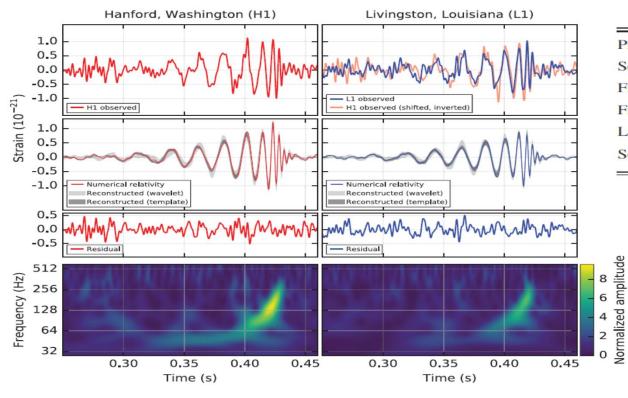
June 18, 2018 at International workshop for String theory, Gravitation and Cosmology, APCTP Pohang

Current status of gravitational wave detections and SOGRO

Gungwon Kang (KISTI) and KKN Collaboration


Outline

- I. Status on GW detections
 - Summary of detection events
 - Perspectives
- II. Introduction to SOGRO
 - Conceptual design
 - Target sciences

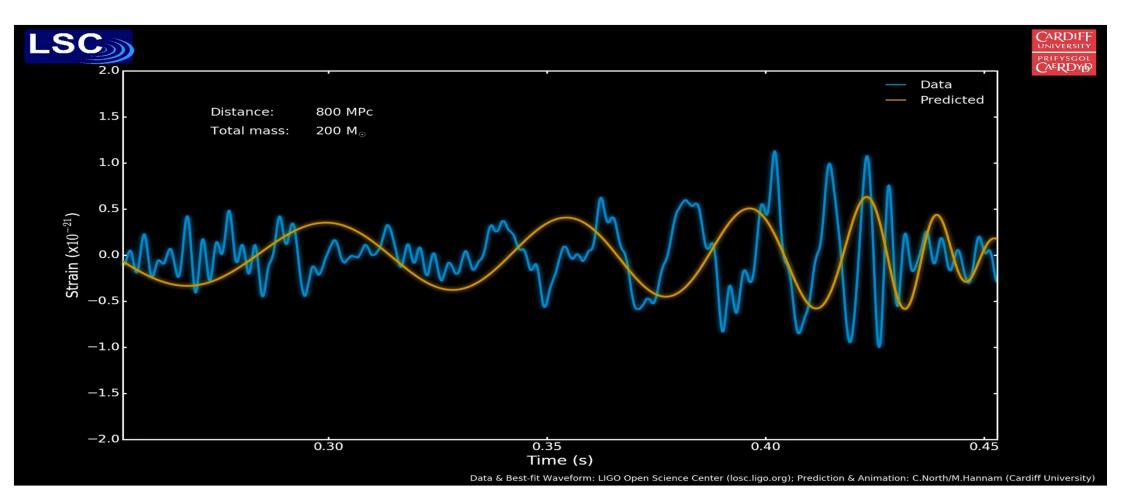
On behalf of the KKN Collaboration

I. Status on GW detections

- First detection on Sept. 14, 2015 at 09:50:45 UTC: GW150914

Primary black hole mass	$36^{+5}_{-4}M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4} M_{\odot}$
Final black hole mass	$62^{+4}_{-4} {M}_{\odot}$
Final black hole spin	$0.67\substack{+0.05\\-0.07}$
Luminosity distance	410^{+160}_{-180} Mpc
Source redshift z	$0.09\substack{+0.03 \\ -0.04}$

- From a binary black hole coalesce
- SNR ~ 24, equivalent to a significance $\gtrsim 5.1\sigma$
- Agree with GR very well

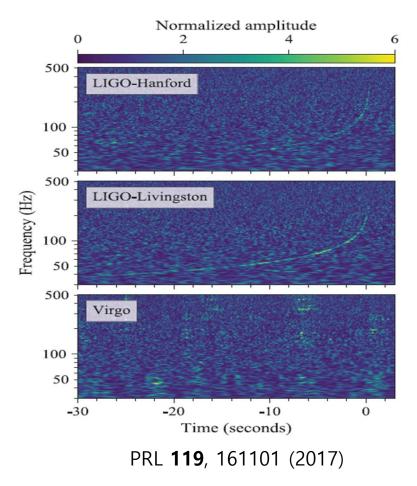

PRL 116, 061102 (2016)

✓ GW Events from O1 (2015/09/12~2016/01/12) & O2 (2016/11/30~2017/08/25):

- 4 BH mergers (GW150914, GW151226, GW170104, GW170814)
- 1 BH merger candidate (LVT151012)
- 1 NS merger (GW170817)

GW150914 \/\\\\
LVT151012
GW151226 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GW170104
GW170814 ////////////////////////////////////
GW170817
0 1 2 time observable (seconds)
LIGO/University of Oregon/Ben Farr

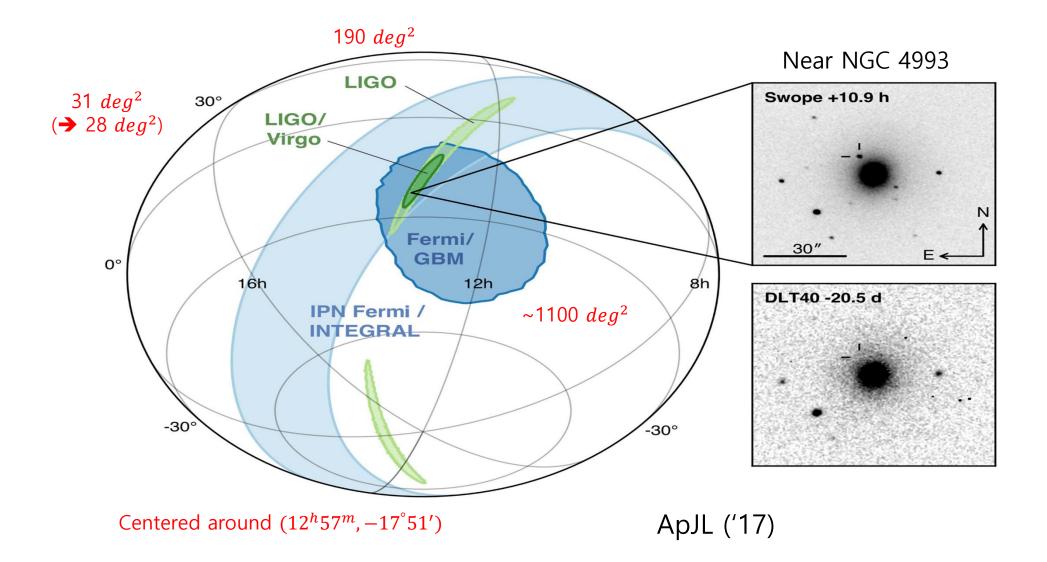
✓ Parameter estimations using signals observed:

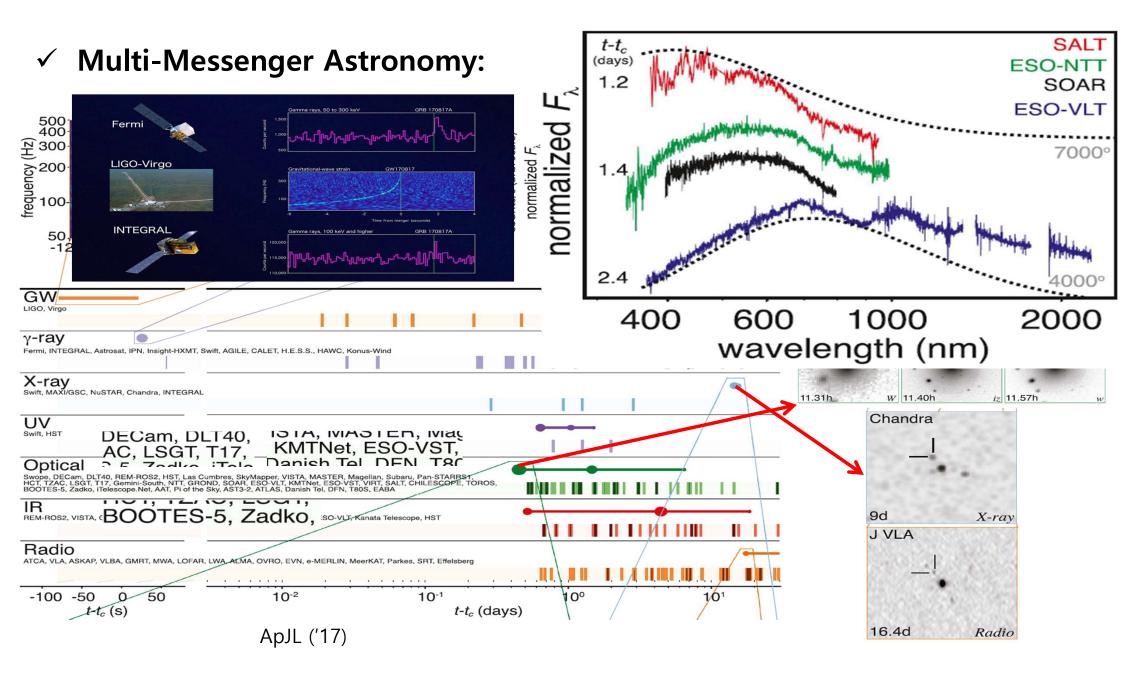


- Parameters for the GW sources obtained:

	GW150914	GW151226	GW170104	GW170608	GW170814	GW17081
Source	BBH	BBH	BBH	BBH	BBH	BNS
Signal-to-noise ratio	23.7	13.0	13	13	13.7	32.4
Primary mass				10+7		
(M⊙)	36.2+5.2	$14.2^{+9.3}_{-3.7}$	31.2+8.4	12^{+7}_{-2}	30.5+5.7	1.36-1.60
Secondary mass				-+2		
(M⊙)	$29.1_{-4.4}^{+2.7}$	7.5+2.3	19.4+5.3	7 ⁺² / ₂	25.3+2.8	1.17-1.36
Chirp mass (M⊙)	28.1+1.9	8.9+0.2	$21.1^{+2.4}_{-2.7}$	7.9+0.2	$24.1^{+1.4}_{-1.1}$	$1.188\substack{+0.00\\-0.00}$
Final mass (M⊙)	62.3+3.7	20.8+6.1	48.7+5.7	18+4.9	53.2+3.2	
Final spin	0.68+0.05	$0.74^{+0.06}_{-0.06}$	0.64+0.09	0.69+0.04	0.70 + 0.07	
Luminocity distance (Mpc)	420+150	440+180	880+450	340+140	540+130	40+8
Tidal deformability						< 000
ñ						≤ 800
Remark	O1, First					
	direct	01	02	02	O2 & Virgo	O2 & Virge
	detection					

✓ GW170817: GWs from a BNS Inspiral


- First observation of a BNS inspiral on Aug. 17, 2017 at 12:41:04 UTC
- Duration: ~100 s, SNR: 32.4, FAR: ≤ One per 80,000 years



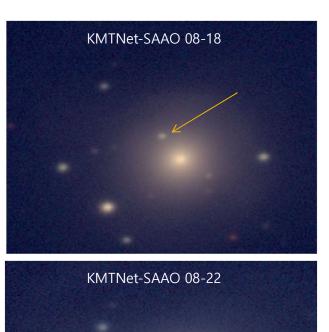
	Low-spin priors $(\chi \le 0.05)$
Primary mass m_1	1.36−1.60 M _☉
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7-1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01}M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc
Viewing angle Θ	≤ 55°
Using NGC 4993 location	≤ 28°
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800

- Radiation of EM waves was anticipated in.
- So, EM follow-up observation campaigns were launched immediately.

✓ Sky Localization and Optical Follow-up Observations:

✓ First secure identification of the factory of gold, platinum, uranium etc.

1 H	Element Origins																	
3 Li	4 Be	5 6 7 8 9 B C N O F										10 Ne						
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe	
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 lr	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
87 Fr	88 Ra																	
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 ҮЬ	71 Lu	
			89 Ac	90 Th	91 Pa	92 U												
Merging Neutron StarsExploding Massive StarsBig BangDying Low Mass StarsExploding White DwarfsCosmic Ray Fission																		

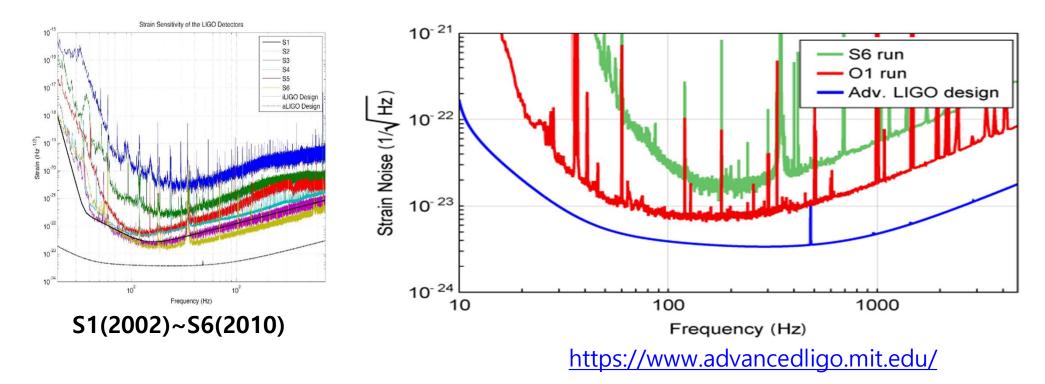

- Efficient neutron capture (r-process) leads to creation of these elements
- 200 earth mass gold, 500 earth mass platinum

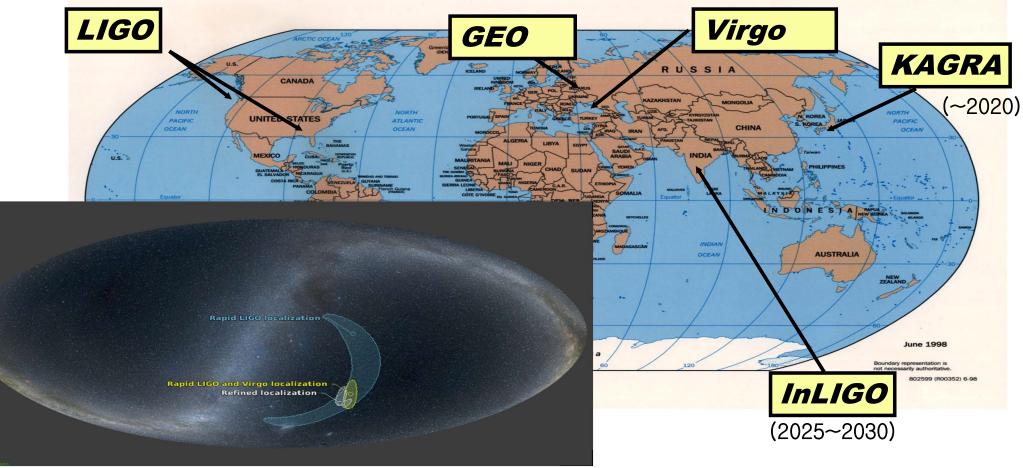
Slide credit: M. Im ('17)

✓ Optical Follow-up Observations in Korea:

- Lee Sang Gak Telescope (LSGT)
- Observed ~21 hrs after GW170817
- 0.43m at Siding Spring in Australia
- Seoul Nat'l U.

- Korea Microlensing Telescope Network (KMTNet)
- Observed ~28 hrs after GW170817
- 1.6m at S. Africa-Chille-Australia during Aug. 18~Sept. 07, 2017
- KASI/SNU



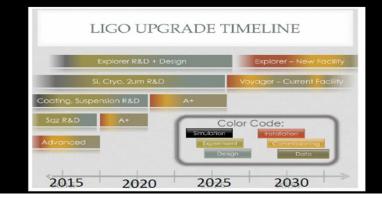

✓ Perspectives

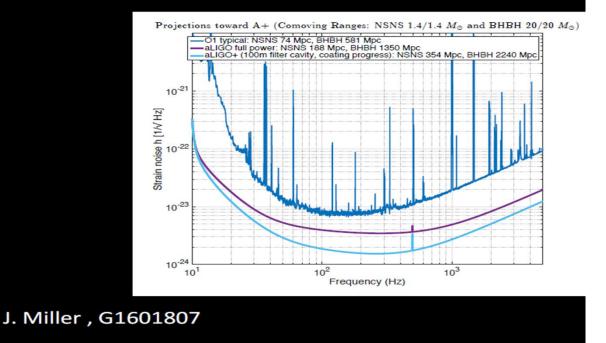
- Evolution of the LIGO sensitivity
- O1: 2015/09/12~2016/01/12
- O2: 2016/11/30~2017/08/25
- O3: Early in 2019 with 2~4 better sensitivity \rightarrow 3~25 events per month!

Network of GW observatories

Laser Interferometer for Gravitationalwave Observation

Better sky localization: ~10 times (GW170814)

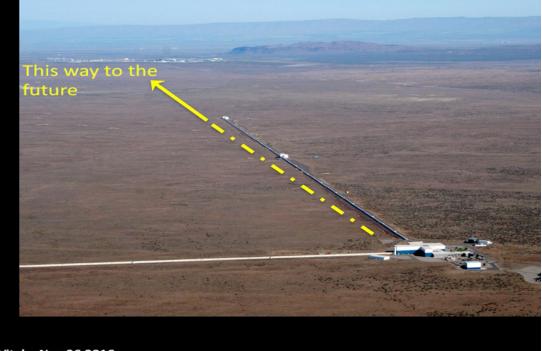

Cited in part from H.J. Paik's talk


Making advanced LIGO better: A+

S. Vitale, Nov 26 2016

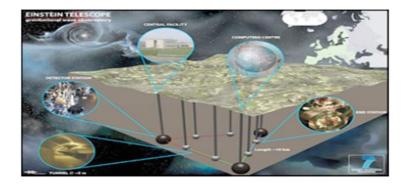
 Squeezing and coating required R&D required to increase the sensitivity beyond aLIGO

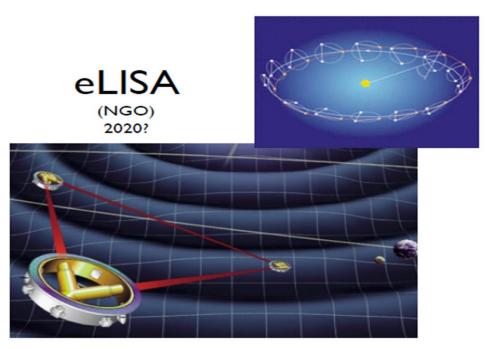
 Squeezing could be ready before aLIGO



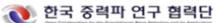
Slide credit: S. Vitale

29


- Cryogenic solutions could be applied to the existing LIGO facilities (Voyager)
 - Could gain a factor of ~2 in BNS range over advanced LIGO
- 40 km facilities for the next factor of 10 improvement
 - Cosmic explorer


S. Vitale, Nov 26 2016

Slide credit: S. Vitale


Future Gravitational Wave Detectors

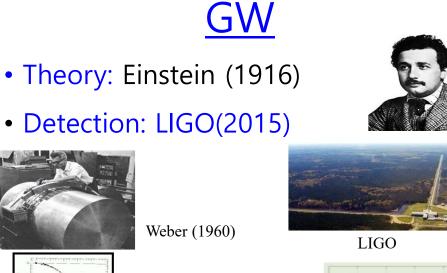
Einstein Telescope (ESA) 2030? (designing stage)

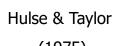
 Timelines: A+ (~2022), AdV+, Voyager (~2025), Einstein Telescope (~2023), Cosmic Explorer (~2027), DECIGO (~2027), TianQin (?), ...

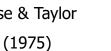
Comparisons:

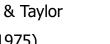
EM waves

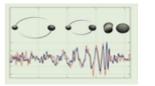
- Theory: Maxwell (1864)
- Detection: H. Hertz (1886)



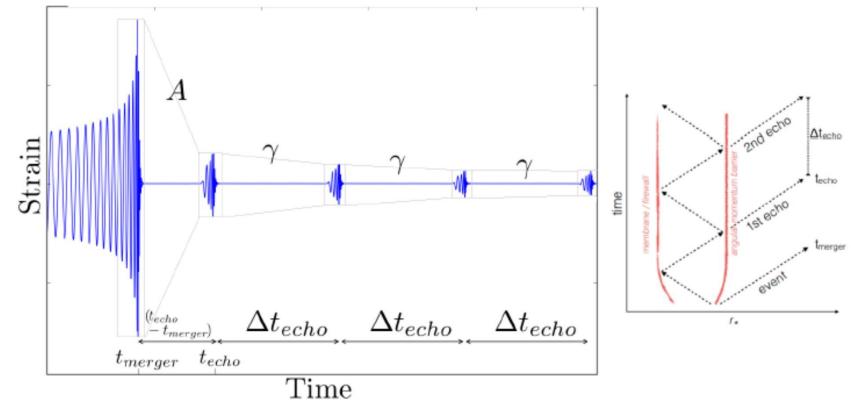




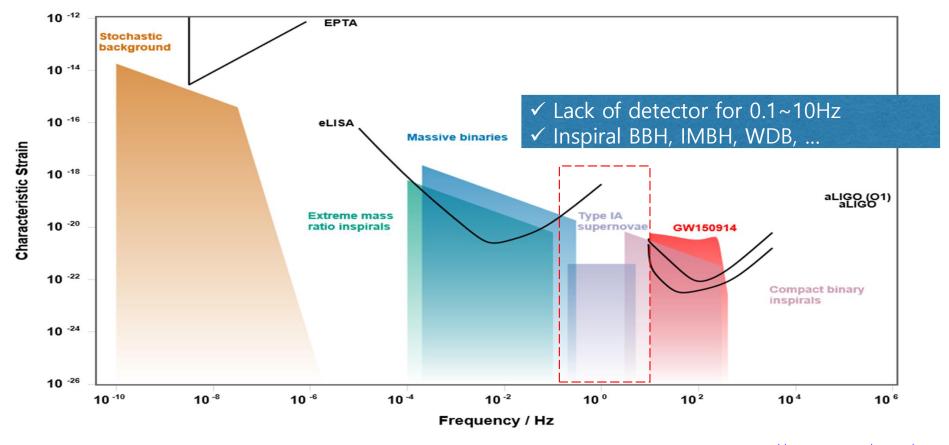




✓ How big is the gap?

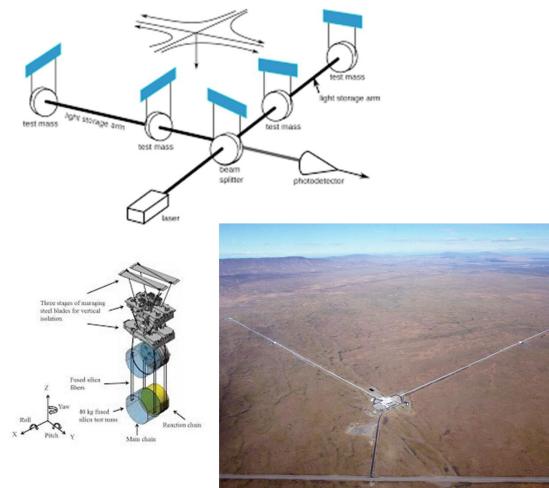

- Use GWs for telecommunications for example:
 - Absorption distance for E \rightarrow E/2 in water: $\sim 10^{29}$ km
 - ~0.1 billion times larger than the size of our observed universe!
 - Current capability of receiving: $10^{-21} \sim 10^{-23}$
 - Strength of a GW generation surround: $h_{GW} \sim 10^{-40}$
 - Currently, the gap is $\sim 10^{20}!!$
- For LIGO, it took ~13 years to have an improvement of ~ 10^3 .
- Maybe the solution would be "Quantum Effect": $\sim G/\hbar$

 ✓ "Echoes after the merger signal" by Abedi et al ('17)
 → Supports "Fire-wall"


✓ Check by Alex Nielsen

- Searched for by non-LIGO team using templates: 1612.00266
- Original claimed significance was 2.9 sigma (p-value 0.011)

Our combined significance estimate for these signals is ~1.3σ (p-value 0.104).


✓ Gravitational wave spectrum, detectors and sources:

http://rhcole.com/apps/GWplotter/ by Moore, Cole & Berry

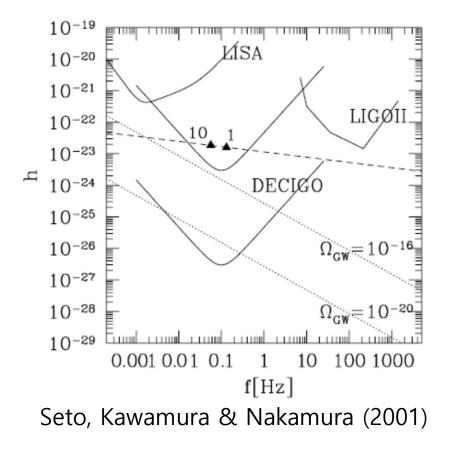
II. Introduction to SOGRO

✓ Obstacles in low frequencies, *e.g.*, 0.1~10Hz:

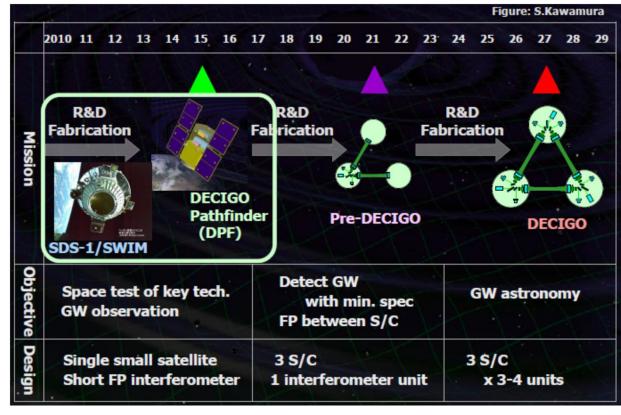
Mainly due to

23

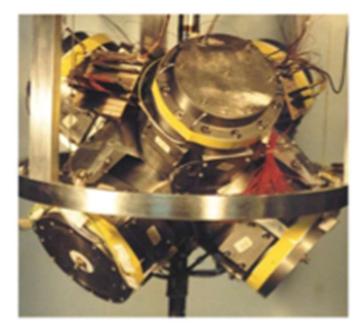
✓ Ground motions → Seismic noise

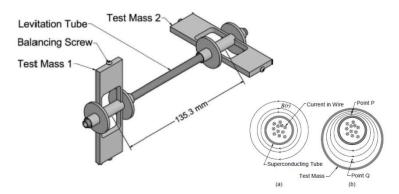

✓ Density fluctuations in Earth and atmosphere around the mirrors
 → Varying gravity

➔ Newtonian gravity noise


✓ Characteristic frequencies:

"Low Frequencies"

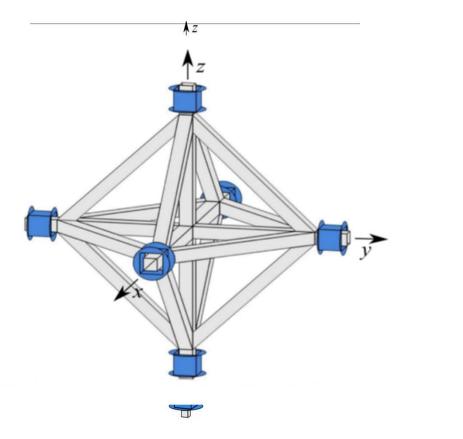

- ✓ DECIGO (Deci-hertz interferometer Gravitational-wave Observatory)
 - Same interferometer detector, but put it into space to avoid such noises!
 - ~2027

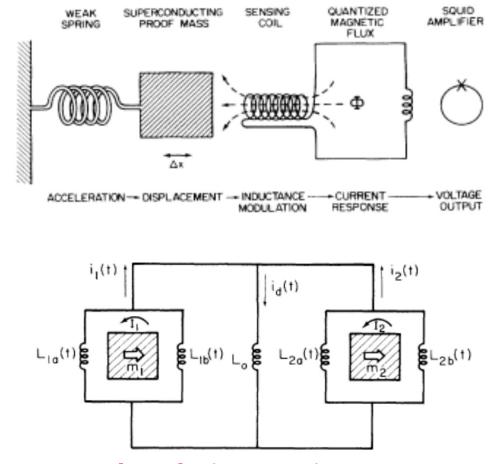

Roadmap (Slide credit: M. Ando 2012)

- ✓ What about terrestrial antenna at low frequencies?
 - Wagoner, Will & Paik: 1979
 - Superconducting Gravity Gradiometer (SGG):

Moody, Paik, & Caravan (2002)

Ho Jung Paik

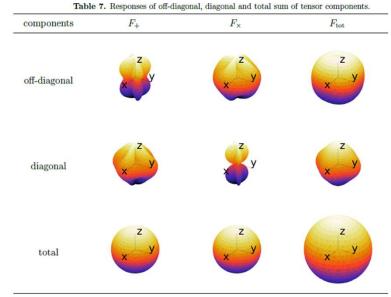




(Picture credit: H-M. Lee)

- ✓ Measure the relative motion of test masses
- ✓ Magnetic levitation, SQUID sensor
- ✓ Test mass: 25kg, Size: 30cm
- ✓ Sensitivity: ~2 × $10^{-11}s^{-2}Hz^{-1/2}$
- ✓ Developed for over 30 years at U. of Maryland

1. Design and Principle * Chan & Paik, PRD (1987):


→ Only relative motions matter!! ²⁶

• Combining 6 test masses, a tensor GW detector is formed;

$$h_{ii}(t) = \frac{2}{L} [x_{+ii}(t) - x_{-ii}(t)]$$

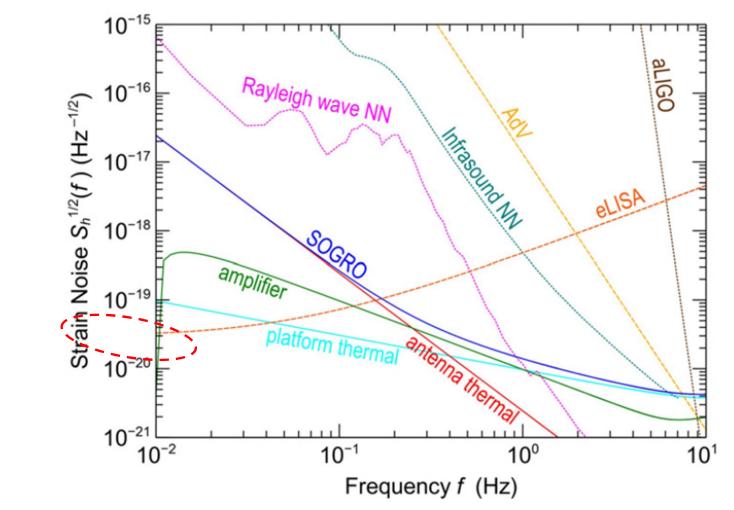
$$h_{ij}(t) = \frac{1}{L} \{ [x_{+ij}(t) - x_{-ij}(t)] - [x_{-ji}(t) - x_{+ji}(t)] \}, i \neq j$$

- Thus, the source direction (θ, ϕ) and GW polarizations can be determined by a single antenna. \rightarrow "Spherical Antenna"
- SOGRO: Superconducting Omni-directional Gravitational Radiation Observatory

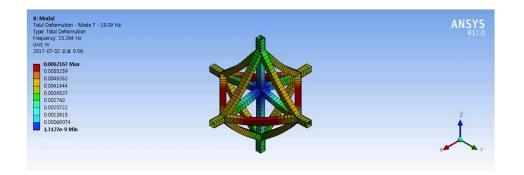
✓ However, there are noises!

✓ Main noise sources:

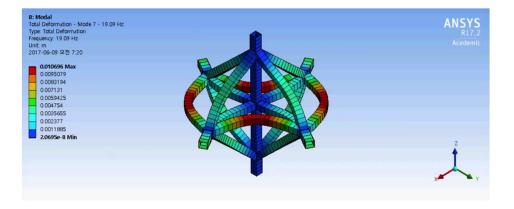
- Antenna noise: Test mass
- Amplifier noise: SQUID


$$S_{h}(f) = \frac{32}{ML^{2}\omega^{4}} \left\{ \frac{k_{B}T\omega_{D}}{Q_{D}} + \frac{|\omega^{2} - \omega_{D}^{2}|}{2\omega_{p}} \left(1 + \frac{1}{\beta^{2}}\right)^{1/2} k_{B}T_{N} \right\}, \ k_{B}T_{N} = n\eta\omega_{p}$$

• Platform thermal noise

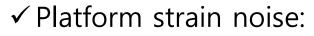

$$S_{\xi,\omega_0}(f) = \frac{16}{m_{\text{eff}} L^2 \omega_0^2 Q_{\text{pl}} \omega} \frac{4k_B T_{\text{pl}}}{(1 - \omega^2 / \omega_0^2)^2 + 1/Q_{\text{pl}}^2}. \qquad S_{\xi}(f) = \sum_i S_{\xi,\omega_{0i}}(f)$$

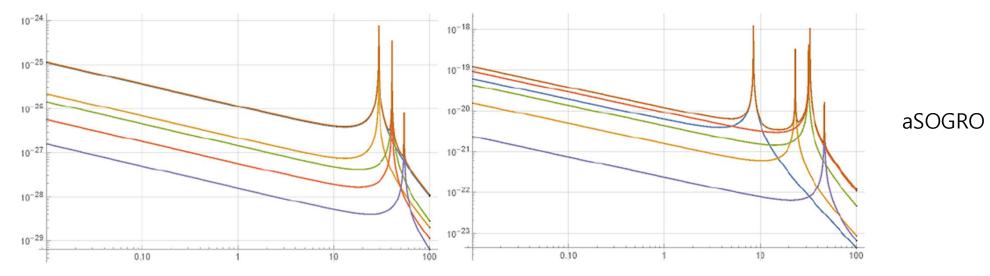
• Newtonian noise



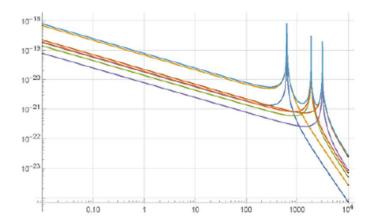
✓ Pre-stressed modal analyses of the platform structure: FEM using ANSYS

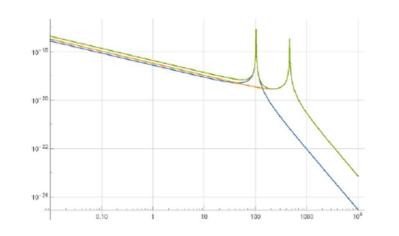



Mode 6 @ 15.284Hz : Common mode


Mode 7 @ 19.09Hz : Scissor mode

Mode 27 @ 29.878Hz : Diagonal mode





XX-Modes

pSOGRO

✓ Newtonian noise mitigation: Go to underground first and use seismometers, microphones, Wiener Filter and SOGRO measurements (Harms *et al* '16)

In the GW coordinate system,

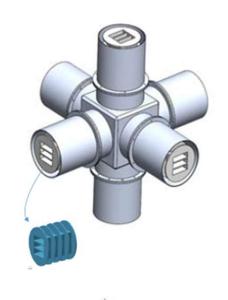
$$h'(\omega) = \begin{pmatrix} h_{+}(\omega) + h'_{N11}(\omega) & h_{x}(\omega) + h'_{N12}(\omega) & h'_{N13}(\omega) \\ h_{x}(\omega) + h'_{N12}(\omega) & -h_{+}(\omega) + h'_{N22}(\omega) & h'_{N23}(\omega) \\ h'_{N13}(\omega) & h'_{N23}(\omega) & h'_{N33}(\omega) \end{pmatrix}, \text{ where}$$

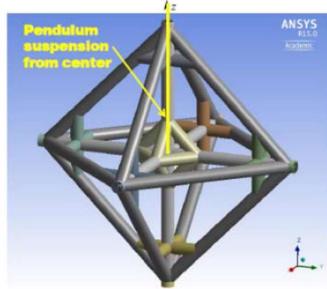
$$h'_{N11}(\omega) = \sum_{i} [a(\omega)\xi_{i}(\omega) + b(\omega,\beta_{i})\delta\rho_{i}(\omega)]\cos(\psi_{i} - \phi)\cos\theta + i\sin\theta]^{2}$$

$$h'_{N22}(\omega) = \sum_{i} [a(\omega)\xi_{i}(\omega) + b(\omega,\beta_{i})\delta\rho_{i}(\omega)]\sin^{2}(\psi_{i} - \phi)$$

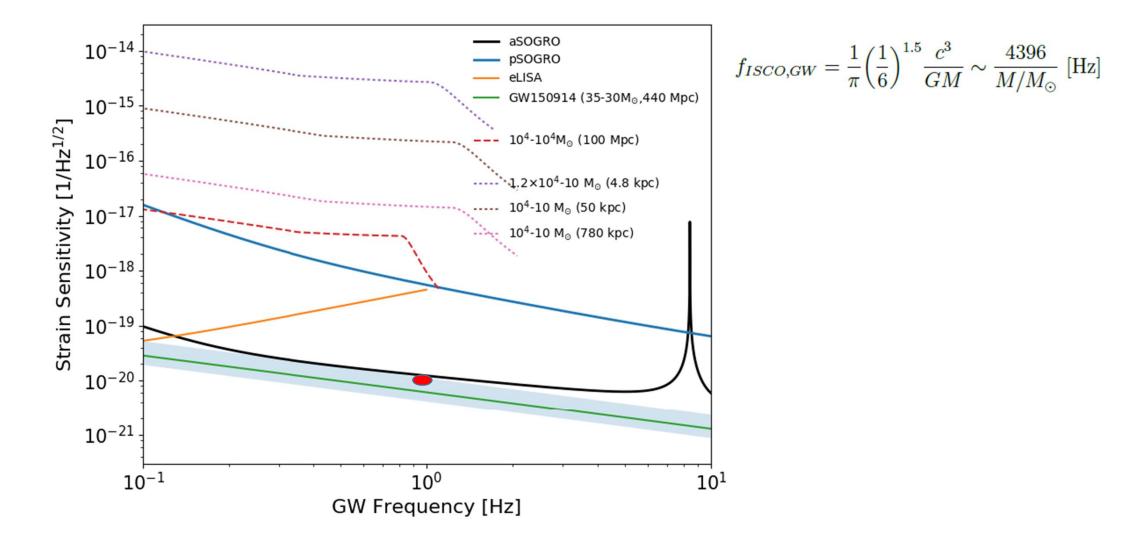
$$h'_{N33}(\omega) = \sum_{i} [a(\omega)\xi_{i}(\omega) + b(\omega,\beta_{i})\delta\rho_{i}(\omega)]\cos(\psi_{i} - \phi)\sin\theta - i\cos\theta]^{2}$$

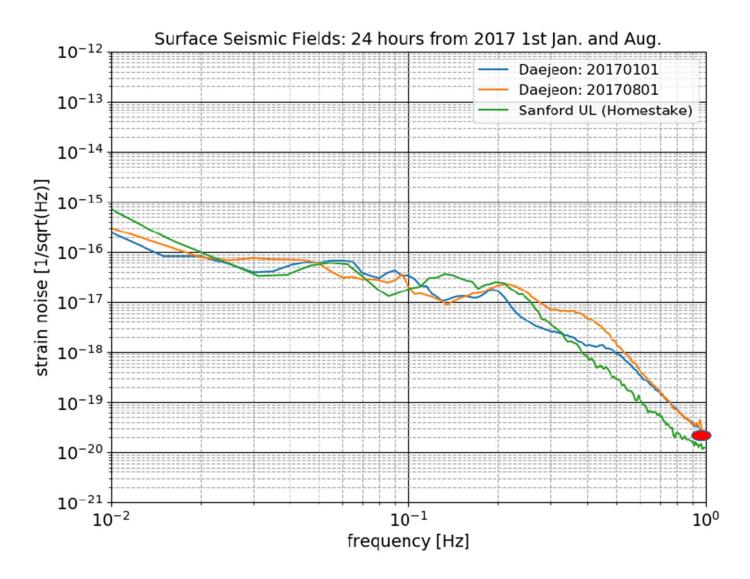
$$h'_{N12}(\omega) = \sum_{i} [a(\omega)\xi_{i}(\omega) + b(\omega,\beta_{i})\delta\rho_{i}(\omega)]\sin(\psi_{i} - \phi)[\cos(\psi_{i} - \phi)\cos\theta + i\sin\theta]$$

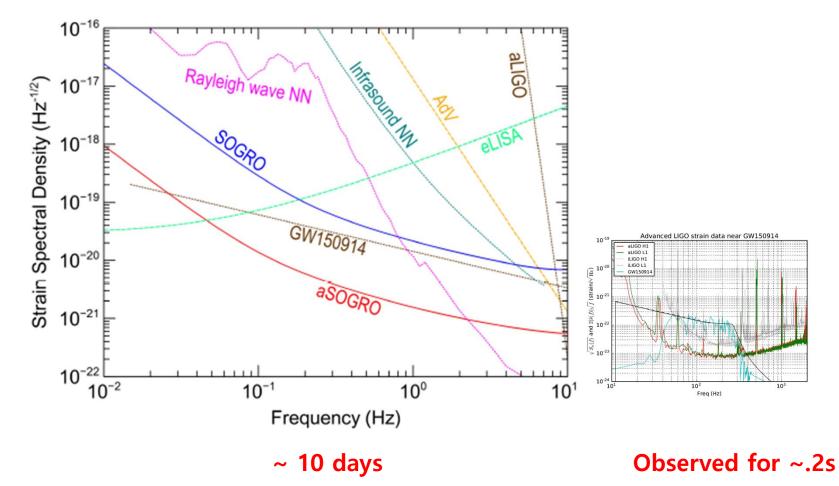

$$h'_{N23}(\omega) = \sum_{i} [a(\omega)\xi_{i}(\omega) + b(\omega,\beta_{i})\delta\rho_{i}(\omega)]\sin(\psi_{i} - \phi)[\cos(\psi_{i} - \phi)\sin\theta - i\cos\theta]$$

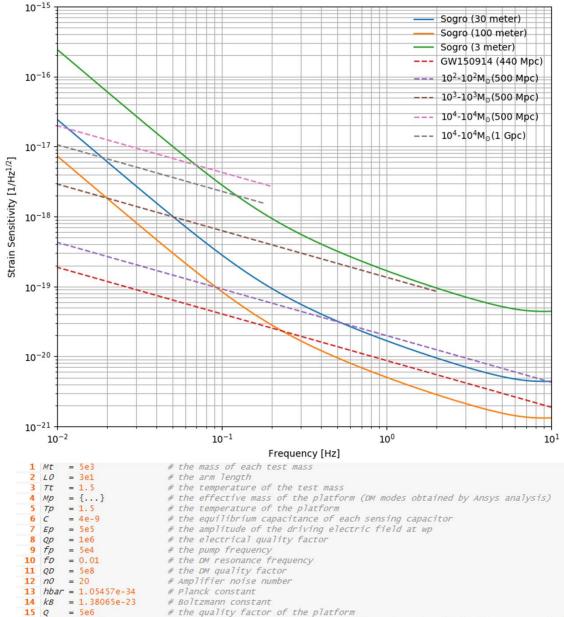

$$h'_{N13}(\omega) = \sum_{i} [a(\omega)\xi_{i}(\omega) + b(\omega,\beta_{i})\delta\rho_{i}(\omega)]\sin(\psi_{i} - \phi)[\cos(\psi_{i} - \phi)\sin\theta - i\cos\theta]$$

$$h_{+} = h'_{11} - 2\cot(\theta)h'_{13} + \cot^{2}(\theta)h'_{33}$$
$$+ \csc^{2}(\theta)2\pi\gamma G\rho_{0}\frac{k}{\omega^{2}}\sum_{i}\xi_{i}(\omega) + \csc^{2}(\theta)\frac{4\pi}{\omega^{2}}\frac{G\rho_{0}}{\gamma p_{0}}\sum_{i}\delta p_{i}(\omega)\sin^{2}(\beta_{i})$$


✓ Design parameters:


Parameter	pSOGRO	aSOGRO	Method employed				
Each test mass M	100 kg	5 ton	Multiple-layer Nb shell				
Arm-length L	2 m	$50 \mathrm{~m}$	Rigid platform				
Antenna temperature ${\cal T}$	0.1 K	0.1 K	$\mathrm{He}^3 - \mathrm{He}^4$ dilution refriger-				
			ator				
Platform temperature $T_{\rm pl}$	0.1 K	4.2 K	Large cryogenic chamber				
			and cooling system				
Platform quality factor $Q_{\rm pl}$	10^{6}	10^{7}	Al platform structure				
DM frequency $f_{\rm D}$	0.01 Hz	0.01 Hz	Magnetic levitation (hori-				
			zontal only)				
DM quality factor $Q_{\rm D}$	10^{8}	10^{8}	Surface polished pure Nb				
Pump frequency $f_{\rm p}$	50 kHz	50 kHz	Tuned capacitor bridge				
			transducer				
Amplifier noise no. n	5	2	Two-stage dc SQUID				
Detector noise $S_{\rm h}^{1/2}(f)$	$8 \times 10^{-19} \text{ Hz}^{-1/2}$	$4.5 \times 10^{-21} \text{ Hz}^{-1/2}$	Best sensitivity at 1Hz				

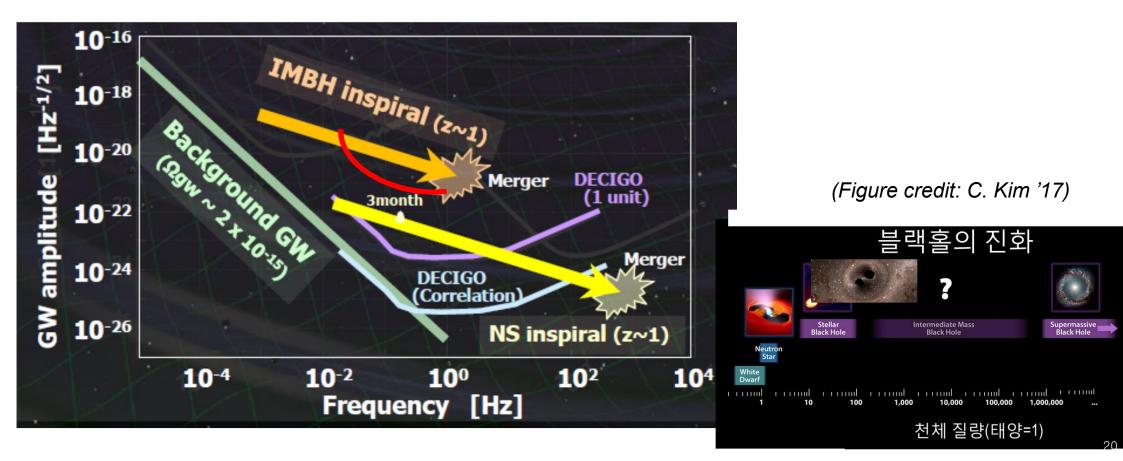

✓ Detector sensitivity and source strengths:



2. Targets and Science

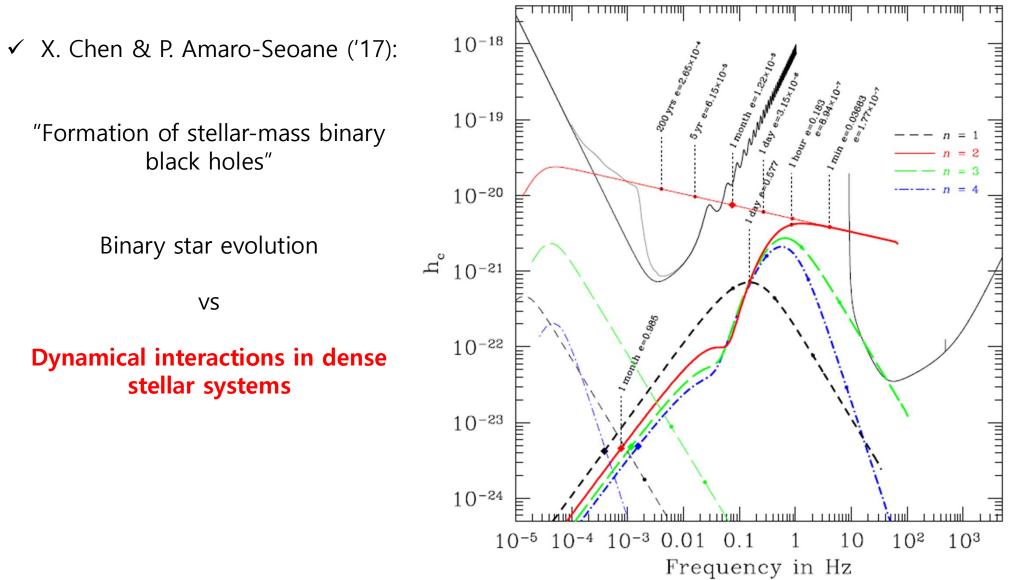
1) Inspiralling BBH:

observation time	SNR
~1.2 day (100m Sogro)	~2.3
~0.5 hr (30m Sogro)	~1.5
~5.6 hr (30m Sogro)	~7.9
~6.0 hr (30m Sogro)	~15
1.e2, 3m Sogro: L0=3.e0 Sxi is included.	
~1.5 hr (30m Sogro) precessing waveform model, 506.01210)	~7.2
	~1.2 day (100m Sogro) ~0.5 hr (30m Sogro) ~5.6 hr (30m Sogro) ~6.0 hr (30m Sogro) = 1.e2, 3m Sogro: L0=3.e0 Exi is included. ~1.5 hr (30m Sogro) precessing waveform model,

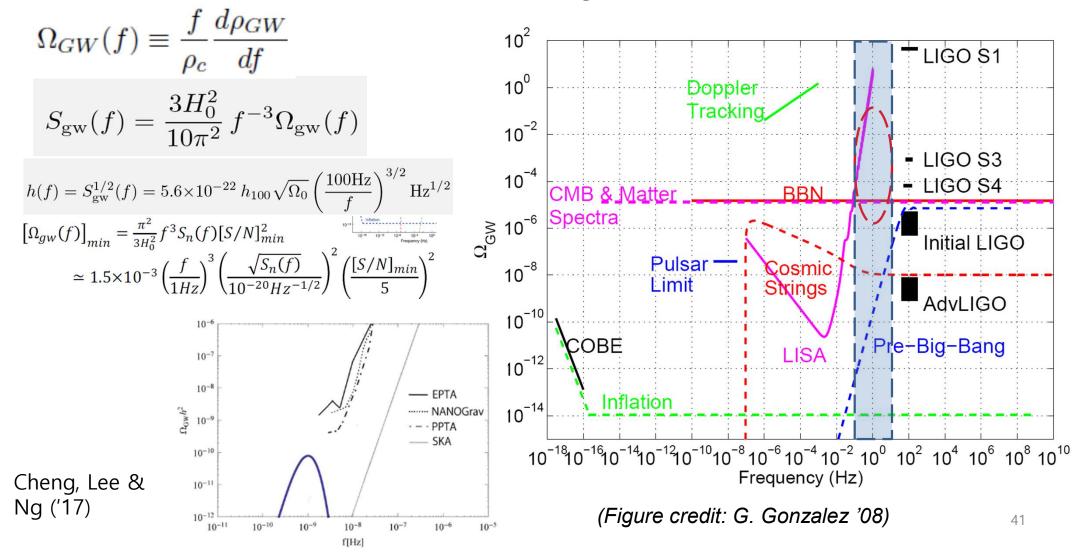


16 $fo = \{...\}$

the resonance frequency of the platform (DM modes obtained by Ansys analysis)

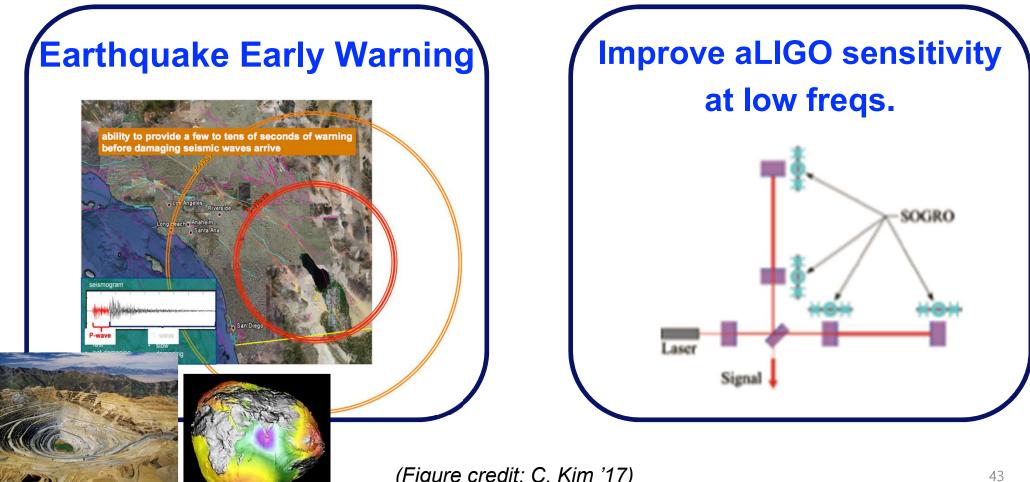

Slide credit: Y.-B. Bae

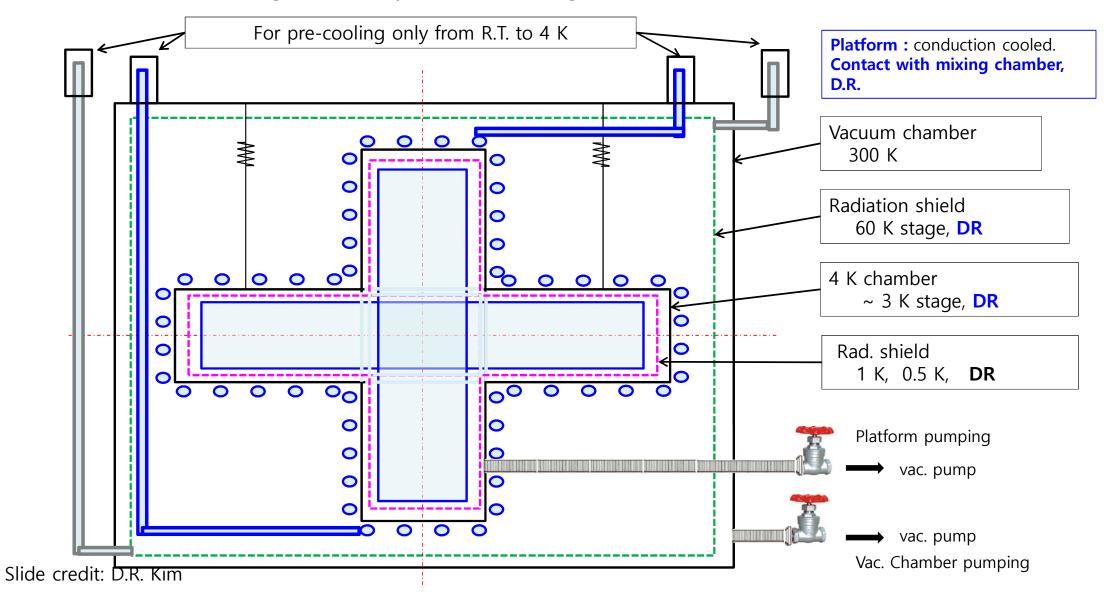
2) IMBH binary inspirals and mergers:



(Figure credit: M. Ando '12)

예측	최소 기준값	기준값	최대 기준값	
	, , , 년, 임의의 공전 면 방향			
R _{dguble} /R _{sinole} = 1.5 조건	M₀,	M _☉ ,	M _☉ ,	
	,	, ,	, ,	
Event rate (yr ⁻¹)	7.6×10 ⁻³	0.41	4.8	


3) Stochastic Gravitational Wave Background: C. Park ('17)


✓ Build multi detectors!: Chan's talk

(Figure credit: C. Kim '17)

3. Concept for Cooling SOGRO System – 2nd Stage : 0.1 K

4. Budget estimated

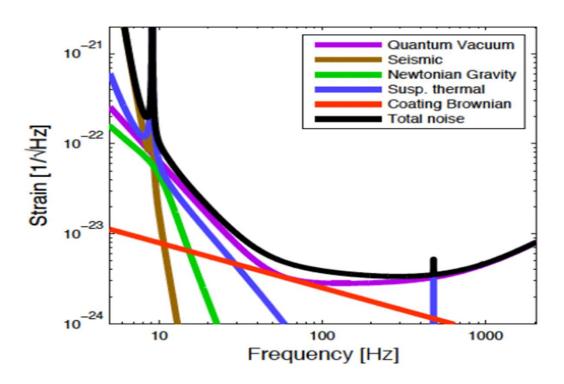
✓ pSOGRO: ~30 million dollars in total for 6 years

✓ aSOGRO: ?? but ~10 times more.....

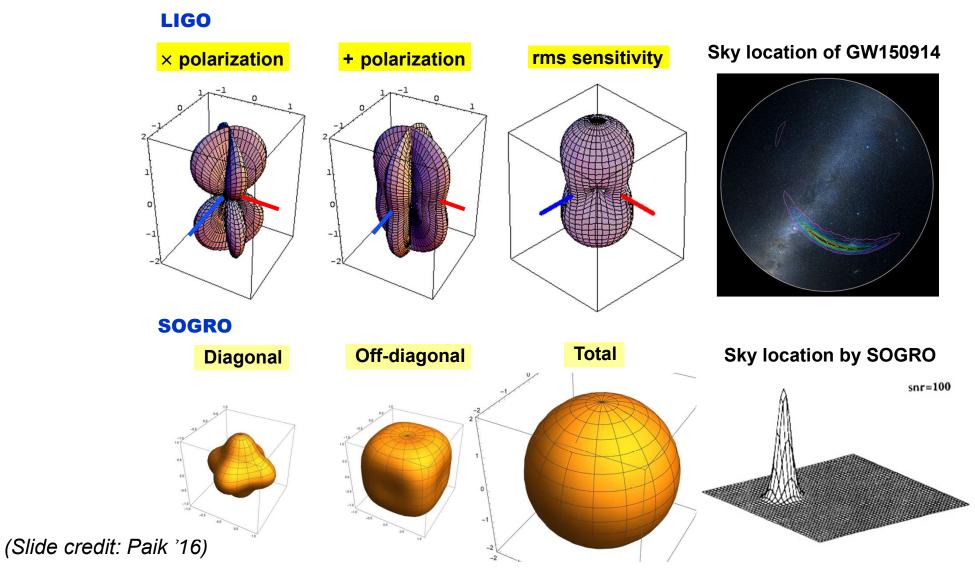
V. Summary

- Current status of GW detections and perspectives are summarized.
- Design, principles, sciences and challenges are briefly introduced for the project of developing a superconducting mid-frequency gravitational wave telescope (SOGRO).
- We do not know as yet if this project will be successful although we are doing our best for it.

- But, we strongly believe that it will bring lots of fruitful sciences and new chances in the future.
- Lots of interest, support and active participation of other people in various fields are essential.

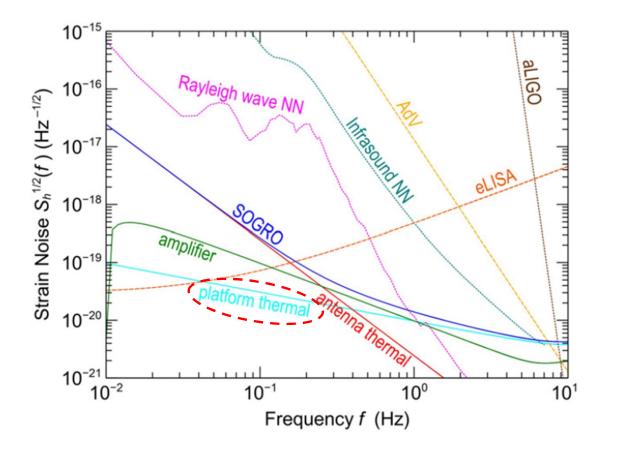

• International collaborations are highly desirable, for instance, in multi detector stochastic GW background observations.

1/10^(-21) OF THANKS!

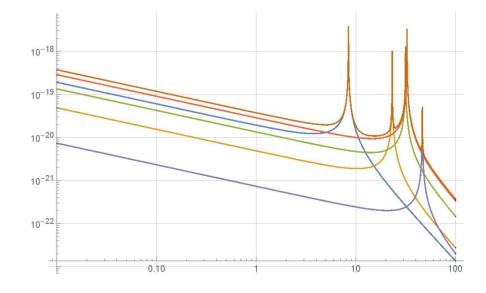


Sources of Noises

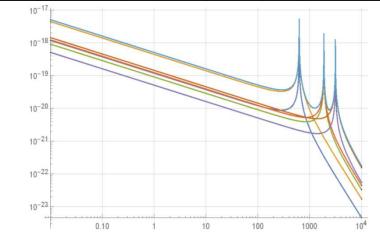
- Laser shot noise
 - Increase laser power, resonant cavity, power recycling
- Radiation pressure noise
 - Make mirrors heavierSuspension thermal noise/ mirror coating brownian noise
 - Increase beam size, monolithic suspension structure
- Seismic noise
 - Multi-stage suspension, underground
- Newtonian Noise
 - So far difficult to avoid. Seismic and wind measurement and careful modeling



Antenna pattern


50

Main Noises


- Understanding its characteristic features is essential for designing the whole experiments.
- Goal: Find out the optimal design(s) for the platform which satisfies (all) desired requirements.
- So, we have investigated the thermal noise features of various SOGRO platforms, and report some preliminary results.

XY-Mode No.	Freqs. (Hz)	KE (10 ⁴ J)	dx (10 ⁻³ m)	m _{eff} (10 ³ kg)
11	8.4306	0.140	2.0832	229.943
40	23.203	1.06	1.46682	463.590
65	31.575	1.97	5.5071	33.0068
68	32.662	2.11	12.158	6.77864
83	46.566	4.28	0.44362	5081.06

Thermal strain noise for first 5 XY modes and total: 50-m

XX-Mode No.	Freqs. (Hz)	KE (10 ⁶ J)	dx (10 ⁻² m)	m _{eff} (kg)	$\frac{2KE}{\delta x^2}$ (10 ⁶)
34	626.69	7.75	3.81	688.678	
35	626.69	7.75	14.333	48.6623	
72	1880.1	69.8	8.7981	129.237	
73	1880.1	69.8	11.939	70.1823	
136	3135.5	69.8	4.9473	146.952	
137	3135.5	69.8	13.982	18.3981	
XY-Mode No.	Freqs. (Hz)	KE (10 ⁵ J)	dx (10 ⁻² m)	m_{eff} (kg)	$\frac{2KE}{\delta x^2}$ (10 ⁶)
7	102.58	2.08	9.6118	108.392	
27	463.89	2.08	11.552	3.66935	

Thermal strain noise for first 5 XX modes and total: 2-m

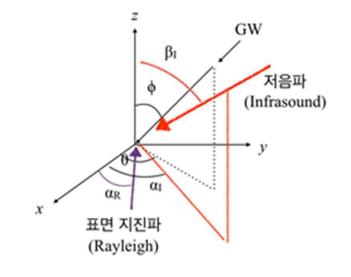
Newtonian gravity noise

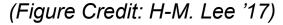
- Seismic and atmospheric density fluctuations produce NN.
- GWs are transverse whereas near-field Newtonian gradient is not.
 Could GW signal be separated out from NN?

In the GW coordinate system,

$$h'(\omega) = \begin{pmatrix} h_{+}(\omega) + h'_{N11}(\omega) & h_{\times}(\omega) + h'_{N12}(\omega) & h'_{N13}(\omega) \\ h_{\times}(\omega) + h'_{N12}(\omega) & -h_{+}(\omega) + h'_{N22}(\omega) & h'_{N23}(\omega) \\ h'_{N13}(\omega) & h'_{N23}(\omega) & h'_{N33}(\omega) \end{pmatrix}, \text{ where}$$

$$h'_{N11}(\omega) = \sum_{i} \left[a(\omega)\xi_{i}(\omega) + b(\omega,\theta_{i})\delta\rho_{i}(\omega) \right] \cos(\psi_{i} - \phi) \cos\theta + i\sin\theta \right]^{2}$$


$$h'_{N22}(\omega) = \sum_{i} \left[a(\omega)\xi_{i}(\omega) + b(\omega,\theta_{i})\delta\rho_{i}(\omega) \right] \sin^{2}(\psi_{i} - \phi)$$


$$h'_{N33}(\omega) = \sum_{i} \left[a(\omega)\xi_{i}(\omega) + b(\omega,\theta_{i})\delta\rho_{i}(\omega) \right] \cos(\psi_{i} - \phi) \sin\theta - i\cos\theta \right]^{2}$$

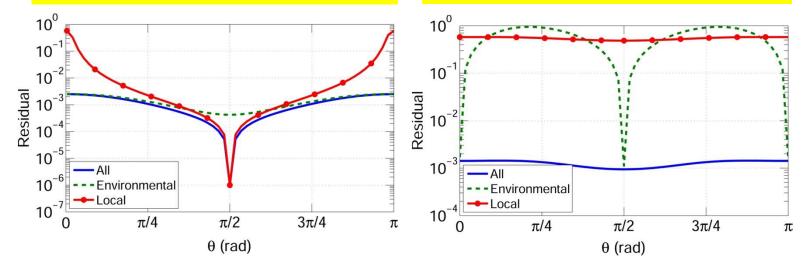
$$h'_{N12}(\omega) = \sum_{i} \left[a(\omega)\xi_{i}(\omega) + b(\omega,\theta_{i})\delta\rho_{i}(\omega) \right] \sin(\psi_{i} - \phi) [\cos(\psi_{i} - \phi)\cos\theta + i\sin\theta]$$

$$h'_{N23}(\omega) = \sum_{i} \left[a(\omega)\xi_{i}(\omega) + b(\omega,\theta_{i})\delta\rho_{i}(\omega) \right] \sin(\psi_{i} - \phi) [\cos(\psi_{i} - \phi)\sin\theta - i\cos\theta]$$

$$h'_{N13}(\omega) = \sum_{i} \left[a(\omega)\xi_{i}(\omega) + b(\omega,\theta_{i})\delta\rho_{i}(\omega) \right] \sin(\psi_{i} - \phi) [\cos(\psi_{i} - \phi)\sin\theta - i\cos\theta]$$

Tensor measurement is insufficient to remove NN from multiple waves.
 Still requires external seismometers and microphones.

(Credit: Paik '16)


Extraction of GWs: Harms & Paik PRD ('16)

And use Wiener Filter $r(\omega) = 1 - \frac{\vec{C}_{RT}^{\top}(\omega) \cdot (C_{RR}(\omega))^{-1} \cdot \vec{C}_{RT}(\omega)}{C_{TT}(\omega)}$. 54

Mitigation of NN

NN due to Rayleigh waves removed by using h'_{13} , h'_{23} , h'_{33} , a_z (CM), plus 7 seismometers with SNR = 10³ at the radius of 5 km.

NN due to infrasound removed by using h'_{13} , h'_{23} , h'_{33} and 15 mikes of SNR = 10⁴, 1 at the detector, 7 each at radius 600 m and 1 km.

- First remove Rayleigh NN by using seismometers only, then remove infrasound NN by using microphones and cleaned up SOGRO outputs.
- Unlike TOBA and laser interferometer, SOGRO can remove NN from infrasound for *all* incident angles.

Harms and Paik, *PRD* 92, 022001 (2015)

(Slide credit: Paik '16)