that
1- 1.
508 >V(gs) = 0" >V(9),

holds in the whole bouncing phase, once it holds at the
bounce t = tg.

o | | | || eeemeees Potential energy V(¢) |
—
S~ .
Se~—_. @ " Kinetic energy ¢2 2
~—
i T=~.Z7"~"~ Energy density p(t)
1079 F ~—
~.
........................................ }.-..:___._.
N
\
10719 F \
\
\
\
1
10720 !

10 104 107

i)



3. Universality of the Background Evolution (Cont.)

m The evolution during the transition phase is given by,

)

¢(t) = (bc + tr:(/.)c In ti, a(t) = a¢ (

C

H.,a., ¢.: integration constants

m During the slow-roll inflation, we have

a(t) = aje

Hinf, t
)

¢ >~ ¢o

14 tHe In —

C

-~~~ Power-law n=1/3, ¢g=2

Power-law n=2,¢5=1.2

Starobinsky,¢g=5

0.1 100

ttp)

(6)
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4. Universality of Linear Perturbations

m The scalar and tensor perturbations are given by ?,
a//
il + <k2 -—+ U(n)) juc =0 (7)

where a’ = da/dn, dn = dt/a(t), and

0, tensor

U(n) = {32 (F2V(®) + 2V 4(¢) + V gp(¢)) , scalar

f = v247Go/\/p.

9A. Ashtekar and A. Barrau, CQG32 (2015) 234001



4. Universality of Linear Perturbations (Cont.)

m Both of the scalar and tensor perturbations are universal
and independent of the slow-roll inflationary models during
the bouncing phase

m This is because the potential U(7)) is very small in
comparing with a” /a, so we have

a// a//

during the whole bouncing phase.

m Since a(t) is universal during this phase, clearly the mode

functions (™", =

1 ~

S " S
>+ Q) =0

g

UG vs la"7al
3

<

S

are also universal.

g




4. Universality of Linear Perturbations (Cont.)

m More interestingly, the term a” /a can be replaced by a
Pdschl-Teller (PT) potential,

) , a? a’
v = , h=ki=—, V(n)=—
P = —— 3 alr—mg) 2Tk (n) = —

81 — Ver(n)
— V()




4. Universality of Linear Perturbations (Cont.)

m Then, the mode function has the analytical solution,

,Uf}((PT)(n) _ akxik/(Qa)(l o X)fik/(Zoz)
X 2F1(31 —33+1,82 —a3+1,2—a3,x)
+bi[x(1 — x)] (2% ,F, (ay, as, a3, x).

ay, by integration constants, to be determined by initial
conditions. oF;(a, b, ¢, x): the hypergeometric function

1 <1 ¥ 1 ) ik
a, = - = =)
: 2 V3 V6 kg’
1 (1 1 ) ik Som
aa = - (1—-—)— b )
? 2 \/g \/6 kB [ - Solution with PT potentia
ik “ ++-2--- Numerical solution
a3 = 1-—




4. Universality of Linear Perturbations (Cont.)

m In the transition phase, the mode functions are given by,

1 . -
p(n) = Jor (&keﬂkn + ﬁke'k")

dy., By integration constants
m In the slow-roll inflation phase, the mode functions are
given by the standard forms,

S /=T .
,uli» ,t)(n) ~ T} {akH,(i‘)t(—kn) + ﬁkH,(,f?L(—kTI) ,

ay, Bi: integration constants.
m Three sets of integration constants:

1) Bouncing: (ay, by)
2) Transition: (dk, f;’k)

3) Slow-roll Inflation: (., 5)



4. Universality of Linear Perturbations (Cont.)

m Matching them together, we find that the Bogoliubov
coefficients, «, S, are given by

& _| a F(Q T ag)F(a1 + as — ag)
Vok | *T(a; —as+ 1)I'(ap — a3 + 1)
I(ag)l'(ar +as —a3) | iy,
T T ) e,
& _ a F(Q — ag)l—‘(ag —a] — a2)
V2k KT —a)I(1 — an)

+ by

P(a3)l'(as — a1 —a2) | _ i,
['(ag — a1)'(ag — as) ’

m Since a; = a;(k/kg), SO ay, [k are in general k-dependent.



4. Universality of Linear Perturbations (Cont.)

m In general |3,|? # 0, so particles are generically created at
the onset of inflation.

m In GR, we normally impose the BD vacuum at the onset of
the inflation,

ot =1, grt=0



4. Universality of Linear Perturbations (Cont.)

m Then, the scalar and tensor power spectra are given by,

Pr(k) = |ax + B[P PER(K),
Pu(k) = Jog + Bc|* PER(K),

k2 H 2 _k 1—2v4
P%R(k) = 13 <a¢) FZ(Vs) <277> )

k2 1 _kn 1—2uv¢
P}?R(k) = FQ(Vt) (2)

= 32 A2
7rMP|a

with




4. Universality of Linear Perturbations (Cont.)

m Note that, as mentioned above, «, 5 are usually
k-dependent, so the quantities P (k) and P, (k) now also
become k-dependent.

m This provides an excellent opportunity to test LQC.

m Clearly, such dependence cannot be strong. Otherwise, it
will not be consistent with current observations, which
show that the power spectra are almost scale-invariant '°.

m To fix (o, fx) or (ax, by), one needs to impose the initial
conditions, which is still a challenging question in LQC.

19p  Collaboration et al., Planck 2015. XX. Constraints on
inflation, arXiv:1502.02114.



4. Universality of Linear Perturbations (Cont.)

m In the framework of LQC, various sets of initial conditions
have been investigated. However, this is a subtle issue,
because in general there is not a preferred initial state for a
quantum field in arbitrarily curved space-times.

m If the universe is sufficiently spatially flat and evolves
sufficiently slowly so that the characteristic scale for a
perturbation mode
is much larger than
its wavelength, there | U S S W—
is an approximate P, Pt
definition of the
initial state: the P
Bunch-Davies vacuum. /] (\
a’(ts) =0, A\? = 2L.2. %o b 2

Characteristic length A2=afa"

‘A

/

: Transition
Bouncing Slow-roll inflation

)




4. Universality of Linear Perturbations (Cont.)

m However, in the pre-inflationary phases, especially near
the bounce, the wavelengths could be larger, equal, or
smaller than the corresponding characteristic scale. Thus,
it is in general impossible to assume that the universe is in
the Bunch-Davies vacuum at the bounce.

m Recently, we considered two different kinds of initial
conditions [Zhu et al, PRD96, 083520 (2017)]:

m The fourth-order adiabatic vacuum right at the bounce

m The BD vacuum in
contracting phase

Characteristic length A%=aja"

~

-
Ny

m Surprisingly, both of . : A }
them lead to the same Transion
Bo:uncing Slow-roll inflation
results: .

a, =0, b=k /] [\

~ts g fs 1 fond

o

5



4. Universality of Linear Perturbations (Cont.)

e Recently, we also studied the non-Gaussianity and found that
it is consistent with current observations !!.

e But, the non-Gaussianity in the squeezed limit can be
enhanced at superhorizon scales, which can yield a large
statistical anisotropy on the power spectrum.

Ky =k k3= —ki —k
al 2a2 2a? & 3 :
X
Ky k ko k ki
_— e \k
ky k; k,
The Equilateral Limit The Folded Limit The Squeezed Limit

ky=ky=kz:a=1 ky=ky=2ks: a=1/2 ki~ky>» k:a>1

T Zhu, AW, K. Kirsten, G. Cleaver, Q. Sheng, PRD97 (2018) 043501
[arXiv:1709. 07479].
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5. Cosmology of Loop Quantum Gravity

m Loop quantum gravity (LQG):
A background independent, nonperturbative quantization
of GR by using the Ashtekar variables 2.

m Loop quantum cosmology (LQC):
Symmetry reduced quantization of cosmology by
mimicking the constructions used in LQG °.

m LQC has not yet been rigorously derived from LQG, but an
attempt to use LQG-like methods in cosmology.

2C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An
Elementary Introduction to Quantum Gravity and Spinfoam Theory
(Cambridge Monographs on Mathematical Physics, Cambridge, 2015).

M. Bojowald, Rep. Prog. Phys. 78 (2015) 023901;
I. Agullo and P. Singh, arXiv:1612.01236.



5. Cosmology of Loop Quantum Gravity (Cont.)

= In LQG, the elementary classical phase space variables
are the SU(2) Ashtekar-Barbero connection A! and the
conjugate triad L.

m In the spatially flat FLRW universe, the only relevant

constraint is the gravitational Hamiltonian constraint, which
is a sum of the Euclidean and Lorentz terms,

ngav - Hg()i\ - (]- + ’72)7{21;)1\
ajpbk
®  _ 1 [ p R
Fleray 1676 J ¢ F e et q)]
ajirbk
L _ 1 BxK EE
Haras 876G o et @] det(q)]

F.»: the field strength of connection A}
K!: the extrinsic curvature
qap- the spatial metric.



5. Cosmology of Loop Quantum Gravity (Cont.)

m For spatially flat FLRW universe, we have
Hw = 277 H S
M = 1o = (L) =
In LQC, using the above relation, instead of quantizing the

Euclidean and Lorentz terms separately, only the
Euclidean term ’H&)dv is quantized.

m However, in LQG, these two terms are usually regularized
differently.



5. Cosmology of Loop Quantum Gravity (Cont.)

m In particular, if one follows the non-graph-changing
regularization !, one finds °
3v

_ ‘n2 L
Hige-1 = SWG)\Q{SIH (Ab)

2+ 1)sin*(2X\b
0"+ )4;1;1( )}+HM

m Then, the Hamilton’s equations for the variables v and b,

Vo= {V,’H} = ?NS;:()?)\]O){(VQ + 1) cos(2Ab) — 72},
.9
b = {b,?—[} 1 W{% sin2(\b) — cosQ(/\b)}
— 47G~yP ®)

v: the volume; b: momentum; P: pressure
YT Thiemann, CQG24 (1998) 839; 875.

7. Yang, Y. Ding, Y. Ma, PLB682 (2009) 1; A. Dapor and K.
Liegener, arXiv:1706.09833.



5. Cosmology of Loop Quantum Gravity (Cont.)

m On the other hand, due to the spatial homogeneity and
isotropy, one can also set the spin connection to zero, and
the resulted Hamiltonian takes the form 16,

3v - 2 Ab 2 .. 2 Ab
HLQGJI:~W sin (2> {1+7 sin = }+HM

m Then, the Hamilton’s equations for the variables v and b,

i 3vsin(Ab .

Vo= {\/,7-[}Vsrlyr/l\(){1+72vzcos()\b)}7

: 6sin® (22) o . oAb

b= )= O ()
— 4nGyP

87 Yang, Y. Ding, Y. Ma, PLB682 (2009) 1.



5. Cosmology of Loop Quantum Gravity (Cont.)

m Therefore, due the quantization ambiguities, so far we
have three different models:

LQC LQG-I LQG-II

m However, in all three models, we find the following !':

m the replacement of the big bang singularity by a quantum
bounce is a robust feature against the quantization
ambiguities.

e LQC (red solid curve)

e LQG-I (blue dotted curve)

o LQG-II (green dot-dashed
curve)

ZD‘

B.E. Li, P. Singh, AW, PRD97 (2018) 084029: Qualitative dynamics
in pre-inflationary universe from loop quantum gravity, arXiv:
1806. xxxxx



5. Cosmology of Loop Quantum Gravity (Cont.)

m In each of the three cosmological models, we find universal
properties of the background evolution for the kinetic
dominated bounce, irrespective of the nature of the
inflationary potentials.

m In the post-bounce stage but before the Universe enters
the reheating phase, three distinctive phases are identified,

bouncing, transition, slow-roll inflation




5. Cosmology of Loop Quantum Gravity (Cont.)

m The evolution of the expansion factor of the universe in the
bouncing phase is independent of the inflationary
potentials and initial conditions, given explicitly by,

1/6

2
t -1/2
I+ <tA> ] ; tg = (247er/é)

0

a(t) = ap

pl: the critical energy density
(A=0,1,1I)

m Slow-roll inflation is a generic outcome in all these three
models.
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6. Conclusions

m We study pre-inflationary dynamics in the frameworks of
LQC and LQG and we find:

e The replacement of the big bang singularity by a
quantum bounce is a robust feature against the
quantization ambiguities

e The slow-roll inflation is generic



6. Conclusions (Cont.)
m For initially kinetic energy dominated models, we find:

e The evolution of the universe is always divided into three
different phases:

(1) Bouncing (2) transition (3) slow-roll inflation
1.0 AL

\\;“.l \'\_
v
£ oo b
-------- Power-law n=2,¢5=1.2 ‘.‘ '.l
o5l TTT7T Power-law n=1/3, ¢g=25 ‘, i
------ Starobinsky,¢g=5 “\ ‘|

1ol S
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6. Conclusions (Cont.)

e The evolution of the expansion factor is universal during the
bouncing phase:

1/6

2
t _
1 + (tA> ] 5 tg = (247TGPQ) 1/2
0

a(t) = ap

1AL - Power-law n=2, ¢g=1.2
————— Power-law n=1/3, ¢g=25
..... - Starobinsky ¢g=5

Anaytical

a(t)
3
8

titp



6. Conclusions (Cont.)

e During the pre-inflationary phase, the evolutions of the scalar
and tensor perturbations are all universal and independent of
the slow-roll inflationary models.

e In this phase the potentials of the scalar and tensor
perturbations can be well approximated by an effective PT
potential, for which analytic solutions of the mode functions are
known.

e The Bogoliubov coefficients at the onset of the slow-roll
inflation are generically non-zero,
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in contrast to GR where the initial conditions are normally
taken as the BD vacuum,

Bt = 0.



6. Conclusions (Cont.)

e The non-Gaussianity is consistent with current observations,
but in the squeezed limit it can be enhanced at superhorizon
scales, which can yield a large statistical anisotropy on the
power spectrum.



Thank You!
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