Einstein Double Field Equations

 $G_{AB} = 8\pi G T_{AB}$

Hereafter A, B are O(D, D) indices

박정혁 (朴廷爀) Jeong-Hyuck Park Sogang University

STGCOS, APCTP, Pohang, 20th June 2018

Prologue

- GR is based on Riemannian geometry, where the only geometric and gravitational field is the Riemannian metric, $g_{\mu\nu}$. Other fields are meant to be extra matters.
- On the other hand, string theory suggests us to put a two-form gauge potential, $B_{\mu\nu}$, and a scalar dilaton, ϕ , on an equal footing along with the metric:
 - They form the closed string massless sector, being ubiquitous in all string theories,

$$\int \mathrm{d}^D x \, \sqrt{-g} e^{-2\phi} \left(R_g + 4\partial_\mu \phi \partial^\mu \phi - \frac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu} \right) \qquad \text{where} \qquad H = \mathrm{d} B \, .$$

This action hides O(D, D) symmetry of T-duality which transforms g, B, ϕ into one another. Buscher 1987

T-duality hints at a natural augmentation to General Relativity, in which the entire closed string
massless sector constitutes the fundamental gravitational multiplet and the above action
corresponds to a 'pure' gravity.

Double Field Theory (DFT), initiated by Sielgel 1993 & Hull-Zwiebach 2009-2010, turns out to provide a concrete realization for this idea of Stringy Gravity by manifesting O(D, D) T-duality.

- This talk sketches the geometric construction of Stringy Gravity, and in particular, introduces Einstein Double Field Equations, $G_{AB} = 8\pi GT_{AB}$, as the unifying single expression for all the equations of motion of the closed string massless sector.

- GR is based on Riemannian geometry, where the only geometric and gravitational field is the Riemannian metric, $g_{\mu\nu}$. Other fields are meant to be extra matters.
- On the other hand, string theory suggests us to put a two-form gauge potential, $B_{\mu\nu}$, and a scalar dilaton, ϕ , on an equal footing along with the metric:
 - They form the closed string massless sector, being ubiquitous in all string theories,

$$\int \mathrm{d}^D x \; \sqrt{-g} e^{-2\phi} \left(R_g + 4 \partial_\mu \phi \partial^\mu \phi - \frac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu} \right) \qquad \text{where} \qquad H = \mathrm{d} B \, .$$

This action hides O(D, D) symmetry of T-duality which transforms g, B, ϕ into one another. Buscher 1987

T-duality hints at a natural augmentation to General Relativity, in which the entire closed string
massless sector constitutes the fundamental gravitational multiplet and the above action
corresponds to a 'pure' gravity.

Double Field Theory (DFT), initiated by Sielgel 1993 & Hull-Zwiebach 2009-2010, turns out to provide a concrete realization for this idea of Stringy Gravity by manifesting O(D, D) T-duality.

- This talk sketches the geometric construction of Stringy Gravity, and in particular, introduces Einstein Double Field Equations, $G_{AB} = 8\pi GT_{AB}$, as the unifying single expression for all the equations of motion of the closed string massless sector.

- GR is based on Riemannian geometry, where the only geometric and gravitational field is the Riemannian metric, $g_{\mu\nu}$. Other fields are meant to be extra matters.
- On the other hand, string theory suggests us to put a two-form gauge potential, $B_{\mu\nu}$, and a scalar dilaton, ϕ , on an equal footing along with the metric:
 - They form the closed string massless sector, being ubiquitous in all string theories,

$$\int \mathrm{d}^D x \; \sqrt{-g} e^{-2\phi} \left(R_g + 4 \partial_\mu \phi \partial^\mu \phi - \tfrac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu} \right) \qquad \text{where} \qquad H = \mathrm{d} B \, .$$

This action hides O(D, D) symmetry of T-duality which transforms g, B, ϕ into one another. Buscher 1987

T-duality hints at a natural augmentation to General Relativity, in which the entire closed string
massless sector constitutes the fundamental gravitational multiplet and the above action
corresponds to a 'pure' gravity.

Double Field Theory (DFT), initiated by Sielgel 1993 & Hull-Zwiebach 2009-2010, turns out to provide a concrete realization for this idea of Stringy Gravity by manifesting O(D, D) T-duality.

- This talk sketches the geometric construction of Stringy Gravity, and in particular, introduces Einstein Double Field Equations, $G_{AB} = 8\pi GT_{AB}$, as the unifying single expression for all the equations of motion of the closed string massless sector.

DFT as Stringy Gravity

Notation for O(D, D) and $Spin(1, D-1)_L \times Spin(D-1, 1)_R$ Symmetries

Index	Representation	Metric (raising/lowering indices)
$A, B, \cdots, M, N, \cdots$	$\mathbf{O}(D,D)$ vector	$\mathcal{J}_{AB} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$
p, q, \cdots	Spin $(1, D-1)_L$ vector	$\eta_{ m ho q} = {\sf diag}(-++\cdots+)$
$lpha,eta,\cdots$	Spin $(1, D-1)_L$ spinor	$C_{lphaeta}, \qquad (\gamma^p)^T = C \gamma^p C^{-1}$
$ar{p},ar{q},\cdots$	Spin $(D-1, 1)_R$ vector	$ar\eta_{ar par q} = {\sf diag}(+\cdots-)$
$ar{lpha},ar{eta},\cdots$	Spin $(D-1, 1)_R$ spinor	$ar{C}_{ar{lpha}ar{eta}}, \qquad (ar{\gamma}^{ar{ ho}})^T = ar{C}ar{\gamma}^{ar{ ho}}ar{C}^{-1}$

- Each symmetry rotates its own indices *exclusively*: spinors are O(D, D) singlet.
- The constant O(D, D) metric, \mathcal{J}_{AB} , decomposes the doubled coordinates into two parts,

$$x^{\mathcal{A}} = (\tilde{x}_{\mu}, x^{\nu}), \qquad \partial_{\mathcal{A}} = (\tilde{\partial}^{\mu}, \partial_{\nu}),$$

where μ , ν are *D*-dimensional curved indices.

- The twofold local Lorentz symmetries indicate two distinct locally inertial frames for the left-moving and the right-moving closed string sectors separately.

Closed string massless sector as 'Stringy Graviton Fields'

The stringy graviton fields consist of the DFT dilaton, d, and DFT metric, \mathcal{H}_{MN} :

$$\mathcal{H}_{MN} = \mathcal{H}_{NM} \,, \qquad \qquad \mathcal{H}_{K}{}^{L} \mathcal{H}_{M}{}^{N} \mathcal{J}_{LN} = \mathcal{J}_{KM} \,.$$

Combining \mathcal{J}_{MN} and \mathcal{H}_{MN} , we acquire a pair of symmetric projection matrices,

$$\begin{split} P_{MN} &= P_{NM} = \frac{1}{2} (\mathcal{J}_{MN} + \mathcal{H}_{MN}) , \qquad P_L^M P_M^N = P_L^N , \\ \bar{P}_{MN} &= \bar{P}_{NM} = \frac{1}{2} (\mathcal{J}_{MN} - \mathcal{H}_{MN}) , \qquad \bar{P}_L^M \bar{P}_M^N = \bar{P}_L^N , \end{split}$$

which are orthogonal and complete,

$$P_L{}^M \bar{P}_M{}^N = 0, \qquad \qquad P_M{}^N + \bar{P}_M{}^N = \delta_M{}^N.$$

Further, taking the "square roots" of the projectors,

$$P_{MN} = V_M{}^p V_N{}^q \eta_{pq}, \qquad \bar{P}_{MN} = \bar{V}_M{}^{\bar{p}} \bar{V}_N{}^{\bar{q}} \bar{\eta}_{\bar{p}\bar{q}},$$

we get a pair of DFT vielbeins:

$$V_{Mp} V^{M}{}_{q} = \eta_{pq} \,, \qquad \bar{V}_{M\bar{p}} \bar{V}^{M}{}_{\bar{q}} = \bar{\eta}_{\bar{p}\bar{q}} \,, \qquad V_{Mp} \bar{V}^{M}{}_{\bar{q}} = 0 \,, \qquad V_{M}{}^{p} V_{Np} + \bar{V}_{M}{}^{\bar{p}} \bar{V}_{N\bar{p}} = \mathcal{J}_{MN} \,.$$

The most general form of the DFT metric, $\mathcal{H}_{MN} = \mathcal{H}_{NM}$, $\mathcal{H}_{K}{}^{L}\mathcal{H}_{M}{}^{N}\mathcal{J}_{LN} = \mathcal{J}_{KM}$, is characterized by two non-negative integers, (n, \bar{n}) , $0 \le n + \bar{n} \le D$:

$$\mathcal{H}_{AB} = \begin{pmatrix} H^{\mu\nu} & -H^{\mu\sigma}B_{\sigma\lambda} + Y^{\mu}_{i}X^{i}_{\lambda} - \bar{Y}^{\bar{\mu}}_{\bar{\imath}}\bar{X}^{\bar{\imath}}_{\lambda} \\ B_{\kappa\rho}H^{\rho\nu} + X^{i}_{\kappa}Y^{\nu}_{i} - \bar{X}^{\bar{\imath}}_{\kappa}\bar{Y}^{\nu}_{\bar{\imath}} & K_{\kappa\lambda} - B_{\kappa\rho}H^{\rho\sigma}B_{\sigma\lambda} + 2X^{i}_{(\kappa}B_{\lambda)\rho}Y^{\rho}_{i} - 2\bar{X}^{\bar{\imath}}_{(\kappa}B_{\lambda)\rho}\bar{Y}^{\rho}_{\bar{\imath}} \end{pmatrix}$$

i) Symmetric and skew-symmetric fields : $H^{\mu\nu} = H^{\nu\mu}$, $K_{\mu\nu} = K_{\nu\mu}$, $B_{\mu\nu} = -B_{\nu\mu}$;

ii) Two kinds of eigenvectors having zero eigenvalue, with $i, j = 1, 2, \cdots, n \& \overline{i}, \overline{j} = 1, 2, \cdots, \overline{n}$,

$$H^{\mu\nu}X^{i}_{\nu} = 0, \qquad H^{\mu\nu}\bar{X}^{\bar{\imath}}_{\nu} = 0, \qquad K_{\mu\nu}Y^{\nu}_{j} = 0, \qquad K_{\mu\nu}\bar{Y}^{\nu}_{\bar{\jmath}} = 0;$$

iii) Completeness relation: $H^{\mu\rho}K_{\rho\nu} + Y^{\mu}_{i}X^{i}_{\nu} + ar{Y}^{\mu}_{ar{\imath}}ar{X}^{ar{\imath}}_{
u} = \delta^{\mu}{}_{
u}.$

Orthonormality follows

$$Y_{j}^{\mu}X_{\mu}^{j} = \delta_{i}^{\ j}, \qquad \bar{Y}_{\bar{\imath}}^{\mu}\bar{X}_{\mu}^{\bar{\jmath}} = \delta_{\bar{\imath}}^{\ j}, \qquad Y_{i}^{\mu}\bar{X}_{\mu}^{\bar{\jmath}} = \bar{Y}_{\bar{\imath}}^{\mu}X_{\mu}^{j} = 0.$$

The most general form of the DFT metric, $\mathcal{H}_{MN} = \mathcal{H}_{NM}$, $\mathcal{H}_{K}{}^{L}\mathcal{H}_{M}{}^{N}\mathcal{J}_{LN} = \mathcal{J}_{KM}$, is characterized by two non-negative integers, (n, \bar{n}) , $0 \le n + \bar{n} \le D$:

$$\mathcal{H}_{AB} = \begin{pmatrix} H^{\mu\nu} & -H^{\mu\sigma}B_{\sigma\lambda} + Y^{\mu}_{i}X^{i}_{\lambda} - \bar{Y}^{\bar{\mu}}_{\bar{\imath}}\bar{X}^{\bar{\imath}}_{\lambda} \\ B_{\kappa\rho}H^{\rho\nu} + X^{i}_{\kappa}Y^{\nu}_{i} - \bar{X}^{\bar{\imath}}_{\kappa}\bar{Y}^{\nu}_{\bar{\imath}} & K_{\kappa\lambda} - B_{\kappa\rho}H^{\rho\sigma}B_{\sigma\lambda} + 2X^{i}_{(\kappa}B_{\lambda)\rho}Y^{\rho}_{i} - 2\bar{X}^{\bar{\imath}}_{(\kappa}B_{\lambda)\rho}\bar{Y}^{\rho}_{\bar{\imath}} \end{pmatrix}$$

- i) Symmetric and skew-symmetric fields : $H^{\mu\nu} = H^{\nu\mu}$, $K_{\mu\nu} = K_{\nu\mu}$, $B_{\mu\nu} = -B_{\nu\mu}$;
- *ii*) Two kinds of eigenvectors having zero eigenvalue, with $i, j = 1, 2, \dots, n \& \overline{i}, \overline{j} = 1, 2, \dots, \overline{n}$,

$$H^{\mu\nu}X^{i}_{\nu} = 0, \qquad H^{\mu\nu}\bar{X}^{\bar{\imath}}_{\nu} = 0, \qquad K_{\mu\nu}Y^{\nu}_{j} = 0, \qquad K_{\mu\nu}\bar{Y}^{\nu}_{\bar{\jmath}} = 0;$$

iii) Completeness relation: $H^{\mu\rho}K_{\rho\nu} + Y^{\mu}_{i}X^{j}_{\nu} + \bar{Y}^{\mu}_{\bar{\imath}}\bar{X}^{\bar{\imath}}_{\nu} = \delta^{\mu}{}_{\nu}.$

Orthonormality follows

$$Y_{j}^{\mu}X_{\mu}^{j} = \delta_{i}^{\ j}, \qquad \bar{Y}_{\bar{\imath}}^{\mu}\bar{X}_{\mu}^{\bar{\jmath}} = \delta_{\bar{\imath}}^{\ j}, \qquad Y_{i}^{\mu}\bar{X}_{\mu}^{\bar{\jmath}} = \bar{Y}_{\bar{\imath}}^{\mu}X_{\mu}^{j} = 0.$$

The most general form of the DFT metric, $\mathcal{H}_{MN} = \mathcal{H}_{NM}$, $\mathcal{H}_{K}{}^{L}\mathcal{H}_{M}{}^{N}\mathcal{J}_{LN} = \mathcal{J}_{KM}$, is characterized by two non-negative integers, (n, \bar{n}) , $0 \le n + \bar{n} \le D$:

$$\mathcal{H}_{AB} = \begin{pmatrix} H^{\mu\nu} & -H^{\mu\sigma}B_{\sigma\lambda} + Y^{\mu}_{i}X^{i}_{\lambda} - \bar{Y}^{\bar{\mu}}_{\bar{\imath}}\bar{X}^{\bar{\imath}}_{\lambda} \\ B_{\kappa\rho}H^{\rho\nu} + X^{i}_{\kappa}Y^{\nu}_{i} - \bar{X}^{\bar{\imath}}_{\kappa}\bar{Y}^{\nu}_{\bar{\imath}} & K_{\kappa\lambda} - B_{\kappa\rho}H^{\rho\sigma}B_{\sigma\lambda} + 2X^{i}_{(\kappa}B_{\lambda)\rho}Y^{\rho}_{i} - 2\bar{X}^{\bar{\imath}}_{(\kappa}B_{\lambda)\rho}\bar{Y}^{\rho}_{\bar{\imath}} \end{pmatrix}$$

i) Symmetric and skew-symmetric fields : $H^{\mu\nu} = H^{\nu\mu}$, $K_{\mu\nu} = K_{\nu\mu}$, $B_{\mu\nu} = -B_{\nu\mu}$;

ii) Two kinds of eigenvectors having zero eigenvalue, with $i, j = 1, 2, \dots, n \& \overline{i}, \overline{j} = 1, 2, \dots, \overline{n}$,

$$H^{\mu\nu}X^{i}_{\nu} = 0, \qquad H^{\mu\nu}\bar{X}^{\bar{\imath}}_{\nu} = 0, \qquad K_{\mu\nu}Y^{\nu}_{j} = 0, \qquad K_{\mu\nu}\bar{Y}^{\nu}_{\bar{\jmath}} = 0;$$

iii) Completeness relation: $H^{\mu\rho}K_{\rho\nu} + Y^{\mu}_{i}X^{i}_{\nu} + \bar{Y}^{\mu}_{\bar{i}}\bar{X}^{\bar{\imath}}_{\nu} = \delta^{\mu}{}_{\nu}.$

• It is instructive to note the O(D, D) invariant trace, $\mathcal{H}_A{}^A = 2(n - \bar{n})$ and

$$\mathcal{H}_{AB} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} H & Y_i(X^i)^T - \bar{Y}_{\bar{\imath}}(\bar{X}^{\bar{\imath}})^T \\ X^i(Y_i)^T - \bar{X}^{\bar{\imath}}(\bar{Y}_{\bar{\imath}})^T & K \end{pmatrix} \begin{pmatrix} 1 & -B \\ 0 & 1 \end{pmatrix}.$$

The most general form of the DFT metric, $\mathcal{H}_{MN} = \mathcal{H}_{NM}$, $\mathcal{H}_{K}{}^{L}\mathcal{H}_{M}{}^{N}\mathcal{J}_{LN} = \mathcal{J}_{KM}$, is characterized by two non-negative integers, (n, \bar{n}) , $0 \le n + \bar{n} \le D$:

$$\mathcal{H}_{AB} = \begin{pmatrix} H^{\mu\nu} & -H^{\mu\sigma}B_{\sigma\lambda} + Y^{\mu}_{i}X^{i}_{\lambda} - \bar{Y}^{\bar{\mu}}_{\bar{\imath}}\bar{X}^{\bar{\imath}}_{\lambda} \\ B_{\kappa\rho}H^{\rho\nu} + X^{i}_{\kappa}Y^{\nu}_{i} - \bar{X}^{\bar{\imath}}_{\kappa}\bar{Y}^{\nu}_{\bar{\imath}} & K_{\kappa\lambda} - B_{\kappa\rho}H^{\rho\sigma}B_{\sigma\lambda} + 2X^{i}_{(\kappa}B_{\lambda)\rho}Y^{\rho}_{i} - 2\bar{X}^{\bar{\imath}}_{(\kappa}B_{\lambda)\rho}\bar{Y}^{\rho}_{\bar{\imath}} \end{pmatrix}$$

i) Symmetric and skew-symmetric fields : $H^{\mu\nu} = H^{\nu\mu}$, $K_{\mu\nu} = K_{\nu\mu}$, $B_{\mu\nu} = -B_{\nu\mu}$;

ii) Two kinds of eigenvectors having zero eigenvalue, with $i, j = 1, 2, \dots, n \& \overline{i}, \overline{j} = 1, 2, \dots, \overline{n}$,

$$H^{\mu\nu}X^{i}_{\nu} = 0, \qquad H^{\mu\nu}\bar{X}^{\bar{\imath}}_{\nu} = 0, \qquad K_{\mu\nu}Y^{\nu}_{j} = 0, \qquad K_{\mu\nu}\bar{Y}^{\nu}_{\bar{\jmath}} = 0;$$

iii) Completeness relation: $H^{\mu\rho}K_{\rho\nu} + Y^{\mu}_{i}X^{i}_{\nu} + \bar{Y}^{\mu}_{\bar{\imath}}\bar{X}^{\bar{\imath}}_{\nu} = \delta^{\mu}{}_{\nu}.$

• It is instructive to note the O(D, D) invariant trace, $\mathcal{H}_A{}^A = 2(n - \bar{n})$ and

$$\mathcal{H}_{AB} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} H & Y_i(X^i)^T - \bar{Y}_{\bar{\imath}}(\bar{X}^{\bar{\imath}})^T \\ X^i(Y_i)^T - \bar{X}^{\bar{\imath}}(\bar{Y}_{\bar{\imath}})^T & K \end{pmatrix} \begin{pmatrix} 1 & -B \\ 0 & 1 \end{pmatrix}.$$

The most general form of the DFT metric, $\mathcal{H}_{MN} = \mathcal{H}_{NM}$, $\mathcal{H}_{K}{}^{L}\mathcal{H}_{M}{}^{N}\mathcal{J}_{LN} = \mathcal{J}_{KM}$, is characterized by two non-negative integers, (n, \bar{n}) , $0 \le n + \bar{n} \le D$:

$$\mathcal{H}_{AB} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} H & Y_i(X^i)^T - \bar{Y}_{\bar{\imath}}(\bar{X}^{\bar{\imath}})^T \\ X^i(Y_i)^T - \bar{X}^{\bar{\imath}}(\bar{Y}_{\bar{\imath}})^T & K \end{pmatrix} \begin{pmatrix} 1 & -B \\ 0 & 1 \end{pmatrix}$$

• $(n, \bar{n}) = (0, 0)$ corresponds to the Riemannian geometry or "Generalized Geometry":

$$\mathcal{H}_{MN}\equiv \left(egin{array}{cc} g^{-1}&-g^{-1}B\ Bg^{-1}&g-Bg^{-1}B \end{array}
ight)$$

Giveon-Rabinovici-Veneziano '89, Duff '90

• String becomes chiral over the n dimensions and anti-chiral over the n dimensions:

$$X^{l}_{\mu} \, \partial_{+} x^{\mu}(au, \sigma) \equiv 0 \,, \qquad \qquad X^{ar{\imath}}_{\mu} \, \partial_{-} x^{\mu}(au, \sigma) \equiv 0$$

Examples include

- (D, 0) Siegel's chiral string (maximally non-Riemannian, $\mathcal{H}_{MN} = \mathcal{J}_{MN}$);
- (1, 1) Gomis-Ooguri non-relativistic string
- -(D-1,0) ultra-relativistic Carroll gravity;
- (1,0) non-relativistic Newton-Cartan gravity.

Their dynamics are all governed by the Einstein Double Field Equations

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$

1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO

Ko-Melby-Thompson-Meyer-JHP 2015 ;

The most general form of the DFT metric, $\mathcal{H}_{MN} = \mathcal{H}_{NM}, \mathcal{H}_{K}{}^{L}\mathcal{H}_{M}{}^{N}\mathcal{J}_{LN} = \mathcal{J}_{KM}$, is characterized by two non-negative integers, (n, \bar{n}) , $0 \le n + \bar{n} \le D$:

$$\mathcal{H}_{AB} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} H & Y_i(X^i)^T - \bar{Y}_{\bar{\imath}}(\bar{X}^{\bar{\imath}})^T \\ X^i(Y_i)^T - \bar{X}^{\bar{\imath}}(\bar{Y}_{\bar{\imath}})^T & K \end{pmatrix} \begin{pmatrix} 1 & -B \\ 0 & 1 \end{pmatrix}$$

• $(n, \bar{n}) = (0, 0)$ corresponds to the Riemannian geometry or "Generalized Geometry":

$$\mathcal{H}_{MN}\equiv \left(egin{array}{cc} g^{-1}&-g^{-1}B\ Bg^{-1}&g-Bg^{-1}B \end{array}
ight)$$

Giveon-Rabinovici-Veneziano '89. Duff '90

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$

The most general form of the DFT metric, $\mathcal{H}_{MN} = \mathcal{H}_{NM}$, $\mathcal{H}_{K}{}^{L}\mathcal{H}_{M}{}^{N}\mathcal{J}_{LN} = \mathcal{J}_{KM}$, is characterized by two non-negative integers, (n, \bar{n}) , $0 \le n + \bar{n} \le D$:

$$\mathcal{H}_{AB} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \begin{pmatrix} H & Y_i(X^i)^T - \bar{Y}_{\bar{\imath}}(\bar{X}^{\bar{\imath}})^T \\ X^i(Y_i)^T - \bar{X}^{\bar{\imath}}(\bar{Y}_{\bar{\imath}})^T & K \end{pmatrix} \begin{pmatrix} 1 & -B \\ 0 & 1 \end{pmatrix}$$

• $(n, \bar{n}) = (0, 0)$ corresponds to the Riemannian geometry or "Generalized Geometry":

$$\mathcal{H}_{MN}\equiv \left(egin{array}{cc} g^{-1}&-g^{-1}B\ Bg^{-1}&g-Bg^{-1}B \end{array}
ight)$$

Giveon-Rabinovici-Veneziano '89, Duff '90

• String becomes chiral over the *n* dimensions and anti-chiral over the *n* dimensions:

$$X'_{\mu} \partial_{+} x^{\mu}(\tau, \sigma) \equiv 0, \qquad \qquad X^{\overline{i}}_{\mu} \partial_{-} x^{\mu}(\tau, \sigma) \equiv 0$$

Examples include

- (D, 0) Siegel's chiral string (maximally non-Riemannian, $\mathcal{H}_{MN} = \mathcal{J}_{MN}$);
- (1, 1) Gomis-Ooguri non-relativistic string Ko-Melby-Thompson-Meyer-JHP 2015;
- (D-1, 0) ultra-relativistic Carroll gravity;
- (1,0) non-relativistic Newton-Cartan gravity.

Their dynamics are all governed by the Einstein Double Field Equations.

• Diffeomorphisms in Stringy Gravity are given by "generalized Lie derivative": Siegel 1993

$$\hat{\mathcal{L}}_{\xi} T_{A_1 \cdots A_n} := \xi^B \partial_B T_{A_1 \cdots A_n} + \omega_T \partial_B \xi^B T_{A_1 \cdots A_n} + \sum_{i=1}^n (\partial_{A_i} \xi_B - \partial_B \xi_{A_i}) T_{A_1 \cdots A_{i-1}} B_{A_{i+1} \cdots A_n},$$

where ω_T is the weight, e.g. $\delta e^{-2d} = \partial_B(\xi^B e^{-2d}), \ \delta V_{Ap} = \xi^B \partial_B V_{Ap} + (\partial_A \xi_B - \partial_B \xi_A) V^B_p$.

- For consistency, so-called the 'section condition' should be imposed: $\partial_M \partial^M = 0$. From $\partial_M \partial^M = 2 \partial_\mu \tilde{\partial}^\mu$, the section condition can be easily solved by letting $\tilde{\partial}^\mu = 0$. The general solutions are then generated by the O(D, D) rotation of it.
- The section condition is mathematically equivalent to certain translational invariance:

$$\Phi_i(x) = \Phi_i(x + \Delta), \qquad \Delta^M = \Phi_j \partial^M \Phi_k,$$

where $\Phi_i, \Phi_j, \Phi_k \in \{ d, \mathcal{H}_{MN}, \xi^M, \partial_N d, \partial_L \mathcal{H}_{MN}, \cdots \}$, arbitrary functions appearing in DFT, and Δ^M is said to be derivative-index-valued.

'Physics' should be invariant under such shifts of the doubled coordinates in Stringy Gravity.

• Diffeomorphisms in Stringy Gravity are given by "generalized Lie derivative": Siegel 1993

$$\hat{\mathcal{L}}_{\xi} T_{A_1 \cdots A_n} := \xi^B \partial_B T_{A_1 \cdots A_n} + \omega_T \partial_B \xi^B T_{A_1 \cdots A_n} + \sum_{i=1}^n (\partial_{A_i} \xi_B - \partial_B \xi_{A_i}) T_{A_1 \cdots A_{i-1}}{}^B_{A_{i+1} \cdots A_n},$$

where ω_T is the weight, e.g. $\delta e^{-2d} = \partial_B(\xi^B e^{-2d}), \ \delta V_{Ap} = \xi^B \partial_B V_{Ap} + (\partial_A \xi_B - \partial_B \xi_A) V^B_p$.

- For consistency, so-called the 'section condition' should be imposed: $\partial_M \partial^M = 0$. From $\partial_M \partial^M = 2 \partial_\mu \tilde{\partial}^\mu$, the section condition can be easily solved by letting $\tilde{\partial}^\mu = 0$. The general solutions are then generated by the O(D, D) rotation of it.
- The section condition is mathematically equivalent to certain translational invariance:

$$\Phi_i(x) = \Phi_i(x + \Delta), \qquad \Delta^M = \Phi_j \partial^M \Phi_k,$$

where $\Phi_i, \Phi_j, \Phi_k \in \{ d, \mathcal{H}_{MN}, \xi^M, \partial_N d, \partial_L \mathcal{H}_{MN}, \cdots \}$, arbitrary functions appearing in DFT, and Δ^M is said to be <u>derivative-index-valued</u>.

'Physics' should be invariant under such shifts of the doubled coordinates in Stringy Gravity.

• Diffeomorphisms in Stringy Gravity are given by "generalized Lie derivative": Siegel 1993

$$\hat{\mathcal{L}}_{\xi} T_{A_1 \cdots A_n} := \xi^B \partial_B T_{A_1 \cdots A_n} + \omega_T \partial_B \xi^B T_{A_1 \cdots A_n} + \sum_{i=1}^n (\partial_{A_i} \xi_B - \partial_B \xi_{A_i}) T_{A_1 \cdots A_{i-1}}{}^B_{A_{i+1} \cdots A_n},$$

where ω_T is the weight, e.g. $\delta e^{-2d} = \partial_B(\xi^B e^{-2d}), \ \delta V_{Ap} = \xi^B \partial_B V_{Ap} + (\partial_A \xi_B - \partial_B \xi_A) V^B_p$.

- For consistency, so-called the 'section condition' should be imposed: $\partial_M \partial^M = 0$. From $\partial_M \partial^M = 2 \partial_\mu \tilde{\partial}^\mu$, the section condition can be easily solved by letting $\tilde{\partial}^\mu = 0$. The general solutions are then generated by the O(D, D) rotation of it.
- The section condition is mathematically equivalent to certain translational invariance:

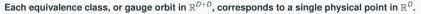
$$\Phi_i(x) = \Phi_i(x + \Delta), \qquad \Delta^M = \Phi_i \partial^M \Phi_k,$$

where $\Phi_i, \Phi_j, \Phi_k \in \{ d, \mathcal{H}_{MN}, \xi^M, \partial_N d, \partial_L \mathcal{H}_{MN}, \cdots \}$, arbitrary functions appearing in DFT, and Δ^M is said to be <u>derivative-index-valued</u>.

'Physics' should be invariant under such shifts of the doubled coordinates in Stringy Gravity.

Doubled coordinates, $x^M = (\tilde{x}_\mu, x^\nu)$, are gauged through an equivalence relation, $x^M \sim x^M + \Delta^M(x)$,

where \triangle^M is derivative-index-valued.



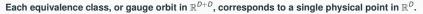
• If we solve the section condition by letting $\tilde{\partial}^{\mu} \equiv 0$, and further choose $\Delta^{M} = c_{\mu} \partial^{M} x^{\mu}$, we note

 $\left(ilde{x}_{\mu} \,,\, x^{
u}
ight) \ \sim \ \left(ilde{x}_{\mu} + c_{\mu} \,,\, x^{
u}
ight) \ : \ ilde{x}_{\mu}$'s are gauged and $x^{
u}$'s form a section.

• Then, **O**(*D*, *D*) rotates the gauged directions and hence the section.

Doubled coordinates, $x^M = (\tilde{x}_{\mu}, x^{\nu})$, are gauged through an equivalence relation, $x^M \sim x^M + \Delta^M(x)$.

where \triangle^M is derivative-index-valued.



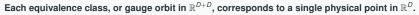
• If we solve the section condition by letting $\tilde{\partial}^{\mu} \equiv 0$, and further choose $\Delta^{M} = c_{\mu} \partial^{M} x^{\mu}$, we note

 $(\tilde{x}_{\mu} \,,\, x^{
u}) \,\,\sim\,\, (\tilde{x}_{\mu} + c_{\mu} \,,\, x^{
u}) \,\,\,:\,\,\, \tilde{x}_{\mu}$'s are gauged and $x^{
u}$'s form a section.

• Then, **O**(*D*, *D*) rotates the gauged directions and hence the section.

Doubled coordinates, $x^{M} = (\tilde{x}_{\mu}, x^{\nu})$, are gauged through an equivalence relation, $x^{M} \sim x^{M} + \Delta^{M}(x)$.

where \triangle^M is derivative-index-valued.



• Further, if we 'gauge' dx^M explicitly by introducing a derivative-index-valued gauge potential,

$$\mathrm{d} x^M \longrightarrow D x^M = \mathrm{d} x^M - \mathcal{A}^M, \qquad \mathcal{A}^M \partial_M = 0,$$

it is possible to define O(D, D) & diffeomorphism covariant 'proper length' through a path integral,

$$\textbf{Proper Length} := -\ln\left[\int \mathcal{DA} \exp\left(-\int \sqrt{Dx^M Dx^N \mathcal{H}_{MN}}\right)\right],$$

and construct associated sigma models such as for the point particle Ko-JHP-Suh '16, Blair '17, bosonic strings Hull '06, Lee-JHP '13, Arvanitakis-Blair '17, '18, κ -symmetric Green-Schwarz superstring JHP '16.

In particular, for the (0, 0) Riemannian DFT-metric, with $\tilde{\partial}^{\mu} \equiv 0$, after integrating out the auxiliary potential, $\mathcal{A}^{M} = A_{\lambda} \partial^{M} x^{\lambda} = (A_{\mu}, 0)$, one can recover all the conventional results, *e.g.*

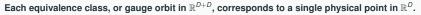
$$Dx^M = \left(\mathrm{d} ilde{x}_\mu - A_\mu\,,\,\mathrm{d}x^
u
ight)\,,\qquad extsf{Proper Length} \implies \int \sqrt{\mathrm{d}x^\mu \mathrm{d}x^
u} g_{\mu
u}(x)\,,$$

while for other (n, \bar{n}) cases strings become chiral (n) and anti-chiral (\bar{n})

Doubled coordinates, $x^{M} = (\tilde{x}_{\mu}, x^{\nu})$, are gauged through an equivalence relation,

 $x^M \sim x^M + \Delta^M(x)$,

where \triangle^M is derivative-index-valued.



• Further, if we 'gauge' dx^M explicitly by introducing a derivative-index-valued gauge potential,

$$\mathrm{d} x^M \longrightarrow D x^M = \mathrm{d} x^M - \mathcal{A}^M, \qquad \mathcal{A}^M \partial_M = 0,$$

it is possible to define O(D, D) & diffeomorphism covariant 'proper length' through a path integral,

$$\textbf{Proper Length} := -\ln\left[\int \mathcal{DA} \; \exp\left(-\int \sqrt{Dx^M Dx^N \mathcal{H}_{MN}} \;\right)\right] \,,$$

and construct associated sigma models such as for the point particle Ko-JHP-Suh '16, Blair '17, bosonic strings Hull '06, Lee-JHP '13, Arvanitakis-Blair '17, '18, κ -symmetric Green-Schwarz superstring JHP '16.

In particular, for the (0, 0) Riemannian DFT-metric, with $\tilde{\partial}^{\mu} \equiv 0$, after integrating out the auxiliary potential, $\mathcal{A}^{M} = A_{\lambda} \partial^{M} x^{\lambda} = (A_{\mu}, 0)$, one can recover all the conventional results, *e.g.*

$$Dx^M = \left(\mathrm{d} \check{x}_\mu - \mathsf{A}_\mu \,,\, \mathrm{d} x^
u
ight) \,, \qquad ext{Proper Length} \implies \int \sqrt{\mathrm{d} x^\mu \mathrm{d} x^
u g_{\mu
u}(x)} \,,$$

while for other (n, \bar{n}) cases strings become chiral (n) and anti-chiral (\bar{n}) .

Covariant derivatives and curvatures in Stringy Gravity feature two stages: **'semi-covariance'** and **'complete covariantization'**. Semi-covariant derivative :

Jeon-Lee-JHP 2010, 2011

$$\nabla_C T_{A_1 A_2 \cdots A_n} := \partial_C T_{A_1 A_2 \cdots A_n} - \omega_T \Gamma^B_{BC} T_{A_1 A_2 \cdots A_n} + \sum_{i=1}^n \Gamma_{C A_i}{}^B T_{A_1 \cdots A_{i-1} B A_{i+1} \cdots A_n},$$

for which the stringy Christoffel connection can be uniquely fixed,

 $\Gamma_{CAB} = 2 \left(P \partial_C P \bar{P} \right)_{[AB]} + 2 \left(\bar{P}_{[A}{}^D \bar{P}_{B]}{}^E - P_{[A}{}^D P_{B]}{}^E \right) \partial_D P_{EC} - \frac{4}{D-1} \left(\bar{P}_{C[A} \bar{P}_{B]}{}^D + P_{C[A} P_{B]}{}^D \right) \left(\partial_D d + \left(P \partial^E P \bar{P} \right)_{[ED]} \right)$

by demanding the compatibility, $\nabla_A P_{BC} = \nabla_A \overline{P}_{BC} = \nabla_A d = 0$, and some torsionless conditions.

- * There are no normal coordinates where Γ_{CAB} would vanish point-wise: Equivalence Principle is broken for string (*i.e.* extended object) but recoverable for particle.
- Semi-covariant Riemann curvature :

 $S_{ABCD} = S_{[AB][CD]} = S_{CDAB} := \frac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB}\Gamma_{ECD} \right) , \qquad S_{[ABC]D} = 0 ,$

where R_{ABCD} denotes the ordinary "field strength": $R_{CDAB} = \partial_A \Gamma_{BCD} - \partial_B \Gamma_{ACD} + \Gamma_{AC}{}^E \Gamma_{BED} - \Gamma_{BC}{}^E \Gamma_{AED}$. By construction, it varies as 'total derivative': $\delta S_{ABCD} = \nabla_{IA} \delta \Gamma_{BICD} + \nabla_{IC} \delta \Gamma_{DIAB}$.

Semi-covariant 'Master' derivative :

 $\mathcal{D}_A := \partial_A + \Gamma_A + \Phi_A + \bar{\Phi}_A = \nabla_A + \Phi_A + \bar{\Phi}_A.$

The two spin connections for the $\text{Spin}(1, D-1)_L \times \text{Spin}(D-1, 1)_R$ local Lorentz symmetries are determined in terms of the stringy Christoffel connection by requiring the compatibility with DFT vielbeins,

$$\mathcal{D}_A V_{Bp} = \nabla_A V_{Bp} + \Phi_{Ap}{}^q V_{Bq} = 0, \qquad \mathcal{D}_A \bar{V}_{B\bar{p}} = \nabla_A \bar{V}_{B\bar{p}} + \bar{\Phi}_{A\bar{p}}{}^{\bar{q}} \bar{V}_{B\bar{q}} = 0.$$

Semi-covariant derivative :

Jeon-Lee-JHP 2010, 2011

$$\nabla_C T_{A_1 A_2 \cdots A_n} := \partial_C T_{A_1 A_2 \cdots A_n} - \omega_T \Gamma^B_{BC} T_{A_1 A_2 \cdots A_n} + \sum_{i=1}^n \Gamma_{C A_i}{}^B T_{A_1 \cdots A_{i-1} B A_{i+1} \cdots A_n},$$

for which the stringy Christoffel connection can be uniquely fixed,

 $\Gamma_{CAB} = 2 \left(P \partial_C P \bar{P} \right)_{[AB]} + 2 \left(\bar{P}_{[A}{}^D \bar{P}_{B]}{}^E - P_{[A}{}^D P_{B]}{}^E \right) \partial_D P_{EC} - \frac{4}{D-1} \left(\bar{P}_{C[A} \bar{P}_{B]}{}^D + P_{C[A} P_{B]}{}^D \right) \left(\partial_D d + \left(P \partial^E P \bar{P} \right)_{[ED]} \right)$

by demanding the compatibility, $\nabla_A P_{BC} = \nabla_A \overline{P}_{BC} = \nabla_A d = 0$, and some torsionless conditions.

- * There are no normal coordinates where Γ_{CAB} would vanish point-wise: Equivalence Principle is broken for string (*i.e.* extended object) but recoverable for particle.
- Semi-covariant Riemann curvature :

$$\begin{split} S_{ABCD} &= S_{[AB][CD]} = S_{CDAB} := \frac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}{}_{AB}\Gamma_{ECD} \right) , \qquad S_{[ABC]D} = 0 , \\ \text{where } R_{ABCD} \text{ denotes the ordinary "field strength": } R_{CDAB} = \partial_{A}\Gamma_{BCD} - \partial_{B}\Gamma_{ACD} + \Gamma_{AC}{}^{E}\Gamma_{BED} - \Gamma_{BC}{}^{E}\Gamma_{AED} . \\ \text{By construction, it varies as 'total derivative': } \delta S_{ABCD} = \nabla_{[A}\delta\Gamma_{B]CD} + \nabla_{[C}\delta\Gamma_{D]AB} . \end{split}$$

Semi-covariant 'Master' derivative :

 $\mathcal{D}_A := \partial_A + \Gamma_A + \Phi_A + \bar{\Phi}_A = \nabla_A + \Phi_A + \bar{\Phi}_A.$

The two spin connections for the **Spin** $(1, D-1)_L \times$ **Spin** $(D-1, 1)_R$ local Lorentz symmetries are determined in terms of the stringy Christoffel connection by requiring the compatibility with DFT vielbeins,

$$\mathcal{D}_A V_{Bp} = \nabla_A V_{Bp} + \Phi_{Ap}{}^q V_{Bq} = 0, \qquad \qquad \mathcal{D}_A \bar{V}_{B\bar{p}} = \nabla_A \bar{V}_{B\bar{p}} + \bar{\Phi}_{A\bar{p}}{}^{\bar{q}} \bar{V}_{B\bar{q}} = 0.$$

Complete covariantization

- Tensors,

$$\begin{split} P_{C}{}^{D}\bar{P}_{A_{1}}{}^{B_{1}}\cdots\bar{P}_{A_{n}}{}^{B_{n}}\nabla_{D}T_{B_{1}}\cdots_{B_{n}} &\Longrightarrow \mathcal{D}_{p}T_{\bar{q}_{1}\bar{q}_{2}}\cdots\bar{q}_{n}, \\ \bar{P}_{C}{}^{D}P_{A_{1}}{}^{B_{1}}\cdots P_{A_{n}}{}^{B_{n}}\nabla_{D}T_{B_{1}}\cdots_{B_{n}} &\Longrightarrow \mathcal{D}_{\bar{p}}T_{q_{1}q_{2}}\cdots q_{n}, \\ \mathcal{D}^{p}T_{p\bar{q}_{1}\bar{q}_{2}}\cdots\bar{q}_{n}, \qquad \mathcal{D}^{\bar{p}}T_{\bar{p}q_{1}q_{2}}\cdots q_{n}; \qquad \mathcal{D}_{p}\mathcal{D}^{p}T_{\bar{q}_{1}\bar{q}_{2}}\cdots\bar{q}_{n}, \end{split}$$

$$\begin{split} - \ & \mathsf{Spinors}, \, \rho^{\alpha}, \, \rho^{\prime \bar{\alpha}}, \, \psi^{\alpha}_{\bar{\rho}}, \, \psi^{\prime \bar{\alpha}}_{\rho}, \\ & \gamma^{\rho} \mathcal{D}_{\rho} \rho \, , \quad \bar{\gamma}^{\bar{\rho}} \mathcal{D}_{\bar{\rho}} \rho^{\prime} \, , \quad \mathcal{D}_{\bar{\rho}} \rho \, , \quad \mathcal{D}_{\rho} \rho^{\prime} \, , \quad \gamma^{\rho} \mathcal{D}_{\bar{\rho}} \psi_{\bar{q}} \, , \quad \bar{\gamma}^{\bar{\rho}} \mathcal{D}_{\bar{\rho}} \psi^{\prime}_{q} \, , \quad \mathcal{D}_{\bar{\rho}} \psi^{\bar{\rho}} \, , \quad \mathcal{D}_{\rho} \psi^{\prime \rho} \, . \end{split}$$

- RR sector, $\mathcal{C}^{\alpha}_{\bar{\alpha}} \mathbf{O}(D, D)$ covariant extension of H-twisted cohomology

 $\mathcal{D}_{\pm}\mathcal{C} := \gamma^{\rho}\mathcal{D}_{\rho}\mathcal{C} \pm \gamma^{(D+1)}\mathcal{D}_{\bar{\rho}}\mathcal{C}\bar{\gamma}^{\bar{\rho}}\,, \quad \left(\mathcal{D}_{\pm}\right)^2 = 0 \implies \mathcal{F} := \mathcal{D}_{+}\mathcal{C} \quad (\,\mathsf{RR}\,\,\mathsf{flux}\,)\,.$

Yang-Mills,

$$\mathcal{F}_{p\bar{q}} := \mathcal{F}_{AB} V^{A}{}_{p} \bar{V}^{B}{}_{\bar{q}} \qquad \text{where} \qquad \mathcal{F}_{AB} := \nabla_{A} \mathcal{V}_{B} - \nabla_{B} \mathcal{V}_{A} - i [\mathcal{V}_{A}, \mathcal{V}_{B}]$$

Curvatures,

 $S_{p\bar{q}} := S_{AB} V^{A}{}_{p} \bar{V}^{B}{}_{\bar{q}} \quad (\text{Ricci}), \qquad S_{(0)} := (P^{AC} P^{BD} - \bar{P}^{AC} \bar{P}^{BD}) S_{ABCD} \quad (\text{ scalar}).$

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$

Complete covariantization

- Tensors,

$$\begin{split} P_{C}{}^{D}\bar{P}_{A_{1}}{}^{B_{1}}\cdots\bar{P}_{A_{n}}{}^{B_{n}}\nabla_{D}T_{B_{1}}\cdots_{B_{n}} \implies \mathcal{D}_{p}T_{\bar{q}_{1}\bar{q}_{2}}\cdots\bar{q}_{n}, \\ \bar{P}_{C}{}^{D}P_{A_{1}}{}^{B_{1}}\cdots P_{A_{n}}{}^{B_{n}}\nabla_{D}T_{B_{1}}\cdots_{B_{n}} \implies \mathcal{D}_{\bar{p}}T_{q_{1}q_{2}}\cdots q_{n}, \\ \mathcal{D}^{p}T_{p\bar{q}_{1}\bar{q}_{2}}\cdots\bar{q}_{n}, \qquad \mathcal{D}^{\bar{p}}T_{\bar{p}q_{1}q_{2}}\cdots q_{n}; \qquad \mathcal{D}_{p}\mathcal{D}^{p}T_{\bar{q}_{1}\bar{q}_{2}}\cdots\bar{q}_{n}, \end{split}$$

$$\begin{array}{l} - \text{ Spinors, } \rho^{\alpha}, \rho^{\prime\bar{\alpha}}, \psi^{\alpha}_{\bar{\rho}}, \psi^{\prime\bar{\alpha}}_{\rho}, \\ \\ \gamma^{\rho} \mathcal{D}_{\rho} \rho, \quad \bar{\gamma}^{\bar{\rho}} \mathcal{D}_{\bar{\rho}} \rho^{\prime}, \quad \mathcal{D}_{\bar{\rho}} \rho, \quad \mathcal{D}_{\rho} \rho^{\prime}, \quad \gamma^{\rho} \mathcal{D}_{\rho} \psi_{\bar{q}}, \quad \bar{\gamma}^{\bar{\rho}} \mathcal{D}_{\bar{\rho}} \psi_{q}^{\prime}, \quad \mathcal{D}_{\bar{\rho}} \psi^{\bar{\rho}}, \quad \mathcal{D}_{\rho} \psi^{\prime \rho}. \end{array}$$

- RR sector, $C^{\alpha}{}_{\bar{\alpha}} \mathbf{O}(D, D)$ covariant extension of H-twisted cohomology

$$\mathcal{D}_{\pm}\mathcal{C} := \gamma^{p}\mathcal{D}_{p}\mathcal{C} \pm \gamma^{(D+1)}\mathcal{D}_{\bar{p}}\mathcal{C}\bar{\gamma}^{\bar{p}}\,, \quad (\mathcal{D}_{\pm})^{2} = 0 \implies \mathcal{F} := \mathcal{D}_{+}\mathcal{C} \quad (\,\text{RR flux}\,)\,.$$

- Yang-Mills,

$$\mathcal{F}_{\rho\bar{q}} := \mathcal{F}_{AB} V^{A}{}_{\rho} \bar{V}^{B}{}_{\bar{q}} \qquad \text{where} \qquad \mathcal{F}_{AB} := \nabla_{A} \mathcal{V}_{B} - \nabla_{B} \mathcal{V}_{A} - i \left[\mathcal{V}_{A}, \mathcal{V}_{B} \right]$$

Curvatures,

 $S_{p\bar{q}} := S_{AB} V^A{}_p \bar{V}^B{}_{\bar{q}} \quad (\operatorname{Ricci}), \qquad S_{(0)} := (P^{AC} P^{BD} - \bar{P}^{AC} \bar{P}^{BD}) S_{ABCD} \quad (\operatorname{scalar}).$

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$

Complete covariantization

- Tensors,

$$\begin{split} P_{C}{}^{D}\bar{P}_{A_{1}}{}^{B_{1}}\cdots\bar{P}_{A_{n}}{}^{B_{n}}\nabla_{D}T_{B_{1}\cdots B_{n}} &\Longrightarrow \mathcal{D}_{p}T_{\bar{q}_{1}\bar{q}_{2}\cdots\bar{q}_{n}}, \\ \bar{P}_{C}{}^{D}P_{A_{1}}{}^{B_{1}}\cdots P_{A_{n}}{}^{B_{n}}\nabla_{D}T_{B_{1}\cdots B_{n}} &\Longrightarrow \mathcal{D}_{\bar{p}}T_{q_{1}q_{2}\cdots q_{n}}, \\ \mathcal{D}^{p}T_{p\bar{q}_{1}\bar{q}_{2}\cdots\bar{q}_{n}}, \qquad \mathcal{D}^{\bar{p}}T_{\bar{p}q_{1}q_{2}\cdots q_{n}}; \qquad \mathcal{D}_{p}\mathcal{D}^{p}T_{\bar{q}_{1}\bar{q}_{2}\cdots\bar{q}_{n}}, \qquad \mathcal{D}^{\bar{p}}\mathcal{D}^{\bar{p}}T_{q_{1}q_{2}\cdots q_{n}}. \end{split}$$

$$\begin{array}{l} - \text{ Spinors, } \rho^{\alpha}, \rho^{\prime \bar{\alpha}}, \psi^{\alpha}_{\bar{\rho}}, \psi^{\prime \bar{\alpha}}_{\rho}, \\ \gamma^{\rho} \mathcal{D}_{\rho} \rho, \quad \bar{\gamma}^{\bar{\rho}} \mathcal{D}_{\bar{\rho}} \rho^{\prime}, \quad \mathcal{D}_{\bar{\rho}} \rho, \quad \mathcal{D}_{\rho} \rho^{\prime}, \quad \gamma^{\rho} \mathcal{D}_{\rho} \psi_{\bar{q}}, \quad \bar{\gamma}^{\bar{\rho}} \mathcal{D}_{\bar{\rho}} \psi^{\prime}_{q}, \quad \mathcal{D}_{\bar{\rho}} \psi^{\bar{\rho}}, \quad \mathcal{D}_{\rho} \psi^{\prime \rho}. \end{array}$$

- RR sector, $C^{\alpha}{}_{\bar{\alpha}} \mathbf{O}(D, D)$ covariant extension of H-twisted cohomology

$$\mathcal{D}_{\pm}\mathcal{C} := \gamma^{p}\mathcal{D}_{p}\mathcal{C} \pm \gamma^{(D+1)}\mathcal{D}_{\bar{p}}\mathcal{C}\bar{\gamma}^{\bar{p}}\,, \quad (\mathcal{D}_{\pm})^{2} = 0 \implies \mathcal{F} := \mathcal{D}_{+}\mathcal{C} \quad (\,\text{RR flux}\,)\,.$$

- Yang-Mills,

$$\mathcal{F}_{\rho\bar{q}} := \mathcal{F}_{AB} V^{A}{}_{\rho} \bar{V}^{B}{}_{\bar{q}} \qquad \text{where} \qquad \mathcal{F}_{AB} := \nabla_{A} \mathcal{V}_{B} - \nabla_{B} \mathcal{V}_{A} - i \left[\mathcal{V}_{A}, \mathcal{V}_{B} \right]$$

- Curvatures,

 $S_{\rho\bar{q}} := S_{AB} V^A{}_\rho \bar{V}^B{}_{\bar{q}} \quad (\, \text{Ricci}\,)\,, \qquad \quad S_{(0)} := (P^{AC} P^{BD} - \bar{P}^{AC} \bar{P}^{BD}) S_{ABCD} \quad (\, \text{scalar}\,)\,.$

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$

Equipped with the semi-covariant derivatives, one can construct, e.g.

• D = 10 Maximally Supersymmetric Double Field Theory Je

$$\mathcal{L}_{\text{type II}} = \boldsymbol{e}^{-2d} \left[\frac{1}{8} S_{(0)} + \frac{1}{2} \text{Tr}(\mathcal{F}\bar{\mathcal{F}}) + i\bar{\rho}\mathcal{F}\rho' + i\bar{\psi}_{\bar{\rho}}\gamma_{q}\mathcal{F}\bar{\gamma}^{\bar{\rho}}\psi'^{q} + i\frac{1}{2}\bar{\rho}\gamma^{\rho}\mathcal{D}_{\rho}\rho - i\frac{1}{2}\bar{\rho}'\bar{\gamma}^{\bar{\rho}}\mathcal{D}_{\bar{\rho}}\rho' - i\bar{\psi}^{\bar{\rho}}\bar{\gamma}^{q}\mathcal{D}_{q}\psi_{\bar{\rho}} + i\bar{\psi}'^{\rho}\mathcal{D}_{\rho}\rho' + i\frac{1}{2}\bar{\psi}'^{\rho}\bar{\gamma}^{\bar{q}}\mathcal{D}_{\bar{q}}\psi'_{\rho} \right]$$

which unifies IIA and IIB SUGRAs, thanks to the twofold spin groups.

Minimal coupling to the Standard Model

Kangsin Choi & JHP 2015 [PRL]

$$\mathcal{L}_{\rm SM} = e^{-2d} \begin{bmatrix} \frac{1}{16\pi G_N} S_{(0)} \\ + \sum_{\mathcal{V}} P^{AB} \bar{P}^{CD} \mathrm{Tr}(\mathcal{F}_{AC} \mathcal{F}_{BD}) + \sum_{\psi} \bar{\psi} \gamma^a \mathcal{D}_a \psi + \sum_{\psi'} \bar{\psi}' \bar{\gamma}^{\bar{a}} \mathcal{D}_{\bar{a}} \psi' \\ - \mathcal{H}^{AB} (\mathcal{D}_A \phi)^{\dagger} \mathcal{D}_B \phi - V(\phi) + y_d \, \bar{q} \cdot \phi \, d + y_u \, \bar{q} \cdot \tilde{\phi} \, u + y_\theta \, \bar{l}' \cdot \phi \, e' \end{bmatrix}$$

Every single term above is completely covariant, w.r.t. O(D, D), diffeomorphisms, and twofold local Lorentz symmetries, $Spin(1, D-1)_L \times Spin(D-1, 1)_R$.

Derivation of the Einstein Double Field Equations

Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υ_a ,

$$\int_{\Sigma} e^{-2d} \left[\frac{1}{16\pi G} S_{(0)} + L_{\text{matter}} \right],$$

where $S_{(0)}$ is the stringy scalar curvature and L_{matter} is the matter Lagrangian equipped with the completely covariantized master derivatives, \mathcal{D}_M . The integral is taken over a section, Σ .

We seek the variation of the action induced by all the fields, d, V_{Ap} , \overline{V}_{Ap} , Υ_a .

Firstly, the pure Stringy Gravity term transforms, up to total derivatives (\simeq), as

$$\delta\left(e^{-2d}S_{(0)}\right)\simeq 4e^{-2d}\left(\bar{V}^{B\bar{q}}\delta V_{B}{}^{p}S_{p\bar{q}}-\frac{1}{2}\delta d\,S_{(0)}\right)$$

Secondly, the matter Lagrangian transforms as

$$\delta\left(e^{-2d}L_{\rm matter}\right) \simeq e^{-2d} \left(-2\bar{V}^{A\bar{q}}\delta V_{A}{}^{p}K_{p\bar{q}} + \delta d T_{(0)} + \delta\Upsilon_{a}\frac{\delta L_{\rm matter}}{\delta\Upsilon_{a}}\right)$$

where we have been naturally led to define

$$K_{\rho\bar{q}} := \frac{1}{2} \left(V_{A\rho} \frac{\delta L_{\text{matter}}}{\delta \bar{V}_{A} \bar{q}} - \bar{V}_{A\bar{q}} \frac{\delta L_{\text{matter}}}{\delta V_{A} \rho} \right) , \qquad T_{(0)} := e^{2d} \times \frac{\delta \left(e^{-2d} L_{\text{matter}} \right)}{\delta d}$$

In particular, when $L_{\rm matter}$ is bosonic (free of vielbeins), the former reduces to

$$K_{\rho\bar{q}} = V_{A\rho} \bar{V}_{B\bar{q}} \left(\frac{\delta L_{\text{matter}}}{\delta \bar{P}_{AB}} - \frac{\delta L_{\text{matter}}}{\delta P_{AB}} \right)$$

Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υ_a ,

$$\int_{\Sigma} e^{-2d} \left[\frac{1}{16\pi G} S_{(0)} + L_{\text{matter}} \right],$$

where $S_{(0)}$ is the stringy scalar curvature and L_{matter} is the matter Lagrangian equipped with the completely covariantized master derivatives, \mathcal{D}_M . The integral is taken over a section, Σ .

We seek the variation of the action induced by all the fields, d, V_{Ap} , \bar{V}_{Ap} , Υ_a .

Firstly, the pure Stringy Gravity term transforms, up to total derivatives (\simeq), as

$$\delta\left(e^{-2d}S_{(0)}\right) \simeq 4e^{-2d}\left(\bar{V}^{B\bar{q}}\delta V_{B}{}^{p}S_{p\bar{q}} - \frac{1}{2}\delta dS_{(0)}\right)$$

Secondly, the matter Lagrangian transforms as

$$\delta\left(e^{-2d}L_{\rm matter}\right) \simeq e^{-2d} \left(-2\bar{V}^{A\bar{q}}\delta V_{A}{}^{p}K_{p\bar{q}} + \delta d T_{(0)} + \delta\Upsilon_{a}\frac{\delta L_{\rm matter}}{\delta\Upsilon_{a}}\right)$$

where we have been naturally led to define

$$K_{\rho\bar{q}} := \frac{1}{2} \left(V_{A\rho} \frac{\delta L_{\text{matter}}}{\delta \bar{V}_{A} \bar{q}} - \bar{V}_{A\bar{q}} \frac{\delta L_{\text{matter}}}{\delta V_{A} \rho} \right) , \qquad T_{(0)} := e^{2d} \times \frac{\delta \left(e^{-2d} L_{\text{matter}} \right)}{\delta d}$$

In particular, when $L_{\rm matter}$ is bosonic (free of vielbeins), the former reduces to

$$K_{\rho\bar{q}} = V_{A\rho} \bar{V}_{B\bar{q}} \left(\frac{\delta L_{\text{matter}}}{\delta \bar{P}_{AB}} - \frac{\delta L_{\text{matter}}}{\delta P_{AB}} \right)$$

Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υ_a ,

$$\int_{\Sigma} e^{-2d} \left[\frac{1}{16\pi G} S_{(0)} + L_{\text{matter}} \right],$$

where $S_{(0)}$ is the stringy scalar curvature and L_{matter} is the matter Lagrangian equipped with the completely covariantized master derivatives, \mathcal{D}_M . The integral is taken over a section, Σ .

We seek the variation of the action induced by all the fields, d, V_{Ap} , \bar{V}_{Ap} , Υ_a .

Firstly, the pure Stringy Gravity term transforms, up to total derivatives (\simeq), as

$$\delta\left(e^{-2d}S_{(0)}\right) \simeq 4e^{-2d}\left(\bar{V}^{B\bar{q}}\delta V_{B}{}^{p}S_{p\bar{q}} - \frac{1}{2}\delta dS_{(0)}\right)$$

Secondly, the matter Lagrangian transforms as

$$\delta\left(e^{-2d}\mathcal{L}_{\mathrm{matter}}\right) \simeq e^{-2d}\left(-2\bar{V}^{A\bar{q}}\delta V_{A}{}^{p}\mathcal{K}_{p\bar{q}} + \delta d T_{(0)} + \delta\Upsilon_{a}\frac{\delta\mathcal{L}_{\mathrm{matter}}}{\delta\Upsilon_{a}}\right)$$

where we have been naturally led to define

$$\mathcal{K}_{\rho\bar{q}} := \frac{1}{2} \left(V_{A\rho} \frac{\delta L_{\mathrm{matter}}}{\delta \bar{V}_{A} \bar{q}} - \bar{V}_{A\bar{q}} \frac{\delta L_{\mathrm{matter}}}{\delta V_{A} \rho} \right) \,, \qquad \qquad \mathcal{T}_{(0)} := e^{2d} \times \frac{\delta \left(e^{-2d} L_{\mathrm{matter}} \right)}{\delta d}$$

In particular, when $L_{\rm matter}$ is bosonic (free of vielbeins), the former reduces to

$$K_{p\bar{q}} = V_{Ap} \bar{V}_{B\bar{q}} \left(rac{\delta L_{\mathrm{matter}}}{\delta \bar{P}_{AB}} - rac{\delta L_{\mathrm{matter}}}{\delta P_{AB}}
ight) \, .$$

Combining the two results, the variation of the action reads

$$\delta \int_{\Sigma} e^{-2d} \left[\frac{1}{16\pi G} S_{(0)} + L_{\text{matter}} \right]$$
$$= \int_{\Sigma} e^{-2d} \left[\frac{1}{4\pi G} \bar{V}^{A\bar{q}} \delta V_{A}^{p} (S_{p\bar{q}} - 8\pi G K_{p\bar{q}}) - \frac{1}{8\pi G} \delta d(S_{(0)} - 8\pi G T_{(0)}) + \delta \Upsilon_{a} \frac{\delta L_{\text{matter}}}{\delta \Upsilon_{a}} \right]$$

Hence, the equations of motion are exhaustively,

$$S_{
hoar{q}} = 8\pi G \mathcal{K}_{
hoar{q}} \,, \qquad \qquad S_{(0)} = 8\pi G \mathcal{T}_{(0)} \,, \qquad \qquad rac{\delta L_{
m matter}}{\delta \Upsilon_{a}} = 0$$

• Specifically when the variation is generated by diffeomorphisms, we have $\delta_{\xi} \Upsilon_a = \hat{\mathcal{L}}_{\xi} \Upsilon_a$ and

 $\delta_{\xi}d = -\frac{1}{2}e^{2d}\hat{\mathcal{L}}_{\xi}\left(e^{-2d}\right) = -\frac{1}{2}\mathcal{D}_{A}\xi^{A}, \qquad \bar{V}^{A\bar{q}}\delta_{\xi}V_{A}{}^{p} = \bar{V}^{A\bar{q}}\hat{\mathcal{L}}_{\xi}V_{A}{}^{p} = 2\mathcal{D}_{[A}\xi_{B]}\bar{V}^{A\bar{q}}V^{Bp}.$ Substituting these, the diffeomorphic invariance of the action implies

 $0 = \int_{-} e^{-2d} \left[\frac{1}{8\pi G} \xi^{B} \mathcal{D}^{A} \left\{ 4 V_{[A}{}^{\rho} \bar{V}_{B]} \bar{q} (S_{\rho\bar{q}} - 8\pi G K_{\rho\bar{q}}) - \frac{1}{2} \mathcal{J}_{AB} (S_{(0)} - 8\pi G T_{(0)}) \right\} + \delta_{\xi} \Upsilon_{a} \frac{\delta L_{\text{matter}}}{\delta \Upsilon} \right]$

which leads to the definitions of the off-shell conserved stringy Einstein curvature

$$G_{AB} := 4 V_{[A}{}^p \overline{V}_{B]}{}^{\overline{q}} S_{p\overline{q}} - \frac{1}{2} \mathcal{J}_{AB} S_{(0)} , \qquad \qquad \mathcal{D}_A G^{AB} = 0 \qquad (\text{off-shell}) ,$$

JHP-Rey-Rim-Sakatani 2015

and the on-shell conserved stringy Energy-Momentum tensor,

 $T_{AB} := 4 V_{[A}{}^{\rho} \bar{V}_{B]}{}^{\bar{q}} K_{\rho \bar{q}} - \frac{1}{2} \mathcal{J}_{AB} T_{(0)} , \qquad \qquad \mathcal{D}_{A} T^{AB} = 0 \qquad \text{(on-shell)} .$

Combining the two results, the variation of the action reads

$$\delta \int_{\Sigma} e^{-2d} \left[\frac{1}{16\pi G} S_{(0)} + L_{\text{matter}} \right]$$
$$= \int_{\Sigma} e^{-2d} \left[\frac{1}{4\pi G} \bar{V}^{A\bar{q}} \delta V_{A}{}^{p} (S_{p\bar{q}} - 8\pi G K_{p\bar{q}}) - \frac{1}{8\pi G} \delta d(S_{(0)} - 8\pi G T_{(0)}) + \delta \Upsilon_{a} \frac{\delta L_{\text{matter}}}{\delta \Upsilon_{a}} \right]$$

Hence, the equations of motion are exhaustively,

$$S_{
hoar{q}} = 8\pi G \mathcal{K}_{
hoar{q}} \,, \qquad \qquad S_{(0)} = 8\pi G \mathcal{T}_{(0)} \,, \qquad \qquad rac{\delta L_{
m matter}}{\delta \Upsilon_{a}} = 0 \,.$$

Specifically when the variation is generated by diffeomorphisms, we have δ_ξ Υ_a = Â_ξ Υ_a and

 $\delta_{\xi}d = -\frac{1}{2}e^{2d}\hat{\mathcal{L}}_{\xi}\left(e^{-2d}\right) = -\frac{1}{2}\mathcal{D}_{A}\xi^{A}, \qquad \bar{V}^{A\bar{q}}\delta_{\xi}V_{A}{}^{p} = \bar{V}^{A\bar{q}}\hat{\mathcal{L}}_{\xi}V_{A}{}^{p} = 2\mathcal{D}_{[A}\xi_{B]}\bar{V}^{A\bar{q}}V^{Bp}.$

Substituting these, the diffeomorphic invariance of the action implies

$$0 = \int_{\Sigma} e^{-2d} \left[\frac{1}{8\pi G} \xi^{B} \mathcal{D}^{A} \left\{ 4 V_{[A}{}^{p} \bar{V}_{B]} \bar{q} (S_{p\bar{q}} - 8\pi G K_{p\bar{q}}) - \frac{1}{2} \mathcal{J}_{AB} (S_{(0)} - 8\pi G T_{(0)}) \right\} + \delta_{\xi} \Upsilon_{a} \frac{\delta L_{\text{matter}}}{\delta \Upsilon_{a}} \right]$$

which leads to the definitions of the off-shell conserved stringy Einstein curvature ,

$$G_{AB} := 4 V_{[A}{}^{\rho} \bar{V}_{B]}{}^{\bar{q}} S_{\rho \bar{q}} - \frac{1}{2} \mathcal{J}_{AB} S_{(0)} , \qquad \qquad \mathcal{D}_{A} G^{AB} = 0 \qquad \text{(off-shell)} ,$$

JHP-Rey-Rim-Sakatani 2015

and the on-shell conserved stringy Energy-Momentum tensor,

$$T_{AB} := 4 V_{[A}{}^{\rho} \bar{V}_{B]}{}^{\bar{q}} K_{\rho \bar{q}} - \frac{1}{2} \mathcal{J}_{AB} T_{(0)} , \qquad \qquad \mathcal{D}_{A} T^{AB} = 0 \qquad \text{(on-shell)} .$$

• Since G_{AB} and T_{AB} each have $D^2 + 1$ independent components as $c.f. \{g_{\mu\nu}, B_{\mu\nu}, \phi\}$

$$V^{A}{}_{\rho}\bar{V}^{B}{}_{\bar{q}}G_{AB} = 2S_{\rho\bar{q}}, \qquad G^{A}{}_{A} = -DS_{(0)}, \qquad V^{A}{}_{\rho}\bar{V}^{B}{}_{\bar{q}}T_{AB} = 2K_{\rho\bar{q}}, \qquad T^{A}{}_{A} = -DT_{(0)},$$

the equations of motion of the DFT vielbeins and dilaton can be unified into a single expression:

Einstein Double Field Equations $G_{AB} = 8\pi G T_{AB}$

which is naturally consistent with the central idea that Stringy Gravity treats the entire closed string massless sector as geometrical stringy graviton fields.

Einstein Double Field Equations

 $G_{AB} = 8\pi G T_{AB}$

• Restricting to the (0, 0) Riemannian backgrounds, the EDFE decompose into

$$\begin{split} R_{\mu\nu} + 2 \nabla_{\mu} (\partial_{\nu} \phi) &- \frac{1}{4} H_{\mu\rho\sigma} H_{\nu}{}^{\rho\sigma} &= 8\pi G K_{(\mu\nu)} \,, \\ \nabla^{\rho} \Big(e^{-2\phi} H_{\rho\mu\nu} \Big) &= 16\pi G e^{-2\phi} K_{[\mu\nu]} \\ &+ 4 \Box \phi - 4 \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu} &= 8\pi G T_{(0)} \,. \end{split}$$

• For other non-Riemannian cases, $(n, \bar{n}) \neq (0, 0)$, EDFE govern the dynamics of the 'chiral' gravities, such as Newton-Cartan, Carroll, and Gomis-Ooguri, *etc.*

Einstein Double Field Equations $G_{4B} = 8\pi G T_{4B}$

 Restricting to the (0,0) Riemannian backgrounds, the EDFE decompose into

$$\begin{split} R_{\mu\nu} + 2\bigtriangledown_{\mu} (\partial_{\nu}\phi) - \frac{1}{4} H_{\mu\rho\sigma} H_{\nu}{}^{\rho\sigma} &= 8\pi G K_{(\mu\nu)} \,, \\ \nabla^{\rho} \left(e^{-2\phi} H_{\rho\mu\nu} \right) &= 16\pi G e^{-2\phi} K_{[\mu\nu]} \,, \\ R + 4\Box \phi - 4\partial_{\mu}\phi \partial^{\mu}\phi - \frac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu} &= 8\pi G T_{(0)} \,. \end{split}$$

For other non-Riemannian cases, (n, n̄) ≠ (0,0), EDFE govern the dynamics of the 'chiral' gravities, such as Newton-Cartan, Carroll, and Gomis-Ooguri, *etc.*

Examples: $T_{AB} := 4 V_{[A}{}^{\rho} \overline{V}_{B]}{}^{\overline{q}} K_{\rho \overline{q}} - \frac{1}{2} \mathcal{J}_{AB} T_{\scriptscriptstyle (0)}$

· Pure Stringy Gravity with cosmological constant,

$$\frac{1}{16\pi G}e^{-2d}\left(S_{(0)}-2\Lambda_{\rm DFT}
ight), \qquad K_{p\bar{q}}=0, \qquad T_{(0)}=\frac{1}{4\pi G}\Lambda_{\rm DFT}$$

RR sector,

$$L_{\rm RR} = \frac{1}{2} \operatorname{Tr}(\mathcal{F}\bar{\mathcal{F}}), \qquad \qquad \mathcal{K}_{p\bar{q}} = -\frac{1}{4} \operatorname{Tr}(\gamma_p \mathcal{F}\bar{\gamma}_{\bar{q}}\bar{\mathcal{F}}), \qquad \qquad \mathcal{T}_{(0)} = 0.$$

Spinor field,

$$\mathcal{L}_{\psi} = \bar{\psi}\gamma^{\rho}\mathcal{D}_{\rho}\psi + m_{\psi}\bar{\psi}\psi, \qquad \qquad \mathcal{K}_{\rho\bar{q}} = -\frac{1}{4}(\bar{\psi}\gamma_{\rho}\mathcal{D}_{\bar{q}}\psi - \mathcal{D}_{\bar{q}}\bar{\psi}\gamma_{\rho}\psi), \qquad \qquad \mathcal{T}_{(0)} \equiv 0.$$

• Green-Schwarz superstring (κ-symmetric, doubled-yet-gauged),

$$\begin{split} e^{-2d} L_{\rm string} &= \frac{1}{4\pi\alpha'} \int d^2\sigma \left[-\frac{1}{2} \sqrt{-h} h^{ij} \Pi_i^M \Pi_j^N \mathcal{H}_{MN} - \epsilon^{ij} D_i y^M (\mathcal{A}_{jM} - i\Sigma_{jM}) \right] \delta^D (x - y(\sigma)) , \\ \mathcal{K}_{p\bar{q}}(x) &= \frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{-h} h^{ij} (\Pi_i^M V_{Mp}) (\Pi_j^N \bar{V}_{N\bar{q}}) e^{2d} \delta^D (x - y(\sigma)) , \qquad T_{(0)} = 0 , \\ \end{split}$$
where $\Sigma_i^M &= \bar{\theta} \gamma^M \partial_i \theta + \bar{\theta}' \bar{\gamma}^M \partial_i \theta'$ and $\Pi_i^M = \partial_i y^M - \mathcal{A}_i^M - i\Sigma_i^M. \end{split}$

• The regular spherical solution to the D = 4 Einstein Double Field Equations shows that Stringy Gravity modifies GR (Schwarzschild geometry), in particular at "short" dimensionless scales, R/MG, *i.e.* distance normalized by mass times Newton constant.

This might shed new light upon the dark matter/energy problems, as they arise essentially from "short distance" observations:

0	Electron $(R \simeq 0)$	Proton	Hydrogen Atom	Billiard Ball	Earth	Solar System $(1 \mathrm{AU}/M_{\odot}G)$			Universe $(M \propto R^3)$
R/(MG)	0^{+}	$7.1{\times}10^{38}$	$2.0{\times}10^{43}$	$2.4{\times}10^{26}$	$1.4{ imes}10^9$	$1.0{ imes}10^8$	$1.5{ imes}10^6$	$\sim 10^5$	0^{+}

• Furthermore, it would be intriguing to view the *B*-field and DFT dilaton *d* as 'dark gravitons', since they decouple from the geodesic motion of point particles, which should be defined in string frame.

- It has been said that string theory is a piece of 21st century physics that happened to fall into the 20th century.
- String theory predicts its own gravity, *i.e.* Stringy Gravity, rather than GR.
- Stringy Gravity may be the 21st century theory of gravity, which is possibly formulated in 'doubled-yet-gauged' spacetime and deserves further explorations.

- It has been said that string theory is a piece of 21st century physics that happened to fall into the 20th century.
- String theory predicts its own gravity, *i.e.* Stringy Gravity, rather than GR.
- Stringy Gravity may be the 21st century theory of gravity, which is possibly formulated in 'doubled-yet-gauged' spacetime and deserves further explorations.

- It has been said that string theory is a piece of 21st century physics that happened to fall into the 20th century.
- String theory predicts its own gravity, *i.e.* Stringy Gravity, rather than GR.
- Stringy Gravity may be the 21st century theory of gravity, which is possibly formulated in 'doubled-yet-gauged' spacetime and deserves further explorations.

- It has been said that string theory is a piece of 21st century physics that happened to fall into the 20th century.
- String theory predicts its own gravity, *i.e.* Stringy Gravity, rather than GR.
- Stringy Gravity may be the 21st century theory of gravity, which is possibly formulated in 'doubled-yet-gauged' spacetime and deserves further explorations.

- It has been said that string theory is a piece of 21st century physics that happened to fall into the 20th century.
- String theory predicts its own gravity, *i.e.* Stringy Gravity, rather than GR.
- Stringy Gravity may be the 21st century theory of gravity, which is possibly formulated in 'doubled-yet-gauged' spacetime and deserves further explorations.

Thank you

One must be prepared to follow up the consequence of theory, and feel that one just has to accept the consequences no matter where they lead.

- Paul Dirac -

Einstein Double Field Equations

Stephen Angus, Kyoungho Cho, and Jeong-Hyuck Park

Department of Physics, Sogang University, 35 Backbeom-ro, Mapo-gu, Seoul 04107, KOREA

Core idea: string theory predicts its own gravity rather than GR

In General Relativity the metric star is the only geometric and gravitational field, whereas in string theory the closed-string massless sector comprises a two-form potential II..., and the string dilaton ϕ in addition to the metric $g_{\mu\nu}$. Furthermore, these three fields transform into each other under T-duality. This hints at a natural assessentation of GR: upon treatine the whole closed string massless sector as stringy graviton fields, Double Field Theory [1, 2] may evolve into 'Stringy Gravity'. Equipped with an $\mathbf{O}(D,D)$ covariant differential geometry beyoud Riemann [3], we spell out the definitions of the stringy Einstein curvature tensor and the striney Energy-Momentum tensor. Equating them, all the equations of motion of the closed string manless sector are splited into a single concession [4]

 $G_{AD} = SeGT_{AD}$

Double Field Theory as Stringy Gravity

Built-in symmetries & Netation:

- DFT diffeomorphisms (ordinary diffeomorphisms plus II-field gauge symmetry) - Twofold local Lorentz symmetries, $Spin(1, D-1) \times Spin(D-1, 1)$

ID Two locally inertial frames exist separately for the left and the right modes

Index	Representation	Metric (raising/lowering indices)			
A,B,\cdots,M,N,\cdots	$\mathbf{O}(D,D)$ vector	$J_{AB} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$			
p.q	Spin(1, D-1) vector	$\eta_{eq} = diag(-++\cdots+)$			
a., d., · · ·	Splm(1, D-1) spinor	$C_{\mu\nu}$, $(\gamma P)^T = C\gamma PC^{-1}$			
p.q	Spin(D-1,1) vector	$\bar{\eta}_{pq} = diag(+ \cdots -)$			
ā., 3,	Splm(D-1, 1) spinor	$C_{\mu\bar{\nu}}$ $(\mathcal{P})^T = C (\mathcal{P}C^{-1})$			

The O(D, D) metric \mathcal{J}_{AD} divides doubled coordinates into two: $x^A = (x_a, x^a), \partial_A = (\hat{\partial}^{\mu}, \partial_a),$

· Doubled-vet-gauged suggestime:

• Detailed yet-gauged spacetime: The doubled confinence are "gauged" through a cyrain equivalence relation, $x^A - x^A + \Delta^A$, such that each equivalence class, or gauge orbit in \mathbb{R}^{D+D} , consequents to a single physical point in $\mathbb{R}^D(\mathbb{R})$. This implies a section condition $\beta_i \partial^{A^B} = 0$, which can be conveniently solved by sering $\partial^{A} = 0$.

• Stringy graviton fields (closed-string massless sector), $\{d, V_{Mp}, \tilde{V}_{Nq}\}$: Defining properties of the DFT-metric,

 $\mathcal{H}_{MN} = \mathcal{H}_{NM}$, $\mathcal{H}_K{}^L \mathcal{H}_M{}^N \mathcal{J}_{LN} = \mathcal{J}_{KM}$.

set a mair of symmetric and orthogonal projectors.

 $P_{MN} = P_{NM} = \frac{1}{2}(\mathcal{J}_{MN} + \mathcal{H}_{MN}), \qquad P_L^M P_M^N = P_L^N,$ $P_{MN} = P_{NM} = \frac{1}{2}(J_{MN} - H_{MN}),$ $P_L^M P_M^N = P_L^N,$ $P_L^M P_M^N = 0.$ Earther taking the "source ment," of the prejectory, we accuring a neir of DET yieldwine

 $P_{MN} = V_M^{\mu}V_N^{\alpha}\eta_{\mu\nu}, \qquad \bar{P}_{MN} = \bar{V}_M^{\mu}\bar{V}_N^{\alpha}\dot{\eta}_{\mu\mu}$

satisfying their own defining properties,

 $V_{M_{q}}V^{M}_{q} = \eta_{qq}$, $\hat{V}_{M_{q}}\hat{V}^{M}_{q} = \hat{\eta}_{qq}$, $V_{M_{q}}\hat{V}^{M}_{q} = 0$, $V_{M}^{P}V_{N_{q}} + \hat{V}_{M}^{P}\hat{V}_{N_{q}} = J_{MN}$. The most ceneral solutions to (2) can be classified by two non-negative integers (n, ii) [6].

$$H_{MN} = \begin{pmatrix} H^{\mu\nu} & -H^{\mu\nu}B_{\nu\lambda} + Y_{\nu}^{\mu}X_{\lambda}^{i} - \hat{Y}_{\nu}^{\mu}X_{\lambda}^{i} \\ R_{\mu\nu}H^{\mu\nu} + X_{\lambda}^{i}Y^{\nu} - \hat{X}_{\lambda}^{\nu}\hat{Y}^{\nu} & K_{\nu\lambda} - B_{\mu\nu}H^{\mu\nu}B_{\nu\lambda} + 2X_{\lambda}^{i} - B_{\lambda\nu}Y^{\nu} - 2\hat{X}_{\lambda}^{i} - B_{\lambda\nu}\hat{Y}^{\nu} \end{pmatrix}$$

where $1 \le i \le n$, $1 \le i, i \le n$ and

```
H^{\mu\nu}X^{i}_{\nu} = 0, H^{\mu\nu}\bar{X}^{i}_{\nu} = 0, K_{\mu\nu}Y^{\nu}_{i} = 0, K_{\mu\nu}\bar{Y}^{\mu}_{i} = 0, H^{\mu\nu}K_{\mu\nu} + Y^{\mu}_{i}X^{i}_{\nu} + \bar{Y}^{\mu}_{i}\bar{X}^{i}_{\nu} = \delta^{\mu}_{\nu}.
```

include (0, 0) Riemannian geometry as $K_{\mu\nu} = g_{\mu\nu}$, $B^{\mu\nu} = g^{\mu\nu}$, (1, 1) Gomis-Oogari non-solarivistic backwoond (1, 0) Newton-Cartan envirts, and (D - 1, 0) Cambi envirts.

• Covariant derivative: The 'master' covariant derivative, $\mathcal{D}_A=\partial_A+\Gamma_A+\Phi_A+\Phi_A$, is characterized by compatibility: $\mathcal{D}_A d = \mathcal{D}_A V_{B \alpha} = \mathcal{D}_A \tilde{V}_{B \alpha} = 0, \quad \mathcal{D}_A \mathcal{J}_{B C} = \mathcal{D}_A \eta_{\rm eq} = \mathcal{D}_A \eta_{\rm eq} = \mathcal{D}_A C_{\alpha \beta} = \mathcal{D}_A \tilde{C}_{\alpha \beta} = 0.$

The stringy Christoffel symbols are [3]

$$\begin{split} \Gamma_{CAR} &= 2 \left(P \partial_{C} P \dot{P} \right)_{(AR)} + 2 \left(\dot{P}_{|A}{}^{B} \dot{P}_{|B|}{}^{L} - P_{|A}{}^{B} P_{|B|}{}^{L} \right) \partial_{D} P_{BC} \\ &- 4 \left(\frac{1}{P_{|B}} - 1} P_{C|A} P_{B|}{}^{B} + \frac{1}{P_{|B}} P_{|C|A} P_{|B|}{}^{B} \right) \left(\partial_{D} d + (P \partial^{E} P \dot{P})_{(ED)} \right) , \end{split}$$

and the spin connections are $\Phi_{App} = V^B_{\ \ P}(\partial_A V_{App} + T_{AB} C^* V_{Ca}), \Phi_{App} = V^B_{\ \ P}(\partial_A V_{Ap} + T_{AB} C^* V_{Ca}).$ In Strings Gravity, there are no neural constitutes where T_{CAB} would result point wire: the Equivalence Principle holds for princip (i.e., arounded helperi).

Scalar and 'Ricci' curvatures:

 Scatter and "Receiv curvatures: The semi-covariant Riemann curvature in Stringy Gravity is defined by $S_{ADCD} := \frac{1}{2} \left(R_{ADCD} + R_{CDAD} - \Gamma^E_{AD} \Gamma_{DCD} \right).$

where $R_{CDAB} = \partial_A \Gamma_{BCD} - \partial_B \Gamma_{ACD} + \Gamma_{ACB} \Gamma_B F_D - \Gamma_{BCB} \Gamma_A F_D$ (the "field strength" of Γ_{CAB}). The completely covariant 'Ricci' and scalar curvatures are, with $S_{AD} = S_{ACB}C$

 $S_{ad} := V^A_{\ a} \overline{V}^B_{\ a} S_{AB}$, $S_{aa} := \left(P^{AC} P^{BD} - \overline{P}^{AC} \overline{P}^{CD}\right) S_{ABCD}$

While e^{-2d}S₁₀ corresponds to the original DFT Lagrangian density [1, 2], or the 'pare' Stringy Grav ity, the master covariant derivative fines its minimal coupling to extra matter fields, e.g. type II maximally supersymmetric DFT [7] or the Standard Model [8].

16-241 ...

²(* -

Derivation of Einstein Double Field Equations

Variation of the action for Stringy Gravity coupled to generic matter fields, Tar gives

$$\delta \int e^{-2\delta} \left[\frac{1}{1460}S_{(0)} + L_{matter}\right]$$

 $\int e^{-2\delta} \left[\frac{1}{1460}T^{A}dSV_{s}T^{A}S_{SH} - 8\pi GK_{SH}\right] - \frac{1}{1400}S\delta(S_{(0)} - 8\pi GT_{(0)}) + \delta T_{s}\frac{M_{matter}}{\delta T_{s}}\right]$
 $\int e^{-2\delta} \left[\frac{1}{14e^{2\delta}}R^{A}(G_{AB} - 8\pi GT_{AB}) + (\mathcal{L}_{s}T_{s})\frac{M_{matter}}{\delta T_{s}}\right]$

δT. where the second line is for emeric variations and the third line is specifically for diffeomorphic transformations. We are naturally led to define

$$\frac{1}{2}\left(V_{Aq}\frac{\delta L_{matter}}{\delta V_{A}q} - \tilde{V}_{Aq}\frac{\delta L_{matter}}{\delta V_{A}q}\right), \quad T_{(i)} := e^{2\delta} \times$$

and subsequently the stringy Eisenvis currenter, G 12, and Energy Momentum tensor, T 12,

```
G_{AB} = 4V_A r V_B r S_{Pl} - \frac{1}{8} \mathcal{J}_{AB} S_{Pl}, D_A G^{AB} = 0 (off-shell).
T_{AB} := 4V_A^{\mu}\dot{V}_B ^{A}K_{ad} - \frac{1}{2}J_{AB}T_{ac}, \qquad D_A T^{AB} = 0 (on-shell)
```

The equations of motion of the stringy graviton fields are thus unified into a single expression, the Einstein Doable Field Emotions (1). Note that $G x^A = -DS_{abc}T x^A = -DT_{abc}$ Restricting to the (0,0) Riemannian background, the Einstein Double Field Equations reduce to

```
R_{\mu\nu} + 2\gamma T_{\mu}(\partial_{\nu}\phi) - \frac{1}{2}H_{\mu\mu\nu}H_{\nu}^{\mu\nu} = 8\pi G K_{(\mu\nu)},
```

```
\nabla^{\theta} \left( e^{-2\phi} H_{ppr} \right) = 16 \pi G e^{-2\phi} K_{(\mu\nu)}
```

 $R + 4\Box \phi - 4\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{42}H_{\lambda\mu\nu}H^{\lambda\mu\nu} = 8\pi GT_{\mu\nu}$

which imply the conservation law, $D_A T^{AB} = 0$, given explicitly by

 $\nabla^{\mu}K_{(\mu\nu)} - 2\partial^{\mu}\phi K_{(\mu\nu)} + \frac{1}{2}H_{\nu}{}^{\lambda\rho}K_{(\lambda\mu)} - \frac{1}{2}\partial_{\nu}T_{\mu} = 0\,, \qquad \nabla^{\mu}\left(e^{-2\phi}K_{(\mu\nu)}\right) = 0\,.$ The Einstein Double Field Equations also govern the dynamics of other non-Riemannian cases, (n, ii) of (0, 0), where the Riemannian metric, now, cannot be defined.

Examples

(2)

- Pure Stringer Gravity with cosmological constant

 $\frac{1}{1-\alpha}e^{-2d}(S_m - 2\Lambda_{UCV})$, $K_{ad} = 0$, $T_m = \frac{1}{1-\alpha}\Lambda_{UCV}$. - BR sector: eiten by a Spin(1.5) × Spin(9.1) hi-minorial notential, C^{*}_{1.5};

 $L_{2,2} = \frac{1}{2} Tr(F\overline{F}), \quad K_{2,2} = -\frac{1}{2} Tr(\gamma_{2}F)_{2}\overline{F}), \quad T_{22} = 0,$

where $\mathcal{F} = D_1 \mathcal{L} = \gamma^p \mathcal{D}_p \mathcal{L} + \gamma^{(11)} \mathcal{D}_p \mathcal{L}^{(p)}$ is the RR flux set by an O(D, D) covariant "H-twined" cohomology, $(\mathcal{D}_+)^2 = 0$, and $\mathcal{F} = C^{-1} \mathcal{F}^T C$ is its charge coolagate [7].

-Some field: $L_{-} = \bar{\psi}\gamma^{\mu}D_{\nu}\psi + m_{\nu}\bar{\psi}\psi$, $K_{\nu\nu} = -\frac{1}{2}(\bar{\psi}\gamma_{\nu}D_{\nu}\psi - D_{\nu}\bar{\psi}\gamma_{\nu}\psi)$, $T_{\nu\nu} = 0$. - Green-Schoart superstring (c-commetric):

 $e^{-2d}L_{drive} = \frac{1}{16\pi^2} \int d^2\sigma \left[-\frac{1}{2} \sqrt{-b} h^{ij} \Omega_i^M \Omega_i^N \mathcal{H}_{MN} - \epsilon^{ij} D_i g^M (\mathcal{A}_{jM} - i\Sigma_{jM}) \right] \delta^D(x - g(\sigma))$

 $K_{\alpha\beta}(x) = \frac{1}{1-1} \int d^2\sigma \sqrt{-M} h^{ij} (\Pi^M V_{M\alpha}) (\Pi^N \tilde{V}_{N\alpha}) e^{2d} \theta^D (x - y(\sigma)), \quad T_{\alpha\beta} = 0,$ where $\Sigma^M = \bar{\theta}\gamma^M \partial_t \theta + \bar{\theta}\gamma^M \partial_t \theta'$ and $\Omega^M = \partial_t u^M - A^M - i\Sigma^M$ (doubled-ver-massed) (9).

Gravitational effect

The regular spherical solution to the D = 4 Einstein Double Field Equations shows that Stringy Gravity medilies GR (Schwarzschild geometry), in particular at "doot" demonsionless scales, R/MG, i.e. distance normalized by mass times Newton constant. This minht shed new lefts arou the dark would be intrimuine to view the II-field and DFT dilaton d as 'dark eravitons', since they decouple from the geodesic motion of point particles, which should be defined in string frame [10].

[2] C. Hull and B. Zwiebuch, "Double Field Theory," IEEP 0909 (2009) 099 [arXiv:0904.4664]. [3] L Jeon, K. Lee and J. H. Park, "Striney differential ecometry, beyond Riemann," Phys. Rev. D \$4 (2011) (644022 JurXiv: 1105 6294 (hersehill)

[4] S. Angas, K. Cho and J. H. Park, "Einstein Double Field Equations," arXiv:1904.00964.

- [5] J. H. Park, "Comments on double field theory and diffeomorphisms," JHEP 1366 (2013) 098 JarXiv:1304.5946 [hep-th]]
- [6] K. Morand and J. H. Park, "Classification of non-Riemannian doubled-yet-gauged spacetime," Ear. Phys. J. C 77 (2017) pp.10, 685 [arXiv:1707.03713 [hep-th]].
- 1711 Jeon, K. Lee, J. H. Park and Y. Suh, "Stringy Unification of Type IIA and IIII Superstantties under N = 2D = 10 Supersymmetric Double Field Theory," Phys. Lett. B 723 (2013) 245 JarXiv:1210.5078 [hep-th]], Twofold upin eroup, Spin(1,9) × S

[8] K. S. Chei and J. H. Park, "Standard Model as a Double Field Theory," Phys. Rev. Lett. 115

- [9] J. H. Park, "Green-Schwarz superstring on doubled-yet-gauged spacetime," JHIP 1611 (2016)
- [10] S. M. Ko, J. H. Park and M. Sub, "The rotation curve of a point particle in stringy gravity," JCAP 1706 (2017) po.05. 002 [arXiv:1606.09307 [hep-th]].

APPENDIX

Doubled-yet-Gauged Spacetime

- Let $\mathcal{F} := \{ d, \mathcal{H}_{MN}, \xi^M, \partial_N d, \partial_L \mathcal{H}_{MN}, \cdots \}$ be the set of all the functions in DFT.
 - It contains not only the covariant physical fields, d, H_{MN}, and local symmetry parameters, ξ^A, but also their arbitrary derivatives and products.
 - It is closed under additions, products and derivatives : if $\Phi_i, \Phi_j \in \mathcal{F}$ then

$$a \Phi_i + b \Phi_i \in \mathcal{F}, \qquad \Phi_i \Phi_i \in \mathcal{F}, \qquad \partial_A \Phi_i \in \mathcal{F},$$

where $a, b \in \mathbb{R}$.

The section condition,

$$\partial_M \partial^M \Phi_i = 0$$
, $\partial_M \Phi_i \partial^M \Phi_j = 0$,

is mathematically equivalent to certain translational invariance:

$$\Phi_i(x) = \Phi_i(x + \Delta), \qquad \Delta^M = \Phi_j \partial^M \Phi_k,$$

where Δ^{M} is said to be *derivative-index-valued*.

'Physics' should be invariant under such shifts of the doubled coordinates in DFT.

- Let $\mathcal{F} := \{ d, \mathcal{H}_{MN}, \xi^M, \partial_N d, \partial_L \mathcal{H}_{MN}, \cdots \}$ be the set of all the functions in DFT.
 - It contains not only the covariant physical fields, d, H_{MN}, and local symmetry parameters, ξ^A, but also their arbitrary derivatives and products.
 - It is closed under additions, products and derivatives : if $\Phi_i, \Phi_j \in \mathcal{F}$ then

$$a\Phi_i + b\Phi_i \in \mathcal{F}, \qquad \Phi_i\Phi_i \in \mathcal{F}, \qquad \partial_A\Phi_i \in \mathcal{F},$$

where $a, b \in \mathbb{R}$.

- The section condition,

$$\partial_M \partial^M \Phi_i = 0, \qquad \quad \partial_M \Phi_i \partial^M \Phi_j = 0,$$

is mathematically equivalent to certain translational invariance:

$$\Phi_i(x) = \Phi_i(x + \Delta), \qquad \Delta^M = \Phi_j \partial^M \Phi_k,$$

where Δ^M is said to be *derivative-index-valued*.

'Physics' should be invariant under such shifts of the doubled coordinates in DFT.

- Let $\mathcal{F} := \{ d, \mathcal{H}_{MN}, \xi^M, \partial_N d, \partial_L \mathcal{H}_{MN}, \cdots \}$ be the set of all the functions in DFT.
 - It contains not only the covariant physical fields, d, H_{MN}, and local symmetry parameters, ξ^A, but also their arbitrary derivatives and products.
 - It is closed under additions, products and derivatives : if $\Phi_i, \Phi_j \in \mathcal{F}$ then

$$a\Phi_i + b\Phi_i \in \mathcal{F}, \qquad \Phi_i\Phi_i \in \mathcal{F}, \qquad \partial_A\Phi_i \in \mathcal{F},$$

where $a, b \in \mathbb{R}$.

- The section condition,

$$\partial_M \partial^M \Phi_i = 0$$
, $\partial_M \Phi_i \partial^M \Phi_j = 0$,

is mathematically equivalent to certain translational invariance:

$$\Phi_i(x) = \Phi_i(x + \Delta), \qquad \Delta^M = \Phi_j \partial^M \Phi_k,$$

where Δ^M is said to be *derivative-index-valued*.

'Physics' should be invariant under such shifts of the doubled coordinates in DFT.

Doubled-yet-gauged spacetime

Doubled coordinates, $x^M = (\tilde{x}_\mu, x^\nu)$, are gauged through an equivalence relation,

 $x^M \sim x^M + \Delta^M(x),$

where Δ^M is derivative-index-valued.

Each equivalence class, or gauge orbit in \mathbb{R}^{D+D} , corresponds to a single physical point in \mathbb{R}^{D} .

– If we solve the section condition by letting $ilde{\partial}^{\mu}\equiv$ 0, and further put

 $\Delta^{M} = c_{\mu} \partial^{M} x^{\mu} \quad : \quad \text{derivative} - \text{index} - \text{valued} \,,$

we obtain explicitly,

 $(\tilde{x}_{\mu}, x^{
u}) \sim (\tilde{x}_{\mu} + c_{\mu}, x^{
u})$: \tilde{x}_{μ} 's are gauged and $x^{
u}$'s form a section.

- Then, **O**(*D*, *D*) rotates the gauged directions and the section.

Doubled-yet-gauged spacetime

Doubled coordinates, $x^M = (\tilde{x}_\mu, x^\nu)$, are gauged through an equivalence relation,

 $x^M \sim x^M + \Delta^M(x)$,

where Δ^M is derivative-index-valued.

Each equivalence class, or gauge orbit in \mathbb{R}^{D+D} , corresponds to a single physical point in \mathbb{R}^{D} .

– If we solve the section condition by letting ${ ilde \partial}^\mu \equiv$ 0, and further put

 $\Delta^{M} = c_{\mu} \partial^{M} x^{\mu} \quad : \quad \text{derivative} - \text{index} - \text{valued} \;,$

we obtain explicitly,

 $(\tilde{x}_{\mu}, x^{\nu}) \sim (\tilde{x}_{\mu} + c_{\mu}, x^{\nu})$: \tilde{x}_{μ} 's are gauged and x^{ν} 's form a section.

- Then, O(D, D) rotates the gauged directions and the section.

Doubled-yet-gauged spacetime

Doubled coordinates, $x^M = (\tilde{x}_\mu, x^\nu)$, are gauged through an equivalence relation,

 $x^M \sim x^M + \Delta^M(x)$,

where Δ^M is derivative-index-valued.

Each equivalence class, or gauge orbit in \mathbb{R}^{D+D} , corresponds to a single physical point in \mathbb{R}^{D} .

– If we solve the section condition by letting $\tilde{\partial}^{\mu}\equiv$ 0, and further put

 $\Delta^M = c_\mu \partial^M x^\mu \quad : \quad {\rm derivative-index-valued} \,,$

we obtain explicitly,

 $\left(ilde{x}_{\mu} \,,\, x^{
u}
ight) \ \sim \ \left(ilde{x}_{\mu} + c_{\mu} \,,\, x^{
u}
ight) \ : \ ilde{x}_{\mu}$'s are gauged and $x^{
u}$'s form a section.

- Then, O(D, D) rotates the gauged directions and the section.

- In DFT, the usual infinitesimal one-form, dx^M , is neither diffeomorphic covariant,

$$\delta x^M = \xi^M, \qquad \delta(\mathrm{d} x^M) = \mathrm{d} x^N \partial_N \xi^M \neq \mathrm{d} x^N (\partial_N \xi^M - \partial^M \xi_N),$$

nor invariant under the coordinate gauge symmetry,

$$\mathrm{d} x^M \quad \longrightarrow \quad \mathrm{d} \left(x^M + \Delta^M \right) \ \neq \ \mathrm{d} x^M \, .$$

- The naive contraction, $dx^M dx^N \mathcal{H}_{MN}$, is not a coordinate invariant scalar, and thus cannot lead to any sensible definition of 'proper length' in DFT. - In DFT, the usual infinitesimal one-form, dx^M , is neither diffeomorphic covariant,

$$\delta x^M = \xi^M, \qquad \delta(\mathrm{d} x^M) = \mathrm{d} x^N \partial_N \xi^M \neq \mathrm{d} x^N (\partial_N \xi^M - \partial^M \xi_N),$$

nor invariant under the coordinate gauge symmetry,

$$\mathrm{d} x^M \quad \longrightarrow \quad \mathrm{d} \left(x^M + \Delta^M \right) \ \neq \ \mathrm{d} x^M \, .$$

- The naive contraction, $dx^M dx^N \mathcal{H}_{MN}$, is not a coordinate invariant scalar, and thus cannot lead to any sensible definition of 'proper length' in DFT.

The problems can be all cured by gauging the infinitesimal one-form explicitly,

$$Dx^M := \mathrm{d}x^M - \mathcal{A}^M$$

Dx^M is a covariant vector in DFT

The gauge potential should satisfy the same property as the coordinate gauge symmetry generator: it
must be derivative-index-valued too, satisfying

$$\mathcal{A}^M \partial_M = 0 , \qquad \qquad \mathcal{A}_M \mathcal{A}^M = 0 .$$

– Essentially, half of the components are trivial, e.g. with $\tilde{\partial}^{\mu}\equiv$ 0,

$$\mathcal{A}^M = A_\lambda \partial^M x^\lambda = (A_\mu \,,\, 0) \,\,, \qquad D x^M = (\mathrm{d} \tilde{x}_\mu - A_\mu \,,\, \mathrm{d} x^\nu) \,\,.$$

- With the appropriate transformations of \mathcal{A}^M , the covariance of Dx^M is ensured:

$$\begin{split} \delta x^M &= \Delta^M \,, \quad \delta \mathcal{A}^M = \mathrm{d} \Delta^M & \Longrightarrow \quad \delta (Dx^M) = 0 \,; \\ \delta x^M &= \xi^M \,, \quad \delta \mathcal{A}^M &= \partial^M \xi_N (\mathrm{d} x^N - \mathcal{A}^N) \quad \Longrightarrow \quad \delta (Dx^M) = Dx^N (\partial_N \xi^M - \partial^M \xi_N) \,. \end{split}$$

c.f. natural extension to EFT by Blair 2017

The problems can be all cured by gauging the infinitesimal one-form explicitly,

 $Dx^M := \mathrm{d} x^M - \mathcal{A}^M.$

Dx^M is a covariant vector in DFT

The gauge potential should satisfy the same property as the coordinate gauge symmetry generator: it
must be derivative-index-valued too, satisfying

$$\mathcal{A}^M \partial_M = 0 \,, \qquad \qquad \mathcal{A}_M \mathcal{A}^M = 0 \,.$$

– Essentially, half of the components are trivial, e.g. with $\tilde{\partial}^{\mu}\equiv$ 0,

$$\mathcal{A}^M = \mathcal{A}_\lambda \partial^M x^\lambda = (\mathcal{A}_\mu \ , \ 0) \ , \qquad D x^M = (\mathrm{d} \tilde{x}_\mu - \mathcal{A}_\mu \ , \ \mathrm{d} x^\nu) \ .$$

– With the appropriate transformations of \mathcal{A}^M , the covariance of Dx^M is ensured:

$$\begin{split} \delta x^{M} &= \Delta^{M} , \quad \delta \mathcal{A}^{M} = \mathrm{d} \Delta^{M} & \Longrightarrow \quad \delta(Dx^{M}) = 0 ; \\ \delta x^{M} &= \xi^{M} , \quad \delta \mathcal{A}^{M} = \partial^{M} \xi_{N} (\mathrm{d} x^{N} - \mathcal{A}^{N}) & \Longrightarrow \quad \delta(Dx^{M}) = Dx^{N} (\partial_{N} \xi^{M} - \partial^{M} \xi_{N}) . \end{split}$$

c.f. natural extension to EFT by Blair 2017

The problems can be all cured by gauging the infinitesimal one-form explicitly,

 $Dx^M := \mathrm{d} x^M - \mathcal{A}^M.$

Dx^M is a covariant vector in DFT

The gauge potential should satisfy the same property as the coordinate gauge symmetry generator: it
must be derivative-index-valued too, satisfying

$$\mathcal{A}^M \partial_M = 0 \,, \qquad \qquad \mathcal{A}_M \mathcal{A}^M = 0 \,.$$

– Essentially, half of the components are trivial, e.g. with $\tilde{\partial}^{\mu}\equiv$ 0,

$$\mathcal{A}^M = \mathcal{A}_\lambda \partial^M x^\lambda = (\mathcal{A}_\mu \;,\; 0) \;, \qquad \mathcal{D} x^M = (\mathrm{d} \tilde{x}_\mu - \mathcal{A}_\mu \;,\; \mathrm{d} x^\nu) \;.$$

– With the appropriate transformations of \mathcal{A}^M , the covariance of Dx^M is ensured:

$$\begin{split} \delta x^M &= \Delta^M \,, \quad \delta \mathcal{A}^M = \mathrm{d} \Delta^M & \Longrightarrow \quad \delta (Dx^M) = 0 \,; \\ \delta x^M &= \xi^M \,, \quad \delta \mathcal{A}^M &= \partial^M \xi_N (\mathrm{d} x^N - \mathcal{A}^N) & \Longrightarrow \quad \delta (Dx^M) = Dx^N (\partial_N \xi^M - \partial^M \xi_N) \,. \end{split}$$

c.f. natural extension to EFT by Blair 2017

$$\textbf{Length} := -\ln\left[\int \mathcal{DA} \exp\left(-\int \sqrt{Dx^{M}Dx^{N}\mathcal{H}_{MN}}\right)\right]$$

which is gauged and covariant under O(D, D) and DFT-diffeomorphisms.

- For the Riemannian DFT-metric, we have a useful relation,

$$Dx^{M}Dx^{N}\mathcal{H}_{MN} \equiv \mathrm{d}x^{\mu}\mathrm{d}x^{\nu}g_{\mu\nu} + \left(\mathrm{d}\tilde{x}_{\mu} - A_{\mu} + \mathrm{d}x^{\rho}B_{\rho\mu}\right)\left(\mathrm{d}\tilde{x}_{\nu} - A_{\nu} + \mathrm{d}x^{\sigma}B_{\sigma\nu}\right)g^{\mu\nu}$$

- Hence, after integrating out the gauge potential, A_{μ} , the above O(D, D) covariant definition of the proper length reduces to the conventional one,

Length
$$\implies \int \sqrt{\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}g_{\mu\nu}(x)}$$
.

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$ 180

1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO

$$\textbf{Length} := -\ln\left[\int \mathcal{DA} \ \exp\left(-\int \sqrt{Dx^{M}Dx^{N}\mathcal{H}_{MN}}\right)\right]$$

which is gauged and covariant under O(D, D) and DFT-diffeomorphisms.

- For the Riemannian DFT-metric, we have a useful relation,

$$Dx^{M}Dx^{N}\mathcal{H}_{MN} \equiv \mathrm{d}x^{\mu}\mathrm{d}x^{\nu}g_{\mu\nu} + \left(\mathrm{d}\tilde{x}_{\mu} - A_{\mu} + \mathrm{d}x^{\rho}B_{\rho\mu}\right)\left(\mathrm{d}\tilde{x}_{\nu} - A_{\nu} + \mathrm{d}x^{\sigma}B_{\sigma\nu}\right)g^{\mu\nu}$$

- Hence, after integrating out the gauge potential, A_{μ} , the above O(D, D) covariant definition of the proper length reduces to the conventional one,

Length
$$\implies \int \sqrt{\mathrm{d} x^{\mu} \mathrm{d} x^{\nu} g_{\mu\nu}(x)}$$
.

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$ 18

1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO

$$\textbf{Length} := -\ln\left[\int \mathcal{DA} \ \exp\left(-\int \sqrt{Dx^{M}Dx^{N}\mathcal{H}_{MN}}\right)\right]$$

which is gauged and covariant under O(D, D) and DFT-diffeomorphisms.

- For the Riemannian DFT-metric, we have a useful relation,

$$Dx^{M}Dx^{N}\mathcal{H}_{MN} \equiv \mathrm{d}x^{\mu}\mathrm{d}x^{\nu}g_{\mu\nu} + \left(\mathrm{d}\tilde{x}_{\mu} - A_{\mu} + \mathrm{d}x^{\rho}B_{\rho\mu}\right)\left(\mathrm{d}\tilde{x}_{\nu} - A_{\nu} + \mathrm{d}x^{\sigma}B_{\sigma\nu}\right)g^{\mu\nu}$$

 Hence, after integrating out the gauge potential, A_µ, the above O(D, D) covariant definition of the proper length reduces to the conventional one,

Length
$$\implies \int \sqrt{\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}g_{\mu\nu}(x)}$$
.

$$\textbf{Length} := -\ln\left[\int \mathcal{DA} \exp\left(-\int \sqrt{Dx^{M}Dx^{N}\mathcal{H}_{MN}}\right)\right]$$

which is gauged and covariant under O(D, D) and DFT-diffeomorphisms.

- For the Riemannian DFT-metric, we have a useful relation,

$$Dx^{M}Dx^{N}\mathcal{H}_{MN} \equiv \mathrm{d}x^{\mu}\mathrm{d}x^{\nu}g_{\mu\nu} + \left(\mathrm{d}\tilde{x}_{\mu} - A_{\mu} + \mathrm{d}x^{\rho}B_{\rho\mu}\right)\left(\mathrm{d}\tilde{x}_{\nu} - A_{\nu} + \mathrm{d}x^{\sigma}B_{\sigma\nu}\right)g^{\mu\nu}$$

 Hence, after integrating out the gauge potential, A_µ, the above O(D, D) covariant definition of the proper length reduces to the conventional one,

Length
$$\implies \int \sqrt{\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}g_{\mu\nu}(x)}$$
.

The definition of the proper length readily leads to 'covariant' actions:

i) Particle Action

Ko-JHP-Suh 2016

$$S_{\text{particle}} = \int \mathrm{d} \tau \; e^{-1} D_{\tau} x^M D_{\tau} x^N \mathcal{H}_{MN}(x) - \frac{1}{4} m^2 e^{-1}$$

ii) String Action

Lee-JHP 2013, c.f. Hull 2006

$$S_{
m string} = rac{1}{4\pi lpha^{\prime}} \int d^2 \sigma \ - rac{1}{2} \sqrt{-h} h^{ij} D_i x^M D_j x^N \mathcal{H}_{MN}(x) - \epsilon^{ij} D_i x^M \mathcal{A}_{jM}$$

With the Riemannian DFT-metric plugged, after integrating out the auxiliary fields, the above actions reduce to the conventional ones:

$$\begin{split} S_{\rm particle} &\Rightarrow \int \mathrm{d}\tau \; e^{-1} \, \dot{x}^{\mu} \dot{x}^{\nu} g_{\mu\nu} - \frac{1}{4} m^2 e \,, \\ S_{\rm string} &\Rightarrow \frac{1}{2\pi \alpha'} \int \mathrm{d}^2 \sigma \, - \, \frac{1}{2} \sqrt{-h} h^{ij} \partial_j x^{\mu} \partial_j x^{\nu} g_{\mu\nu} + \frac{1}{2} \epsilon^{ij} \partial_j x^{\mu} \partial_j x^{\nu} B_{\mu\nu} + \frac{1}{2} \epsilon^{ij} \partial_i \tilde{x}_{\mu} \partial_j x^{\mu} \,. \end{split}$$

The definition of the proper length readily leads to 'covariant' actions:

i) Particle Action

Ko-JHP-Suh 2016

$$\mathcal{S}_{\mathrm{particle}} = \int \mathrm{d} \tau \; e^{-1} \, D_{\tau} x^M D_{\tau} x^N \mathcal{H}_{MN}(x) - \frac{1}{4} m^2 e$$

ii) String Action

Lee-JHP 2013, c.f. Hull 2006

$$S_{
m string} = rac{1}{4\pilpha'} \int {
m d}^2 \sigma \ - rac{1}{2} \sqrt{-h} h^{ij} D_i x^M D_j x^N \mathcal{H}_{MN}(x) - \epsilon^{ij} D_i x^M \mathcal{A}_{jMN}(x)$$

With the Riemannian DFT-metric plugged, after integrating out the auxiliary fields,

$$\begin{split} S_{\rm particle} &\Rightarrow \int \mathrm{d}\tau \; e^{-1} \, \dot{x}^{\mu} \dot{x}^{\nu} g_{\mu\nu} - \frac{1}{4} m^2 e \,, \\ S_{\rm string} &\Rightarrow \frac{1}{2\pi\alpha'} \int \mathrm{d}^2 \sigma \, - \, \frac{1}{2} \sqrt{-h} h^{ij} \partial_j x^{\mu} \partial_j x^{\nu} g_{\mu\nu} + \frac{1}{2} \epsilon^{ij} \partial_j x^{\mu} \partial_j x^{\nu} B_{\mu\nu} + \frac{1}{2} \epsilon^{ij} \partial_i \tilde{x}^{\mu} \partial_j x^{\mu} \,. \end{split}$$

The definition of the proper length readily leads to 'covariant' actions:

i) Particle Action

Ko-JHP-Suh 2016

$$\mathcal{S}_{\mathrm{particle}} = \int \mathrm{d} \tau \; e^{-1} D_{\tau} x^M D_{\tau} x^N \mathcal{H}_{MN}(x) - \frac{1}{4} m^2 e$$

ii) String Action

Lee-JHP 2013, c.f. Hull 2006

$$S_{
m string} = rac{1}{4\pilpha^7} \int {
m d}^2 \sigma \ - rac{1}{2} \sqrt{-h} h^{ij} D_i x^M D_j x^N \mathcal{H}_{MN}(x) - \epsilon^{ij} D_i x^M \mathcal{A}_{jMN}(x)$$

With the Riemannian DFT-metric plugged, after integrating out the auxiliary fields, the above actions reduce to the conventional ones:

$$\begin{split} S_{\rm particle} &\Rightarrow \int \mathrm{d}\tau \; e^{-1} \, \dot{x}^{\mu} \dot{x}^{\nu} g_{\mu\nu} - \frac{1}{4} m^2 e \,, \\ S_{\rm string} &\Rightarrow \frac{1}{2\pi\alpha'} \int \mathrm{d}^2 \sigma \, - \frac{1}{2} \sqrt{-h} h^{ij} \partial_i x^{\mu} \partial_j x^{\nu} g_{\mu\nu} + \frac{1}{2} \epsilon^{ij} \partial_i x^{\mu} \partial_j x^{\nu} B_{\mu\nu} + \frac{1}{2} \epsilon^{ij} \partial_i \tilde{x}_{\mu} \partial_j x^{\mu} \,. \end{split}$$

The scheme has been also extended to construct

iii) Doubled-yet-gauged Green-Schwarz superstring

$$S = rac{1}{4\pi lpha'} \int \mathrm{d}^2 \sigma \ - rac{1}{2} \sqrt{-h} h^{j j} \Pi^M_j \Pi^N_j \mathcal{H}_{MN} - \epsilon^{i j} D_i x^M \left(\mathcal{A}_{jM} - i \Sigma_{jM}
ight) \ ,$$

where $\Pi_i^M := D_i x^M - i \Sigma_i^M$ and $\Sigma_i^M := \bar{\theta} \gamma^M \partial_i \theta + \bar{\theta}' \bar{\gamma}^M \partial_i \theta'$.

While this action reduces consistently to the original undoubled one, it features the desired symmetries :

- O(D, D) T-duality
- DFT-diffeomorphisms
- Worldsheet diffeomorphisms plus Weyl symmetry
- Coordinate gauge symmetry: $x^M \sim x^M + \Delta^M (\Delta^M \partial_M = 0)$
- twofold Lorentz symmetry, $Spin(1, 9)_L \times Spin(9, 1)_R \Rightarrow Unification of IIA & IIB$
- Maximal 16+16 SUSY & kappa symmetry upon flat background

All the above actions are formulated with \mathcal{H}_{MN} , $V_{M\rho}$, $\overline{V}_{M\bar{\rho}}$ which satisfy the defining properties only, not necessarily parametrized by the Riemannian metric/vielbein.

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$ 1804.00964 WITH STEPHEN ANGUS AND KYOUNGHO CHO

JHP 2016

The scheme has been also extended to construct

iii) Doubled-yet-gauged Green-Schwarz superstring

$$S = rac{1}{4\pi lpha'} \int \mathrm{d}^2 \sigma \ - rac{1}{2} \sqrt{-h} h^{j j} \Pi^M_j \Pi^N_j \mathcal{H}_{MN} - \epsilon^{i j} D_i x^M \left(\mathcal{A}_{jM} - i \Sigma_{jM}
ight) \ ,$$

where $\Pi_i^M := D_i x^M - i \Sigma_i^M$ and $\Sigma_i^M := \bar{\theta} \gamma^M \partial_i \theta + \bar{\theta}' \bar{\gamma}^M \partial_i \theta'$.

While this action reduces consistently to the original undoubled one, it features the desired symmetries:

- O(D, D) T-duality
- DFT-diffeomorphisms
- Worldsheet diffeomorphisms plus Weyl symmetry
- Coordinate gauge symmetry: $x^M \sim x^M + \Delta^M (\Delta^M \partial_M = 0)$
- twofold Lorentz symmetry, $\text{Spin}(1, 9)_L \times \text{Spin}(9, 1)_B \Rightarrow \text{Unification of IIA & IIB}$
- Maximal 16+16 SUSY & kappa symmetry upon flat background

All the above actions are formulated with \mathcal{H}_{MN} , V_{Mp} , $\overline{V}_{M\overline{p}}$ which satisfy the defining properties only, not necessarily parametrized by the Riemannian metric/vielbein.

EINSTEIN DOUBLE FIELD EQUATIONS: $G_{AB} = 8\pi GT_{AB}$ 1804.00964 with Stephen Angus and Kyoungho Cho

JHP 2016