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- NC introduced in problem of FQH [Son 13]

TNC first observed as boundary geometry in z=2 Lifshitz holography
[Christensen,Hartong,Rollier,Obers 13, Hartong,Kiritsis,Ober (1409)]

TTNC introduced in FQH [Geracie,Son,Wu,Wu 14]
TNC from gauging Schrodinger algebra [Bergshoeff,Hartong,Rosseel 14]

TNC from gauging Bargmann (with torsion) [Hartong,Obers 15]
- coupling of non-relativistic field theories to TNC [Jensen 14]
(independent of holography) [Hartong,Kiritsis, Obers 14]

TNC related and 2D WCF

other approaches (c-> inf

[Hofmann,Rollier 14]

imit, affine spaces)

[Banerjee,Mitra,Mukherjee 14, Bekaert,Morand 14, Van den Bleeken 17]



NC Geometry

- Newton-Cartan gravity, is originally developed as the generally covariant
description of the Newtonian gravity [E.Cartan 1923,1924]
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- Newton-Cartan geometry is described by a degenerate spatial metric h*”
of rank-d and a temporal vielbein 7, of rank-1, together with a I'},,
connection on an orientable manifold M

h*' 1, =0.

Torsionless case i.e. I}, = I'y,
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Given any function t the temporal length of a curve 7 : 51, 82] = M

/ tufudS:/ V,tElds
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Vuty =0y, —Th,1, = 0, » T, = 0uT,. Temporal part

For the spatial part introduce the following spatial inverse metric h,,,,
and temporal inverse vielbein 7

Solution to the compatibility conditions then

FZV = Tpa'uT,/ + %hpa (ayha,u + a,uhm/ — aah,uz/) — hpaT(,qu)a )




Impose Ehlers and Trautman conditions for Newtonian gravity

hGP\RM] (z/p)a(r) =0,
WP Ry e RY pa(T) =0 or 73R, (D) =0 or h*PRM,,,(I) =0,

/ .

T8 =6%0¢,  R%q0() = V%p=4nGp, Fly = 20;,m,,

[J. Ehlers 81, A. Trautman 63, G. Dautcourt 93, R. Andringa, E. Bergshoeff, S. Panda and M.
de Roo 11]

There is a caveat here | The inverse metrics we introduce 7 h,.
are not unique i.e. given 1-form ¥u [K. Jensen, 14]

T = TH + W, h;u/ = hy — (TuPf + 7Bl ) b + T WP hptbs
Moreover,

m;L = my, — Pﬁwy + %Tluhypwl/wpv




Twistless torsional NC (TTNC) geometry

(h* 71,0, , M),

From the compatibility condition temporal part is fixed

P
Iz

Impose twistless condition

7ol = Oy -

T)\T[pFZ‘V] = 7[,0u7) = 0,

P

By Frobenius theorem
I

Solution to the compatibility conditions is

uTv] = 2bp 7y,

0yt + 307 (Do + Oubiow — Dohy ) = W FpofC K,

Transformation under Milne boost

spatial contortion

£




o If 0pK,.» = 0, then we have to achieve Milne invariance by considering
combinations of 7%,k and m,, However m,, is a U(1) connection therefore
such combinations will fail U(1) invariance. So we will also introduce a
scalar field X such that,

OU()X =0 My, = my, — dux,
And the following definitions will still satisfy orthogonality conditions and they are Milne+U(1)
iInvariant
o= L WM, hy = hu, —17,M, —17,M, +27,7,®

® = 77My + $h*" M,M, .

Therefore, the connection for TTNC can be written as

AN

0P, = #0,m, + 1 (8,,iz(w + Oyl — a(,i}w) + R, 0y® — Ko,




Non-Relativistic scale symmetry and NC

- The defining property of the scale symmetry is via breaking of the compatibility condition
by a particular non-metricity tensor

VILLTV — Zb/,LTl/j vluhyp — _QthVp’
which is preserved by the following transformations
. — 6zAD(-’JU)7-’u7 By o=2AD (@) puv b, — b, + 0,Ap(x), e, =TI,  dumb, =0.

eUnlike the relativistic scenarios, the inclusion of the non-metricity modifies the anti-
symmetric part of the connection

impose tt condition

Tpr — 8[,u7-1/] — Zb[

(k] ™ uTv] - > 8[MTV] — Zb[MTV] 7

e Again, one can introduce Milne invariant hatted quantities

A

pi Ly o= ho@gn Ly M@ M,y e—(=DA0) )y

M, =m, —0,x — (2 —2)b,x,
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Non-relativistic algebras (not all)

: h Bargmann |H,G,| = P, [P, Gy =0
[H7 F anatha] N1 Galilean

N y [Py, G| = Ndgap

[Hp e B ‘ G, Nj’ (2 =2 J D,H|=zH [D,P,]=P

[D,N] = (2 —2)N
Lifshitz

Schrodinger



2z # 2 Scale Invariant Horava-Lifshitz Gravity

Elements of the scale extended Bargmann algebra are

Py, Gyl = 6N, [D.Gal = (:—1)Ga,  [D,N]=(z—2)N.
[Jaba Pc] — 25c[a,Pb] ) [Jaba Gc] — 25(:[chb] 3 [Jaba ch] — 45[0,[0 Jb]d] .
D,P,)=—P,, [D,H|=—zH, [HG)]=P,,

Following the algebra, transformation rules are given as

0T, = 0,§—25b, +2ApT,,
dey® = 0" — wu®& — bul® + AN%e” + A7y — w, "€ + Ape,”
b, ® = 9 4 2xclag Bl
dw,® = A —w, N F A% W (2= DA%, — (2 — Apw,*,
om, = 0,0 —E&"wWuq+ A€ + (2 —2)ob, — (2 —2)Apm,,,

b, = O,Ap,



Also the curvatures follows easily

— 20[

7‘,/] — 2Zb[u7',/] ,

) p
R,“(P) = 20,e," — Qw[uabey]b — 2wy, 7y — 20,67,
Rwab(J) = 20;,w, ab _ Qw[uc[awy] .
R,"“(G) = 20p,w," + Qw[ﬂbwy]“b —2(z — 1wy, by,
R (D) = 20,b,,
R (N) = 20,m, — 2wy, “e,q + 2(2 — 2)by,m,) .

In order to make contact with the NC geometry we have discussed, impose
the following set of constraints

R, (H)=0, R,“(P)=0, R, (N)=0, R, (D) =0,

eru"Rup“o(J) + TRy “(G) = 0, e "Ry pa(G) =0.

vp I

The twistlessness condition can be seen from the curvature constraint

R,LW(H) =0 = (9[#7',/] = Zb[/ﬂ',/] ,



Also the following composite gauge fields are solved

wﬂab = —Qey[aﬁ[ﬂey]b] 1 e’loe b]pﬁyepceﬂc + 26M[aeyb]b’/
—e”aepbm(a[ymp] + (2 — 2)b[ymp]) :

wy = T e, + e”aneMba[Vep]b + e, 4770, + " (O], my) + (2 — 2)b,my))
+71, 77" (O ,my) + (2 — 2)b,my) -

Scale-extended Bargmann algebra does not allow the existence of a scalar field with a
homogeneous dilatation and U(1) transformation due to the commutation relation.

Therefore we will work with the following set of compensating multiplets. Note that the derivative
of X is the very definition of M,

0p = wApo, ox =0+ (2—2)Apx.
Dux = Oux — (2 — 2)byx —my,.

In order to discuss the construction of kinetic term in HLG let us consider the following

DM, = 0,My + (z — )b, My — w,"* My — w,q

5DCLM5 — —ZADDaMb . 5@Ma = )\a .
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Sidy = /dtdd:cegb(DaM )2

ope=(d+ z)Ape.
ST, = / dt v e ¢ (DuMp)? |
55;)2 = /dt dzed AND,M*,

Here, for 3222 and S§22, the scaling dimension of ¢ is given by w = z — d while for the

55227 the scaling dimension of ¢ is w = 2 — d.

e n; = 1 : When we have a single time derivative acting on ¢ or x, we first consider the

models with no spatial derivatives

%), = / dt d'z e (Do + MODyh)

5(6)

O = /dtddxeng(Mo + M, M?).

e n; = 2 : When we have two time derivative acting on ¢ or y, the possible z # 2 scale-

invariant actions are

st = / dt A%z e p (D2 + 2M DyDad + M M D, Dyod)
(14) d 2 a anrb

sty = [ dtdze? (DoMoy +2M “DyM, + M M*D,M,),

5(;53 — / dt d*z e d* (Mo + M M®)?.



NC and HLG connection [Hartong, Obers 2015]

Milne invariant Riemannian tensor can be defined as
Juv = h,uu + TuTy g = h" + 7Y

From this definition, ADM decomposition of the metric and the twistless torsion
condition one can show the following

T,UJ — @Da/ﬂ' . T — t
Tt = Na T, — U,
htt _ hti _ hit —0 hZ] _ ,ij
7A_t:]\[—17 ,7A_z':_]\[—1]\/"i7
hue = g NN | hy = hig = v, N7, hij =5,
Using these relations U(1) invariant vector field reads

1
2N

M; = N



The dilatation gauge field can also be written in terms of HLG variables
through the TT condition

8[ Ty = Zb[lu’ry] — zbae[

a
pTv Ty] -

7

It is useful to identify a vector
a, = L1, = 770,71, — Ou1) = —2€,%bg,

= Niaz-, a; — —N_l(‘?iN .

Finally the extrinsic curvature (kinetic term of HLG)

1 _ _
Kij = 3§ (875%3 VilNj — Vsz') :

Can be identified from the following tensor

K}, = Do M, = %(aMb) + 2b(o My — 0qpb” M — dapbo -

Gathering up all these pieces the scale extended HLG is

Si, = 8%, - a8, + 5y,




Outlook

e The scale or Schrodinger symmetry corresponds to a special choice of non-
metricity in the compatibility equation, and it is possible to have a more general
classification of non-relativistic geometries by imposing a more general non-
metricity. This classification has been done for the relativistic scenarios.

* The true non-relativistic analogue of the relativistic conformal symmetry, which
leaves the action of a massless non-relativistic particle is invariant is called the
Galilean conformal algebra.

e |s it possible to get HLG from the large ¢ expansion by [vDB17]

e Generating solutions for HLG from the known relativistic ones.



Large c expansion [VdB17]

We assume an expansion of the metric (D = d + 1, Lorentzian) in even powers® of
a variable ¢ (thought of physically as the speed of light):

00 00
(20) —21 v (20) 924
Juv — g€ g,u — § g,u C (1)

1=—1 1=0

2 . : .
We furthermore assume that ¢, is of rank 1 and negative, so we can write

(-2)
Juw = —TuTy (2)

The two expansions (1) are of course related by the condition that one series
provides the inverse of the other. We can expand this condition g,,g”” = 0}, order
by order and solve the resulting equations explicitely. As a first step one obtains
from the leading equation (order ¢?) the result that

g = B with  RM7, =0 (6)

0, TH = —h"x, Ox Py = TuXov + T X



o= RO,

hpw = hy + 27,0, + QCiDTNT,,

1
@ = —77C,+ JWC,C,

ﬁuu — ﬁ%ﬂ’+_hﬂphﬂoczxja
1
By = Bu+hyBCo+ 57 (B7C,Co + (1°C, = 177 C,C5)%)
_C,(r°C, — B C,C,)
WW _ 7,&1/ 4 QhP(MhV)UCP (BJ — 2&300)

For the compatibility condition assume the connection expansion

(21)
R e N2
I, = Zz’:—l ', c

Then the same structure for TTNC is obtained.



