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– GR is based on Riemannian geometry, where the only geometric and gravitational field is the
Riemannian metric, gµν . Other fields are meant to be extra matters.

– On the other hand, string theory suggests us to put a two-form gauge potential, Bµν , and a
scalar dilaton, φ, on an equal footing along with the metric:

• They form the closed string massless sector, being ubiquitous in all string theories,∫
dDx

√
−ge−2φ

(
Rg + 4∂µφ∂

µ
φ− 1

12 HλµνHλµν
)

where H = dB .

This action hides O(D,D) symmetry of T-duality which transforms g,B, φ into one another. Buscher 1987

– T-duality hints at a natural augmentation to General Relativity, in which the entire closed string
massless sector constitutes the fundamental gravitational multiplet and the above action
corresponds to a ‘pure’ gravity.

Double Field Theory (DFT), initiated by Sielgel 1993 & Hull-Zwiebach 2009-2010, turns out to
provide a concrete realization for this idea of Stringy Gravity by manifesting O(D,D) T-duality.

– This talk sketches the geometric construction of Stringy Gravity, and in particular, introduces
Einstein Double Field Equations, GAB = 8πGTAB , as the unifying single expression for all the
equations of motion of the closed string massless sector.
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DFT as Stringy Gravity
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Notation for O(D,D) and Spin(1,D−1)L × Spin(D−1, 1)R Symmetries

Index Representation Metric (raising/lowering indices)

A,B, · · · ,M,N, · · · O(D,D) vector JAB =


0 1

1 0


p, q, · · · Spin(1,D−1)L vector ηpq = diag(−+ + · · ·+)

α, β, · · · Spin(1,D−1)L spinor Cαβ , (γp)T = CγpC−1

p̄, q̄, · · · Spin(D−1, 1)R vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin(D−1, 1)R spinor C̄ᾱβ̄ , (γ̄p̄)T = C̄γ̄p̄C̄−1

– Each symmetry rotates its own indices exclusively : spinors are O(D,D) singlet.

– The constant O(D,D) metric, JAB , decomposes the doubled coordinates into two parts,

xA = (x̃µ, xν) , ∂A = (∂̃µ, ∂ν) ,

where µ, ν are D-dimensional curved indices.

– The twofold local Lorentz symmetries indicate two distinct locally inertial frames for the
left-moving and the right-moving closed string sectors separately.
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• Closed string massless sector as ‘Stringy Graviton Fields’

The stringy graviton fields consist of the DFT dilaton, d , and DFT metric, HMN :

HMN = HNM , HK
LHM

NJLN = JKM .

Combining JMN and HMN , we acquire a pair of symmetric projection matrices,

PMN = PNM = 1
2 (JMN +HMN ) , PL

M PM
N = PL

N ,

P̄MN = P̄NM = 1
2 (JMN −HMN ) , P̄L

M P̄M
N = P̄L

N ,

which are orthogonal and complete,

PL
M P̄M

N = 0 , PM
N + P̄M

N = δM
N .

Further, taking the “square roots" of the projectors,

PMN = VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄ η̄p̄q̄ ,

we get a pair of DFT vielbeins:

VMpV M
q = ηpq , V̄Mp̄V̄ M

q̄ = η̄p̄q̄ , VMpV̄ M
q̄ = 0 , VM

pVNp + V̄M
p̄V̄Np̄ = JMN .
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, HMN = HNM , HK
LHM

NJLN = JKM , is

characterized by two non-negative integers, (n, n̄), 0 ≤ n + n̄ ≤ D:

HAB =

 Hµν −HµσBσλ + Yµi X i
λ − Ȳµı̄ X̄ ı̄λ

BκρHρν + X i
κYνi − X̄ ı̄κȲνı̄ Kκλ − BκρHρσBσλ + 2X i

(κ
Bλ)ρYρi − 2X̄ ı̄

(κ
Bλ)ρȲρı̄



i) Symmetric and skew-symmetric fields : Hµν = Hνµ, Kµν = Kνµ, Bµν = −Bνµ ;

ii) Two kinds of eigenvectors having zero eigenvalue, with i, j = 1, 2, · · · , n & ı̄, ̄ = 1, 2, · · · , n̄,

HµνX i
ν = 0 , Hµν X̄ ı̄ν = 0 , KµνYνj = 0 , Kµν Ȳν̄ = 0 ;

iii) Completeness relation: HµρKρν + Yµi X i
ν + Ȳµı̄ X̄ ı̄ν = δµν .

• Orthonormality follows

Yµi X j
µ = δi

j , Ȳµı̄ X̄ ̄µ = δı̄ ̄ , Yµi X̄ ̄µ = Ȳµı̄ X j
µ = 0 .
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B 1
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0 1
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• (n, n̄) = (0, 0) corresponds to the Riemannian geometry or “Generalized Geometry”:

HMN ≡

 g−1 −g−1B

Bg−1 g − Bg−1B

 Giveon-Rabinovici-Veneziano ’89, Duff ’90

• String becomes chiral over the n dimensions and anti-chiral over the n̄ dimensions:

X i
µ ∂+xµ(τ, σ) ≡ 0 , X̄ ı̄µ ∂−xµ(τ, σ) ≡ 0 .

Examples include

– (D, 0) Siegel’s chiral string (maximally non-Riemannian,HMN = JMN );

– (1, 1) Gomis-Ooguri non-relativistic string Ko-Melby-Thompson-Meyer-JHP 2015 ;

– (D−1, 0) ultra-relativistic Carroll gravity;

– (1, 0) non-relativistic Newton-Cartan gravity.

Their dynamics are all governed by the Einstein Double Field Equations.
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• Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": Siegel 1993

L̂ξTA1···An := ξB∂BTA1···An + ωT ∂Bξ
BTA1···An +

n∑
i=1

(∂Ai ξB − ∂BξAi )TA1···Ai−1
B

Ai+1···An ,

where ωT is the weight, e.g. δe−2d = ∂B(ξBe−2d ), δVAp = ξB∂BVAp + (∂AξB − ∂BξA)V B
p .

• For consistency, so-called the ‘section condition’ should be imposed: ∂M∂
M = 0.

From ∂M∂
M = 2∂µ∂̃µ, the section condition can be easily solved by letting ∂̃µ = 0.

The general solutions are then generated by the O(D,D) rotation of it.

• The section condition is mathematically equivalent to certain translational invariance:

Φi (x) = Φi (x + ∆) , ∆M = Φj∂
M Φk ,

where Φi ,Φj ,Φk ∈
{

d ,HMN , ξ
M , ∂Nd , ∂LHMN , · · ·

}
, arbitrary functions appearing in DFT,

and ∆M is said to be derivative-index-valued.

I ‘Physics’ should be invariant under such shifts of the doubled coordinates in Stringy Gravity.

EINSTEIN DOUBLE FIELD EQUATIONS : GAB = 8πGTAB 1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO



• Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": Siegel 1993

L̂ξTA1···An := ξB∂BTA1···An + ωT ∂Bξ
BTA1···An +

n∑
i=1

(∂Ai ξB − ∂BξAi )TA1···Ai−1
B

Ai+1···An ,

where ωT is the weight, e.g. δe−2d = ∂B(ξBe−2d ), δVAp = ξB∂BVAp + (∂AξB − ∂BξA)V B
p .

• For consistency, so-called the ‘section condition’ should be imposed: ∂M∂
M = 0.

From ∂M∂
M = 2∂µ∂̃µ, the section condition can be easily solved by letting ∂̃µ = 0.

The general solutions are then generated by the O(D,D) rotation of it.

• The section condition is mathematically equivalent to certain translational invariance:

Φi (x) = Φi (x + ∆) , ∆M = Φj∂
M Φk ,

where Φi ,Φj ,Φk ∈
{

d ,HMN , ξ
M , ∂Nd , ∂LHMN , · · ·

}
, arbitrary functions appearing in DFT,

and ∆M is said to be derivative-index-valued.

I ‘Physics’ should be invariant under such shifts of the doubled coordinates in Stringy Gravity.

EINSTEIN DOUBLE FIELD EQUATIONS : GAB = 8πGTAB 1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO



• Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": Siegel 1993

L̂ξTA1···An := ξB∂BTA1···An + ωT ∂Bξ
BTA1···An +

n∑
i=1

(∂Ai ξB − ∂BξAi )TA1···Ai−1
B

Ai+1···An ,

where ωT is the weight, e.g. δe−2d = ∂B(ξBe−2d ), δVAp = ξB∂BVAp + (∂AξB − ∂BξA)V B
p .

• For consistency, so-called the ‘section condition’ should be imposed: ∂M∂
M = 0.

From ∂M∂
M = 2∂µ∂̃µ, the section condition can be easily solved by letting ∂̃µ = 0.

The general solutions are then generated by the O(D,D) rotation of it.

• The section condition is mathematically equivalent to certain translational invariance:

Φi (x) = Φi (x + ∆) , ∆M = Φj∂
M Φk ,

where Φi ,Φj ,Φk ∈
{

d ,HMN , ξ
M , ∂Nd , ∂LHMN , · · ·

}
, arbitrary functions appearing in DFT,

and ∆M is said to be derivative-index-valued.

I ‘Physics’ should be invariant under such shifts of the doubled coordinates in Stringy Gravity.

EINSTEIN DOUBLE FIELD EQUATIONS : GAB = 8πGTAB 1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO



Doubled-yet-gauged spacetime JHP 1304.5946

Doubled coordinates, xM = (x̃µ, xν), are gauged through an equivalence relation,

xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

• If we solve the section condition by letting ∂̃µ ≡ 0, and further choose ∆M = cµ∂M xµ, we note(
x̃µ , xν

)
∼
(
x̃µ + cµ , xν

)
: x̃µ ’s are gauged and xν ’s form a section.

• Then, O(D,D) rotates the gauged directions and hence the section.
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Doubled-yet-gauged spacetime JHP 1304.5946

Doubled coordinates, xM = (x̃µ, xν), are gauged through an equivalence relation,

xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

• Further, if we ‘gauge’ dxM explicitly by introducing a derivative-index-valued gauge potential,

dxM −→ DxM = dxM −AM , AM∂M = 0 ,

it is possible to define O(D,D) & diffeomorphism covariant ‘proper length’ through a path integral,

Proper Length := − ln
[ ∫
DA exp

(
−
∫ √

DxM DxNHMN

)]
,

and construct associated sigma models such as for the point particle Ko-JHP-Suh ’16, Blair ’17, bosonic
strings Hull ’06, Lee-JHP ’13, Arvanitakis-Blair ’17, ’18, κ-symmetric Green-Schwarz superstring JHP ’16.

In particular, for the (0, 0) Riemannian DFT-metric, with ∂̃µ ≡ 0, after integrating out the auxiliary potential,
AM = Aλ∂M xλ = (Aµ , 0), one can recover all the conventional results, e.g.

DxM =
(
dx̃µ − Aµ , dxν

)
, Proper Length =⇒

∫ √
dxµdxνgµν(x) ,

while for other (n, n̄) cases strings become chiral (n) and anti-chiral (n̄).
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In particular, for the (0, 0) Riemannian DFT-metric, with ∂̃µ ≡ 0, after integrating out the auxiliary potential,
AM = Aλ∂M xλ = (Aµ , 0), one can recover all the conventional results, e.g.

DxM =
(
dx̃µ − Aµ , dxν

)
, Proper Length =⇒

∫ √
dxµdxνgµν(x) ,

while for other (n, n̄) cases strings become chiral (n) and anti-chiral (n̄).
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Covariant derivatives and curvatures in Stringy Gravity feature two stages:

‘semi-covariance’ and ‘complete covariantization’.
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• Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

for which the stringy Christoffel connection can be uniquely fixed,

ΓCAB=2(P∂C PP̄)[AB]
+2
(

P̄[A
D P̄B]

E−P[A
DPB]

E
)
∂DPEC− 4

D−1

(
P̄C[AP̄B]

D+PC[APB]
D
)(
∂Dd+(P∂E PP̄)[ED]

)
by demanding the compatibility, ∇APBC = ∇AP̄BC = ∇Ad = 0, and some torsionless conditions.

∗ There are no normal coordinates where ΓCAB would vanish point-wise: Equivalence Principle is broken

for string (i.e. extended object) but recoverable for particle.

• Semi-covariant Riemann curvature :

SABCD = S[AB][CD] = SCDAB := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD
)
, S[ABC]D = 0 ,

where RABCD denotes the ordinary “field strength”: RCDAB=∂AΓBCD−∂BΓACD+ΓAC
E ΓBED−ΓBC

E ΓAED .

By construction, it varies as ‘total derivative’: δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .

• Semi-covariant ‘Master’ derivative :

DA := ∂A + ΓA + ΦA + Φ̄A = ∇A + ΦA + Φ̄A .

The two spin connections for the Spin(1,D−1)L × Spin(D−1, 1)R local Lorentz symmetries are
determined in terms of the stringy Christoffel connection by requiring the compatibility with DFT vielbeins,

DAVBp = ∇AVBp + ΦAp
qVBq = 0 , DAV̄Bp̄ = ∇AV̄Bp̄ + Φ̄Ap̄

q̄ V̄Bq̄ = 0 .
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• Complete covariantization
– Tensors,

PC
D P̄A1

B1 · · · P̄An
Bn∇DTB1···Bn =⇒ DpTq̄1 q̄2···q̄n ,

P̄C
DPA1

B1 · · ·PAn
Bn∇DTB1···Bn =⇒ Dp̄Tq1q2···qn ,

DpTpq̄1 q̄2···q̄n , Dp̄Tp̄q1q2···qn ; DpDpTq̄1 q̄2···q̄n , Dp̄Dp̄Tq1q2···qn .

– Spinors, ρα, ρ′ᾱ, ψαp̄ , ψ′ᾱp ,

γ
pDpρ , γ̄

p̄Dp̄ρ
′
, Dp̄ρ , Dpρ

′
, γ

pDpψq̄ , γ̄
p̄Dp̄ψ

′
q , Dp̄ψ

p̄
, Dpψ

′p
.

– RR sector, Cαᾱ O(D,D) covariant extension of H-twisted cohomology

D±C := γ
pDpC ± γ(D+1)Dp̄Cγ̄ p̄

, (D±)2 = 0 =⇒ F := D+C ( RR flux ) .

– Yang-Mills,

Fpq̄ := FABV A
pV̄ B

q̄ where FAB := ∇AVB −∇BVA − i [VA,VB ] .

– Curvatures,

Spq̄ := SABV A
pV̄ B

q̄ ( Ricci ) , S(0) := (PACPBD − P̄AC P̄BD)SABCD ( scalar ) .
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– RR sector, Cαᾱ O(D,D) covariant extension of H-twisted cohomology

D±C := γ
pDpC ± γ(D+1)Dp̄Cγ̄ p̄

, (D±)2 = 0 =⇒ F := D+C ( RR flux ) .

– Yang-Mills,

Fpq̄ := FABV A
pV̄ B

q̄ where FAB := ∇AVB −∇BVA − i [VA,VB ] .

– Curvatures,

Spq̄ := SABV A
pV̄ B

q̄ ( Ricci ) , S(0) := (PACPBD − P̄AC P̄BD)SABCD ( scalar ) .

EINSTEIN DOUBLE FIELD EQUATIONS : GAB = 8πGTAB 1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO



• Complete covariantization
– Tensors,

PC
D P̄A1

B1 · · · P̄An
Bn∇DTB1···Bn =⇒ DpTq̄1 q̄2···q̄n ,

P̄C
DPA1

B1 · · ·PAn
Bn∇DTB1···Bn =⇒ Dp̄Tq1q2···qn ,

DpTpq̄1 q̄2···q̄n , Dp̄Tp̄q1q2···qn ; DpDpTq̄1 q̄2···q̄n , Dp̄Dp̄Tq1q2···qn .

– Spinors, ρα, ρ′ᾱ, ψαp̄ , ψ′ᾱp ,
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Equipped with the semi-covariant derivatives, one can construct, e.g.

• D = 10 Maximally Supersymmetric Double Field Theory Jeon-Lee-JHP-Suh 2012

Ltype II = e−2d
[

1
8 S(0) + 1

2 Tr(FF̄) + i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q + i 1
2 ρ̄γ

pDpρ− i 1
2 ρ̄
′γ̄p̄Dp̄ρ

′

−iψ̄p̄Dp̄ρ− i 1
2 ψ̄

p̄γqDqψp̄ + iψ̄′pDpρ′ + i 1
2 ψ̄
′p γ̄q̄Dq̄ψ

′
p

]
which unifies IIA and IIB SUGRAs, thanks to the twofold spin groups.

• Minimal coupling to the Standard Model Kangsin Choi & JHP 2015 [PRL]

LSM = e−2d


1

16πGN
S(0)

+
∑
V PABP̄CDTr(FACFBD) +

∑
ψ ψ̄γ

aDaψ +
∑
ψ′ ψ̄

′γ̄āDāψ
′

−HAB(DAφ)†DBφ − V (φ) + yd q̄·φ d + yu q̄·φ̃ u + ye l̄ ′·φ e′



Every single term above is completely covariant, w.r.t. O(D,D), diffeomorphisms, and

twofold local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R .
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Derivation of the Einstein Double Field Equations
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Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υa,∫
Σ

e−2d
[

1
16πG S(0) + Lmatter

]
,

where S(0) is the stringy scalar curvature and Lmatter is the matter Lagrangian equipped with the
completely covariantized master derivatives, DM . The integral is taken over a section, Σ.

We seek the variation of the action induced by all the fields, d ,VAp, V̄Ap,Υa .

Firstly, the pure Stringy Gravity term transforms, up to total derivatives ('), as

δ
(

e−2d S(0)

)
' 4e−2d

(
V̄ Bq̄δVB

pSpq̄ − 1
2 δd S(0)

)

Secondly, the matter Lagrangian transforms as

δ
(

e−2d Lmatter

)
' e−2d

(
−2V̄ Aq̄δVA

pKpq̄ + δd T(0) + δΥa
δLmatter

δΥa

)
where we have been naturally led to define

Kpq̄ :=
1
2

(
VAp

δLmatter

δV̄A
q̄
− V̄Aq̄

δLmatter

δVA
p

)
, T(0) := e2d ×

δ
(
e−2d Lmatter

)
δd

.

In particular, when Lmatter is bosonic (free of vielbeins), the former reduces to

Kpq̄ = VApV̄Bq̄

(
δLmatter

δP̄AB
−
δLmatter

δPAB

)
.

EINSTEIN DOUBLE FIELD EQUATIONS : GAB = 8πGTAB 1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO



Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υa,∫
Σ

e−2d
[

1
16πG S(0) + Lmatter

]
,

where S(0) is the stringy scalar curvature and Lmatter is the matter Lagrangian equipped with the
completely covariantized master derivatives, DM . The integral is taken over a section, Σ.

We seek the variation of the action induced by all the fields, d ,VAp, V̄Ap,Υa .

Firstly, the pure Stringy Gravity term transforms, up to total derivatives ('), as

δ
(

e−2d S(0)

)
' 4e−2d

(
V̄ Bq̄δVB

pSpq̄ − 1
2 δd S(0)

)

Secondly, the matter Lagrangian transforms as

δ
(

e−2d Lmatter

)
' e−2d

(
−2V̄ Aq̄δVA

pKpq̄ + δd T(0) + δΥa
δLmatter

δΥa

)
where we have been naturally led to define

Kpq̄ :=
1
2

(
VAp

δLmatter

δV̄A
q̄
− V̄Aq̄

δLmatter

δVA
p

)
, T(0) := e2d ×

δ
(
e−2d Lmatter

)
δd

.

In particular, when Lmatter is bosonic (free of vielbeins), the former reduces to

Kpq̄ = VApV̄Bq̄

(
δLmatter

δP̄AB
−
δLmatter

δPAB

)
.

EINSTEIN DOUBLE FIELD EQUATIONS : GAB = 8πGTAB 1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO



Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υa,∫
Σ

e−2d
[

1
16πG S(0) + Lmatter

]
,

where S(0) is the stringy scalar curvature and Lmatter is the matter Lagrangian equipped with the
completely covariantized master derivatives, DM . The integral is taken over a section, Σ.

We seek the variation of the action induced by all the fields, d ,VAp, V̄Ap,Υa .

Firstly, the pure Stringy Gravity term transforms, up to total derivatives ('), as

δ
(

e−2d S(0)

)
' 4e−2d

(
V̄ Bq̄δVB

pSpq̄ − 1
2 δd S(0)

)

Secondly, the matter Lagrangian transforms as

δ
(

e−2d Lmatter

)
' e−2d

(
−2V̄ Aq̄δVA

pKpq̄ + δd T(0) + δΥa
δLmatter

δΥa

)
where we have been naturally led to define

Kpq̄ :=
1
2

(
VAp

δLmatter

δV̄A
q̄
− V̄Aq̄

δLmatter

δVA
p

)
, T(0) := e2d ×

δ
(
e−2d Lmatter

)
δd

.

In particular, when Lmatter is bosonic (free of vielbeins), the former reduces to

Kpq̄ = VApV̄Bq̄

(
δLmatter

δP̄AB
−
δLmatter

δPAB

)
.

EINSTEIN DOUBLE FIELD EQUATIONS : GAB = 8πGTAB 1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO



• Combining the two results, the variation of the action reads

δ

∫
Σ

e−2d
[

1
16πG S(0) + Lmatter

]
=

∫
Σ

e−2d
[

1
4πG V̄ Aq̄δVA

p(Spq̄ − 8πGKpq̄)− 1
8πG δd(S(0) − 8πGT(0)) + δΥa

δLmatter

δΥa

]
Hence, the equations of motion are exhaustively,

Spq̄ = 8πGKpq̄ , S(0) = 8πGT(0) ,
δLmatter

δΥa
= 0 .

• Specifically when the variation is generated by diffeomorphisms, we have δξΥa = L̂ξΥa and

δξd = − 1
2 e2d L̂ξ

(
e−2d) = − 1

2DAξ
A , V̄ Aq̄δξVA

p = V̄ Aq̄L̂ξVA
p = 2D[AξB]V̄ Aq̄V Bp .

Substituting these, the diffeomorphic invariance of the action implies

0 =

∫
Σ

e−2d
[

1
8πG ξ

BDA
{

4V[A
pV̄B]

q̄(Spq̄ − 8πGKpq̄)− 1
2JAB(S(0) − 8πGT(0))

}
+ δξΥa

δLmatter

δΥa

]
which leads to the definitions of the off-shell conserved stringy Einstein curvature ,

GAB := 4V[A
pV̄B]

q̄Spq̄ − 1
2JABS(0) , DAGAB = 0 (off-shell) ,

JHP-Rey-Rim-Sakatani 2015

and the on-shell conserved stringy Energy-Momentum tensor ,

TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0) , DAT AB = 0 (on-shell) .
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• Since GAB and TAB each have D2 + 1 independent components as c.f. {gµν , Bµν , φ}

V A
pV̄ B

q̄GAB = 2Spq̄ , GA
A = −DS(0) , V A

pV̄ B
q̄TAB = 2Kpq̄ , T A

A = −DT(0) ,

the equations of motion of the DFT vielbeins and dilaton can be unified into a single expression:

Einstein Double Field Equations

GAB = 8πGTAB

which is naturally consistent with the central idea that Stringy Gravity treats the entire closed
string massless sector as geometrical stringy graviton fields.
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Einstein Double Field Equations

GAB = 8πGTAB

• Restricting to the (0, 0) Riemannian backgrounds,
the EDFE decompose into

Rµν + 25µ(∂νφ)− 1
4 HµρσHνρσ = 8πGK(µν) ,

5ρ
(

e−2φHρµν
)

= 16πGe−2φK[µν] ,

R + 42φ− 4∂µφ∂µφ− 1
12 HλµνHλµν = 8πGT(0) .

• For other non-Riemannian cases, (n, n̄) 6= (0, 0), EDFE govern the dynamics of the ‘chiral’
gravities, such as Newton-Cartan, Carroll, and Gomis-Ooguri, etc.
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Examples: TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0)

• Pure Stringy Gravity with cosmological constant,

1
16πG e−2d (S(0) − 2ΛDFT) , Kpq̄ = 0 , T(0) = 1

4πG ΛDFT .

• RR sector,

LRR = 1
2 Tr(FF̄) , Kpq̄ = − 1

4 Tr(γpF γ̄q̄F̄) , T(0) = 0 .

• Spinor field,

Lψ = ψ̄γpDpψ + mψψ̄ψ , Kpq̄ = − 1
4 (ψ̄γpDq̄ψ −Dq̄ψ̄γpψ) , T(0) ≡ 0 .

• Green-Schwarz superstring (κ-symmetric, doubled-yet-gauged),

e−2d Lstring = 1
4πα′

∫
d2σ

[
− 1

2

√
−hhij ΠM

i ΠN
j HMN − εij Di yM (AjM − iΣjM )

]
δD(x − y(σ)

)
,

Kpq̄(x) = 1
4πα′

∫
d2σ
√
−hhij (ΠM

i VMp)(ΠN
j V̄Nq̄) e2dδD(x − y(σ)

)
, T(0) = 0 ,

where ΣM
i = θ̄γM∂iθ + θ̄′γ̄M∂iθ

′ and ΠM
i = ∂i yM −AM

i − iΣM
i .
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Gravitational effect

• The regular spherical solution to the D = 4 Einstein Double Field Equations shows that
Stringy Gravity modifies GR (Schwarzschild geometry), in particular at “short" dimensionless
scales, R/MG, i.e. distance normalized by mass times Newton constant.

This might shed new light upon the dark matter/energy problems, as they arise essentially
from “short distance" observations:

• Furthermore, it would be intriguing to view the B-field and DFT dilaton d as ‘dark gravitons’,
since they decouple from the geodesic motion of point particles, which should be defined in
string frame.
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Concluding Remark

• It has been said that string theory is a piece of 21st century physics that happened to fall into

the 20th century.

• String theory predicts its own gravity, i.e. Stringy Gravity, rather than GR.

• Stringy Gravity may be the 21st century theory of gravity, which is possibly formulated in

‘doubled-yet-gauged’ spacetime and deserves further explorations.
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Thank you

One must be prepared to follow up the consequence of theory, and feel that

one just has to accept the consequences no matter where they lead.

– Paul Dirac –
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Einstein Double Field Equations
Stephen Angus, Kyoungho Cho, and Jeong-Hyuck Park
Department of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, KOREA

Core idea: string theory predicts its own gravity rather than GR
In General Relativity the metric gµν is the only geometric and gravitational field, whereas in
string theory the closed-string massless sector comprises a two-form potential Bµν and the
string dilaton φ in addition to the metric gµν. Furthermore, these three fields transform into
each other under T-duality. This hints at a natural augmentation of GR: upon treating the
whole closed string massless sector as stringy graviton fields, Double Field Theory [1, 2] may
evolve into ‘Stringy Gravity’. Equipped with an O(D,D) covariant differential geometry be-
yond Riemann [3], we spell out the definitions of the stringy Einstein curvature tensor and the
stringy Energy-Momentum tensor. Equating them, all the equations of motion of the closed
string massless sector are unified into a single expression [4],

GAB = 8πGTAB (1)

which we dub the Einstein Double Field Equations.

Double Field Theory as Stringy Gravity
• Built-in symmetries & Notation:
– O(D,D) T-duality
– DFT diffeomorphisms (ordinary diffeomorphisms plus B-field gauge symmetry)
– Twofold local Lorentz symmetries, Spin(1, D−1)× Spin(D−1, 1)

⇒ Two locally inertial frames exist separately for the left and the right modes.

Index Representation Metric (raising/lowering indices)

A,B, · · · ,M,N, · · · O(D,D) vector JAB =




0 1

1 0




p, q, · · · Spin(1, D−1) vector ηpq = diag(− + + · · ·+)

α, β, · · · Spin(1, D−1) spinor Cαβ, (γp)T = CγpC−1

p̄, q̄, · · · Spin(D−1, 1) vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin(D−1, 1) spinor C̄ᾱβ̄, (γ̄p̄)T = C̄γ̄p̄C̄−1

The O(D,D) metric JAB divides doubled coordinates into two: xA = (x̃µ, x
ν), ∂A = (∂̃µ, ∂ν).

• Doubled-yet-gauged spacetime:
The doubled coordinates are ‘gauged’ through a certain equivalence relation, xA ∼ xA + ∆A, such
that each equivalence class, or gauge orbit in RD+D, corresponds to a single physical point in RD [5].
This implies a section condition, ∂A∂A = 0, which can be conveniently solved by setting ∂̃µ ≡ 0.

• Stringy graviton fields (closed-string massless sector),
{
d, VMp, V̄Nq̄

}
:

Defining properties of the DFT-metric,

HMN = HNM , HKLHMNJLN = JKM , (2)

set a pair of symmetric and orthogonal projectors,

PMN = PNM = 1
2(JMN +HMN ) , PL

MPM
N = PL

N ,

P̄MN = P̄NM = 1
2(JMN −HMN ) , P̄L

M P̄M
N = P̄L

N , PL
M P̄M

N = 0 .

Further, taking the “square roots” of the projectors, we acquire a pair of DFT vielbeins,

PMN = VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄η̄p̄q̄ ,

satisfying their own defining properties,

VMpV
M
q = ηpq , V̄Mp̄V̄

M
q̄ = η̄p̄q̄ , VMpV̄

M
q̄ = 0 , VM

pVNp + V̄M
p̄V̄Np̄ = JMN .

The most general solutions to (2) can be classified by two non-negative integers (n, n̄) [6],

HMN =


 Hµν −HµσBσλ + Y

µ
i X

i
λ − Ȳ

µ
ı̄ X̄

ı̄
λ

BκρH
ρν + Xi

κY
ν
i − X̄ ı̄

κȲ
ν
ı̄ Kκλ −BκρHρσBσλ + 2Xi

(κ
Bλ)ρY

ρ
i − 2X̄ ı̄

(κ
Bλ)ρȲ

ρ
ı̄




where 1 ≤ i ≤ n, 1 ≤ ı̄, i ≤ n̄ and

HµνXi
ν = 0 , HµνX̄ ı̄

ν = 0 , KµνY
ν
i = 0 , KµνȲ

ν
ı̄ = 0 , HµρKρν + Y

µ
i X

i
ν + Ȳ

µ
ı̄ X̄

ı̄
ν = δ

µ
ν .

Strings become chiral and anti-chiral over n and n̄ directions: Xi
µ∂+x

µ = 0, X̄ ı̄
µ∂−xµ = 0. Examples

include (0, 0) Riemannian geometry as Kµν = gµν, Hµν = gµν, (1, 1) Gomis-Ooguri non-relativistic
background, (1, 0) Newton-Cartan gravity, and (D − 1, 0) Carroll gravity.

• Covariant derivative:
The ‘master’ covariant derivative, DA = ∂A + ΓA + ΦA + Φ̄A, is characterized by compatibility:

DAd = DAVBp = DAV̄Bp̄ = 0 , DAJBC = DAηpq = DAη̄p̄q̄ = DACαβ = DAC̄ᾱβ̄ = 0 .

The stringy Christoffel symbols are [3]

ΓCAB = 2
(
P∂CPP̄

)
[AB] + 2

(
P̄[A

DP̄B]
E − P[A

DPB]
E
)
∂DPEC

−4
(

1
PMM−1

PC[APB]
D + 1

P̄MM−1
P̄C[AP̄B]

D
)(
∂Dd + (P∂EPP̄ )[ED]

)
,

and the spin connections are ΦApq = V Bp(∂AVBq + ΓAB
CVCq), Φ̄Ap̄q̄ = V̄ Bp̄(∂AV̄Bq̄ + ΓAB

CV̄Cq̄).
In Stringy Gravity, there are no normal coordinates where ΓCAB would vanish point-wise: the Equiv-
alence Principle holds for point particles but is generically broken for strings (i.e. extended objects).

• Scalar and ‘Ricci’ curvatures:
The semi-covariant Riemann curvature in Stringy Gravity is defined by

SABCD := 1
2

(
RABCD + RCDAB − ΓEABΓECD

)
,

whereRCDAB = ∂AΓBCD−∂BΓACD+ΓACEΓB
E
D−ΓBCEΓA

E
D (the “field strength” of ΓCAB).

The completely covariant ‘Ricci’ and scalar curvatures are, with SAB = SACB
C ,

Spq̄ := V ApV̄
B
q̄SAB , S(0) :=

(
PACPBD − P̄ACP̄CD

)
SABCD .

While e−2dS(0) corresponds to the original DFT Lagrangian density [1, 2], or the ‘pure’ Stringy Grav-
ity, the master covariant derivative fixes its minimal coupling to extra matter fields, e.g. type II maxi-
mally supersymmetric DFT [7] or the Standard Model [8].

Derivation of Einstein Double Field Equations
Variation of the action for Stringy Gravity coupled to generic matter fields, Υa, gives

δ

∫
e−2d

[
1

16πGS(0) + Lmatter

]

=

∫
e−2d

[
1

4πGV̄
Aq̄δVA

p(Spq̄ − 8πGKpq̄)− 1
8πGδd(S(0) − 8πGT(0)) + δΥa

δLmatter

δΥa

]

=

∫
e−2d

[
1

8πGξ
BDA {GAB − 8πGTAB} + (L̂ξΥa)

δLmatter

δΥa

]
,

where the second line is for generic variations and the third line is specifically for diffeomorphic
transformations. We are naturally led to define

Kpq̄ :=
1

2

(
VAp

δLmatter

δV̄A
q̄ − V̄Aq̄

δLmatter

δVA
p

)
, T(0) := e2d ×

δ
(
e−2dLmatter

)

δd
,

and subsequently the stringy Einstein curvature, GAB, and Energy Momentum tensor, TAB ,

GAB = 4V[A
pV̄B]

q̄Spq̄ − 1
2JABS(0) , DAGAB = 0 (off-shell) ,

TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0) , DATAB = 0 (on-shell) .

The equations of motion of the stringy graviton fields are thus unified into a single expression, the
Einstein Double Field Equations (1). Note that GAA = −DS(0), TAA = −DT(0).
Restricting to the (0, 0) Riemannian background, the Einstein Double Field Equations reduce to

Rµν + 25µ(∂νφ)− 1
4HµρσHν

ρσ = 8πGK(µν) ,

5ρ
(
e−2φHρµν

)
= 16πGe−2φK[µν] ,

R + 4�φ− 4∂µφ∂
µφ− 1

12HλµνH
λµν = 8πGT(0) ,

which imply the conservation law, DATAB = 0, given explicitly by

∇µK(µν) − 2∂µφK(µν) + 1
2Hν

λµK[λµ] − 1
2∂νT(0) = 0 , ∇µ

(
e−2φK[µν]

)
= 0 .

The Einstein Double Field Equations also govern the dynamics of other non-Riemannian cases,
(n, n̄) 6= (0, 0), where the Riemannian metric, gµν, cannot be defined.

Examples
– Pure Stringy Gravity with cosmological constant:

1
16πGe

−2d (S(0) − 2ΛDFT) , Kpq̄ = 0 , T(0) = 1
4πGΛDFT .

– RR sector, given by a Spin(1, 9)× Spin(9, 1) bi-spinorial potential, Cαᾱ :

LRR = 1
2Tr(FF̄) , Kpq̄ = −1

4Tr(γpF γ̄q̄F̄) , T(0) = 0 ,

where F = D+C = γpDpC + γ(11)Dp̄Cγ̄p̄ is the RR flux set by an O(D,D) covariant “H-twisted”
cohomology, (D+)2 = 0, and F̄ = C̄−1FTC is its charge conjugate [7].

– Spinor field: Lψ = ψ̄γpDpψ + mψψ̄ψ , Kpq̄ = −1
4(ψ̄γpDq̄ψ −Dq̄ψ̄γpψ) , T(0) = 0 .

– Green-Schwarz superstring (κ-symmetric):

e−2dLstring = 1
4πα′

∫
d2σ

[
−1

2

√
−hhijΠMi ΠNj HMN − εijDiyM (AjM − iΣjM )

]
δD
(
x− y(σ)

)
,

Kpq̄(x) = 1
4πα′

∫
d2σ
√
−hhij(ΠMi VMp)(Π

N
j V̄Nq̄) e

2dδD
(
x− y(σ)

)
, T(0) = 0 ,

where ΣMi = θ̄γM∂iθ + θ̄′γ̄M∂iθ′ and ΠMi = ∂iy
M −AMi − iΣMi (doubled-yet-gauged) [9].

Gravitational effect
The regular spherical solution to theD = 4 Einstein Double Field Equations shows that Stringy Grav-
ity modifies GR (Schwarzschild geometry), in particular at “short” dimensionless scales, R/MG,
i.e. distance normalized by mass times Newton constant. This might shed new light upon the dark
matter/energy problems, as they arise essentially from “short distance” observations. Furthermore, it
would be intriguing to view the B-field and DFT dilaton d as ‘dark gravitons’, since they decouple
from the geodesic motion of point particles, which should be defined in string frame [10].
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APPENDIX

Doubled-yet-Gauged Spacetime
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• Let F :=
{

d ,HMN , ξ
M , ∂Nd , ∂LHMN , · · ·

}
be the set of all the functions in DFT.

– It contains not only the covariant physical fields, d,HMN , and local symmetry parameters, ξA, but
also their arbitrary derivatives and products.

– It is closed under additions, products and derivatives : if Φi ,Φj ∈ F then

a Φi + b Φj ∈ F , Φi Φj ∈ F , ∂AΦi ∈ F ,

where a, b ∈ R.

– The section condition,

∂M∂
M Φi = 0 , ∂M Φi∂

M Φj = 0 ,

is mathematically equivalent to certain translational invariance:

Φi (x) = Φi (x + ∆) , ∆M = Φj∂
M Φk ,

where ∆M is said to be derivative-index-valued.

– ‘Physics’ should be invariant under such shifts of the doubled coordinates in DFT.
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Doubled-yet-gauged spacetime JHP 1304.5946

Doubled coordinates, xM = (x̃µ, xν), are gauged
through an equivalence relation,

xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D ,
corresponds to a single physical point in RD .

– If we solve the section condition by letting ∂̃µ ≡ 0, and further put

∆M = cµ∂M xµ : derivative−index−valued ,

we obtain explicitly,(
x̃µ , xν

)
∼
(
x̃µ + cµ , xν

)
: x̃µ ’s are gauged and xν ’s form a section.

– Then, O(D,D) rotates the gauged directions and the section.
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Doubled-yet-gauged spacetime Kanghoon Lee & JHP 1307.8377

– In DFT, the usual infinitesimal one-form, dxM , is neither diffeomorphic covariant,

δxM = ξM , δ(dxM ) = dxN∂Nξ
M 6= dxN (∂Nξ

M − ∂MξN ) ,

nor invariant under the coordinate gauge symmetry,

dxM −→ d
(
xM + ∆M) 6= dxM .

– The naive contraction, dxMdxNHMN , is not a coordinate invariant scalar,

and thus cannot lead to any sensible definition of ‘proper length’ in DFT.
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Doubled-yet-gauged spacetime Kanghoon Lee & JHP 1307.8377

The problems can be all cured by gauging the infinitesimal one-form explicitly,

DxM := dxM −AM .

DxM is a covariant vector in DFT

– The gauge potential should satisfy the same property as the coordinate gauge symmetry generator: it
must be derivative-index-valued too, satisfying

AM∂M = 0 , AMAM = 0 .

– Essentially, half of the components are trivial, e.g. with ∂̃µ ≡ 0,

AM = Aλ∂M xλ = (Aµ , 0) , DxM = (dx̃µ − Aµ , dxν) .

– With the appropriate transformations of AM , the covariance of DxM is ensured:

δxM = ∆M , δAM = d∆M =⇒ δ(DxM ) = 0 ;

δxM = ξM , δAM = ∂MξN (dxN −AN ) =⇒ δ(DxM ) = DxN (∂Nξ
M − ∂MξN ) .

c.f. natural extension to EFT by Blair 2017
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Doubled-yet-gauged spacetime

With DxM = dxM −AM , we can define Proper Length through a path integral,

Length := − ln
[ ∫
DA exp

(
−
∫ √

DxM DxNHMN

)]

which is gauged and covariant under O(D,D) and DFT-diffeomorphisms.

– For the Riemannian DFT-metric, we have a useful relation,

DxM DxNHMN ≡ dxµdxνgµν +
(
dx̃µ − Aµ + dxρBρµ

) (
dx̃ν − Aν + dxσBσν

)
gµν .

– Hence, after integrating out the gauge potential, Aµ, the above O(D,D) covariant definition of the
proper length reduces to the conventional one,

Length =⇒
∫ √

dxµdxνgµν(x) .

– Since it is independent of x̃µ, indeed it measures the distance between two gauge orbits, which is of
course a desired feature.
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Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘covariant’ actions:

i) Particle Action Ko-JHP-Suh 2016

Sparticle =

∫
dτ e−1 Dτ xM Dτ xNHMN (x)− 1

4 m2e

ii) String Action Lee-JHP 2013, c.f. Hull 2006

Sstring = 1
4πα′

∫
d2
σ − 1

2

√
−hhij Di x

M Dj x
NHMN (x)− εij Di x

MAjM

With the Riemannian DFT-metric plugged, after integrating out the auxiliary fields,

the above actions reduce to the conventional ones:

Sparticle ⇒
∫

dτ e−1 ẋµẋνgµν − 1
4 m2e ,

Sstring ⇒ 1
2πα′

∫
d2σ − 1

2

√
−hhij∂i xµ∂j xνgµν + 1

2 ε
ij∂i xµ∂j xνBµν + 1

2 ε
ij∂i x̃µ∂j xµ .
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The scheme has been also extended to construct

iii) Doubled-yet-gauged Green-Schwarz superstring JHP 2016

S = 1
4πα′

∫
d2
σ − 1

2

√
−hhij ΠM

i ΠN
j HMN − εij Di x

M (AjM − iΣjM
)
,

where ΠM
i := Di xM − iΣM

i and ΣM
i := θ̄γM∂iθ + θ̄′γ̄M∂iθ

′.

While this action reduces consistently to the original undoubled one,

it features the desired symmetries :

– O(D, D) T-duality

– DFT-diffeomorphisms

– Worldsheet diffeomorphisms plus Weyl symmetry

– Coordinate gauge symmetry : xM ∼ xM + ∆M ( ∆M∂M = 0 )

– twofold Lorentz symmetry, Spin(1, 9)L × Spin(9, 1)R ⇒ Unification of IIA & IIB

– Maximal 16+16 SUSY & kappa symmetry upon flat background

All the above actions are formulated with HMN , VMp , V̄Mp̄ which satisfy the defining
properties only, not necessarily parametrized by the Riemannian metric/vielbein.
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