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Introduction



Inflation is strongly supported by CMB observations

Planck TT correlation :
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Unfortunately, primordial tensor perturbations have not yet been observed.



The presence of dark energy

The Universe Is now accelerating !

~
® Dark Energy is introduced

‘< or

® GR may be modified in the IR limit
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We have almost confirmed the presence of inflation and
dark energy, but, unfortunately,

we know neither the identification of an inflaton nor
that of dark energy.



Next task is to identify the inflaton and
the origin of the dark energy.



|dentification methods

® Top down approach :

To construct the unique model from the ultimate theory
like string theory.
(Recently, it may not be so actively studied.)

® Bottom up approach

To consider the most general model.
Then, we can constrain models (or to single out
the true model finally) from the observational results.

L In this talk, we take the latter approach



Bottom up approach

® Effective field theory approach :  (Weinberg 2008, Cheung et al. 2008)

The low-energy effective theory (after integrating out heavy

mode with its mass M).
A ghost seems to appear around the cut-off scale M (>> E).
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(E: the energy scale we pay attention to) qu
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® Most general theory without ghost
(if we are interested Iin the case in which higher derivative

terms play an important role in the dynamics.)

L In this talk, we take the latter approach




The following question arises:

What Is the most general
scalar-tensor theory without ghost ?



How widely can we extend scalar tensor theory ?

® A kinetic term of an inflaton is not necessarily canonical.

L=X-V@), X=-30"0000 m=b L= K($X)
(k-inflation)

(Armendariz-Picon et.al. 1999)

® An inflaton is not necessarily minimally coupled to gravity.

S = /d4$\/—_g (;M5R+£¢) ) AS = /d4:1:\/—_gf(gb)R
(Higgs inflation)

(Cervantes-Cota & Dehnen 1995, Bezrukov & M. Shaposhnikov 2008)

® Action may include higher derivatives. (Nicols etal. 2009)

L=K(¢,X) mmp AL=G(¢,X)0¢



Theories with higher order derivatives
are guite dangerous in general.



Example with higher order (time) derivatives

1
@ [ = 54 g2 (t) > q(4) = 0 requires 4 initial conditions.

EL eq. i}
2 (real) DOF
1 _
® Léq):qu— u? ‘ LA ‘ q(4) — 0
EL eq. q =
— U + u . 1 1. 1
mzqﬂ,yz q\@ ‘Léé):—qu—§u2=§2—§y2——( _y)g-

) = ;pf« —py+ Lo —y)2
(pz =, py = 9)
2 (real) DOF = 1 healthy & 1 ghost

Hamiltonian is unbounded through a linear momentum I



Ostrogradski’s theorem

Assumethat L = L(g, ¢, q)and 2% depends on ( :

(Non-degeneracy)
2
—> 3—L—5(a—ff)+ - (aL
dq

_ (4) — @ (3
8q) 0, = ¢ "7 =¢q ( qaq;q)

(Ostrogradsky 1850)

dt \ 9q d2¢
. p__aL d oL (_aLeq)
N, ’ =% aog \~ 00 )
Canonical variables : . . 1
B, P (— ‘”’e"‘)
- = ()

Leq = L(Q, 4, 9) + MQ — q)

Non-degeneracy & ¢=g (q? q, gf;) & QR=4=4q(qQ,P)

= pi+PQ—L
‘ p depends linearly on H so that no system of this form can be stable !!

oL oL . oL i 1 i () )
[NB %—3;1 (m)-FU Oy (m) 0. ‘ (02 + m2)(p2 + m3) Q—m%( ]

Hamiltonian: H(q,Q,p, P)

ms5 p2 + mM}Q =+ m% ;
(propagators)




How to circumvent Ostrogradsky’s
arguments to obtain healthy higher
order derivative theories ?



Loophole of Ostrogradski’s theorem

We can break the non degeneracy condition
which requires that 2~ depends on ddot{q}.

(NB: another interesting possibility is infinite derivative theory)

In case Lagrangian depends on only a position g and
Its velocity dot{q}, degeneracy implies that EOM is first order,
which represents not the dynamics but the constraint.

|

In case Lagrangian depends on g, dot{q}, ddot{q},
degeneracy implies that EOM can be (more than) second order,
which can represent the dynamics.



Generalized Galileon = Horndeski

PR equiVdlence oM T
( Lo = IK(p,X) Kobayashi, MY, Yokoyama 2011
L3 = —G3(¢, X)Og,
4 Lqa = Ga(d, X)R+ Gax [(D¢)2 - (VMVV¢)2] v
Ly = p5(¢’X}Gﬂyvqu¢
k —=Gsx [(00) — 3(09) (VuVud)? + 2 (V,iVu)?].

1
X =7 (Ve)2, G,x = 0G;/0X.

This is the most general scalar tensor theory whose Euler-Lagrange EOMs are
up to second order though the action includes second derivatives.
Many of inflation and dark energy models can be understood in a unified manner.

NB : @ G4 =Mgc2/ 2 yields the Einstein-Hilbert action
® G4 = 1() yields a non-minimal coupling of the form f(¢)R
® The new Higgs inflation with G**8,¢5,¢ comes from G5 oc @
after integration by parts.



Horndeski theory

In 1974, Horndeski presented the most general action (in four dimensions)
constructed from the metric g, the scalar field ¢, and their derivatives,
OG0, 0% Gpur 3guu, - - -, 09, 0%, 93¢, - - - Still having second-order equations.

c ~ ‘ ) 2 | J | / J / / . /
,Ch!' — ();:j)’j)(jl {h‘-lvﬂv(](bjg-l_fAli . + Efil,\vﬂv{\()v! v__-j(/)v()—V"l, (/) + H3v['1 (J)v"!()!{ .fAII} 7 + 2:‘{.-3){V“q-")V'”q‘)vj V )’(‘,-")vo—v? (j-'j)}

+(5;;,-j [(F + 2W)R " + 2Fx VIV 0V Ve + Qf‘-,gv{.q;.-;»v“(,,-.-av"vjq,@} —6 (F +2W, — XH.S) O¢ + ko.

f

k1, k3, k8, k9, F : functions of ¢ & X with Fx = 2(k3 +2XKk3x — K14)-
< W=W(9) : ]
i =L

What is the relation between Generalized Galileon and Horndeski’s models ?
= Both models are completely equivalent :  Kobayashi, MY, Yokoyama 2011

~ X r
K = & +4Xf AX" (Kas — 2kass) . Ly = K(4,X).
’ ( 8(;) 3(;—0) £3 = 7G3(¢)tX)D¢7
- 2 2
< Gz = 6F;—2XKkg —8XkKkzy + 2/ dX'(kg — 2K34): 4 Ly = G4(¢7X)R+cifx’/[(u¢) — (VuVu9)?],
G = 2F —4XkK Ly = G?(d),X)GM,,V V7
. > —*G5A'[(D¢)3—3(D¢) (vﬂqub)2+2(v,lv,,¢)3]
. . 6
G5 — —4:‘\,1,
- \




Beyond Horndeski theory

® Gleyzes, Langlois, Piazza, and Vernizzi (GLPV) pointed out that
there Is extended theory with the number of propagating

degrees of freedom unchanged, even though apparent EOMs

of the theory are higher (third) order.

(Gleyzes et al. 2014, Zumalacarregui & Garcia-Bellido 2014)

® Noui and Langlois pointed out the importance of degeneracy of
Kinetic matrix of terms with different order derivatives and
proposed degenerate higher order scalar-tensor (DHOST) theory.

(Noui & Langlois 2016, etc)

® Another direction is to consider infinitely many higher derivatives
(non |OCa| thEO ry) (Barnaby & Kamran 2008, References therein, also Leonardo’s talk, Yun Soo’s talk etc)

2 i
€.J. e_D//\ (IZI . m2)¢ — 0. - IV 2 + m2y Only a pole of propagator
appears with p2 = m2.

(Biswas, A. Mazumdar, W. Siegel 2006)

We are interested in an issue whether further extension is possible.



As far as | know, all of the (finite) higher
order derivative theories without ghosts

Include up to second time derivatives.
(Xian Gao proposed arbitrary higher spatial derivative theory in 2014.)

What happens if we consider
“third” order time derivative theories ?
(Is it straightforward extension of second
order time derivative theories ??7?)



Healthy degenerate theories with
““second” order derivatives for point particles

(as a first step with keeping in mind
future extension to scalar-tensor theory)



Lagrangian up to second order derivatives

(Motohashi, Noui, Suyama, MY, Langlois. 2016)
L(¢a7¢aa¢a;qzaqz) (CL — 1a , 10, 1= ]—7 am)

Variables with second order derivatives:_((pa)
Variables with first order derivatives: (g')

902 and qi generically obey fourth order and second order
equations of motion, respectively =» Ostrogradsky instability

Let us derive the conditions to escape such an instability by
Hamiltonian analysis, starting from the equivalent Lagrangian:

i a

LE(Q%, Q% 6% 6% ¢, ¢, Aa) = L(Qa,cia,fba;q’*}qi)+Aa(aﬁa—Q°‘*).
@

3



Hamiltonian analysis

LE(0%, Q% 6% 6% ¢, ¢, Aa) = L(Q%, Q% 6% ¢, ¢*) + Aa(d* — Q).

qba,
(3n+m) canonical variables : Qa, 02, g, )@ (4n+2m)
_ phase DOF
m==) (3n+m) canonical momenta : Pa, ma, pi, 94 n ghosts!!
(1) (1)
_ 9oL _ .. _ OLeq’ _ 9L _ . _ OLeq” _
Pa—aQa_LQ, Tag — a¢a —)\a,pz—aqz_Lq, Qg = a)\a =0.

‘ Two sets of n primary constraints:
Cba:']Ta,—Aaﬁo , \-Ua:paﬁo,

Em) H = Ho+mQ" with Ho= PaQ"+pid’ — L(Q% Q% ¢ ¢",q")

nd appears linearly in Hamiltonian and hence it is unbounded
If the system iIs nondegenerate without further primary constraints.



Degenerate Lagrangian

For healthy theories, we have to eliminate n DOF from constraints
SP.\ sQb _ Loagd Lpagi \ [ Lgp Lai
(o) = () <= (i g )= (5 )
Kinetic matrix must be degenerate !!

7 L TYT, ., — -
‘ La,b LmL ij =0 (First DC)
Assume det Lij #0 (qi Is a normal variable)
(detK = det(Lyy — Lo LY Ljp) det Lz-j)

(all n eigenvalues are zero) (m non-zero eigenvalues)

ﬁ ECL = PCL W Fa(piv Qba qbba qu,) ~ 0.

Assume det Lij#0
(Additional primary constraints)



Additional primary constraints
) (Motohashi & Suyama 2014)
Ea = PUJ o Fa»(pia Qba gbba qZ) ~ O

- HT — H(Pa,p?j, Ta, Qaa qia qba) + /J’acb(l _I_ Vawa» _l_ gaECL
(P =7a—Aa= 0, Wg=0pa=x0)

b, = {®g, HY — v + £P0F, /09 ~ 0,
__ W, = u® =0, ({®a, =} = 0F,/0¢%) ) Fix nd & va
Z.={Zu, H} + =4, =) = 0.
Mab

If det Mab #0, all ga are fixed and no secondary constraints.

‘ Not sufficient number of constraints to eliminate all ghosts.

mm) Simplest case for healthy theory : Mab =0 (second DC)
) O.={=¢ H}=—7a+ {Za Ho} — dFa/0¢, Q° ~ 0

(New constraint, which fixes all a in terms of the other phase space variables)



Summary of second order system
L($% 6% 6% ', q")
&) 150 Q% 4% 4% i o', Aa) = L(Q% Q% 6% ', ¢") + Aa(§® — Q).

, P
(3n+m) canonical variables : Q&, ¢2, q',/é (2n+2m)
< ‘ phase DOF
(3n+m) canonical momenta : /%1, 7{, pi,y{ no ghosts!!
N

® FirstDC: L, — LyLYLj, = (o) =x(52) x=(2e o) = (o 1)

¢l

f

=a¢ = Py — Fo(p;, Qb, gbb, qi) ~ 0. (primary constraints)
Assume det Lij#0

. OF OF, OF.0F, OF4OF;
o D My = {Z0 S} = —— byZ-aZ b Zoalib
Second DC . ab { - b} 0(2(} + c)Q”+ (-)q?_ C‘)P;‘_ 0}")‘; Uq;

N ) O, = {=, H} = —7a +{Za, Ho} — 9Fa/0¢; Q" ~ 0 (secondary CS)

H = Ho+ m1,Q% with Hg = P,Q® + pad® — L(Q% Q% ¢% 4", q")

EOMS : (Lap — Lai LV L) ™ + M3 + ... =0 == second order



Is the extension to third order (time)
derivative system straightforward 7?77
No essential difference ???

=) There is big difference !!



Quadratic model with third order derivatives

aAnm ey Crim, (Motohashi, Suyama, MY 2018)
Cvemy et em S -
b= s 7¢n¢m e Py

d N y
+ " enm )BT A+ frm" (=1, N)
|l g OGP RGE o T E=1--,0)

2qq 2qq ig4 4 ani P q .

&) .= L(iz""’, Q" R™, 9™, d",¢") + &n(i™ — R™) + Mn(R" — Q™).
t 1
P
Canonical momenta for (Q™, R™ ¥, ¢*, An, &n) -

Pon = aan‘m + Otfm'qi + enmQ™", | Prn = An, Typn — &n,
pi = aniQ" + A + Ciid, pr, =0, pg, = 0.
Primary constraints




Linear dependence of momenta on Hamiltonian

f

Canonical variables: (Q", R",y", ¢ ?%,/@/) primary constraints
< Mpn X Hn

\ Canonical momenta : (Pgn, Pgn, Tyn, p ,p/(n,%n)

mm) H = Hg+ PpnQ™ 4 mynR™.

1 .. _ 1 1 1 1 .
(HO — EAszsz — Ebanan — ECﬂ,mRan — Ednm’lpnd)m — fannR?n — EBqu%qJ . nNo dependece on phm_ ﬂ-f.u’!)

Due to the linear dependence of momenta,
Hamiltonian is unbounded !!

According to Ostrogradsky arguments and the lesson from
second order derivative system, we expect that we have only to
remove this linear momentum dependence for a healthy theory.



Conditions for a healthy theory
H = Ho + PpnQ"™ + mynR™.

fQ First DC : Qnm — Ot (kinetic matrix is degenerate)

WV = Pon — enm@ | njPi =~ O. (primary constraint)

Assume det Aij #0
® Second DC: {w,, W} = —Plen/+ ani(A~tcA™ 1) o] = 0.

mm) Tn=—{Wn H} = Ppof-bpmQ™ +--- =0, (secondary CS)

® ThirdDC: {7, v,}=-b
\ ‘ /\n = —{Tn, H} — '}T,Qx/,n ‘l‘ 2fanm + e ) O; (tertiary CS)

m — ani[(4C% + BYA N a,,; = 0.

Now, the linear dependences are completely eliminated !!
No ghost (no instability) 7?77



The ghosts still lurk in the Hamiltonian

After erasing Ppn, bnm, myn USINg DCs and constraints,
the Hamiltonian H reduces to

H = AUpip; — ~By@® + SonmR"R™ — ~dum""
+ anil(4C% + B)AT'p;R" — 20, (CB)' ;7' R"
— 2[fnm + 4ani(C_'3A_1)ijamj]QmRna

(B; = p; — Cigd" + 20, A"CLQ™, T = ¢ + i, AMQ™)

QN (= ) appears only linearly in H,
making the Hamiltonian H unbounded !!
Eliminating the linear momentum terms is always necessary

to kill the Ostrogradsky ghosts, but is not sufficient for
higher-than-second-order derivative system.

mmm) Needs to fix QN as well.



Healthy theory

)
Canonical variables: (@", R",y", ¢ ,%,/@/) primary constraints

< X X g
_Canonical momenta : (Ijén, Phn, T fn, D ,;%n,ﬂ/n)
H = Hg + PpnQ" + mynR". secondary & tertiary CS

® FourthDC: {An, Wi} =2(fum — apiMYay,;) = 0.
) 2% = —{An, H} = cnmQ"" — dnmy™ + --- = 0, (quaternary CS)
QN is now fixed (and expressed in terms of other variables).

| Only healthy DOFs (¥", R"(=4™),d",p") remain.
) -

_ Hamiltonian is bounded and no ghosts.

mmm) EOMs can be reduced to the second order system



Dirac matrix

[
Pg @5 v, Q. T,., A,
d,l 0 —1 =« * * *
o, 1 0 0 0 0 0
U, = 0 0 —Zmn 0 0
D = Qo * 0 Z.m * * *
Y, x 0 0 * 0 Lmn,
A, = O 0 * L X

Condition to complete Dirac procedure :

det Znm = det{2p, Vi, } # 0
m==) detD #0 m==) All constraints are second class
mmm)  Healthy (N+1) DOFs.



Red U Ctl on (Motohashi, Suyama, MY 2018)

L(q", 4", 4", ’qd" ) :T> Healthy theory

A chain of constraints: P4 ~0 (A=1,2,--)

If all of them are second class, according to Maskawa & Nakajima (1976),
a canonical transformation exists such that new variables are classified to

(QaaPa); (Q™,Pm) with Q" =0 & Pn=x0

unconstralned and governed by H(Q2,Pa), that is, @ = gf Po = —S;
|
Py = Pa(Q% Q%)

) Q% Q% = P.Q% — H(Q% P,)

This Lagrangian is nondegenerate and contains up to first-

order time derivatives of Qa.
(If a theory has first-class constraints, only gauge fixing is necessary.)



Summary

® \\Ve have Iinvestigated how to obtain healthy
degenerate theory with higher-than-second derivative.

® Eliminating linear momentum terms in the

Hamiltonian is necessary and sufficient to kill the
ghosts for second order derivative system.

® On the other hand, this is necessary but not sufficient
for the Lagrangian with higher than second-order
derivatives. The (lurked) linear dependence of
canonical variables corresponding to second (even
higher) derivatives must be removed as well.



	Ghost-Free Theory with �Third-Order Time Derivatives
	Contents
	Introduction
	Inflation is strongly supported by CMB observations
	The presence of dark energy
	Next task is to identify the inflaton and�the origin of the dark energy.
	Identification methods
	Bottom up approach
	The following question arises:��What is the most general �scalar-tensor theory without ghost ?
	How widely can we extend scalar tensor theory ?
	Theories with higher order derivatives�are quite dangerous in general.
	Example with higher order (time) derivatives
	Ostrogradski’s theorem
	How to circumvent Ostrogradsky’s arguments to obtain healthy higher order derivative theories ? 
	Loophole of Ostrogradski’s theorem
	Generalized Galileon = Horndeski
	Horndeski theory
	Beyond Horndeski theory
	As far as I know, all of the (finite) higher order derivative theories without ghosts �include up to second time derivatives.�(Xian Gao proposed arbitrary higher spatial derivative theory in 2014.)��What happens if we consider �“third” order time derivative theories ?�(Is it straightforward extension of second order time derivative theories ???)
	Healthy degenerate theories with �“second” order derivatives for point particles��(as a first step with keeping in mind� future extension to scalar-tensor theory)
	Lagrangian up to second order derivatives
	Hamiltonian analysis
	Degenerate Lagrangian
	Additional primary constraints
	Summary of second order system
	Is the extension to third order (time) derivative system straightforward ???�No essential difference ???
	Quadratic model with third order derivatives
	Linear dependence of momenta on Hamiltonian
	Conditions for a healthy theory
	The ghosts still lurk in the Hamiltonian
	Healthy theory
	Dirac matrix
	Reduction
	Summary

