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Outline
• Motivation, uses of Newton-Cartan (NC) structures  

—holography  
—field theory  
—gravity


• Basic structures in NC and Torsional Newton-Cartan (TNC)  
from the 
—Geometric view 
—Gauging of the algebra 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• Making TNC dynamical 
—Scale invariant Horava-Lifshitz gravity (HLG) 
—Schrodinger invariant HLG
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- NC introduced in problem of FQH [Son 13]


- TNC first observed as boundary geometry in z=2 Lifshitz holography 
[Christensen,Hartong,Rollier,Obers 13, Hartong,Kiritsis,Ober (1409)]  

-  TTNC introduced in FQH [Geracie,Son,Wu,Wu 14] 


-  TNC from gauging Schrödinger algebra [Bergshoeff,Hartong,Rosseel 14] 


- TNC from gauging Bargmann (with torsion) [Hartong,Obers 15] 
- coupling of non-relativistic field theories to TNC [Jensen 14]  
(independent of holography) [Hartong,Kiritsis, Obers 14]  

-  TNC related and 2D WCFT [Hofmann,Rollier 14] 


-  other approaches (c-> inf limit, affine spaces)

[Banerjee,Mitra,Mukherjee 14, Bekaert,Morand 14, Van den Bleeken 17]




NC Geometry
• Newton-Cartan gravity, is originally developed as the generally covariant 

description of the Newtonian gravity [E.Cartan 1923,1924] 
 
 

• Newton-Cartan geometry is described by a degenerate spatial metric       
of rank-d and a temporal vielbein     of rank-1, together with a 
connection  on an orientable manifold M 
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for an arbitrary 2-form Fµν . In order to make a contact with the covariant form of Newtonian

gravity, i.e. Newton-Cartan gravity, the following conditions should be satisfied by the aptly

named Newtonian connection:

1. The geodesic equation based on Γρ
µν should give rise to the classical equation of motion of

a massive particle

d2xa(t)

dt2
+
∂φ(x)

dxa
= 0 , (2.7)

where xa(t) are the spatial coordinates, t is the absolute time and φ(x) is the Newtonian

potential.

2. The only non-vanishing component of the Riemann tensor

Rµ
νρσ(Γ) = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ . (2.8)

for the Newtonian connection (2.6) should give rise to the Poisson equation for the Newto-

nian potential,

∇2φ = 4πGρ , (2.9)

where ρ is the mass density.

These two conditions can be satisfied given that the Riemann tensor (2.8) satisfies the so-called

Trautman [23] and Ehlers [24] conditions

hσ[λRµ]
(νρ)σ(Γ) = 0 , (2.10)

hρλRµ
νρσR

ν
µλα(Γ) = 0 or τ[λR

µ
ν]ρσ(Γ) = 0 or hσ[λRµ]

νρσ(Γ) = 0 , (2.11)

where the Trautman condition (2.10) further implies that for the connection to be Newtonian,

Fµν must be closed, i.e.

Fµν = 2∂[µmν] , (2.12)

where mµ is a U(1) connection. With these conditions in hand, it is straightforward to show that

the only non-vanishing component of the connection and the Riemann tensor are given by [21]

Γa
00 = δab∂bφ , Ra

0a0(Γ) = ∇2φ = 4πGρ , (2.13)

which satisfies the properties of a Newtonian connection. Thus, we conclude that the Newton-

Cartan gravity is given by two degenerate metrics hµν and τµ and a U(1) connection mµ equipped

with the Trautman (2.10) and Ehlers (2.11) conditions.

Before proceeding any further, it is worth mentioning the Milne boost symmetry of the

Newton-Cartan geometry and the invariant quantities in the presence of the U(1) connection.

First of all, while the fundamental temporal and spatial metrics τµ and hµν are uniquely defined,
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orientable manifold M. Here, degeneracy imply that

hµντν = 0 . (2.1)

In order to discuss the notions of parallel transport and geodesics we need to provide a suitable

connection. In the relativistic case, the torsion-free connection is uniquely fixed by the metric. As

we will show in what follows, the connection in Newton-Cartan geometry is quite different: The

uniqueness of the torsion-free compatible connection is lost and introducing torsion can break

the invariance of the connection under Milne boosts. Moreover, the inclusion of non-metricity

modifies the anti-symmetric part of the connection. As we will see, the degenerate nature of the

Newton-Cartan geometry allows other geometric structures in addition to the ones we discussed

above. Along the way, we will introduce necessary data to fix the connection uniquely. In the

next two sections our focus will be understanding the connections with/without torsion which

will be crucial obtaining the Newton-Cartan geometry from the gauging procedure.

2.1 Torsionless Newton-Cartan Geometry

Let us start our discussion with the torsionless Newton-Cartan geometry. With that in mind,

we first impose that the connection Γρ
µν is symmetric and solve the metric compatibility conditions

∇µτν = ∂µτν − Γρ
µντρ = 0 ,

∇µh
νρ = ∂µh

νρ + Γν
σµh

σρ + Γρ
σµh

σν = 0 , (2.2)

where the covariant derivative ∇ is with respect to a connection Γρ
µν . As the connection is

symmetric, the antisymmetric part of the temporal metric compatibility condition implies

τµ = ∂µf , (2.3)

for a scalar function f(xµ), which is chosen to be the absolute time t so that the f = const.

simultaneity leaves foliate the spacetime. The temporal metric compatibility condition also fixes

the temporal part of the connection as

τρΓ
ρ
µν = ∂µτν . (2.4)

Having determined the temporal part of the connection let us proceed with the spatial part. For

that, we need to introduce two new tensors: The spatial inverse metric hµν and the temporal

inverse vielbein τµ which satisfies the following relations

hµσhνσ = Pµ
ν = δµν − τµτν , τµτµ = 1 , hµντν = 0 , hµντ

ν = 0 . (2.5)

Using the inverse quantities, the most general symmetric connection compatible with the condi-

tions (2.2) is given by [22]

Γρ
µν = τρ∂µτν +

1
2h

ρσ
(
∂νhσµ + ∂µhσν − ∂σhµν

)
− hρστ(µFν)σ , (2.6)
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simultaneity leaves foliate the spacetime. The temporal metric compatibility condition also fixes
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Having determined the temporal part of the connection let us proceed with the spatial part. For
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inverse vielbein τµ which satisfies the following relations
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orientable manifold M. Here, degeneracy imply that

hµντν = 0 . (2.1)

In order to discuss the notions of parallel transport and geodesics we need to provide a suitable

connection. In the relativistic case, the torsion-free connection is uniquely fixed by the metric. As

we will show in what follows, the connection in Newton-Cartan geometry is quite different: The

uniqueness of the torsion-free compatible connection is lost and introducing torsion can break

the invariance of the connection under Milne boosts. Moreover, the inclusion of non-metricity

modifies the anti-symmetric part of the connection. As we will see, the degenerate nature of the

Newton-Cartan geometry allows other geometric structures in addition to the ones we discussed

above. Along the way, we will introduce necessary data to fix the connection uniquely. In the

next two sections our focus will be understanding the connections with/without torsion which

will be crucial obtaining the Newton-Cartan geometry from the gauging procedure.

2.1 Torsionless Newton-Cartan Geometry

Let us start our discussion with the torsionless Newton-Cartan geometry. With that in mind,

we first impose that the connection Γρ
µν is symmetric and solve the metric compatibility conditions

∇µτν = ∂µτν − Γρ
µντρ = 0 ,

∇µh
νρ = ∂µh

νρ + Γν
σµh

σρ + Γρ
σµh

σν = 0 , (2.2)

where the covariant derivative ∇ is with respect to a connection Γρ
µν . As the connection is

symmetric, the antisymmetric part of the temporal metric compatibility condition implies

τµ = ∂µf , (2.3)

for a scalar function f(xµ), which is chosen to be the absolute time t so that the f = const.

simultaneity leaves foliate the spacetime. The temporal metric compatibility condition also fixes

the temporal part of the connection as

τρΓ
ρ
µν = ∂µτν . (2.4)

Having determined the temporal part of the connection let us proceed with the spatial part. For

that, we need to introduce two new tensors: The spatial inverse metric hµν and the temporal

inverse vielbein τµ which satisfies the following relations

hµσhνσ = Pµ
ν = δµν − τµτν , τµτµ = 1 , hµντν = 0 , hµντ

ν = 0 . (2.5)

Using the inverse quantities, the most general symmetric connection compatible with the condi-

tions (2.2) is given by [22]

Γρ
µν = τρ∂µτν +

1
2h

ρσ
(
∂νhσµ + ∂µhσν − ∂σhµν

)
− hρστ(µFν)σ , (2.6)
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for an arbitrary 2-form Fµν . In order to make a contact with the covariant form of Newtonian

gravity, i.e. Newton-Cartan gravity, the following conditions should be satisfied by the aptly

named Newtonian connection:

1. The geodesic equation based on Γρ
µν should give rise to the classical equation of motion of

a massive particle

d2xa(t)

dt2
+
∂φ(x)

dxa
= 0 , (2.7)

where xa(t) are the spatial coordinates, t is the absolute time and φ(x) is the Newtonian

potential.

2. The only non-vanishing component of the Riemann tensor

Rµ
νρσ(Γ) = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ . (2.8)

for the Newtonian connection (2.6) should give rise to the Poisson equation for the Newto-

nian potential,

∇2φ = 4πGρ , (2.9)

where ρ is the mass density.

These two conditions can be satisfied given that the Riemann tensor (2.8) satisfies the so-called

Trautman [23] and Ehlers [24] conditions

hσ[λRµ]
(νρ)σ(Γ) = 0 , (2.10)

hρλRµ
νρσR

ν
µλα(Γ) = 0 or τ[λR

µ
ν]ρσ(Γ) = 0 or hσ[λRµ]

νρσ(Γ) = 0 , (2.11)

where the Trautman condition (2.10) further implies that for the connection to be Newtonian,

Fµν must be closed, i.e.

Fµν = 2∂[µmν] , (2.12)

where mµ is a U(1) connection. With these conditions in hand, it is straightforward to show that

the only non-vanishing component of the connection and the Riemann tensor are given by [21]

Γa
00 = δab∂bφ , Ra

0a0(Γ) = ∇2φ = 4πGρ , (2.13)

which satisfies the properties of a Newtonian connection. Thus, we conclude that the Newton-

Cartan gravity is given by two degenerate metrics hµν and τµ and a U(1) connection mµ equipped

with the Trautman (2.10) and Ehlers (2.11) conditions.

Before proceeding any further, it is worth mentioning the Milne boost symmetry of the

Newton-Cartan geometry and the invariant quantities in the presence of the U(1) connection.

First of all, while the fundamental temporal and spatial metrics τµ and hµν are uniquely defined,
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In order to discuss the notions of parallel transport and geodesics we need to provide a suitable

connection. In the relativistic case, the torsion-free connection is uniquely fixed by the metric. As

we will show in what follows, the connection in Newton-Cartan geometry is quite different: The
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ρ
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the inverse metrics τµ and hµν in (2.5) are not unique, e.g. considering a 1-form ψµ we can

define [20]

τ ′µ = τµ + hµνψν , h′µν = hµν − (τµP
ρ
ν + τνP

ρ
µ )ψρ + τµτνh

ρσψρψσ , (2.14)

that still satisfies the inversion relations (2.5). These redefinitions are referred to as Milne boosts.

The quantities built by using the connection Γ are covariant if the connection itself is invariant

under the redefinition (2.14). This would require the following Milne transformation property for

the U(1) connection mµ [20]

m′
µ = mµ − P ν

µψν +
1
2τµh

νρψνψρ , (2.15)

in which case, the invariance of the connection Γ is satisfied given that its temporal part is

symmetric [20]. Thus, it is worth emphasizing that when introducing a temporal torsion, or

torsion in general, one must be careful with the transformation of the connection under Milne

boosts.

2.2 Twistless Torsional Newton-Cartan Geometry

In this subsection, we introduce a “twistless torsion” to the Newton-Cartan geometry. As

we will discuss in the detail below, the defining data of the twistless-torsional Newton-Cartan

geometry (TTNC) is encoded in the following set of fields

(hµν , τµ , bµ ,Mµ) , (2.16)

where bµ and Mµ are the necessary additional vector fields. To see the role of bµ, we first consider

the temporal component of the connection, which is fixed by the temporal metric compatibility

condition (2.2)

τρΓ
ρ
µν = ∂µτν . (2.17)

As a result, the time component of the torsion is fixed as

τρΓ
ρ
[µν] = ∂[µτν] . (2.18)

The “twistless torsion” condition is given by [25]

τλτ[ρΓ
λ
µν] = τ[ρ∂µτν] = 0 , (2.19)

which indicates that the twistless torsional Newton-Cartan structure includes an additional Milne-

invariant vector bµ by virtue of Frobenius theorem [19]

∂[µτν] = zb[µτν] , (2.20)

where we introduced the coefficient z, the dynamical critical exponent, for later convenience.

Next we determine the most general connection that is compatible with (2.2) by solving the

compatibility condition for hµν [26]

Γρ
µν = τρ∂µτν +

1
2h

ρσ
(
∂νhσµ + ∂µhσν − ∂σhµν

)
− hρστ(µFν)σ −Kµν

ρ , (2.21)
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where Fµν = 2∂[µmν] and Kµν
ρ is the spatial contorsion tensor

τρKµν
ρ = 0 , hρσ(−Kµν

σ +Kνµ
σ) = hρσTµν

σ , (2.22)

where hρσTµν
σ defines the spatial part of the torsion. Recall that, previously the invariance of

the connection under Milne boosts rely on the condition ∂[µτν] = 0. In TTNC geometry we give

up this condition, so the variation of the connection (2.21) is given by [20]

δMΓρ
µν = hρσ

{
(Pα

σ ∂[µτν] + Pα
µ ∂[στν] + Pα

ν ∂[στµ])ψα + 1
2h

αβψαψβ(τν∂[µτσ] + τµ∂[ντσ])
}

−δMKµν
ρ . (2.23)

Therefore, assuming that the contorsion tensor is U(1) invariant, δU(1)Kµν
ρ = 0, we can split the

TTNC geometry into two cases depending on the Milne transformation of the contorsion tensor

c1. If the spatial contorsion tensor is Milne-invariant δMKµν
ρ = 0, then we need to construct

Milne-invariant inverse temporal and spatial metrics and a U(1) connection that still satisfies

the inversion relations (2.5). The connection must be re-written based on the new inverse

elements.

c2. If the spatial contorsion transforms under the Milne transformation, then it must satisfy

δMKµν
ρ = hρσ

{
(Pα

σ ∂[µτν] + Pα
µ ∂[στν] + Pα

ν ∂[στµ])ψα + 1
2h

αβψαψβ(τν∂[µτσ] + τµ∂[ντσ])
}

.(2.24)

In the following, we will first consider these two cases separately and then show that one can

transform between them by means of a linear transformation.

c1. Milne Invariant Spatial Contorsion Tensor

We first consider a Milne invariant spatial contorsion tensor, δMKµν
ρ = 0, which includes

a vanishing spatial contorsion as a special case. The only way to make the connection Milne

invariant is to construct the connection in terms of Milne invariant objects. As given in (2.14)

and (2.15), τµ, hµν andmµ are not invariant under Milne boosts. Milne invariance can be achieved

by combining these quantities. However, as mµ is the U(1) connection, such combinations would

fail the U(1) invariance. Therefore, we add a scalar field χ to the Newton-Cartan structure that

transforms as shift under U(1) symmetry transformation

δU(1)χ = σ (2.25)

where σ is the transformation parameter for the U(1) symmetry. We can now define a U(1)

invariant vector field

Mµ = mµ − ∂µχ , (2.26)

that still transforms as (2.15) under the Milne boosts. Using this vector, we define a new, Milne

invariant set of inverse metric fields [17,27]

τ̂µ = τµ + hµνMν , ĥµν = hµν − τµMν − τνMµ + 2τµτνΦ , (2.27)

7

From the compatibility condition temporal part is fixed

Impose twistless condition  

By Frobenius theorem
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Transformation under Milne boost
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that still transforms as (2.15) under the Milne boosts. Using this vector, we define a new, Milne
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TTNC
(hµν , τµ, bµ,Mµ)

δMKµν
ρ = 0

(ĥµν , τ̂µ)

δMKµν
ρ ̸= 0

(hµν , τµ)

Eq.(2.27)

Eq.(2.31)

Figure 1: The schematic relation between the c1 and c2 cases. The defining data of TTNC

geometry is given by (hµν , τµ, bµ,Mµ) and the inverse vielbein and the spatial metric are chosen

depending on the Milne transformation of the contorsion tensor. Different choices are related to

each other by means of linear maps (2.27) and (2.31).

where Φ, the so-called Newton potential, is defined as

Φ = τσMσ + 1
2h

ρσMρMσ . (2.28)

This new set of fields (τ̂µ, ĥµν ,Mµ) satisfy the inversion relations (2.5), and we give the connection

that solves the metric compatibility condition (2.2) as

Γ̂ρ
µν = τ̂ρ∂µτν +

1
2h

ρσ
(
∂ν ĥσµ + ∂µĥσν − ∂σĥµν

)
+ hρστµτν∂σΦ−Kµν

ρ , (2.29)

where the spatial contorsion tensor is now invariant under Milne boosts and U(1) transformations.

Here, we also introduce a hatted-connection, Γ̂, in order to emphasize that this connection is

constructed by use of hatted inverse metrics. Note that the penultimate term in the connection

(2.29) corresponds to a special choice of the arbitrary function Fµν , which we made by demanding

that when both the spatial and the temporal torsion vanishes we recover the standard Milne

invariant Newton-Cartan connection (2.6), i.e.

∂[µτν] = 0 and Kµν
ρ = 0 ⇒ Γ̂ρ

µν = Γρ
µν . (2.30)

c2. Non-Invariant Spatial Contorsion Tensor

The second choice is to work with a non-invariant contorsion tensor, then its Milne transfor-

mation is given by (2.24). In this case, we work with the original set of inverse metrics (2.5) and

the connection is given by (2.21). Note that the connection includes mµ via its field strength,

therefore the use of Mµ leaves the connection unchanged.

Although we investigated the twistless torsional case in two separate cases, they are not

independent from each other since the new set of inverse elements (τ̂µ, ĥµν) and the original set

(τµ, hµν) can be transformed to each other by means of a linear transformation (2.27), see Fig 1.

To see that, we can consider a connection Γρ
µν with a non-invariant contorsion tensor Kµν

ρ given

by (2.21) and replace (τµ, hµν) with (τ̂µ, ĥµν) via

τµ = τ̂µ − hµνMν , hµν = ĥµν + τµMν + τνMµ − 2τµτνΦ . (2.31)
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(ĥµν , τ̂µ)

δMKµν
ρ ̸= 0

(hµν , τµ)

Eq.(2.27)

Eq.(2.31)

Figure 1: The schematic relation between the c1 and c2 cases. The defining data of TTNC

geometry is given by (hµν , τµ, bµ,Mµ) and the inverse vielbein and the spatial metric are chosen

depending on the Milne transformation of the contorsion tensor. Different choices are related to

each other by means of linear maps (2.27) and (2.31).

where Φ, the so-called Newton potential, is defined as

Φ = τσMσ + 1
2h

ρσMρMσ . (2.28)
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And the following definitions will still satisfy orthogonality conditions and they are Milne+U(1) 
invariant  

Therefore, the connection for TTNC can be written as

!8



• The defining property of the scale symmetry is via breaking of the compatibility condition 
by a particular non-metricity tensor 

Upon this replacement, we obtain a connection with a Milne-invariant contorsion tensor

Γρ
µν = Γ̂ρ

µν −K ′
µν

ρ , (2.32)

where the Milne-invariant contorsion, K ′
µν

ρ, is related to the non-invariant contorsion tensor Kµν
ρ

via

K ′
µν

ρ = Kµν
ρ − hρσ(Mσ∂[µτν] +Mν∂[στµ] +Mµ∂[στν] − 2Φτµ∂[στν] − 2Φτν∂[στµ]) . (2.33)

With this result in hand, it is straightforward to generalize our discussion to an arbitrary torsion.

If we introduce an arbitrary torsion to the Newton-Cartan geometry, the temporal component of

the torsion is not subject to any constraint, and is again fixed by the temporal metric compatibility

(2.2). Furthermore, the most general connection is still given by (2.21) and the Milne invariance

of the connection is again achieved by following the previous discussion for the TTNC.

3 Non-Relativistic Scale Symmetry and Newton-Cartan Geometry

In this section, we introduce the non-relativistic analogue of the scale symmetry to Newton-

Cartan geometry. The defining property of the scale symmetry is via breaking of the compatibility

condition (2.2) by a particular non-metricity tensor

∇µτν = zbµτν , ∇µh
νρ = −2bµh

νρ , (3.1)

which is preserved by the following transformations

τµ → ezΛD(x)τµ , hµν → e−2ΛD(x)hµν , bµ → bµ + ∂µΛD(x) , Γρ
µν → Γρ

µν , (3.2)

where vector field bµ is the gauge field for the scale transformations and is Milne invariant

δM bµ = 0 . (3.3)

Here, we purposefully represent the gauge field of the scale transformations with the same field

that we used to define the twistless torsional condition (2.20) to keep the number of fields min-

imum. Furthermore, it is important to note that in general the spatial metric and the temporal

vielbein have different scaling dimensions which only coincide for z = 1. This is the reminiscent

of the Schrödinger symmetries in d spatial dimensions with z critical exponent that transform

the time (t) and space (x) coordinates under dilatation with a rigid dilatation parameter λ as

follows

x → λx , t → λz t . (3.4)

In order to solve the connection in terms of the Newton-Cartan variables, we first consider the scale

covariant temporal compatibility condition (3.1) which fixes the temporal part of the connection

τρΓ
ρ
µν = ∂µτν − zbµτν . (3.5)

At this point, some clarifications are in order
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• Unlike the relativistic scenarios, the inclusion of the non-metricity modifies the anti-symmetric

part of the connection

τρΓ
ρ
[µν] = ∂[µτν] − zb[µτν] . (3.6)

Thus, when the twistless condition is imposed

∂[µτν] = zb[µτν] , (3.7)

the anti-symmetric part of the temporal part of the connection, thereby the temporal tor-

sion, vanishes.

• In principle, one might think that a twistless torsion can be introduced if the twistless

condition is imposed by means of another vector field Aµ such that

∂[µτν] = A[µτν] . (3.8)

However, in this case, the scaling transformation of τµ forces us to set Aµ = zbµ.

• When the torsion is arbitrary we only impose

∂[µτν] ≠ zb[µτν] , (3.9)

and the temporal part of the connection reads (3.5).

In the following, we construct the connection in terms of the Milne invariant set of inverse fields

(τ̂µ, ĥµν ,Mµ). The scaling properties of the Milne invariant set are given by

τ̂µ → e−zΛD(x)τ̂µ , ĥµν → e2ΛD(x)ĥµν , Mµ → e−(z−2)ΛD(x)Mµ . (3.10)

Solving the scale covariant compatibility conditions, the connection reads

Γ̂ρ
µν = τ̂ρDµτν +

1
2h

ρσ
(
Dν ĥσµ +Dµĥσν −Dσĥµν

)
+ hρστµτνDσΦ−Kµν

ρ , (3.11)

where Kµν
ρ is a scale and Milne invariant spatial contorsion tensor

δDKµν
ρ = δMKµν

ρ = 0 , (3.12)

and the scale-covariant derivatives are defined as

Dµτν = ∂µτν − zbµτν , Dµĥνρ = ∂µĥνρ − 2bµĥνρ , DµΦ = ∂µΦ+ (2z − 2)bµΦ . (3.13)

Note that in the presence of the scale transformations, the definition of Mµ in terms of mµ and

χ as given in (2.26) needs to be modified with a bµ dependent term as [19]

Mµ = mµ − ∂µχ− (z − 2)bµχ , (3.14)
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In the following, we construct the connection in terms of the Milne invariant set of inverse fields

(τ̂µ, ĥµν ,Mµ). The scaling properties of the Milne invariant set are given by

τ̂µ → e−zΛD(x)τ̂µ , ĥµν → e2ΛD(x)ĥµν , Mµ → e−(z−2)ΛD(x)Mµ . (3.10)

Solving the scale covariant compatibility conditions, the connection reads

Γ̂ρ
µν = τ̂ρDµτν +

1
2h

ρσ
(
Dν ĥσµ +Dµĥσν −Dσĥµν

)
+ hρστµτνDσΦ−Kµν

ρ , (3.11)

where Kµν
ρ is a scale and Milne invariant spatial contorsion tensor

δDKµν
ρ = δMKµν

ρ = 0 , (3.12)

and the scale-covariant derivatives are defined as

Dµτν = ∂µτν − zbµτν , Dµĥνρ = ∂µĥνρ − 2bµĥνρ , DµΦ = ∂µΦ+ (2z − 2)bµΦ . (3.13)

Note that in the presence of the scale transformations, the definition of Mµ in terms of mµ and

χ as given in (2.26) needs to be modified with a bµ dependent term as [19]

Mµ = mµ − ∂µχ− (z − 2)bµχ , (3.14)

10

• Unlike the relativistic scenarios, the inclusion of the non-metricity modifies the anti-symmetric

part of the connection

τρΓ
ρ
[µν] = ∂[µτν] − zb[µτν] . (3.6)

Thus, when the twistless condition is imposed

∂[µτν] = zb[µτν] , (3.7)

the anti-symmetric part of the temporal part of the connection, thereby the temporal tor-

sion, vanishes.

• In principle, one might think that a twistless torsion can be introduced if the twistless

condition is imposed by means of another vector field Aµ such that

∂[µτν] = A[µτν] . (3.8)

However, in this case, the scaling transformation of τµ forces us to set Aµ = zbµ.

• When the torsion is arbitrary we only impose
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△SchΨ = eµa

(
(∂µ − (ω − 1)bµ − iMmµ)D

a − ωµ
acDc + iMωµ

a
)
Ψ

Dµ△SchΨ =
(
(∂µ − (ω − 2)bµ − iMmµ)△Sch + 2iMωµ

aDa − iMdfµ

)
Ψ

△SchD0Ψ = eµa

(
(∂µ − (ω − 3)bµ − iMmµ)DaD0 − ωµa

bDbD0 + ωµ
bDaDb

+iMωµaD0 + (ω − 1)fµDa

)
Ψ

△2
SchΨ = eµa

[
(∂µ − (ω − 3)bµ − iMmµ)Da△Sch − ωµa

bDb△Sch

+2iMωµ
bDaDb + iMωµa△Sch − iM(d+ 2)fµDa

]
Ψ . (4.75)

Note that we utilized the gauge fields of the Schrödinger algebra (4.37) to define the Schrödinger

covariant derivatives (4.75). Here, the major difference between the scale and Schrödinger co-

variant objects is the existence of the composite fµ field. In the case of Schrödinger invariance,

the composite fµ comes with a fixed coefficient to cancel out the b0 terms to preserve the special

conformal symmetry. In the case of scale invariance, the combination of S(12) and S(13) as given

in (4.72) plays the role of fµ. Hence, when α = 1 that combination completes the scale covariant

d’Alambertian-squared action S(6) to the Schrödinger covariant d’Alambertian-squared action

(4.73), otherwise the model only exhibits scale invariance but not special conformal invariance.

We finish this section with a comment on the necessity of the action (4.64). If this action is

not present, then b0 becomes an auxiliary field and can simply be eliminated by its field equation.

Thus, due to this elimination, any z = 2 scale invariant model becomes Schrödinger invariant.

Hence, when a model that aims to distinguish local scale invariant models from Schrödinger

gravity, one must add this action with a coefficient (α− 1) such that when α ≠ 1, then b0 cannot

be eliminated by its field equation, and when α = 1, the action (4.64) drops out from the model

in hand along with all other b0 terms, giving rise to a Schrödinger invariant gravity.

5 z ≠ 2 Scale Invariant Hořava-Lifshitz Gravity

In the previous section, we constructed all the z = 2 scale invariant gravity models that are

relevant to the Hořava-Lifshitz gravity and put an explicit distinction between the scale and

Schrödinger invariant extension of the Hořava-Lifshitz gravity. In this section, our purpose is to

develop a z ≠ 2 scale invariant tensor calculus and construct the potential, kinetic and curvature

terms that are relevant to the z ≠ 2 scale extension of the Hořava-Lifshitz gravity. Finally,

following [17], we identify the z ≠ 2 scale extended Hořava-Lifshitz gravity.

As mentioned in Section 3, when z ≠ 2, the scale symmetry can no longer be extended to the

Schrödinger symmetry by including a non-relativistic special conformal transformation. Thus,

the z ≠ 2 scale extended Bargmann algebra has the same generators and the gauge fields as in

the z = 2 scale extended case.The commutations relations between the generators of z ≠ 2 scale

extended Bargmann algebra are given by [19]

[D,Pa] = −Pa , [D,H] = −zH , [H,Ga] = Pa ,
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[Pa, Gb] = δabN , [D,Ga] = (z − 1)Ga , [D,N ] = (z − 2)N ,

[Jab, Pc] = 2δc[aPb] , [Jab, Gc] = 2δc[aGb] , [Jab, Jcd] = 4δ[a[c Jb]d] . (5.1)

The transformation rules are given by [19]

δτµ = ∂µξ − zξbµ + zΛDτµ ,

δeµ
a = ∂µξ

a − ωµ
abξb − bµξ

a + λabeµ
b + λaτµ − ωµ

aξ + ΛDeµ
a ,

δωµ
ab = ∂µλ

ab + 2λc[aωµ
b]
c ,

δωµ
a = ∂µλ

a − ωµ
abλb + λab ωµ

b + (z − 1)λabµ − (z − 1)ΛDω
a
µ ,

δmµ = ∂µσ − ξaωµa + λaeµa + (z − 2)σbµ − (z − 2)ΛDmµ ,

δbµ = ∂µΛD , (5.2)

and the corresponding curvatures are given by [19]

Rµν(H) = 2∂[µτν] − 2zb[µτν] ,

Rµν
a(P ) = 2∂[µeν]

a − 2ω[µ
abeν]b − 2ω[µ

aτν] − 2b[µeν]
a ,

Rµν
ab(J) = 2∂[µων]

ab − 2ω[µ
c[aων]

b]
c ,

Rµν
a(G) = 2∂[µων]

a + 2ω[µ
bων]

a
b − 2(z − 1)ω[µ

abν] ,

Rµν(D) = 2∂[µbν] ,

Rµν(N) = 2∂[µmν] − 2ω[µ
aeν]a + 2(z − 2)b[µmν] . (5.3)

Note that when the dynamical critical exponent z is left arbitrary, the D transformation rules

for the inverse vielbein and the inverse temporal vielbein are given by

δτµ = −zΛDτ
µ , δeµa = −ΛDe

µ
a . (5.4)

We are now at a position to make contact to the z ≠ 2 scale-invariant generalization of the

Newton-Cartan geometry that we established in Section 3. As before, this is achieved imposing

a set of curvature constraints. In the case z ≠ 2 scale symmetry, we have the following set of

constraints 1

Rµν(H) = 0 , Rµν
a(P ) = 0 , Rµν(N) = 0 , Rµν(D) = 0 , (5.5)

which results to the following further constraints by Bianchi identities

e[µ
bRνρ]

a
b(J) + τ[µRνρ]

a(G) = 0 , e[µ
aRνρ]a(G) = 0 . (5.6)

The first constraint implies that the twistless condition is satisfied, thereby the torsion vanishes

Rµν(H) = 0 ⇒ ∂[µτν] = zb[µτν] , (5.7)

1Our set of constraints is a bit different than that of [19]. In principle, we don’t need to impose Rµν(D) = 0, but

Rab(D) = 0 is sufficient, which is the case studied in [19]. However, in that case the Bianchi identity for Rµν(N)

implies a gauge-dependent constraint: e[µ
aRνρ]a(G) = (z − 2)m[µRνρ](D), as long as z ≠ 2. Here, we avoid this

gauge dependence by further imposing R0a(D) = 0 which, together with Rab(D) = 0 implies that Rµν(D) = 0.
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Also the curvatures follows easily 
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δbµ = ∂µΛD , (5.2)

and the corresponding curvatures are given by [19]

Rµν(H) = 2∂[µτν] − 2zb[µτν] ,

Rµν
a(P ) = 2∂[µeν]

a − 2ω[µ
abeν]b − 2ω[µ

aτν] − 2b[µeν]
a ,

Rµν
ab(J) = 2∂[µων]

ab − 2ω[µ
c[aων]

b]
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Rµν
a(G) = 2∂[µων]

a + 2ω[µ
bων]

a
b − 2(z − 1)ω[µ

abν] ,

Rµν(D) = 2∂[µbν] ,

Rµν(N) = 2∂[µmν] − 2ω[µ
aeν]a + 2(z − 2)b[µmν] . (5.3)

Note that when the dynamical critical exponent z is left arbitrary, the D transformation rules

for the inverse vielbein and the inverse temporal vielbein are given by

δτµ = −zΛDτ
µ , δeµa = −ΛDe

µ
a . (5.4)

We are now at a position to make contact to the z ≠ 2 scale-invariant generalization of the

Newton-Cartan geometry that we established in Section 3. As before, this is achieved imposing

a set of curvature constraints. In the case z ≠ 2 scale symmetry, we have the following set of

constraints 1

Rµν(H) = 0 , Rµν
a(P ) = 0 , Rµν(N) = 0 , Rµν(D) = 0 , (5.5)

which results to the following further constraints by Bianchi identities

e[µ
bRνρ]

a
b(J) + τ[µRνρ]

a(G) = 0 , e[µ
aRνρ]a(G) = 0 . (5.6)

The first constraint implies that the twistless condition is satisfied, thereby the torsion vanishes

Rµν(H) = 0 ⇒ ∂[µτν] = zb[µτν] , (5.7)

1Our set of constraints is a bit different than that of [19]. In principle, we don’t need to impose Rµν(D) = 0, but

Rab(D) = 0 is sufficient, which is the case studied in [19]. However, in that case the Bianchi identity for Rµν(N)

implies a gauge-dependent constraint: e[µ
aRνρ]a(G) = (z − 2)m[µRνρ](D), as long as z ≠ 2. Here, we avoid this

gauge dependence by further imposing R0a(D) = 0 which, together with Rab(D) = 0 implies that Rµν(D) = 0.
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The twistlessness condition can be seen from the curvature constraint 



Also the following composite gauge fields are solved 

and determines the spatial part of bµ as

eµabµ =
2

z
eµaτ

ν∂[µτν] . (5.8)

Furthermore, the last two constraints in (5.5) gives rise to the solution of ωµ
ab and ωµ

a

ωµ
ab = −2eν[a∂[µeν]

b] + eν[ae b]ρ∂νeρ
ceµc + 2eµ

[aeν
b]bν

−eνaeρbτµ(∂[νmρ] + (z − 2)b[νmρ]) ,

ωµ
a = τν∂[µeν]

a + eνaτρeµb∂[νeρ]
b + eµ

aτνbν + eνa(∂[µmν] + (z − 2)b[µmν])

+τµτ
ρeνa(∂[ρmν] + (z − 2)b[ρmν]) . (5.9)

To make contact with geometry, we turn to the z ≠ 2 scale covariant metric compatibility

conditions

0 = ∂µτν − Γρ
µντρ − zbµτν ,

0 = ∂µeν
a − Γρ

µνeρ
a − ωµ

abeρb − ωµ
aτν − bµeν

a . (5.10)

These conditions uniquely determine Γ as a symmetric connection

Γρ
µν = τρDµτν +

1

2
hρσ

(
Dνhσµ +Dµhσν −Dσhµν

)
− hρστ(µFν)σ , (5.11)

where the z ≠ 2 scale-covariant objects are as defined as

Dµτν = ∂µτν − zbµτν , Dµhνρ = ∂µhνρ − 2bµhνρ . (5.12)

Finally, we give the corresponding z ≠ 2 scale invariant Riemann tensor in terms of Rµν
ab(J) and

Rµν
a(G) as

Rρ
µνσ(Γ) = −eρa

(
τµRνσ

a(G) + eµbRνσ
ab(J)

)
. (5.13)

Once again, as described in Section 3, we can use this Riemann tensor to construct z ≠ 2 scale-

invariant non-relativistic gravity actions or field equations by introducing a compensating scalar

field φ and a rank-(d+ 1) Milne-invariant tensor gµν .

5.1 z ≠ 2 Scale Invariant Tensor Calculus

Our aim is to develop a tensor calculus to construct the z ≠ 2 generalization of the non-

relativistic scale invariant gravity. As before, we are only interested in the set of models that are

relevant to the Hořava-Lifshitz theory, thus we limit ourselves to a certain class of potential, kinetic

and curvature terms. In principle, the construction procedure might seem like a straightforward

generalization of what was done for the z = 2 case. Furthermore, it seems natural to expect that

the z = 2 limit of the z ≠ 2 construction must recover the models that we give in Section 4.4.

Thus, before we start with the construction procedure, it is useful to enumerate the subtleties

and technical differences of z ≠ 2 models.
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• ns = 0: χ has a non-vanishing U(1) transformation, thus cannot form an action with no

derivatives.

• ns = 2: For the construction of potential terms with two spatial derivatives, we turn to the

spatial part of the covariant derivative of Ma

DµMa = ∂µMa + (z − 1)bµMa − ωµ
abMb − ωµa . (5.17)

which is invariant under Galilean transformations due to the fact that Ma transforms as

shift under Galilean transformations

δGMa = λa . (5.18)

As the inverse spatial vielbein eµa is also Galilean invariant, we can form a spatial covariant

derivative of Ma that is invariant under Galilean transformations

δDaMb = −zΛDDaMb . (5.19)

Thus, the only possible ns = 2 potential terms for χ are

S
(1)
z ̸=2 =

∫
dt ddx eφDaM

a . (5.20)

Here, the scaling dimension of φ is given by ω = −d. Furthermore e = det(τµ, eµa) has the

following scaling transformation

δDe = (d+ z)ΛD e . (5.21)

• ns = 4: The construction of potential terms with four spatial derivatives can be divided

into following three subclasses

a. We first consider the models such that the spatial derivatives only act on χ terms

(ns,χ = 4, ns,φ = 0).

S
(2)
z ̸=2 =

∫
dt ddx eφ (DaM

a)2 ,

S
(3)
z ̸=2 =

∫
dt ddx eφ (DaMb)

2 ,

S
(4)
z ̸=2 =

∫
dt ddx eφ△DaM

a , (5.22)

Here, for S(2)
z ̸=2 and S

(3)
z ̸=2, the scaling dimension of φ is given by ω = z− d while for the

S
(4)
z ̸=2, the scaling dimension of φ is ω = 2− d. Note that it is also possible to consider

the models of kind φDa△Ma or φDaDbDaM b, however such actions are related to S
(4)
z ̸=2

up to curvature invariants

Da△Ma = △DaM
a + [Da,△]Ma

= △DaM
a −Db

(
Rbc(J)M

c +Rab
a(G)

)
. (5.23)

We will construct that curvature invariant in the next section.
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Scale-extended Bargmann algebra does not allow the existence of a scalar field with a 
homogeneous dilatation and U(1) transformation due to the commutation relation.  
Therefore we will work with the following set of compensating multiplets. Note that the derivative 
of      is the very definition of 

1. First of all, when z ̸= 2, the curvature of the dilatation gauge field, Rµν(D) is set to zero

due to Bianchi identity for Rµν(N). Thus, bµ can be given as bµ = ∂µϕ where ϕ is a scalar

field that transforms as shift under dilatations δϕ = ΛD
2. This is certainly not the case

for z = 2 scale invariance, see (4.27).

2. As Rµν(D) = 0 for z ̸= 2 models, the Riemann tensor for z ̸= 2 differs from the z = 2

Riemann tensor by Rµν(D) terms, see (4.34) and (5.13). Thus, there is no smooth z = 2

limit of z ̸= 2 gravity theories that are constructed by use of the z ̸= 2 Riemann tensor.

3. z ̸= 2 scale-extended Bargmann algebra does not allow the existence of a scalar field with a

homogeneous dilatation and U(1) transformation due to the following commutation relation

[D,N ] = (z − 2)N . (5.14)

Thus, as opposed to the z = 2 case, we cannot introduce a complex scalar field as given in

(4.47). For z ̸= 2 setting we are only allowed to work with two type of scalar fields with

the following transformation rules

δφ = ωΛDφ , δχ = σ + (2− z)ΛDχ . (5.15)

4. The scalar field χ has a non-vanishing U(1) transformation. This implies that we cannot

form potential terms with χ and it can only appear in an action by its covariant derivative,

which reads

Dµχ = ∂µχ− (2− z)bµχ−mµ . (5.16)

This is the very definition of the U(1) invariant vector field Mµ up to an overall sign

difference, see (3.14). Thus, for the z ̸= 2 setting, the main elements of the scale invariant

tensor calculus are the scalar field φ and the U(1) invariant vector field Mµ.

With these points in mind, we now proceed to the construction of the relevant potential, kinetic

and curvature actions of z ̸= 2 scale invariant gravity.

5.1.1 Potential Terms

The transformation rules for φ does not change in the z ̸= 2 setting. Thus, the potential terms

for φ in z ̸= 2 scale-invariance is the same as the z = 2 theory. On the other hand, unlike the

z = 2 case, we cannot define a complex scalar Ψ field to include the potential terms of χ into the

kinetic terms of the Ψ. Thus, here we give the potential terms of χ in zeroth, second and fourth

order spatial derivatives.

2If Rab(D) = 0 is chosen as the constraint as in [19] instead of Rµν(D) = 0, then bµ can no longer be set to

bµ = ∂µϕ. In that case one can introduce a special conformal symmetry to the z ̸= 2 scale extended Bargmann

algebra by only taking the internal part of the algebra into account, which would lead one to a construction

procedure similar to the construction of z = 2 models given in Section 4.
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[D,N ] = (z − 2)N . (5.14)

Thus, as opposed to the z = 2 case, we cannot introduce a complex scalar field as given in

(4.47). For z ̸= 2 setting we are only allowed to work with two type of scalar fields with

the following transformation rules

δφ = ωΛDφ , δχ = σ + (2− z)ΛDχ . (5.15)

4. The scalar field χ has a non-vanishing U(1) transformation. This implies that we cannot

form potential terms with χ and it can only appear in an action by its covariant derivative,

which reads

Dµχ = ∂µχ− (2− z)bµχ−mµ . (5.16)

This is the very definition of the U(1) invariant vector field Mµ up to an overall sign

difference, see (3.14). Thus, for the z ̸= 2 setting, the main elements of the scale invariant

tensor calculus are the scalar field φ and the U(1) invariant vector field Mµ.

With these points in mind, we now proceed to the construction of the relevant potential, kinetic

and curvature actions of z ̸= 2 scale invariant gravity.

5.1.1 Potential Terms

The transformation rules for φ does not change in the z ̸= 2 setting. Thus, the potential terms

for φ in z ̸= 2 scale-invariance is the same as the z = 2 theory. On the other hand, unlike the

z = 2 case, we cannot define a complex scalar Ψ field to include the potential terms of χ into the

kinetic terms of the Ψ. Thus, here we give the potential terms of χ in zeroth, second and fourth

order spatial derivatives.

2If Rab(D) = 0 is chosen as the constraint as in [19] instead of Rµν(D) = 0, then bµ can no longer be set to

bµ = ∂µϕ. In that case one can introduce a special conformal symmetry to the z ̸= 2 scale extended Bargmann

algebra by only taking the internal part of the algebra into account, which would lead one to a construction

procedure similar to the construction of z = 2 models given in Section 4.
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In order to discuss the construction of kinetic term in HLG let us consider the following



• ns = 0: χ has a non-vanishing U(1) transformation, thus cannot form an action with no

derivatives.

• ns = 2: For the construction of potential terms with two spatial derivatives, we turn to the

spatial part of the covariant derivative of Ma

DµMa = ∂µMa + (z − 1)bµMa − ωµ
abMb − ωµa . (5.17)

which is invariant under Galilean transformations due to the fact that Ma transforms as

shift under Galilean transformations

δGMa = λa . (5.18)

As the inverse spatial vielbein eµa is also Galilean invariant, we can form a spatial covariant

derivative of Ma that is invariant under Galilean transformations

δDaMb = −zΛDDaMb . (5.19)

Thus, the only possible ns = 2 potential terms for χ are

S
(1)
z ̸=2 =

∫
dt ddx eφDaM

a . (5.20)

Here, the scaling dimension of φ is given by ω = −d. Furthermore e = det(τµ, eµa) has the

following scaling transformation

δDe = (d+ z)ΛD e . (5.21)

• ns = 4: The construction of potential terms with four spatial derivatives can be divided

into following three subclasses

a. We first consider the models such that the spatial derivatives only act on χ terms

(ns,χ = 4, ns,φ = 0).

S
(2)
z ̸=2 =

∫
dt ddx eφ (DaM

a)2 ,

S
(3)
z ̸=2 =

∫
dt ddx eφ (DaMb)

2 ,

S
(4)
z ̸=2 =

∫
dt ddx eφ△DaM

a , (5.22)

Here, for S(2)
z ̸=2 and S

(3)
z ̸=2, the scaling dimension of φ is given by ω = z− d while for the

S
(4)
z ̸=2, the scaling dimension of φ is ω = 2− d. Note that it is also possible to consider

the models of kind φDa△Ma or φDaDbDaM b, however such actions are related to S
(4)
z ̸=2

up to curvature invariants

Da△Ma = △DaM
a + [Da,△]Ma

= △DaM
a −Db

(
Rbc(J)M

c +Rab
a(G)

)
. (5.23)

We will construct that curvature invariant in the next section.
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In the next step, we only allow a single spatial derivative to act on M0, in which case the only

Galilean invariant quantity is

DaM0 +M bDaMb , (5.30)

Here, we could also have D0Ma but it is equivalent to DaM0 as the commutator of D0 and Da

vanishes on χ. Finally, we allow two spatial derivative to act on M0, in which case we have two

possible independent Galilean invariant quantities

△M0 +M c△Mc , DbDaM0 +M cDbDaMc . (5.31)

Note that we could also have D0DaM
a and DaD0M

a but they are related to △M0 up to the cur-

vature term R0a
a(G)+R0a

ab(J)Mb. Furthermore, D0DaMb and DbD0Ma are related to DaDbM0

by the curvature term R0a
b(G) +R0a

bc(J)Mc.

When we have time derivatives at second order acting on φ and χ, we don’t allow any spatial

derivatives to act on such terms. In this case, the Galilean invariant quantities are

D2
0φ+ 2MaD0Daφ+MaM bDaDbφ , D0M0 + 2MaD0Ma +MaM bDaMb . (5.32)

With these results in hand, we have the following classification of Galilean invariant actions.

• nt = 1 : When we have a single time derivative acting on φ or χ, we first consider the

models with no spatial derivatives

S
(5)
z ̸=2 =

∫
dt ddx eφ(D0φ+MaDaφ) ,

S
(6)
z ̸=2 =

∫
dt ddx eφ2(M0 +

1
2MaM

a) . (5.33)

Here, for S(5)
z ̸=2 we have ω = −d

2 , while for S
(6)
z ̸=2 we have ω = z−d−2

2 . The remaining z ≠ 2

scale-invariant actions, which consists one temporal and two spatial derivatives, can be

classified with respect to the scaling dimension of the scalar field φ as follows

a. For the following two models, the scaling dimension of the scalar field φ is ω = 2−d
2

S
(7)
z ̸=2 =

∫
dt ddx e△φ(D0φ+MaDaφ) ,

S
(8)
z ̸=2 =

∫
dt ddx eφ−1DaφD

aφ(D0φ+M bDbφ) . (5.34)

b. For the next three models, the scaling dimension of the scalar field φ is ω = z−d
2 .

S
(9)
z ̸=2 =

∫
dt ddx eφDaMa(D0φ+M bDbφ) ,

S
(10)
z ̸=2 =

∫
dt ddx eφ△φ(M0 +

1
2MaM

a) ,

S
(11)
z ̸=2 =

∫
dt ddx eDaφD

aφ(M0 +
1
2MbM

b) . (5.35)
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c. For the final kinetic term with a single derivative, the scaling dimension of the scalar

field φ is ω = 2z−d−2
2

S
(12)
z≠2 =

∫
dt ddx eφ2 DaMa(M0 +

1
2MbM

b) . (5.36)

• nt = 2 : When we have two time derivative acting on φ or χ, the possible z ̸= 2 scale-

invariant actions are

S
(13)
z≠2 =

∫
dt ddx eφ (D2

0φ+ 2MaD0Daφ+MaM bDaDbφ) ,

S
(14)
z≠2 =

∫
dt ddx eφ2 (D0M0 + 2MaD0Ma +MaM bDaMb) ,

S
(15)
z≠2 =

∫
dt ddx eφ2 (M0 +

1
2MaM

a)2 . (5.37)

Unlike the potentials and nt = 1 models, we need to choose a different scaling dimension for

each of the nt = 2 actions due to the fact that the scaling dimension of M0 is z-dependent,

δM0 = 2(1− z)ΛDM0. For S
(13)
z≠2 we have ω = z−d

2 , while for S(14)
z≠2 we have ω = 2z−d−2

2 and

for S(15)
z≠2 we have ω = 3z−d−4

2 .

In our construction above, we avoid models that are equivalent to each other by means of partial

integration or combination of other invariant actions, e.g. it is possible can also produce an

invariant action using (5.27) and multiplying it with the Galilean-invariant covariant derivative

Daφ. However, such a model can be obtained by a partial integration of S(9)
z≠2.

5.1.3 Curvature Terms

Following the z = 2 discussion, we will now consider the curvature invariants. First, we

enumerate the curvature invariants that are required for the commutation relations as mentioned

above. The models that include the non-zero curvature Rµν
a(G) are given by

S
(16)
z≠2 =

∫
dt ddx eφ2

(
τµeνaRµν

a(G) +M b[2τµeνaRµν
ab(J) +M ceµce

ν
aRµν

a
b(J)]

)
,

S
(17)
z≠2 =

∫
dt ddx eφ

(
Rbc(J)M

c +Rab
a(G)

)
Dbφ . (5.38)

For S
(16)
z≠2 , the scaling dimension of φ is given by ω = 2−d

2 , while for S(17)
z≠2 we have ω = z−d

2 . We

also have the following two invariants that replaces the z = 2 scale invariant action S(21) given

in (4.62), in the case of z ̸= 2 scale-extended non-relativistic gravity

S
(18)
z≠2 =

∫
dt ddx eφR(J)(D0φ+MaDaφ) ,

S
(19)
z≠2 =

∫
dt ddx eφ2R(J)(M0 +

1
2MaM

a) , (5.39)

For S(18)
z≠2 , the scaling dimension of φ is given by ω = 2−d

2 , while for S(19)
z≠2 we have ω = z−d

2 . Other

curvature invariants that include the contraction of the rotation curvature Rabcd(J) are the same

as z = 2 as given in (4.62) from S(14) to S(20), thus we will not give them here.
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• ns = 0: χ has a non-vanishing U(1) transformation, thus cannot form an action with no

derivatives.

• ns = 2: For the construction of potential terms with two spatial derivatives, we turn to the

spatial part of the covariant derivative of Ma

DµMa = ∂µMa + (z − 1)bµMa − ωµ
abMb − ωµa . (5.17)

which is invariant under Galilean transformations due to the fact that Ma transforms as

shift under Galilean transformations

δGMa = λa . (5.18)

As the inverse spatial vielbein eµa is also Galilean invariant, we can form a spatial covariant

derivative of Ma that is invariant under Galilean transformations

δDaMb = −zΛDDaMb . (5.19)

Thus, the only possible ns = 2 potential terms for χ are

S
(1)
z ̸=2 =

∫
dt ddx eφDaM

a . (5.20)

Here, the scaling dimension of φ is given by ω = −d. Furthermore e = det(τµ, eµa) has the

following scaling transformation

δDe = (d+ z)ΛD e . (5.21)

• ns = 4: The construction of potential terms with four spatial derivatives can be divided

into following three subclasses

a. We first consider the models such that the spatial derivatives only act on χ terms

(ns,χ = 4, ns,φ = 0).

S
(2)
z ̸=2 =

∫
dt ddx eφ (DaM

a)2 ,

S
(3)
z ̸=2 =

∫
dt ddx eφ (DaMb)

2 ,

S
(4)
z ̸=2 =

∫
dt ddx eφ△DaM

a , (5.22)

Here, for S(2)
z ̸=2 and S

(3)
z ̸=2, the scaling dimension of φ is given by ω = z− d while for the

S
(4)
z ̸=2, the scaling dimension of φ is ω = 2− d. Note that it is also possible to consider

the models of kind φDa△Ma or φDaDbDaM b, however such actions are related to S
(4)
z ̸=2

up to curvature invariants

Da△Ma = △DaM
a + [Da,△]Ma

= △DaM
a −Db

(
Rbc(J)M

c +Rab
a(G)

)
. (5.23)

We will construct that curvature invariant in the next section.
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NC and HLG connection [Hartong, Obers 2015]

where the scale transformations of mµ and χ are given by

mµ → e(2−z)ΛDmµ , χ→ e(2−z)ΛDχ . (3.15)

The definition of Mµ as given in (3.14) also implies that the U(1) transformation of mµ must be

modified with a bµ dependent term as follows

mµ → mµ + ∂µσ + (z − 2)σbµ . (3.16)

Based on the scale-invariant connection (3.11) in hand, it is now straightforward to write a scale-

invariant Riemann tensor [28] as well as a (d+ 1) Milne-invariant tensor gµν [20]

gµν = ĥµν + τµτν , gµν = hµν + τ̂µτ̂ν , (3.17)

to be used to define a volume form on M. With these results in hand, one can also construct

non-relativistic scale invariant gravity actions or scalar field equations by utilizing a real scalar

field with a Weyl weight ω that transforms as

δφ = ωΛDφ . (3.18)

Finally, it is important to note that although we worked with a particular set of inverse fields, we

expect that it is always possible to switch between different sets as described in Fig 1. However,

due to scale invariance of the connection, the relation between the contorsion tensors (2.33) is

modified as

K ′
µν

ρ = Kµν
ρ − hρσ(MσD[µτν] +MνD[στµ] +MµD[στν] − 2ΦτµD[στν] − 2ΦτνD[στµ]) . (3.19)

This indicates that as D[µτν] = 0 for the twistless torsional case, it is not possible to introduce a

contorsion with a non-trivial Milne transformation - the Galilean invariance of the connection is

maintained by the non-metricity property of the temporal vielbein τµ.

Having extended the Newton-Cartan geometry with a scale symmetry, let us consider the

case when z = 2, the value for which the non-relativistic scale symmetry can be enhanced to

the Schrödinger symmetry, i.e. the non-relativistic analogue of the conformal symmetry, by

introducing a special conformal transformation. This is done by imposing the z = 2 scale covariant

compatibility conditions (3.1)

∇µτν = 2bµτν , ∇µh
νρ = −2bµh

νρ , (3.20)

which is preserved by the non-relativistic special conformal transformation

bµ → bµ + τµΛK(x) . (3.21)

Since the compatibility conditions are not modified, the connection is still given by (3.11), which

transforms non-trivially under special conformal transformations due to appearance of bµ in its

definition

Γρ
µν → Γρ

µν − τµδ
ρ
νΛK − τνδ

ρ
µΛK . (3.22)

Therefore, we conclude that as the temporal component of bµ is the only field that transforms

non-trivially under the special conformal transformation, see Table 1, a Schrödinger invariant

gravity means that a z = 2 scale invariant gravity that does not contain any τµbµ term.
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Milne invariant Riemannian tensor can be defined as 

From this definition, ADM decomposition of the metric and the twistless torsion 

condition one can show the following  

5.2 z ̸= 2 Scale Invariance and the Hořava-Lifshitz Gravity

In this section, our purpose is to combine the z ̸= 2 scale invariant gravity models that we

constructed to identify the z ̸= 2 scale extension of the Hořava-Lifshitz gravity. Thus, we start

this section with a brief review of the dictionary between the dynamical Newton-Cartan geometry

and the Hořava-Lifshitz gravity that was put forward in [17]. We refer to [17] for readers interested

in the details of the dictionary we review here.

1. Coordinates: In order to define the Hořava-Lifshitz variables in terms of the fields in the

scale-extended Newton-Cartan geometry, we first assume the hypersurface orthogonality

condition

τ[µ∂ντρ] = 0 , (5.40)

which is satisfied by the z ̸= 2 scale invariant theory due to the constraint Rµν(H) = 0, see

(5.7). Next, we consider the (d + 1)-dimensional ADM decomposition of the metric tensor

where metric tensor gµν that we defined in (3.17). This leads to the following relations

between the components of hµν , ĥµν , τµ, τ̂µ and the lapse function N = N(t, x), the shift

vector N i = N i(t, x), and the d-metric γab [17]

τt = N , τi = 0 ,

htt = hti = hit = 0 , hij = γij ,

τ̂ t = N−1 , τ̂ i = −N−1N i ,

ĥtt = γijN
iN j , ĥti = ĥit = γijN

j , ĥij = γij , (5.41)

which implies the following expressions for hµν and τµ

τ t = N−1 , τ i = 0 , htt = hti = hit = 0 , hij = γij . (5.42)

Here, it is important to note that we split the µ-index into coordinates t and xi. Using

these relations, we also identify the U(1)-invariant vector field Mµ as

Mt = −
1

2N
γijN

iN j + ΦN , Mi = −
1

N
γijN

j . (5.43)

where Φ is the Newtonian potential that we defined in (2.28). Finally, based on the twistless

condition (2.20), we observe that this condition is fixed by ba = eµabµ since the twistless

condition imply

∂[µτν] = zb[µτν] = zbae[µ
aτν] . (5.44)

Thus, in order to define the twistless condition in terms of the ADM variables, we define a

vector, aµ, as follows [17]

aµ = Lτ̂τµ = τ̂ν(∂ντµ − ∂µτν) = −zeµ
aba , (5.45)
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Using these relations U(1) invariant vector field reads

5.2 z ̸= 2 Scale Invariance and the Hořava-Lifshitz Gravity
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leads to

ĥtt = γijN
iN j + τ 2t −N2 , (8.2)

ĥti = γijN
j + τiτt , (8.3)

ĥij = γij + τiτj . (8.4)

For the inverse metric (5.11) the ADM decomposition reads

gtt = −N−2 , (8.5)

gti = N iN−2 , (8.6)

gij = γij −N iN jN−2 . (8.7)

From this we conclude that

htt = −N−2 + v̂tv̂t , (8.8)

hti = N iN−2 + v̂tv̂i , (8.9)

hij = γij −N iN jN−2 + v̂iv̂j . (8.10)

The choice (6.8) implies that τµ is hypersurface orthogonal, i.e.

τµ = ψ∂µτ . (8.11)

If we fix our choice of coordinates such that τ = t we obtain

τi = 0 . (8.12)

Using that τµhµν = 0 and (8.12) we obtain htt = hti = 0 as well as ĥti = γijN j
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mi = −γij
N j

N
. (8.13)

Furthermore we have hij = γij and vi = 0. For the time component of mµ we obtain

mt = −
1

2N
γijN

iN j +NΦ̃ , (8.14)

where we used (4.11) or alternatively (4.9) and (4.6). In general τt = N = N(t, x) so

that we are dealing with non-projectable HL gravity. Projectable HL gravity corre-

sponds to N = N(t) which is precisely what we get when we impose ∂µτν − ∂ντµ = 0.

In these coordinates the torsion vector (6.9) reduces to

at = N iai , (8.15)
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The dilatation gauge field can also be written in terms of HLG variables 

through the TT condition 

5.2 z ̸= 2 Scale Invariance and the Hořava-Lifshitz Gravity

In this section, our purpose is to combine the z ̸= 2 scale invariant gravity models that we

constructed to identify the z ̸= 2 scale extension of the Hořava-Lifshitz gravity. Thus, we start

this section with a brief review of the dictionary between the dynamical Newton-Cartan geometry

and the Hořava-Lifshitz gravity that was put forward in [17]. We refer to [17] for readers interested

in the details of the dictionary we review here.

1. Coordinates: In order to define the Hořava-Lifshitz variables in terms of the fields in the

scale-extended Newton-Cartan geometry, we first assume the hypersurface orthogonality

condition

τ[µ∂ντρ] = 0 , (5.40)

which is satisfied by the z ̸= 2 scale invariant theory due to the constraint Rµν(H) = 0, see

(5.7). Next, we consider the (d + 1)-dimensional ADM decomposition of the metric tensor

where metric tensor gµν that we defined in (3.17). This leads to the following relations

between the components of hµν , ĥµν , τµ, τ̂µ and the lapse function N = N(t, x), the shift

vector N i = N i(t, x), and the d-metric γab [17]

τt = N , τi = 0 ,

htt = hti = hit = 0 , hij = γij ,

τ̂ t = N−1 , τ̂ i = −N−1N i ,

ĥtt = γijN
iN j , ĥti = ĥit = γijN

j , ĥij = γij , (5.41)

which implies the following expressions for hµν and τµ

τ t = N−1 , τ i = 0 , htt = hti = hit = 0 , hij = γij . (5.42)

Here, it is important to note that we split the µ-index into coordinates t and xi. Using

these relations, we also identify the U(1)-invariant vector field Mµ as

Mt = −
1

2N
γijN

iN j + ΦN , Mi = −
1

N
γijN

j . (5.43)

where Φ is the Newtonian potential that we defined in (2.28). Finally, based on the twistless

condition (2.20), we observe that this condition is fixed by ba = eµabµ since the twistless

condition imply

∂[µτν] = zb[µτν] = zbae[µ
aτν] . (5.44)

Thus, in order to define the twistless condition in terms of the ADM variables, we define a

vector, aµ, as follows [17]

aµ = Lτ̂τµ = τ̂ν(∂ντµ − ∂µτν) = −zeµ
aba , (5.45)
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It is useful to identify a vectorwhere the last part of the equation is fixed by the twistless condition (2.20). Using the

condition (2.20), we determine the vector aµ as [17]

at = N iai , ai = −N−1∂iN . (5.46)

Note that temporal component b0 does not play a role in the connection between the

Hořava-Lifshitz gravity and the Newton-Cartan geometry.

2. Geometry: When we keep the lapse function only as a function of time only N = N(t), we

are dealing with the projectable Hořava-Lifshitz gravity. On the geometry side, N = N(t)

corresponds to the torsionless Newton-Cartan geometry since it gives rise to ∂[µτν] = 0.

When the lapse function N is left arbitrary, we are dealing with the non-projectable Hořava-

Lifshitz gravity, which corresponds to the twistless-torsional Newton Cartan geometry.

3. Curvatures: The second fundamental form, or the extrinsic curvature is defined as

Kij =
1

2N

(
∂tγij − ∇̄iNj − ∇̄jNi

)
, (5.47)

where ∇̄i denotes the d-dimensional covariant derivative with respect to the d-metric γij

∇̄iNj = ∂iNj − Γ̄k
ijNk , (5.48)

where Γ̄k
ij denotes the components of the Christoffel connection for the d-metric γij

Γ̄k
ij =

1

2
γkm

(
∂iγjm + ∂jγim − ∂mγij

)
. (5.49)

In order to relate the extrinsic curvature (5.47) to the Newton-Cartan variables, we first

make the following definition for the scale-covariant derivative of the U(1)-invariant vector

Ma

K ′
ab = DaMb = ∇̃(aMb) + zb(aMb) − δabb

cMc − δabb0 . (5.50)

where ∇̃a refers to the Galilean gauge-covariant piece of the scale covariant derivative

∇̃aMb = eµa

(
∂µMb − Ωµb

cMc − Ωµb

)
. (5.51)

Here, we also decomposed the rotation and boost gauge connections of the z ≠ 2 scale

extended Bargmann algebra to the of the Bargmann algebra as

ωµ
ab = Ωµ

ab + 2eµ
[abb] − (z − 2)eνaeρbτµb[νmρ] ,

ωµ
a = Ωµ

a + eµ
aτνbν + (z − 2)eνab[µmν] + (z − 2)τµτ

ρeνab[ρmν] (5.52)

Here, we represent the rotation and boost gauge fields of the Bargmann algebra with Ωµ
ab

and Ωµ
a in the respective order to distinguish these quantities with the relevant z ≠ 2 scale

invariant ones. Based on our previous conclusion that b0 does not play a role in the Hořava-

Lifshitz gravity, it is best to consider models where b0 drops out. This can be achieved in

two ways
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Finally the extrinsic curvature (kinetic term of HLG)
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Can be identified from the following tensor
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Gathering up all these pieces the scale extended HLG is 

i. We can decompose K ′
ab as

K ′
ab = Kab − δab(b

cMc + b0) such that Kab = ∇̃(aMb) + zb(aMb) , (5.53)

in which case the following combination has no b0 term

K ′
abK

′ab −
1

d
K ′2 = KabK

ab −
1

d
K2 , (5.54)

where K ≡ Ka
a and K ′ ≡ K ′a

a. This is precisely what was found as the kinetic term

of conformal Hořava-Lifshitz gravity in [17].

ii. We can consider the combination of K ′
ab with the z ≠ 2 scale covariant combination

(5.26)

K ′
ab − δab(φ

−1D0φ+Maφ−1Daφ) , (5.55)

in which case, as in the previous scenario, only the Kab part of K ′
ab survives.

Therefore, we only need to worry about the relation between the Kab and Kij since the

remaining terms can either be absorbed into the z ≠ 2 scale covariant combination (5.26),

or can be canceled out by choosing a proper combination of K ′
abK

ab′ and K ′2. As noted

in [18], Kab can be written as

Kab = eµae
ν
b

(1
2
Lτhµν +

1

2
∇µ(P

ρ
νMρ) +

1

2
∇ν(P

ρ
µMρ) + zM(µbν)

)
, (5.56)

where

∇µMν = ∂µMν − Γρ
µνMρ . (5.57)

From this expression, we observe that one can write down the kinetic terms KabK
ab =

KijK
ij and Ka

a = γijKij upon using the map between the ADM variables and the Newton-

Cartan fields (5.41).

With these results in hand, we give the z ≠ 2 scale-extended Hořava-Lifshitz gravity as

SHL
z≠2 = S

(3)
z≠2 − λS

(2)
z≠2 + SV , (5.58)

where λ is an arbitrary parameter and SV represents any remaining combination of actions that

we constructed for χ, φ and group theoretical curvatures in the previous sections.

6 Conclusions

In this paper we present a detailed study on the construction of z = 2 and z ≠ 2 scale invariant

extension of the Hořava-Lifshitz gravity. To achieve these result, we developed a non-relativistic

scale invariant tensor calculus and constructed scale invariant actions. Our results also enabled
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Outlook

•The scale or Schrodinger symmetry corresponds to a special choice of non-
metricity in the compatibility equation, and it is possible to have a more general 
classification of non-relativistic geometries by imposing a more general non-
metricity. This classification has been done for the relativistic scenarios. 


•The true non-relativistic analogue of the relativistic conformal symmetry, which 
leaves the action of a massless non-relativistic particle is invariant is called the 
Galilean conformal algebra. 


• Is it possible to get HLG from the large c expansion by [vDB17]


•Generating solutions for HLG from the known relativistic ones.



Large c expansion [VdB17]

the expansion of the geometry without imposing any dynamical constraints yet.
Furthermore in [4–6] it was assumed that as c → ∞ the relativistic Levi-Civita
connection remains finite. We will perform the expansion without making this
assumption and we will discuss the physical interpretation and consequences of
this in section 4.4.

2.1 Starting ansatz

We assume an expansion of the metric (D = d+1, Lorentzian) in even powers2 of
a variable c (thought of physically as the speed of light):

gµν =
∞
∑

i=−1

(2i)
gµνc

−2i gµν =
∞
∑

i=0

(2i)
g µνc−2i (1)

We furthermore assume that
(-2)
gµν is of rank 1 and negative, so we can write

(-2)

gµν = −τµτν (2)

2.2 Diffeomorphisms

Before we start a detailed analysis of this expansion and its consequences it will
be useful to investigate its behavior under diffeomorphisms, as was stressed in [6].
Where general relativity is invariant under coordinate transformations that can be
arbitrary functions of c, the ansatz (1) is only preserved by diffeomorphisms that
are analytic in c−2. These are generated by vectorfields of the form

ξµ =
∞
∑

i=0

(2i)

ξ µc−2i (3)

For tensors of the form T =
∑

∞

i=imin

(2i)

T c−2i the coefficients then transform as

δξ
(2i)

T = L (0)

ξ

(2i)

T +
i−1
∑

j=imin

L (2i− 2j)

ξ

(2j)

T (4)

2One can argue [4] that odd powers of c will only appear at higher order than we are interested
in. This implies that one does not lose any generality by restricting to even powers here. Still
this will be one of the few assumptions we put into the formalism from the start. It might be
interesting to allow odd terms in the expansion from the beginning and see directly from the
equations of motion that they can be consistently put to zero.
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First of all we see that all tensor coefficients transform as tensors under c-independent

diffeomorphisms, generated by
(0)

ξ . For this reason we will from now on simply refer

to the transformations generated by
(0)

ξ as ’the’ diffeomorphisms of the expansion.
In addition there is an infinite amount of additional gauge symmetries, that

originate from the diffeorphisms with subleading c-dependence, which act in a more
non-trivial way, mixing different coefficients. Note that up to some fixed order of
the expansion there is however only a finite number of those that act non-trivially,
as under those transformations a given coefficient only gets contributions from
lower order coefficients, never from higher order ones.

It will be useful to repeat this same analysis in the case of a connection. As-

suming a connection with the expansion Γλ
µν =

∑

∞

i=−1

(2i)

Γ λ
µνc

−2i one computes that

δξ
(2i)

Γ λ
µν = L (0)

ξ

(2i)

Γ λ
µν + ∂µ∂ν

(2i)

ξ λ +
i−1
∑

j=−1

L (2i− 2j)

ξ

(2j)

Γ λ
µν (5)

This transformation is interesting as it tells us that only one coefficient of the
connection will act as a connection in the expanded theory while all others will

behave as tensors. Indeed, as we identified
(0)

ξ µ as the diffeomorphisms we see that it

is only
(0)

Γλ
µν which transforms as a connection, while all other coefficients transform

as tensors under
(0)

ξ µ generated diffeomorphisms. Again there are the additional

symmetries generated by the
(2i)

ξ µ, i > 0, under which the coefficients transform in
a more complicated fashion.

2.3 Metric invertibility

The two expansions (1) are of course related by the condition that one series
provides the inverse of the other. We can expand this condition gµρgρν = δνµ order
by order and solve the resulting equations explicitely. As a first step one obtains
from the leading equation (order c2) the result that

(0)
g µν = hµν with hµντν = 0 (6)

For the actual metric gµν to be non-degenerate hµν will need to have rank 3.
Before continuing it turns out to be useful to introduce two new, but dependent,

fields τµ and hµν that are defined via the conditions

τντ
ν + hµρh

ρν = δνµ τρτσhρσ = 0 (7)

5

These equations uniquely define the new fields only if we make an identification
by gauge transformations of the form

δχτ
µ = −hµρχρ δχhµν = τµχν + τνχµ (8)

Here the gauge parameter χµ is purely ’spatial’, i.e. τρχρ = 0. This gauge transfor-
mation which we here introduced ’by hand’ corresponds to the local Galilean boost
symmetry in the Newton-Cartan literature, see e.g. [15], so we will henceforth also
refer to such transformations as boost transformations.

The main use of the relation (7) is that it provides two complementary projec-
tors

τµ
ν = τµτ

ν hµ
ν = hµρh

ρν (9)

We can now decompose all further metric coefficients in the expansions (1)
along these projectors and this is a great help in solving the expanded inverse
condition. The result is that both metric and inverse metric coefficients up to
NNLO can be written in terms of two independent vector fields Cµ and Bµ and
two symmetric ’spatial’ tensors βµν and γµν . More precisely one finds that

(0)
gµν = 2τ(µCν) + hµν

(2)
g µν = −τµτ ν + 2τ (µhν)λCλ + βµν

(2)

gµν = Bµτν + τµBν − CµCν − hµρhνσβ
ρσ

(4)

g µν = (hρσCρCσ − 2τρCρ) τ
µτ ν + 2τ (µhν)ρ

(

Bρ + (Cστ
σ)Cρ + hρλCσβ

σλ
)

+ γµν

where τρβρµ = τργρµ = 0 and β [µν] = γ[µν] = 0.
The metric coefficients are of course defined independently of the projectors we

introduced and so should not transform under the boost symmetry (8). This then
implies that the new fields need to transform as3

δχCµ = −χµ δχβ
µν = −2χ(µhν)ρCρ (10)

Because the original metric gµν(c) is invariant under the boost transformations
all derived objects and physical equations should be expressible in terms of boost-

3It is straightforward to work out the boost transformations of the fields Bµ and γµν . As
they will play no role in the rest of this work we don’t explicitely write out these transformations
here.
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invariant quantities. There is a natural set of those:

τ̂µ = τµ − hµνCν (11)

ĥµν = hµν + 2τ(µCν) + 2Φ̂τµτν (12)

Φ̂ = −τρCρ +
1

2
hρσCρCσ (13)

β̂µν = βµν + hµρhµσCρCσ (14)

B̂µ = Bµ + hµρβ
ρσCσ +

1

2
τµ

(

βρσCρCσ + (τρCρ − hρσCρCσ)
2
)

−Cµ(τ
ρCρ − hρσCρCσ) (15)

γ̂µν = γµν + 2hρ(µhν)σCρ

(

B̂σ − 2Φ̂Cσ

)

(16)

Note that these hatted, boost invariant variables satisfy constraints similar to the
orginal fields:

τν τ̂
ν + ĥµρh

ρν = δνµ τ̂ρτ̂σĥρσ = 0 τµβ̂
µν = 0 τµγ̂

µν = 0 (17)

It will also be useful to define the boost invariant projectors

τ̂µ
ν = τµτ̂

ν ĥµ
ν = ĥµρh

ρν (18)

We have summarized the expression of the coefficients of the metric and its
inverse up to NNLO in terms of these boost invariant variables in table 1.

2.4 Metric compatibility

The conditions that ∇µgνρ = 0 and ∇µgνρ = 0 with respect to the Levi-Civita
connection can also be expanded order by order. At LO this leads to a trivial
algebraic identity if one uses the explicit form of the metric coefficients obtained
by the inverse condition, see table 1. More interesting is the NLO part of the
above compatibility conditions which read

(0)

∇µh
νλ = −

(-2)

Γ ν
µρ

(2)

g ρλ −
(-2)

Γ λ
µρ

(2)

g ρν

(0)

∇µ (τντλ) = −
(-2)

Γ ρ
µν

(0)
gρλ −

(-2)

Γ ρ
µλ

(0)
gρν

Let us first note that indeed these are good tensorial equations, as we learned

from the analysis in section 2.2 that indeed
(0)

Γλ
µν transforms as a connection while

(-2)

Γ λ
µν transforms as a tensor. The above equations suggest that when

(-2)

Γ λ
µν ≠ 0,

7

For the compatibility condition assume the connection expansion

First of all we see that all tensor coefficients transform as tensors under c-independent

diffeomorphisms, generated by
(0)

ξ . For this reason we will from now on simply refer

to the transformations generated by
(0)

ξ as ’the’ diffeomorphisms of the expansion.
In addition there is an infinite amount of additional gauge symmetries, that

originate from the diffeorphisms with subleading c-dependence, which act in a more
non-trivial way, mixing different coefficients. Note that up to some fixed order of
the expansion there is however only a finite number of those that act non-trivially,
as under those transformations a given coefficient only gets contributions from
lower order coefficients, never from higher order ones.

It will be useful to repeat this same analysis in the case of a connection. As-

suming a connection with the expansion Γλ
µν =

∑

∞

i=−1

(2i)

Γ λ
µνc

−2i one computes that

δξ
(2i)

Γ λ
µν = L (0)

ξ

(2i)

Γ λ
µν + ∂µ∂ν

(2i)

ξ λ +
i−1
∑

j=−1

L (2i− 2j)

ξ

(2j)

Γ λ
µν (5)

This transformation is interesting as it tells us that only one coefficient of the
connection will act as a connection in the expanded theory while all others will

behave as tensors. Indeed, as we identified
(0)

ξ µ as the diffeomorphisms we see that it

is only
(0)

Γλ
µν which transforms as a connection, while all other coefficients transform

as tensors under
(0)

ξ µ generated diffeomorphisms. Again there are the additional

symmetries generated by the
(2i)

ξ µ, i > 0, under which the coefficients transform in
a more complicated fashion.

2.3 Metric invertibility

The two expansions (1) are of course related by the condition that one series
provides the inverse of the other. We can expand this condition gµρgρν = δνµ order
by order and solve the resulting equations explicitely. As a first step one obtains
from the leading equation (order c2) the result that

(0)
g µν = hµν with hµντν = 0 (6)

For the actual metric gµν to be non-degenerate hµν will need to have rank 3.
Before continuing it turns out to be useful to introduce two new, but dependent,

fields τµ and hµν that are defined via the conditions

τντ
ν + hµρh

ρν = δνµ τρτσhρσ = 0 (7)
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Then the same structure for TTNC is obtained.


