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— GRis based on Riemannian geometry, where the only geometric and gravitational field is the
Riemannian metric, g,.... Other fields are meant to be extra matters.
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— GRis based on Riemannian geometry, where the only geometric and gravitational field is the
Riemannian metric, g,.... Other fields are meant to be extra matters.

— On the other hand, string theory suggests us to put a two-form gauge potential, B,,,,, and a
scalar dilaton, ¢, on an equal footing along with the metric:

e They form the closed string massless sector, being ubiquitous in all string theories,

/de /—ge % (Hg +40,60" ¢ — %ZHM,,H*‘“’) where H=dB.
This action hides O(D, D) symmetry of T-duality which transforms g, B, ¢ into one another. Buscher 1987
— T-duality hints at a natural augmentation to General Relativity, in which the entire closed string

massless sector constitutes the fundamental gravitational multiplet and the above action
corresponds to a ‘pure’ gravity.

Double Field Theory (DFT), initiated by Sielgel 1993 & Hull-Zwiebach 2009-2010, turns out to
provide a concrete realization for this idea of Stringy Gravity by manifesting O(D, D) T-duality.
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— GRis based on Riemannian geometry, where the only geometric and gravitational field is the
Riemannian metric, g,.... Other fields are meant to be extra matters.

— On the other hand, string theory suggests us to put a two-form gauge potential, B,,,,, and a
scalar dilaton, ¢, on an equal footing along with the metric:

e They form the closed string massless sector, being ubiquitous in all string theories,

/de /—ge %* (Hg +48,60" ¢ — %ZHM,,H*‘“’) where H=dB.

This action hides O(D, D) symmetry of T-duality which transforms g, B, ¢ into one another. Buscher 1987

— T-duality hints at a natural augmentation to General Relativity, in which the entire closed string
massless sector constitutes the fundamental gravitational multiplet and the above action
corresponds to a ‘pure’ gravity.

Double Field Theory (DFT), initiated by Sielgel 1993 & Hull-Zwiebach 2009-2010, turns out to
provide a concrete realization for this idea of Stringy Gravity by manifesting O(D, D) T-duality.

— This talk sketches the geometric construction of Stringy Gravity, and in particular, introduces
Einstein Double Field Equations, Gag = 87 GTag, as the unifying single expression for all the
equations of motion of the closed string massless sector.
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DFT as Stringy Gravity

EINSTEIN DOUBLE FIELD EQUATIONS : Ggag 0964 WITH STEPHEN ANGUS AND KYOUNGHO CHO



Notation for O(D, D) and Spin(1,D—1); x Spin(D—1,1)g Symmetries

Index Representation Metric (raising/lowering indices)
0 1
AB,---,M,N,--. O(D, D) vector T =
1 0
p,q,- - Spin(1, D—1), vector Npg = diag(— + + - +)
a,B,--- Spin(1, D—1), spinor Capy  (4P)T = CyPCT
[2h@hoos Spin(D—1,1)g vector fisg = diag(+ — —--- —)
& B, Spin(D—1, 1) spinor Capr (3T = CHPT

— Each symmetry rotates its own indices exclusively : spinors are O(D, D) singlet.
— The constant O(D, D) metric, Jag, decomposes the doubled coordinates into two parts,
XA = (%, x¥), 9 = (6",0v),
where u, v are D-dimensional curved indices.

— The twofold local Lorentz symmetries indicate two distinct locally inertial frames for the
left-moving and the right-moving closed string sectors separately.
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Closed string massless sector as ‘Stringy Graviton Fields’

The stringy graviton fields consist of the DFT dilaton, d, and DFT metric, Hp :
Hun = Hnm Hi HuN T = Tk -
Combining Jyn and Hyn, we acquire a pair of symmetric projection matrices,
Pun = Pam = 3(JTun + Huw) PMPyN = PN,
Pun = Py = 3(Tun — Hmw) , PMPyN = PN,
which are orthogonal and complete,
PLMPMN =0, PMN + PMN = 5MN.
Further, taking the “square roots" of the projectors,
Pun = VP Vn9mpq Pun = VP Vg ,

we get a pair of DFT vielbeins:

VioVMg =npg,  VpVMag =g, VeV =0, VPV + VP Vnp = T -
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, Hyy = Ham, Hx HuNTin = Tk, is
characterized by two non-negative integers, (n,n), 0 < n+n<D:

Hiv —HHIB,\ + YEX] — VEXT

BHPHPV + XL Y’.” — )_(z VZV Kix — BHpHPUBUA + 2X(iRB/\)p Yip = 2)_((inB)\)P VZP

Hag =
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand
The most general form of the DFT metric, Hyy = Ham, Hx HuNTin = Tk, is

characterized by two non-negative integers, (n,n), 0 <n+n<D

—HHIB,\ + YEX] — VEXT

H#Y
Ha = ) _ . _ >z
BrpHPY + XLYY — XLYY Kicx — BipHPO By + 2X('&BA),3 YP — 2X(ZKBA),J \Z:
i) Symmetric and skew-symmetric fields: H*Y = H"*, K., = Koy, Buw = —Buu;
i) Two kinds of eigenvectors having zero eigenvalue, with i,j =1,2,--- ,n & 7,7=1,2,--- ,n,
HHv X =0, Kuw Yy =0, K},,l,?]i’ =0;

Hev Xl =0,

iii) Completeness relation: Hre Ky + YEXI 4+ YEXT = 61,

e Orthonormality follows

YEXL =6, VEX] = 07,




Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, Hyn = Hams Hx HuNTin = Tk, is
characterized by two non-negative integers, (n,n), 0 < n+n<D:

Hag = 2l —HEI By + YINX/( - Viﬂ)_(i
BipHP” + XYY — XYY Kix = BrpHP? Box +2X(, By, Y — 2X By, V¥
i) Symmetric and skew-symmetric fields: H*Y = H"¥, K., = Koy, Buw = —Buy;
i) Two kinds of eigenvectors having zero eigenvalue, with i,j =1,2,--- .n & 7,7=1,2,--- ,n,
Hrv X =0, Hr X =0, Kuv Yj” =0, Kuv V]F =0;
iii) Completeness relation: Hre Ky + YEXI + YEXT = 61,
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, Hyn = Haw, Hi-HuNTin = Tk, is
characterized by two non-negative integers, (n,n), 0 < n+n<D:

Hap = HHv —HHo B\ + yiuxi _ )‘/{M)‘(ﬁ
BipHP” + XYY — XYY Kix = BrpHP? Box +2X(, By, Y — 2X By, V¥
i) Symmetric and skew-symmetric fields: H*Y = H"¥, K., = Koy, Buw = —Buy;
ii) Two kinds of eigenvectors having zero eigenvalue, with i,j =1,2,--- ,n & 7,7=1,2,--- ,n,
Hrv X =0, Hr X =0, Kuv Yj" =0, Kuv V]P =0;

iii) Completeness relation: HEe Ky + YEXI 4+ YEXT = 61,

e ltis instructive to note the O(D, D) invariant trace, H,” = 2(n— n) and

1.0 H Yi(X)T — Va(X?)T 1 -B
B 1 Xi(Y)T — X'(V5)T K 0 1

Hag =
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, Hynv = Han, Hx-HuNTin = Tkm, is
characterized by two non-negative integers, (n,n), 0 < n+n<D:
1 0 H Yi(XNT — Yo(X)T 1 -B

Hag = ) _
B 1 Xi(Y)T = X3 (V)T K 0 1
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, Hynv = Han, Hx-HuNTin = Tkm, is
characterized by two non-negative integers, (n,n), 0 < n+n<D:
1 0 H Yi(XNT — Vo(X)T 1 -B
B 1 X" — X' (Y7)T K 0 1

Hag =

e (n,n) = (0,0) corresponds to the Riemannian geometry or “Generalized Geometry”:

g’ -9 'B
Hun = Giveon-Rabinovici-Veneziano '89, Duff '90
Bg~' g-Bg 'B
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, Hynv = Han, Hx-HuNTin = Tkm, is
characterized by two non-negative integers, (n,n), 0 < n+n<D:
1 0 H Yi(XNT — Vo(X)T 1 -B
B 1 X" — X' (Y7)T K 0 1

Hag =

e (n,n) = (0,0) corresponds to the Riemannian geometry or “Generalized Geometry”:

g’ -9 'B
Hun = Giveon-Rabinovici-Veneziano '89, Duff '90
Bg~' g-Bg 'B

e String becomes chiral over the n dimensions and anti-chiral over the i dimensions:

X, 01 x1(1,0) =0, )_(; O_xH(r,0)=0.
Examples include
— (D, 0) Siegel’s chiral string (maximally non-Riemannian, Hun = Jun);
— (1, 1) Gomis-Ooguri non-relativistic string Ko-Melby-Thompson-Meyer-JHP 2015;
— (D—1,0) ultra-relativistic Carroll gravity;
— (1, 0) non-relativistic Newton-Cartan gravity.

Their dynamics are all governed by the Einstein Double Field Equations.
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o Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": ~ Siegel 1993

n
[:g TayAn = fB(')BTAr“A” + wr E)BfBTArHAn A Z(QAIrEB = QBEA,-)T/M»«»A,-_1BA,41~~An s
p

where wr is the weight, e.g. de=29 = 9g(£Be=29), §Vy, = €B0gVap + (0as — OBEA) VBp.




o Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": ~ Siegel 1993

n
ég TayAn = fBBBTAr“An + wr angTArHAn A Z(QAlég = 8B€A,-)TA1»~A,-_1BA,-HwAn s
p

where wr is the weight, e.g. de=29 = 9g(£Be=29), §Vy, = €B0gVap + (0as — OBEA) VBp.

e For consistency, so-called the ‘section condition’ should be imposed: 9y,0™ = 0.
From 8y0M = 28,,6*, the section condition can be easily solved by letting 8+ = 0.

The general solutions are then generated by the O(D, D) rotation of it.
e The section condition is mathematically equivalent to certain translational invariance:
®i(x) = ®i(x +4), AM = ;oMo

where &, &;, & € { d, Hun, M, Ond, 0. Huw, - -+ }, arbitrary functions appearing in DFT,
and AM is said to be derivative-index-valued.
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Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": ~ Siegel 1993

n
[ig TA1~~An = 55857—,41‘“,4" + wr anBTArHAn + Z(aAlfg — BBEA,-)TA1»~»A,-_1BA,-_HmAn R
i=1

where wr is the weight, e.g. de=29 = 9g(£Be=29), §Vy, = €B0gVap + (0as — OBEA) VBp.

For consistency, so-called the ‘section condition’ should be imposed: 9,0 = 0.
From 8y0M = 28,,6*, the section condition can be easily solved by letting 8+ = 0.

The general solutions are then generated by the O(D, D) rotation of it.

The section condition is mathematically equivalent to certain translational invariance:
i(x) = di(x +4), AM = ;oMo

where &, &;, & € { d, Hun, M, Ond, 0. Huw, - -+ }, arbitrary functions appearing in DFT,
and AM is said to be derivative-index-valued.

‘Physics’ should be invariant under such shifts of the doubled coordinates in Stringy Gravity.
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Doubled-yet-gauged spacetime

Doubled coordinates, x = (%,,, x”), are gauged through an equivalence relation,
Mo~ XM AM(X) s

where A is derivative-index-valued.

Each equivalence class, or gauge orbit in R°*°, corresponds to a single physical point in R°.
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Doubled-yet-gauged spacetime

Doubled coordinates, x = (%,,, x”), are gauged through an equivalence relation,
Mo~ XM AM(X) s

where A is derivative-index-valued.

Each equivalence class, or gauge orbit in R°*°, corresponds to a single physical point in R°.

o |f we solve the section condition by letting H* = 0, and further choose AV = cuaMx“, we note

(%, x") ~ (X% +cu,x”) : X.'s are gauged and x"’s form a section.

e Then, O(D, D) rotates the gauged directions and hence the section.
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Doubled-yet-gauged spacetime

Doubled coordinates, x" = (X, x”), are gauged through an equivalence relation,

M~ XM+AM(X)7

where AM is derivative-index-valued.

Each equivalence class, or gauge orbit in RP+D, corresponds to a single physical point in RP.
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Doubled-yet-gauged spacetime

Doubled coordinates, x" = (X, x”), are gauged through an equivalence relation,
Mo~ XM +AM(X),

where AM is derivative-index-valued.

Each equivalence class, or gauge orbit in RP+D, corresponds to a single physical point in RP.

e Further, if we ‘gauge’ dxM explicitly by introducing a derivative-index-valued gauge potential,
ax" — DxM = axM — AM | AMoy =0,
it is possible to define O(D, D) & diffeomorphism covariant ‘proper length’ through a path integral,
Proper Length := — In [/,DA exp (— / \/WNHMN” s

and construct associated sigma models such as for the point particle Ko-JHP-Suh "16, Blair '17, bosonic
strings Hull ‘06, Lee-JHP ’13, Arvanitakis-Blair ‘17, '18, k-symmetric Green-Schwarz superstring JHP ’16.

In particular, for the (0, 0) Riemannian DFT-metric, with §* = 0, after integrating out the auxiliary potential,
AM = Ax Mx» = (A, , 0), one can recover all the conventional results, e.g.

DxM = (d%, — Ay, dx”) Proper Length —> / \/dxrdx? g, (x)

while for other (n, n) cases strings become chiral (n) and anti-chiral (7).
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Covariant derivatives and curvatures in Stringy Gravity feature two stages:

‘semi-covariance’ and ‘complete covariantization’.

EINSTEIN : 00964 WITH STEPHEN AN



e Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011
n
NVeTaty Ay = 0cTa Ay Ay — WT rBBCTA1A2wAn + Z rCAI.BTA1 cAj_1BAipy A >
i=1
for which the stringy Christoffel connection can be uniquely fixed,
Foas=2(POcPP) g +2 (PP Pay® —PaPPg®) 00Pec— pts (PeiaPe P+ PeiaPe)® ) (20d+(POE PP)epy )
by demanding the compatibility, V 4Pgc = VaPgc = V ad = 0, and some torsionless conditions.

* There are no normal coordinates where I ¢4 would vanish point-wise: Equivalence Principle is broken

for string (i.e. extended object) but recoverable for particle.

EINSTEIN



e Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011
n
NVeTaty Ay = 0cTa Ay Ay — WT rBBcTA1A2mAn + Z rCAI.BTA1 A1 BAi 1 An >
i=1
for which the stringy Christoffel connection can be uniquely fixed,
FCAB:Z(PGCPIE’)[AB]+2(F’[ADF’B]E—P[ADPB]E)aDPEC— o1 (PoiaPe P +PeiaPe °) (0pd+(POE PP ep))
by demanding the compatibility, VaPgc = VaPgc = Vad = 0, and some torsionless conditions.

* There are no normal coordinates where I ¢4 would vanish point-wise: Equivalence Principle is broken

for string (i.e. extended object) but recoverable for particle.
e Semi-covariant Riemann curvature :
1
Sasco = Sasiico] = Scoas = 3 (Rasep + Repas — TE 8T eco) Siagcip =0,
where Rugcp denotes the ordinary “field strength”: Repas=0aTscp— 98T aco+T act T8eD—TBcET AED -

By construction, it varies as ‘total derivative’:  §Ssgcp = Va8l giep + Vel pjas -

e Semi-covariant ‘Master’ derivative :
Dp ::aA+rA+¢A+q_>A:vA+¢A+&)A'

The two spin connections for the Spin(1, D—1), x Spin(D—1, 1)z local Lorentz symmetries are
determined in terms of the stringy Christoffel connection by requiring the compatibility with DFT vielbeins,

DaVep = VaVep + Pap9Vag =0, DaViep = VaVep + Ppp7 Va5 = 0.
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o Complete covariantization
— Tensors,

Dp B D B
PC PA1 1 ”’PAn ”VDTmeBn — DPTQ162"'Z7N'
=

p.D B. B,
PC PA1 1 "'PAn nvDTBw---Bn DﬁTQ1Q2“‘QH7

T P T . T _DP
D ququ...qn. D ququ...qn, DpD Tc,1c,2___q,,7 DpDPTgy05---an -
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o Complete covariantization

— Tensors,
PcPPy B .. Py BV T, = DpTa5, .3
c Fay An pley---By o Ta1a-n »
pDp B B, o
PC PAW 1 -HPA,7 nvDTBw---Bn — Dqu1q2A.Aqn7
T P T . T _DP
DPToaayan»  DPPThgyap--ani  DPoDPTgap-ans Do Tayap--an -

- Spinors, p®, p'%, ¥g', ¥,
Y¥Dpp, AFDpp's Dpp, Dpp's ADovg, Doy, Dpy”, Dpy™.

— RR sector, C*5 O(D, D) covariant extension of H-twisted cohomology
(P+)?=0 = F:=D.C (RRflux).

D4iC: '\/pDF,C a8 ’\/(DH)D;}C’_}/E 5

— Yang-Mills,
Fag :=VaVg — VgVa —i[Va, Vg] .

Fog = FagVA, V84 where
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o Complete covariantization
— Tensors,

Dp B D B
Pc PA1 1 "'PAn ”VDTmeBn - DPT‘71@2"'Z7U'
p D B. B,
PC PAW 1 -HPA,7 nvDTBw---Bn — Dqu1q2~-~qn7
PT - pT. 0 PT. -~ ~DP
D ququ___qn 9 D Tpthg--ﬂn : DpD! TChqz---Qn 9 DpD! T‘hﬂg"'qn 5
- Spinors, p®, p'%, ¥g', ¥,

Y¥Dpp, AFDpp's Dpp, Dpp's ADovg, Doy, Dpy”, Dpy™.

— RR sector, C*5 O(D, D) covariant extension of H-twisted cohomology

DiC = ~+"DpC £ PV Dpc3P, (D1)?=0 = F:=D.C (RRflux).

— Yang-Mills,
Fpa = ]'—AB VAp VB[? where .7:,45 = VAVB = VBVA = i[VA. VB] o
— Curvatures,
Spg = SasV*p V85 (Ricci), Sy == (P*°PP° — P*°PP%)Sppcp (scalar).
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Equipped with the semi-covariant derivatives, one can construct, e.g.
e D = 10 Maximally Supersymmetric Double Field Theory Jeon-Lee-JHP-Suh 2012

Lypert = €729 [ 180) + YTe(FF) + ipFol + idhp1aFiP%'9 + i357PDpp — i 577 D!
—ifPDpp — i3 5P19Daip + i/PDpp’ + i35/P59Dgy |

which unifies 11A and 11B SUGRAs, thanks to the twofold spin groups.

e Minimal coupling to the Standard Model Kangsin Choi & JHP 2015 [PRL]

1671-GN So)
Lsu = €729 | 45, PABRODTY(FpcFpp) + 3y 97 Dath + 3 /72Dt
—HAB(Dp) Dap — V(¢) + YaG-dd+yuGdu+yel-¢e

Every single term above is completely covariant, w.r.t. O(D, D), diffeomorphisms, and

twofold local Lorentz symmetries, Spin(1, D—1), x Spin(D—1,1)g.
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Derivation of the Einstein Double Field Equations
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Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, T 4,

/ 672‘1[ 1617rG So) + Lmatter} )
px

where S is the stringy scalar curvature and Limatter iS the matter Lagrangian equipped with the
completely covariantized master derivatives, Dy,. The integral is taken over a section, ¥.

We seek the variation of the action induced by all the fields, d, Vyp, \7Ap, Ta.
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Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, T 4,

/ e*Zd[ 1617rG So) + Lmatter} )
px

where S is the stringy scalar curvature and Limatter iS the matter Lagrangian equipped with the
completely covariantized master derivatives, Dy,. The integral is taken over a section, ¥.

We seek the variation of the action induced by all the fields, d, Vyp, \7Ap, Ta.
Firstly, the pure Stringy Gravity term transforms, up to total derivatives (~), as

5 (6*2"8@) ~ o2 (‘7365 Vs Spq — 30d S“’))
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Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, T 4,

/ e—2d|: 1617G S(O) + Lmatter} )
>

where S is the stringy scalar curvature and Limatter is the matter Lagrangian equipped with the
completely covariantized master derivatives, Dy,. The integral is taken over a section, ¥.

We seek the variation of the action induced by all the fields, d, Vyp, \7Ap, Ta.
Firstly, the pure Stringy Gravity term transforms, up to total derivatives (~), as

5 (e*2d8<o>) ~ o2 (‘78% Vs Spq — 30d S(‘”)

Secondly, the matter Lagrangian transforms as

T7AQ 6Lrna er
8 (67 Linatter ) = 672 <72 VAI5V 4P Ky + 6d Tio) + (mai“)

0T a
where we have been naturally led to define
1 Vv 5Lmatter U _5[—matter
2\ sV v )

In particular, when Lyatter iS bosonic (free of vielbeins), the former reduces to

d (eiZdLmatter)
od '

Kog := Ty := €29 x

6Lmatter _ 6Lmatter>

Koz = Vap Vg =
) = D Bq< 0Pag 0Pap
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e Combining the two results, the variation of the action reads

5/ e 2 [ ﬁs(m + Lmatter}
b

_ - OLmatter
= /):e * {ﬁ VAq6VAp(Spq = SWGKpa) = &ifG(;d(S(o) = 87'I'GT(0)) + (;Taiu

T2
Hence, the equations of motion are exhaustively,

0 Lmat, ter

Spg = 87GKyg , Si0) = 87GT), =
a

=0.
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e Combining the two results, the variation of the action reads

5/ e 2 [ 1%;?3@ + Lmatter}
b

- /z e 2 [47176 VAIS VAP (Spy — 87GKog) — 51560(Se) — BrGTy) + 6T

5Lmatter
0T a
Hence, the equations of motion are exhaustively,

Lma, Ler
Spg = 87GKyg , Sy = 87GT), % =0.

o Specifically when the variation is generated by diffeomorphisms, we have 6: T4 = L}Ta and
55d = —%620125 (eiZd) = —%DA{A 9 _VAZ75£ VAp = VA@££ VAp =5 2D[A£B] ‘_/Af] VBp .

Substituting these, the diffeomorphic invariance of the action implies

5Lmatter

0 :/2972d |:871riG§BDA {4\/[AP \_/B]E?(Spa = BFGKpa) — %JAB(S(O) — 87TG7-(0))} +0¢Ta 5T
a

which leads to the definitions of the off-shell conserved stringy Einstein curvature ,
Gag == 4ViaP Vg 9Spg — 3 Ta8S0) » DpGB =0  (off-shell),
JHP-Rey-Rim-Sakatani 2015
and the on-shell conserved stringy Energy-Momentum tensor ,

Tag == 4V|aP Vg TKpg — 3748 T0) » DaTAB =0  (on-shell).
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e Since Gup and T4p each have D? + 1 independent components as c.ft. {9uv, Buv, ¢}
VA, VB5Gag = 2Sp5, GA4 = —DS), VAL VBT = 2Ky, TAy = DT,

the equations of motion of the DFT vielbeins and dilaton can be unified into a single expression:

Einstein Double Field Equations

which is naturally consistent with the central idea that Stringy Gravity treats the entire closed
string massless sector as geometrical stringy graviton fields.
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Einstein Double Field Equations

Gag =87GTap

ALL FOR ONE
ONE FOR ALL!
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Einstein Double Field Equations

Gpg = 87GTyp

e Restricting to the (0, 0) Riemannian backgrounds,
the EDFE decompose into

Ruv + 2Vu(6V¢) - %HWJUHVPU = BWGK(HV) ’
V7 (e o) = 16mGe 2Ky,
R+40¢ — 40,00"¢ — HAu W = 871G

e For other non-Riemannian cases, (n, n) # (0, 0), EDFE govern the dynamics of the ‘chiral’
gravities, such as Newton-Cartan, Carroll, and Gomis-Ooguri, etc.
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Examples: Typ :=4V|4P \75]‘_7Kpa, = %JABT@)

Pure Stringy Gravity with cosmological constant,

BrG® 2 (So) — 2Morr) Kpg =0, To) = zag/\orr -
e RR sector,
b= DR, Kg=—iTOoFRE),  To=0.
e Spinor field,
Ly = 97PDptp + myp, Kog = — 3 ($pDgt> — Dgdoyp) Ty =0.

e Green-Schwarz superstring (x-symmetric, doubled-yet-gauged),

e_ZdLstring = 47:7/(‘{20' [7% V 7hhljnfwn/NHMN - EUDIyI\/’('A]M - IZ/M)] 6D(X - y(o')) ’

Kog(X) = 2 /d%ﬁmf/’(n,ﬂ” Vi) (M Vi) €2960(x — (o)) To) =0,

4o’

where =M = gyM9,0 + 6'3M9,60' and NM = gjyM — AM — ;¥ M.

I
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Gravitational effect

e The regular spherical solution to the D = 4 Einstein Double Field Equations shows that
Stringy Gravity modifies GR (Schwarzschild geometry), in particular at “short" dimensionless
scales, R/MG, i.e. distance normalized by mass times Newton constant.

This might shed new light upon the dark matter/energy problems, as they arise essentially
from “short distance" observations:

Electron Hydrogen | Billiard Solar System | Milky Way | Galaxy | Universe
Proton Earth i .
(R~0) Atom Ball (1AU/MoG) | (visible) |Cluster | (Mo R?)
| 0
R/(MG) 0t 7.1x10%%| 2.0x10% | 2.4%x1026 | 1.4x10° 1.0x10% 1.5x10% | ~ 10° 0t

e Furthermore, it would be intriguing to view the B-field and DFT dilaton d as ‘dark gravitons’,
since they decouple from the geodesic motion of point particles, which should be defined in
string frame.
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Concluding Remark
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Concluding Remark

e |t has been said that string theory is a piece of 21st century physics that happened to fall into
the 20th century.
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Concluding Remark

e |t has been said that string theory is a piece of 21st century physics that happened to fall into
the 20th century.

e String theory predicts its own gravity, i.e. Stringy Gravity, rather than GR.
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Concluding Remark

e |t has been said that string theory is a piece of 21st century physics that happened to fall into

the 20th century.
e String theory predicts its own gravity, i.e. Stringy Gravity, rather than GR.

e Stringy Gravity may be the 21st century theory of gravity, which is possibly formulated in

‘doubled-yet-gauged’ spacetime and deserves further explorations.
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Concluding Remark

e It has been said that string theory is a piece of 21st century physics that happened to fall into

the 20th century.
e String theory predicts its own gravity, i.e. Stringy Gravity, rather than GR.

e Stringy Gravity may be the 21st century theory of gravity, which is possibly formulated in

‘doubled-yet-gauged’ spacetime and deserves further explorations.

Thank you

One must be prepared to follow up the consequence of theory, and feel that

one just has to accept the consequences no matter where they lead.

— Paul Dirac —
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Einstein Double Field Equations

Stephen Angus, Kyoungho Cho, and Jeong-Hyuck Park

Depariment of Physics, Sogang Urisersiy. 5 Backbeom o, Mapo-gu. Scoul 04107, KOREA

Core idea: string theory predicts its own gravity rather than GR

Derivation of Einstein Double Field Equations
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APPENDIX

Doubled-yet-Gauged Spacetime
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o Let F:= {d, Hun.EM,0nd, 8 Hun, - - - } be the set of all the functions in DFT.

— It contains not only the covariant physical fields, d, Hun, and local symmetry parameters, 5“, but
also their arbitrary derivatives and products.

— ltis closed under additions, products and derivatives : if ®;, ®; € F then
a¢,+b¢,€]—', ¢‘,‘¢,‘E}—, op®; € F,

where a, b € R.
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o Let F:= {d, Hun.EM,0nd, 8 Hun, - - - } be the set of all the functions in DFT.

— It contains not only the covariant physical fields, d, Hun, and local symmetry parameters, 5“, but
also their arbitrary derivatives and products.

— ltis closed under additions, products and derivatives : if ®;, ®; € F then
advi+bodj e F, 0 € F, oa®; € F,
where a, b € R.

— The section condition,
oMo, =0, omdMe; =0,

is mathematically equivalent to certain translational invariance:
d;(x) = di(x + A), AM = o;0Mo,

where AM is said to be derivative-index-valued.
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o Let F:= {d, Hun.EM,0nd, 8 Hun, - - - } be the set of all the functions in DFT.

— It contains not only the covariant physical fields, d, Hun, and local symmetry parameters, 5“, but
also their arbitrary derivatives and products.

— ltis closed under additions, products and derivatives : if ®;, ®; € F then
a¢,-+b<1>,e]-‘, ¢‘,'(D,'E.7:, oa®i € F,
where a, b € R.

— The section condition,
oMo, =0, omdMe; =0,

is mathematically equivalent to certain translational invariance:
d;(x) = di(x + A), AM = o;0Mo,

where AM is said to be derivative-index-valued.

— ‘Physics’ should be invariant under such shifts of the doubled coordinates in DFT.
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Doubled-yet-gauged spacetime
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Doubled-yet-gauged spacetime

Doubled coordinates, x™ = (%, x), are gauged
through an equivalence relation,

M o~ XM 4 AM(x),
where AM is derivative-index-valued.

Each equivalence class, or gauge orbit in RP+D,
corresponds to a single physical point in RP.
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Doubled-yet-gauged spacetime

Doubled coordinates, x™ = (%, x), are gauged
through an equivalence relation,

M o~ XM 4 AM(x),
where AM is derivative-index-valued.

Each equivalence class, or gauge orbit in RP+D,
corresponds to a single physical point in RP.

— If we solve the section condition by letting 5 = 0, and further put
AM = c,,,@MX“ . derivative—index — valued ,

we obtain explicitly,

(%, x”) ~ (X% +cu,x”) : X.'s are gauged and x”’s form a section.

— Then, O(D, D) rotates the gauged directions and the section.
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Doubled-yet-gauged spacetime

— In DFT, the usual infinitesimal one-form, dxM, is neither diffeomorphic covariant,
5xM = ¢M, 5(dxM) = dxNoweM # dxN(oneM — oMew),

nor invariant under the coordinate gauge symmetry,

M — d(xM 4+ aM) £ axM.
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Doubled-yet-gauged spacetime

— In DFT, the usual infinitesimal one-form, dxM, is neither diffeomorphic covariant,
5xM = ¢M, 5(dxM) = dxNoweM # dxN(oneM — oMew),

nor invariant under the coordinate gauge symmetry,

M — d(xM 4+ aM) £ axM.

— The naive contraction, dxMdxN# . is not a coordinate invariant scalar,

and thus cannot lead to any sensible definition of ‘proper length’ in DFT.
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Doubled-yet-gauged spacetime

The problems can be all cured by gauging the infinitesimal one-form explicitly,
DxM .= axM — M.

DxM is a covariant vector in DFT
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Doubled-yet-gauged spacetime

The problems can be all cured by gauging the infinitesimal one-form explicitly,
DxM .= axM — M.

DxM is a covariant vector in DFT

— The gauge potential should satisfy the same property as the coordinate gauge symmetry generator: it
must be derivative-index-valued too, satisfying

AMoy =0, Ay AM = 0.

— Essentially, half of the components are trivial, e.g. with §* = 0,

AM = A, 0MxN = (A, , 0) , DxM = (d%, — A, , dx¥) .
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Doubled-yet-gauged spacetime

The problems can be all cured by gauging the infinitesimal one-form explicitly,
DxM .= axM — M.

DxM is a covariant vector in DFT

— The gauge potential should satisfy the same property as the coordinate gauge symmetry generator: it
must be derivative-index-valued too, satisfying

AMoy =0, AnAM =0.

— Essentially, half of the components are trivial, e.g. with " = 0

=y

AM = A 9MXx* = (A, 0), DxM = (d%, — A, , dx¥) .

— With the appropriate transformations of .A", the covariance of Dx" is ensured:
oxM =M sAM = apM —  §(DxMy=0;
oM =M s AM = gMey(dxN — AN) = §(DxM) = DxN(aneM — OMep).

c.f. natural extension to EFT by Blair 2017
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Doubled-yet-gauged spacetime

With DxM = dxM — AM, we can define Proper Length through a path integral,

Length := —In {/DA exp (— / \/Dx’V’Dx’VHMNﬂ

which is gauged and covariant under O(D, D) and DFT-diffeomorphisms.
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Doubled-yet-gauged spacetime

With DxM = dxM — AM, we can define Proper Length through a path integral,

Length := —In {/DA exp (— / \/Dx’V’Dx’VHMNﬂ

which is gauged and covariant under O(D, D) and DFT-diffeomorphisms.

— For the Riemannian DFT-metric, we have a useful relation,

DX"DxN My = dx*dx” gy + (dX, — A, +dx’B,,) (d%, — A, +dx7B,,) g"" .
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Doubled-yet-gauged spacetime

With DxM = dxM — AM, we can define Proper Length through a path integral,

Length := —In {/DA exp (— / \/Dx’V’Dx’VHMNﬂ

which is gauged and covariant under O(D, D) and DFT-diffeomorphisms.

— For the Riemannian DFT-metric, we have a useful relation,

DX"DxN My = dx*dx” gy + (dX, — A, +dx’B,,) (d%, — A, +dx7B,,) g"" .

— Hence, after integrating out the gauge potential, A,,, the above O(D, D) covariant definition of the
proper length reduces to the conventional one,

Length — ‘/‘/dx#dx"gw(x) .
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Doubled-yet-gauged spacetime

With DxM = dxM — AM, we can define Proper Length through a path integral,

Length := —In {/DA exp (— / \/Dx’V’Dx’VHMNﬂ

which is gauged and covariant under O(D, D) and DFT-diffeomorphisms.
— For the Riemannian DFT-metric, we have a useful relation,
DX"DxNHyy = dx*dx” gy + (dX, — A, +dx’B,,) (d%, — A, +dx7B,,) g"" .

— Hence, after integrating out the gauge potential, A,,, the above O(D, D) covariant definition of the
proper length reduces to the conventional one,

Length — ‘/‘/dx#dx"gw(x) .

— Since it is independent of X,,, indeed it measures the distance between two gauge orbits, which is of
course a desired feature.
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Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘covariant’ actions:

i) Particle Action Ko-JHP-Suh 2016

1 Mn N 5
Sparticlel= /d‘l‘ e D X" D x" Hun(x) — Im°e

EINSTEIN : 1804.00964 WITH STEPHEN AN



Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘covariant’ actions:

i) Particle Action Ko-JHP-Suh 2016
Sparticle = /d‘r e "D XMD xNHn(x) — }mze
ii) String Action Lee-JHP 2013, c.f Hull 2006

SString = %/dzﬂ' — %\/ —hhij;XMD,'XNHMN(X) — eﬁDiXMAIM

4o
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Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘covariant’ actions:

i) Particle Action Ko-JHP-Suh 2016
Sparticle = /d‘r e ! D.,.XMD,.XNHMN(X) — %mze

ii) String Action Lee-JHP 2013, c.f Hull 2006

4ma’

Satring = / o — 1/ = DixM DX Huw(x) — ¢ DixM Ay

With the Riemannian DFT-metric plugged, after integrating out the auxiliary fields,

the above actions reduce to the conventional ones:

Sparticle = /dT e~ X'XY gy, — ymPe,

1 : 1 . 1 . 1 mn -
Sitring = 32 /d2a — 3V —hhOix1Ex” 9y + F€VOXH XY By + 5€10; %, 0px1 .
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The scheme has been also extended to construct

iii) Doubled-yet-gauged Green-Schwarz superstring JHP 2016

S= . /dza — 3V =h N — DX (A — i)

Tra?
where MY .= DM — is™ and =¥ .= G-M8,0 + 6’7" 5,0'.

While this action reduces consistently to the original undoubled one,
it features the desired symmetries :

— 0O(D, D) T-duality

— DFT-diffeomorphisms

— Worldsheet diffeomorphisms plus Weyl symmetry
— Coordinate gauge symmetry : XM ~ XM TF AM (AMQM =0)

— twofold Lorentz symmetry, Spin(1, 9); X Spin(9, 1)g = Unification of IlA & IIB

— Maximal 16+16 SUSY & kappa

y y upon flat g
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The scheme has been also extended to construct

iii) Doubled-yet-gauged Green-Schwarz superstring JHP 2016

dra’

§= 1 /dza — 3R — DM (A — i)
where MY .= DM — is™ and =¥ .= G-M8,0 + 6’7" 5,0'.

While this action reduces consistently to the original undoubled one,
it features the desired symmetries :

— 0O(D, D) T-duality

— DFT-diffeomorphisms

— Worldsheet diffeomorphisms plus Weyl symmetry

— Coordinate gauge symmetry : M~ xM + aM (AMBM =0)

— twofold Lorentz symmetry, Spin(1, 9); X Spin(9, 1)g = Unification of IlA & IIB

— Maximal 16+16 SUSY & kappa sy y upon flat g

All the above actions are formulated with # yy, Viyp, VM;, which satisfy the defining
properties only, not necessarily parametrized by the Riemannian metric/vielbein.

EINSTEIN : GTypp 1804.00964 WITH STEPHEN ANGUS AND KY:



