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is identified as the temperature of the dual states on the
AdS boundary r ! 1. In the context of AdS/CFT cor-
respondence [12], the black brane is dual to a thermal
bath on the boundary, and an open string connecting
the horizon and boundary could be interpreted as a dual
particle state, such as the heavy quark [13] or Brownian
particle [14]. In the following we will show that the prop-
erties of the dual “particle” behave as the well studied
SYK state.

Worldsheet Metric. — For an open string that hangs
from the AdS boundary to the horizon of the black brane,
we choose the static gauge (⌧,�) = (t, r) and parametrize
the embedding of the string as Xµ = {t, r,x(t, r)}. Then
the position of the dual particle is given by ✏(t) ⌘ x(t, rc),
where rc ! 1 is an UV cut-o↵. For the static particle in
average h✏(t)i = 0, and the solution of the corresponding
static string is x(t, r) = 0. The induced metric on the
string worldsheet embedded in the black brane (11) is an
AdS2 black hole

ds

2
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2
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with the same f(r) in Eq.(12). We will consider the
perturbations of the static string in the bulk, which also
induce the perturbations on top of this worldsheet metric
[11].

String Fluctuations— Now let us consider the string
fluctuations in the Nambu-Goto action (4). For sim-
plicity, we consider the perturbation along one trans-
verse direction, and fix one parameterization through
setting � = r. The fluctuation with such fixed back-
ground breaks the original reparametrization as well as
the SL(2,R) symmetry. Up to the leading quadratic order
of the perturbations x(t, r), it is given by
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where ẋ ⌘ @x(t, r)/@t, and x

0 ⌘ @x(t, r)/@r. This ac-
tion is divergent because of the constant term in the ac-
tion (14) and the UV asymptotic behavior of x(t, r). The
constant term has no contribution on the dynamic so it
can be neglected. The UV divergent term coming from
x(t, r) can be canceled by following counterterm proposed

in Ref. [15],
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1
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(15)
� is the induced one dimensional metric at the boundary
of the worldsheet r = rc and (r�x)2 = �(ẋ)2/r2c . We
will define the renormalized on-shell action of the world-
sheet as Sren = SNG + Sct. Let us make an periodic
boundary condition in time x(t, r) ⇠ x(t + �0, r), we
extract the following quadric order of the Nambu-Goto
action of the worldsheet
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(16)
As we work in the Lorentz signature, this period has
nothing to do with the inverse temperature 1/T = �.
The value of �0 will be determined later to match the
quadratic order of the Schwarzian action (7) in Eu-
clidean signature. Let us make a Fourier’s transformation
x(t, r) = 1

p

2⇡

P

1
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bn(r)ei�nt with �n :=2⇡n/�0,

then the renormalized quadric order action of the string
worldsheet is
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with the n-th induced action,

sn=
1

4⇡↵0

n

Z rc

rh

dr
⇣

�

2
n

f

bnb�n � r

4
fb

0

nb
0

�n

⌘

� �

2
nbnb�n|rc

o

.

(18)

We see that s
�n = sn. Since x(t, r) is real valued, we

see that b

�n(r) = b

⇤

n(r). Thus the induced action (18)
has a global U(1) symmetry with the following conserved
current,

Jn(r) = ir
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In order to see what fluctuation of bulk open string
x(t, r) corresponds in the boundary, let us write down
the equation of motion for x(t, r) in terms of bn(r), which
reads,
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At the horizon, we impose the in-falling boundary condi-
tion,
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, r
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�n is a finite constant and determined by x(t, r) at the
horizon. Putting the equation of motion (20) into the
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Schwarzian action in Euclidean signature [3, 5],
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The coupling constant gs is related to the original SYK
coupling J , the number of Majorana fermions N , and
the coe�cient ↵S is determined by the even number q of
interacting fermions [3]. As its most important property,
Schwarzian derivative is invariant under SL(2,R) trans-
formation: f ! (af + b)/(cf + d) with ad� bc = 1. The
AP model with the near AdS2 geometry as the candidate
duality of SYK model also exhibits the same pattern in
explicit and spontaneous symmetry breaking [4].

Now let us consider an alternative dual description of
SYK model, the open string with a worldsheet horizon.
The dynamics of an open string follows from the Nambu-
Goto action of the worldsheet

SNG = � 1
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where hab = gµ⌫@aX
µ
@bX

⌫ is the induced metric on
the worldsheet with a, b = �, ⌧ , and X

µ(⌧,�) are the
embedding coordinates into the target spacetime with
metric gµ⌫ . The Nambu-Goto action is invariant under
reparametrization of the worldsheet coordinates which
means
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under (�, ⌧)!(�̃(�, ⌧), ⌧̃(�, ⌧)). This kind of
reparametrization can be apparently considered as
two-copy counterpart of conformal symmetry in SYK
model and includes the SL(2,R) symmetry as the special
case when �̃ = a� + b⌧ , ⌧̃ = c� + d⌧ .

Small Reparametrization. — Let us first consider the
small reparametrization of SYK model. If we make
the reparametrization f(⌧)= tan ⇡⌧

� ! tan ⇡g(⌧)
� , then the

Schwarzian action (2) becomes
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Now making the small fluctuation g(⌧) = ⌧ + ✏(⌧) and
expanding in ✏(⌧), we get a quadratic action,
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As we have fixed the fluctuation on the fixed parametriza-
tion g(⌧) = ⌧ , the quadratic action in terms of fluctu-

ation ✏(⌧) loses the SL(2,R) symmetry. However, this
quadratic action has an new scaling symmetry. To see
this, let us first make a rescaling on time ⌧ = ⌧̃µ, then
Eq. (7) reads,
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which is di↵erent from its original action in Eq. (7) and
can lead a di↵erent equation of motion. If we apply the
following combinations under the rescaling,

⌧̃ = ⌧/µ, �̃(µ̃) = �/µ, ✏̃(⌧̃) = ✏(⌧)µ�3/2
, (9)

with the new time ⌧̃ and the new variable ✏̃(⌧̃), the action
action (7) becomes
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We see that it is just as the same as the action (7). The
transformation (9) is only the symmetry of quadratic
Schwarzian. This is a new symmetry and is not contained
in the SL(2,R) symmetry. The scaling transformation (9)
shows that the conformal dimension of ✏(⌧) is 3/2. Be-
cause of this scaling symmetry, the quadratic Schwarzian
actions of di↵erent temperatures are equivalent to each
other.
If it is ture as what we proposed, that the open string

worldsheet action is a candidate dual description of SYK
model, then its fluctuation can also give the symmetry
of Eq (9) and the dual boundary theory should be equiv-
alent to Eq. (7). In the following, we will show that
the fluctuation of an open string in AdS black brane is
dual to a one dimensional system which has an asymp-
totic scaling symmetry just like the transformation (9).
This symmetry leads to an IR theory, which is just the
quadratic Schwarzian action of SYK shown in Eq. (7).

III. ACTION OF THE WORLDSHEET

We begin with the black brane solution in 2+1 dimen-
sional Maxwell-Einstein gravity with a negative cosmo-
logical constant. The generalization to higher dimensions
is straightforward. The metric of the charged BTZ black
brane is given by

ds
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The horizon is located at r = rh, and the Hawking

temperature of the black brane is T= 1
�=

(2�q2) rh
4⇡ , which
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is identified as the temperature of the dual states on the
AdS boundary r ! 1. In the context of AdS/CFT cor-
respondence [12], the black brane is dual to a thermal
bath on the boundary, and an open string connecting
the horizon and boundary could be interpreted as a dual
particle state, such as the heavy quark [13] or Brownian
particle [14]. In the following we will show that the prop-
erties of the dual “particle” behave as the well studied
SYK state.

Worldsheet Metric. — For an open string that hangs
from the AdS boundary to the horizon of the black brane,
we choose the static gauge (⌧,�) = (t, r) and parametrize
the embedding of the string as Xµ = {t, r,x(t, r)}. Then
the position of the dual particle is given by ✏(t) ⌘ x(t, rc),
where rc ! 1 is an UV cut-o↵. For the static particle in
average h✏(t)i = 0, and the solution of the corresponding
static string is x(t, r) = 0. The induced metric on the
string worldsheet embedded in the black brane (11) is an
AdS2 black hole
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with the same f(r) in Eq.(12). We will consider the
perturbations of the static string in the bulk, which also
induce the perturbations on top of this worldsheet metric
[11].

String Fluctuations— Now let us consider the string
fluctuations in the Nambu-Goto action (4). For sim-
plicity, we consider the perturbation along one trans-
verse direction, and fix one parameterization through
setting � = r. The fluctuation with such fixed back-
ground breaks the original reparametrization as well as
the SL(2,R) symmetry. Up to the leading quadratic order
of the perturbations x(t, r), it is given by
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where ẋ ⌘ @x(t, r)/@t, and x

0 ⌘ @x(t, r)/@r. This ac-
tion is divergent because of the constant term in the ac-
tion (14) and the UV asymptotic behavior of x(t, r). The
constant term has no contribution on the dynamic so it
can be neglected. The UV divergent term coming from
x(t, r) can be canceled by following counterterm proposed

in Ref. [15],
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2) .

(15)
� is the induced one dimensional metric at the boundary
of the worldsheet r = rc and (r�x)2 = �(ẋ)2/r2c . We
will define the renormalized on-shell action of the world-
sheet as Sren = SNG + Sct. Let us make an periodic
boundary condition in time x(t, r) ⇠ x(t + �0, r), we
extract the following quadric order of the Nambu-Goto
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As we work in the Lorentz signature, this period has
nothing to do with the inverse temperature 1/T = �.
The value of �0 will be determined later to match the
quadratic order of the Schwarzian action (7) in Eu-
clidean signature. Let us make a Fourier’s transformation
x(t, r) = 1
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then the renormalized quadric order action of the string
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We see that s
�n = sn. Since x(t, r) is real valued, we

see that b

�n(r) = b

⇤

n(r). Thus the induced action (18)
has a global U(1) symmetry with the following conserved
current,
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In order to see what fluctuation of bulk open string
x(t, r) corresponds in the boundary, let us write down
the equation of motion for x(t, r) in terms of bn(r), which
reads,
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�n is a finite constant and determined by x(t, r) at the
horizon. Putting the equation of motion (20) into the
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FIG. 1. Schematic diagram for the EPR pair case we are dis-
cussing with two measurements at Alice and Bob’s locations.
The AdS blackhole is present in the finite temperature case,
which we briefly discuss in the last section.

Here cos ✓AB = ~nA·~nB depends on the cross angle of the
measurements. And from (3) we have

h s|C| si = � cos ✓AB � cos ✓AB0 � cos ✓A0B + cos ✓A0B0 .
(6)

In particular, if we fix the direction of A and A0, as
well as the angle between B and B0 as ⇡/2

✓A = 0, ✓A0 =
⇡

2
, ✓B0 = ✓B � ⇡

2
, (7)

then we have the relation depended on the direction of
B,B0,

h s|C| si = �2
p
2 cos

�
✓B � ⇡

4

�
(8)

For 0 < ✓B < ⇡/2, the Bell inequality |hCi|  2 can be
violated, and we reach the maximal violation at ✓B =
⇡/4, with an extra factor of

p
2. Now we will see what is

the formula of Bell inequality in the holographic model
of EPR pair in the next section.

III. HOLOGRAPHIC EPR

It is proposed in [7] that an entangled color singlet
quark anti-quark (q-q̄) pair in SYM, can be described by
an open string with both of its endpoints attached to the
boundary of AdS5. The string connecting the pair is dual
to the color fluxtube between two quarks, with a Coulom-
bic potential 1/r as demanded by the scale invariance of
boundary theory. Unlike in a confining theory, the pair
can separate arbitrarily far from each others.

Numerical solutions of the string shapes with di↵erent
boundary behaviors can be found in [13–15], and an ana-
lytic solution for an accelerating string was found in [16].

In the analytic solution the open string is also accelerated
on the Poincáre patch of the AdS5

ds2 =
R2

w2

⇥� dt2 + dw2 + (dx2 + dy2 + dz2)
⇤
, (9)

with the AdS radius R and extra dimension w. The string
solution in the AdS5 bulk is given by

z2 = t2 + b2 � w2. (10)

The quark and anti-quark live on the AdS boundary w =
0. They are accelerating along the direction of z, and
moving with the solution z = ±p

t2 + b2. Thus, the two
entangled particles are out of causal contact with each
others, and the physics of entanglement in a single EPR
pair can be captured by the geometry of an ER bridge
on the string worldsheet in AdS5.
String fluctuations.— To consider the string fluctua-

tions, we transform the solution to the co-moving space-
time (⌧, r, x, y, z̃) of the accelerating quarks via

z = b
p
1� ũ exp

⇣ z̃
b

⌘
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⌧

b
,
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p
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⇣ z̃
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b
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p
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⇣ z̃
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⌘
. (11)

This frame is an accelerating frame with a constant ac-
celeration a = 1/b. And it only maps the upper part of
the string (0 < w < b) into the proper frame of the accel-
erating quark with 0 < ũ < 1. Plug this transformation
(11) in (10), one finds the string configuration becomes
z̃ = 0. And the metric (9) becomes

ds2 =
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i
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where f(ũ) = 1 � ũ. The event horizon ũ = 1 separates
the string into two causally disconnected parts. Further-
more, the Hawking temperature TH = 1

2⇡b matches with
the Rindler temperature TU = a

2⇡ .
Let (⌧, ũ) be the new worldsheet coordinates in the

current frame. The fluctuations in x, y, z̃ directions are
symmetric along the string trajectory z̃ = 0. Thus, we
consider the string fluctuation as Xµ = (b⌧̃ , ũ, b�̃i(⌧, ũ)),

with i = x, y, z̃. When �̃i ⌧ 1, the action of string be-
comes
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The equations of motion for the fluctuations on the string
are
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2fu03/2

!
= 0. (14)
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FIG. 1. Schematic diagram for the EPR pair case we are dis-
cussing with two measurements at Alice and Bob’s locations.
The AdS blackhole is present in the finite temperature case,
which we briefly discuss in the last section.

Here cos ✓AB = ~nA·~nB depends on the cross angle of the
measurements. And from (3) we have

h s|C| si = � cos ✓AB � cos ✓AB0 � cos ✓A0B + cos ✓A0B0 .
(6)

In particular, if we fix the direction of A and A0, as
well as the angle between B and B0 as ⇡/2

✓A = 0, ✓A0 =
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2
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, (7)

then we have the relation depended on the direction of
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For 0 < ✓B < ⇡/2, the Bell inequality |hCi|  2 can be
violated, and we reach the maximal violation at ✓B =
⇡/4, with an extra factor of

p
2. Now we will see what is

the formula of Bell inequality in the holographic model
of EPR pair in the next section.

III. HOLOGRAPHIC EPR

It is proposed in [7] that an entangled color singlet
quark anti-quark (q-q̄) pair in SYM, can be described by
an open string with both of its endpoints attached to the
boundary of AdS5. The string connecting the pair is dual
to the color fluxtube between two quarks, with a Coulom-
bic potential 1/r as demanded by the scale invariance of
boundary theory. Unlike in a confining theory, the pair
can separate arbitrarily far from each others.

Numerical solutions of the string shapes with di↵erent
boundary behaviors can be found in [13–15], and an ana-
lytic solution for an accelerating string was found in [16].

In the analytic solution the open string is also accelerated
on the Poincáre patch of the AdS5

ds2 =
R2

w2

⇥� dt2 + dw2 + (dx2 + dy2 + dz2)
⇤
, (9)

with the AdS radius R and extra dimension w. The string
solution in the AdS5 bulk is given by

z2 = t2 + b2 � w2. (10)

The quark and anti-quark live on the AdS boundary w =
0. They are accelerating along the direction of z, and
moving with the solution z = ±p

t2 + b2. Thus, the two
entangled particles are out of causal contact with each
others, and the physics of entanglement in a single EPR
pair can be captured by the geometry of an ER bridge
on the string worldsheet in AdS5.
String fluctuations.— To consider the string fluctua-

tions, we transform the solution to the co-moving space-
time (⌧, r, x, y, z̃) of the accelerating quarks via
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This frame is an accelerating frame with a constant ac-
celeration a = 1/b. And it only maps the upper part of
the string (0 < w < b) into the proper frame of the accel-
erating quark with 0 < ũ < 1. Plug this transformation
(11) in (10), one finds the string configuration becomes
z̃ = 0. And the metric (9) becomes
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where f(ũ) = 1 � ũ. The event horizon ũ = 1 separates
the string into two causally disconnected parts. Further-
more, the Hawking temperature TH = 1

2⇡b matches with
the Rindler temperature TU = a

2⇡ .
Let (⌧, ũ) be the new worldsheet coordinates in the

current frame. The fluctuations in x, y, z̃ directions are
symmetric along the string trajectory z̃ = 0. Thus, we
consider the string fluctuation as Xµ = (b⌧̃ , ũ, b�̃i(⌧, ũ)),

with i = x, y, z̃. When �̃i ⌧ 1, the action of string be-
comes
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The equations of motion for the fluctuations on the string
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FIG. 1. Schematic diagram for the EPR pair case we are dis-
cussing with two measurements at Alice and Bob’s locations.
The AdS blackhole is present in the finite temperature case,
which we briefly discuss in the last section.

Here cos ✓AB = ~nA·~nB depends on the cross angle of the
measurements. And from (3) we have

h s|C| si = � cos ✓AB � cos ✓AB0 � cos ✓A0B + cos ✓A0B0 .
(6)

In particular, if we fix the direction of A and A0, as
well as the angle between B and B0 as ⇡/2

✓A = 0, ✓A0 =
⇡

2
, ✓B0 = ✓B � ⇡

2
, (7)

then we have the relation depended on the direction of
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2 cos
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✓B � ⇡

4

�
(8)

For 0 < ✓B < ⇡/2, the Bell inequality |hCi|  2 can be
violated, and we reach the maximal violation at ✓B =
⇡/4, with an extra factor of

p
2. Now we will see what is

the formula of Bell inequality in the holographic model
of EPR pair in the next section.

III. HOLOGRAPHIC EPR

It is proposed in [7] that an entangled color singlet
quark anti-quark (q-q̄) pair in SYM, can be described by
an open string with both of its endpoints attached to the
boundary of AdS5. The string connecting the pair is dual
to the color fluxtube between two quarks, with a Coulom-
bic potential 1/r as demanded by the scale invariance of
boundary theory. Unlike in a confining theory, the pair
can separate arbitrarily far from each others.

Numerical solutions of the string shapes with di↵erent
boundary behaviors can be found in [13–15], and an ana-
lytic solution for an accelerating string was found in [16].

In the analytic solution the open string is also accelerated
on the Poincáre patch of the AdS5
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with the AdS radius R and extra dimension w. The string
solution in the AdS5 bulk is given by

z2 = t2 + b2 � w2. (10)

The quark and anti-quark live on the AdS boundary w =
0. They are accelerating along the direction of z, and
moving with the solution z = ±p

t2 + b2. Thus, the two
entangled particles are out of causal contact with each
others, and the physics of entanglement in a single EPR
pair can be captured by the geometry of an ER bridge
on the string worldsheet in AdS5.
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This frame is an accelerating frame with a constant ac-
celeration a = 1/b. And it only maps the upper part of
the string (0 < w < b) into the proper frame of the accel-
erating quark with 0 < ũ < 1. Plug this transformation
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z̃ = 0. And the metric (9) becomes
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where f(ũ) = 1 � ũ. The event horizon ũ = 1 separates
the string into two causally disconnected parts. Further-
more, the Hawking temperature TH = 1

2⇡b matches with
the Rindler temperature TU = a

2⇡ .
Let (⌧, ũ) be the new worldsheet coordinates in the

current frame. The fluctuations in x, y, z̃ directions are
symmetric along the string trajectory z̃ = 0. Thus, we
consider the string fluctuation as Xµ = (b⌧̃ , ũ, b�̃i(⌧, ũ)),

with i = x, y, z̃. When �̃i ⌧ 1, the action of string be-
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The equations of motion for the fluctuations on the string
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and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AsBs| si = � cos ✓AB . (5)

Here cos ✓AB = ~nA·~nB depends on the cross angle of the
measurements. And from (3) we have

h s|Cs| si = � cos ✓AB � cos ✓AB0 � cos ✓A0B + cos ✓A0B0 .
(6)

In particular, if we fix the direction of A and A0, as
well as the angle between B and B0 as ⇡/2

✓A = 0, ✓A0 =
⇡

2
, ✓B0 = ✓B � ⇡

2
, (7)

then we have the relation depended on the direction of
B,B0,

h s|Cs| si = �2
p
2 cos

�
✓B � ⇡

4

�
(8)

For 0<✓B<⇡/2, the Bell inequality |hCsi|  2 can be
violated, and we reach the maximal violation at ✓B =
⇡/4, with an extra factor of

p
2. Now we will see what is

the formula of Bell inequality in the holographic model
of EPR pair in the next section.

III. HOLOGRAPHIC EPR AND BELL
INEQUALITY

In Ref. [9], it is proposed that an entangled color sin-
glet quark anti-quark (q-q̄) pair in SYM can be described
by an open string with both of its endpoints attached to
the boundary of AdS5. The string connecting the pair is
dual to the color fluxtube between the two quarks, with a
1/r Coulomb potential as required by the scale invariance
of boundary theory. Note that there is no confinement
in this theory, therefore the pair can separate arbitrarily
far away from each other.

Numerical solutions of the string shapes with di↵erent
boundary behaviors can be found in [17–19], and an ana-
lytic solution for an accelerating string was found in [10].
In the analytic solution the open string is also accelerated
on the Poincáre patch of the AdS5

ds2 =
L2

w2

⇥
� dt2 + dw2 + (dx2 + dy2 + dz2)

⇤
, (9)

with the AdS radius L and extra dimension w. The string
solution in the AdS5 bulk is given by

z2 = t2 + b2 � w2. (10)

The quark and anti-quark live on the AdS boundary
w = 0. They are accelerating along the ±z direction, re-
spectively, with the solution z = ±

p
t2 + b2. Therefore,

the two entangled particles are out of causal contact with
each others. The question is, is the physics of entangle-
ment in a single EPR pair captured by the geometry of
an ER bridge on the string worldsheet in AdS5?

FIG. 1. Schematic diagram for the quark(q)-antiquark(q̄)
EPR pair in holography. The left(right) world volume hori-
zon depicts the horizon seen by q(q̄) in its co-moving frame.
The Bell Inequality test is performed by spin measurements
at Alice and Bob’s locations. The AdS blackhole is present
only in the finite temperature case, which we briefly discuss
in the last section.

String fluctuations.— To consider the string fluctua-
tions, we transform the solution to the co-moving space-
time (⌧̃ , r̃, x, y, z̃) of the accelerating quarks via

|z| = b
p
1� r̃ez̃ cosh ⌧̃ ,

t = b
p
1� r̃ez̃ sinh ⌧̃ ,

w = b
p
r̃ez̃. (11)

These two frames, which cover the regions z � 0 and
z  0 separately, are accelerating frames with a constant
acceleration a = 1/b along opposite directions of z. And
(11) only maps the upper part of the string (0 < w < b)
into the proper frames of the accelerating quarks with
0 < r̃ < 1. Plug this transformation (11) in the string
solution (10), the metric (9) becomes

ds2 =
L2

b2r̃

h
� f(r̃)b2d⌧̃2 +

b2

4r̃

dr̃2

f(r̃)
+ b2dz̃2

+ e�2z̃
�
dx2 + dy2

� i
, (12)

where f(r̃) = 1�r̃. The event horizon r̃ = 1 separates the
string into two causally disconnected parts. Furthermore,
the Hawking temperature TH = 1

2⇡b matches with the
Unruh temperature TU = a

2⇡ [10, 20].
Let (⌧̃ , r̃) be the new worldsheet coordinates in the cur-

rent frame. The spin measurement of the quarks can be
carried out by the Stern-Gerlach type experiment which
applied a magnetic field gradience to generate a force
that acts on the spins of the quarks. This introduces
fluctuations to the world lines of quarks which then prop-
agate to introduce fluctuations to the world sheet of the
string. Thus, we can consider the string fluctuation as
Xµ = (⌧̃ , r̃, �̃i(⌧̃ , r̃)), with i = x, y, z̃. When �̃i ⌧ 1, the
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Nambo-Goto action of string becomes
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and T0 is the tension of string. The equations of motion
for the fluctuations on the string are

@r̃

⇣2f �̃0i
r̃1/2

⌘
� @⌧̃

⇣ ˙̃
�i

2f r̃3/2

⌘
= 0. (14)

Performing a Fourier transform, and assigning i to x, y

�̃i(r̃, ⌧̃) =

Z
d!

2⇡
e�i!⌧̃ �̃i(!)Y!(r̃), (15)

where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely
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and T0 is the tension of string. The equations of motion
for the fluctuations on the string are
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Performing a Fourier transform, and assigning i to x, y

�̃i(r̃, ⌧̃) =
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2⇡
e�i!⌧̃ �̃i(!)Y!(r̃), (15)

where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as
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What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU
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For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =
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, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
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The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
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F and B0
F , the CHSH correlation formulations becomes
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0
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For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2
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2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely
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and T0 is the tension of string. The equations of motion
for the fluctuations on the string are
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Performing a Fourier transform, and assigning i to x, y
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where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
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rose diagram, corresponding to the boundary of di↵erent
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Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
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The
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� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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tum entanglement of an EPR pair on the boundary. If
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or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
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free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
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particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
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To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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and T0 is the tension of string. The equations of motion
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ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.
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function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
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B are separately defined on
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to be related to the retarded Green’s function,
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which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
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� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
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The mixed measurements for correlators in CHSH corre-
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For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely

3

Nambo-Goto action of string becomes

S ' �T0L
2

Z
d⌧̃dr̃

2r̃3/2

 
1 + 2r̃f

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
,

(13)
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Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely
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and T0 is the tension of string. The equations of motion
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be defined as iGij
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der
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does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
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lation formulation become
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Together with the similar normalization of the operators
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F and B0
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For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2
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2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely
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AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)
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B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
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to be related to the retarded Green’s function,
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which indicates that the spatial correlator Gij
AB / �ij .

The
p
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the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators
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remains:
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✓A0B0 = 3⇡/4, we can reach the maximum value 2
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
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I. INTRODUCTION

Bell inequalities play an important role in quantum
physics. Correlation in local classical theories is bounded
by the Bell inequality, which can be violated only by the
presence of the entanglement in quantum theories. The
violation of Bell inequality in the entangled Einstein-
Podolsky-Rosen (EPR) pair, indicates that two parti-
cles have an “instant interaction”, without the local
hidden variables [1–4]. Recently, there are also some
discussions about Bell inequality in cosmology, to test
whether the origins of fluctuations are classical or quan-
tum mechanical.[5, 12]

Recently, Maldacena and Susskind [6] proposed the
ER=EPR conjecture, which stated that the quantum
entanglement of the EPR pair is related to the non-
traversable Einstein-Rosen (ER) bridge. It is very inter-
esting to see the role of Bell inequality in this paradigm,
such as whether the classical bulk geometry can produce
the quantum behavior in Bell inequality of the EPR pair.

In this paper, we study the Bell inequality in a par-
ticular holographic model of the EPR pair proposed
by Jensen and Karch [7], based on the Anti-de Sit-
ter/Conformal Field Theory(AdS/CFT) correspondence
[8]. Two particles of the boundary EPR pair are con-
nected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [9–
11, 20]. Two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM), thus do not change the AdS
geometry. We will use the CHSH formulations of the Bell
inequality [2], and identify the holographic Schwinger-
Keldysh(SK) correlator as the correlated measurements

⇤
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between two causally disconnected EPR particles. We
discuss the physical interpretation of the Bell Inequality
in both bulk and dual boundary theories.

II. BELL INEQUALITY

As reviewed in [12], we start with the CHSH corre-
lation parametrizations of Bell inequality [2]. The en-
tangled states made of a pair of spins are detected by
Alice and Bob, respectively. The operators correspond
to measuring the spin along various axes with outcomes
of eigenvalues ±1. Performing the operations A and A0
on the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

As = ~nA·~�, A0
s = ~nA0 ·~�, (1)

Bs = ~nB ·~�, B0
s = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCsi = hAsBsi+ hAsB
0
si+ hA0

sBsi � hA0
sB

0
si, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCi|  2

p
2 [3]. For example, if we

choose the entanglement state of a spin singlet

| si = 1p
2

�|"i ⌦ |#i � |#i ⌦ |"i�, (4)

and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AB| si = � cos ✓AB . (5)

https://inspirehep.net/author/profile/Yun.Long.Zhang.1
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Performing a Fourier transform,

q̃i(⌧̃ , r̃) =

Z

d!

2⇡
e�i!⌧̃ q̃i(!)Y!(r̃), (29)

where q̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary, after choosing the normalization
limr̃!0 Y!(r̃) = 1. Then (28) becomes

Y 00
! (r̃)� f(r̃)� 2r̃f 0(r̃)

2r̃f(r̃)
Y 0
!(r̃) +

!2Y!(r̃)

2f(r̃)r̃3/2
= 0. (30)

Requiring the in-falling boundary condition at the hori-
zon, this equation is solved by

Y!(r̃) = (1� r̃)�i!/2F!(r̃). (31)

The complex conjugate

Y ⇤
! (r̃) = Y�!(r̃) = (1� r̃)+i!/2F�!(r̃) (32)

is the other solution with the outgoing boundary condi-
tion at the horizon.

We need to extend these solutions into the Kruskal
plane of the metric (26), with new coordinates U and
V , which are initially defined in the right-quadrant
{U < 0, V > 0}, with

U = �e�2⌧̃e�2r̃⇤ , (33)

V = +e+2⌧̃e�2r̃⇤ . (34)

And r̃⇤ is placed outside the worldsheet horizon 0<r̃<1,

r̃⇤ ⌘
Z

p
r̃

0

dw̃

f(w̃2)
=

1

2
ln

1�
p
r̃

1 +
p
r̃
, (35)

with f(w̃2) = 1 � w̃2. The full extension of the metric
(26) and string worldsheet in the Kruskal plane is shown
in Fig. 2.

U V

A B

FIG. 2. The Kruskal plane of the metric (15) in terms of co-
ordinates U and V . The string worldsheet covers four quad-
rants, with the time-like boundary A(Red) at the left quad-
rant, and B(Green) at the right quadrant.

In the right-quadrant the two solutions near the hori-
zon are

q̃B� = e�i!⌧̃Y!(r̃) ⇠ e�i(!/2) ln(V ), (36)

q̃B+ = e�i!⌧̃Y ⇤
! (r̃) ⇠ ei(!/2) ln(�U). (37)

And in the left quadrant {U > 0, V < 0},

q̃A� = e�i!⌧̃Y!(r̃) ⇠ e�i(!/2) ln(�V ), (38)

q̃A+ = e�i!⌧̃Y ⇤
! (r̃) ⇠ ei(!/2) ln(U). (39)

Similar to the Herzog-Son’s prescription [27, 33], two lin-
ear combinations are analytic over the full Kruskal plane,

q̃+(!, r̃) = q̃B+ + e+⇡!/2q̃A+, (40)

q̃�(!, r̃) = q̃B� + e�⇡!/2q̃A�, (41)

which can be used as two bases for the string fluctuations,

q̃i(⌧̃ , r̃) =

Z

d!

2⇡
[ai(!)q̃+(!, r̃) + bi(!)q̃�(!, r̃)] . (42)

The coe�cients ai(!), bi(!) can be determined by the
two boundary values q̃Ai (!) and q̃Bi (!) of the solutions,

ai(!) = n!

⇥

� q̃Ai (!) + e⇡!/2q̃Bi (!)
⇤

, (43)

bi(!) = n!

⇥

e⇡! q̃Ai (!)� e⇡!/2q̃Bi (!)
⇤

, (44)

with n! = 1/(e⇡! � 1).
In the following, we calculate the boundary formula of

the on shell Nambu-Goto action in (27). After consider-
ing the classical equations of motions (28) and integrating
out the r̃ direction, we obtain

SNG =

p
�f(r̃)

⇡b2r̃1/2
�

Z

A

�
Z

B

�d!

2⇡

h

q̃i(�!, r̃)@r̃ q̃j(!, r̃)�
ij
i

�

�

r̃!0
.

In (42), we have obtained the analytic and regular solu-
tions for the string fluctuations. Putting them back into
(45), the on-shell Nambu-Goto action becomes

SNG[q̃
I
i , q̃

J
j ] =�1

2

Z

d!

2⇡

n

⇥

q̃Ai (�!)q̃Bj (!) + q̃Bi (�!)q̃Aj (!)
⇤

⇥
p

n!(1 + n!)
⇥

Gij
A(!)�Gij

R(!)
⇤

+ q̃Ai (�!)q̃Aj (!)
⇥

(1 + n)Gij
R(!)� nGij

A(!)
⇤

+ q̃Bi (�!)q̃Bj (!)
⇥

nGij
R(!)� (1 + n)Gij

A(!)
⇤

o

,

where I, J=A,B and

Gij
R(!) = �

p
�f(r̃)

⇡b2r̃1/2
Y�!(r̃)@r̃Y!(r̃)�

ij
�

�

r̃!0
, (45)

Gij
A(!) = �

p
�f(r̃)

⇡b2r̃1/2
Y!(r̃)@r̃Y�!(r̃)�

ij
�

�

r̃!0
. (46)

In [26], Gij
R and Gij

A are conjectured as as the holo-
graphic retarded and advanced Green’s functions. With
these conjectures, in [27], it was shown that in the semi-
classical limit of AdS/CFT correspondence, the two-
point correlators could be calculated from the variations
of the generating function of the boundary quantum

6

fields, which is identified with the total on-shell action
of the dual field in the bulk gravity [27].

In our case, the bulk fields are the string fluctuations
[32], which are governed by the on-shell Nambu-Goto ac-
tion in the bulk gravity SNG[q̃Ii , q̃

J
j ] in (??), with the

fluctuations q̃Ii and q̃Ji on the two boundaries. Thus, the
generating function of the holographic EPR pair is

ZEPR ⌘ he i
~SEPRi

AdS/CFT
' e

i
~SNG[q̃Ii ,q̃

J
j ]. (47)

After considering the holographic advanced and retarded
Green’s functions in (??) (??), taking functional deriva-
tives of ZEPR with respect to q̃Ii and q̃Jj will yields the
Schwinger-Keldysh correlators in the holographic EPR
pair

iGij
IJ ⌘ ~2

i2
�2 lnZEPR

�(q̃Ii )�(q̃
J
j )

'
�2SNG[q̃Ii , q̃

J
j ]

�(q̃Ii )�(q̃
J
j )

, (48)

where SEPR ' SNG[q̃Ii , q̃
J
j ] has been used. From the

boundary theory’s viewpoint, the operators F i
I conjugate

to the sources q̃Ii are quantized through path integral

quantization. The action SNG[q̃Ii , q̃
J
j ] in (??) could be

o↵-shell in terms of the variables q̃Ii . However, from the
bulk theory’s viewpoint, the string fluctuations q̃i(⌧̃ , r̃)
in (42) are governed by the classical equations of motion
in (28). The action SNG[q̃Ii , q̃

J
j ] is the on-shell formula

of the string worldsheet in the bulk, with two boundary
values q̃Ai and q̃Bi of the string endpoints.
Finally, from (??) and (48), the o↵-diagonal one is re-

lated to the retarded Green’s function as (21) in the main
text,
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distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero and the EPR pair is al-
ways infinitely far apart. Thus, we can only approach
the zero acceleration limit after we identify the spin cor-
relation with the normalized operators as in the following
Eq.(23) in which a dependence cancels.

To study the correlators, we normalize the operators
such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (23)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (24)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (25)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

Discussions and Conclusion. — In our deriva-
tion, we see the bulk string fluctuations in the AdS grav-
ity, reproduce the quantum entanglement of an dual EPR
pair on the boundary. Technically, this result relies on
only two ingredients. The first one is that the observ-
able in Bell’s test is a time ordered Greens function as
shown in Eq.( 11). And it is well known that the time
ordered Green’s function does not have to vanish when
the measurements PA and PB are outside of each other’s
light cone. Mathematically, this is because the behaviors
of the SK correlators outside the two horizons need to
be correlated, otherwise the solution is not smooth in-
sides the horizons. The second one is that the equation
of motion of the classical string, Eq.(17), has no coupling
between q̃x and q̃y such that Eq.(22) follows. This can
be obtained as long as the string does not experience a
force to propagate the fluctuation in the x-direction to
the y-direction which breaks parity in general. It seems
once these two conditions are satisfied, it does not mat-
ter whether there is an ER bridge on the worldsheet in
the bulk. Hence it is conceivable Bell inequality can still
be violated in a holographic model where the EPR pair
does not accelerate, similar to how holographic entan-
glement entropy is computed in a static system [29, 30].
However, for the current holographic model of EPR pair
we studied, the SK correlators will vanish in the limit of
zero acceleration a ! 0. It is still unclear to us how the
holographic Bell inequality is evaluated n this case.

For future work, it is interesting to consider the back
reaction by the measurements and see whether the ER
bridge on the worldsheet is broken due to the energy in-
jected by measurements. This might provide an oppor-
tunity to study the “wave function collapse” typically

used to describe how measurements change the states.
Another interesting topic is the decoherence of the EPR
pair in the environment. If the environmental e↵ect can
be described by thermal fluctuations, then we can add a
black hole to the bulk of our model. When the distance
of the EPR pair increases with time, the ER bridge on
the worldsheet also approaches the black brane horizon
and then enters the horizon [31]. We expect the string
breaks after it enters the horizon which might shed light
on the decoherence process in the boundary field theory.
The ER=EPR conjecture is proposed to resolve the

black hole information paradox without introducing a
firewall in the black hole. The conjecture implies that
entanglement of the EPR pair, which is thought to be
a quantum mechanical e↵ect, can be captured by grav-
ity through the ER bridge. Using Bell inequality as a
sharp test of entanglement, we study a holographic model
with an EPR pair at the boundary and an e↵ective ER
bridge on the string worldsheet in the bulk. By revealing
how Bell inequality is violated in the EPR pair through
the holographic duality from the on-shell string fluctu-
ations in higher dimension bulk gravity, our study sup-
ports the essential property of the holographic model of
EPR pair. Since the original ER=EPR has both ER and
EPR living in the same spacetime dimensions, it is cu-
rious whether experimental observables associated with
classical on-shell formula in our spacetime dimensions,
not just in the bulk of holography, can be found.

Appendix: Holographic SK Correlator. — In
this appendix, we give a detailed derivation of the re-
lation between holographic Schwinger-Keldysh correla-
tor and retarded Green function in equation (21). The
derivation follows Ref. [27, 32]. Let x̃µ = (⌧̃ , r̃, x̃, ỹ, z̃)
be the dimensionless coordinates in the co-moving frame,
with the square of line element ds2 = g̃µ⌫dx̃µdx̃⌫ , where

g̃µ⌫ =
L2

r̃
diag

⇥

�f(r̃),
1

4r̃f(r̃)
, e�2z̃, e�2z̃, 1

⇤

. (26)

And x̃a = (⌧̃ , r̃) are coordinates on the static string
worldsheet. Without loss of generality, we can con-
sider the string fluctuation as Xµ(⌧̃ , r̃) =

�

⌧̃ , r̃, q̃i(⌧̃ , r̃)
�

,
which lead to an induced metric on the string world-
sheet gab=(@aXµ)(@bX⌫)g̃µ⌫ . The Nambu-Goto action
of string with tension Ts is SNG= �Ts

R

d⌧̃dr̃
p
� det gab.

When the fluctuation q̃i ⌧ 1, the action becomes

SNG'�
p
�

2⇡

Z

d⌧̃dr̃

2r̃3/2

⇢

1+
h

2r̃f(r̃)q̃0iq̃
0
j�

1

2f(r̃)
˙̃qi ˙̃qj

i

hij

�

,

where
p
� ⌘ 2⇡TsL

2, q̃0i ⌘ @q̃i
@r̃ ,

˙̃qi ⌘ @q̃i
@⌧̃ and hij =

diag[1, e2z̃, e2z̃] have been used.
The classicial equations of motion for the fluctuations

q̃i on the string are

@r̃

⇣2f q̃0i
r̃1/2

⌘

� @⌧̃

⇣ ˙̃qi
2f r̃3/2

⌘

= 0. (27)
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Green’s functions in (??) (??), taking functional deriva-
tives of ZEPR with respect to q̃Ii and q̃Jj will yields the
Schwinger-Keldysh correlators in the holographic EPR
pair
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where SEPR ' SNG[q̃Ii , q̃
J
j ] has been used. From the

boundary theory’s viewpoint, the operators F i
I conjugate

to the sources q̃Ii are quantized through path integral

quantization. The action SNG[q̃Ii , q̃
J
j ] in (??) could be

o↵-shell in terms of the variables q̃Ii . However, from the
bulk theory’s viewpoint, the string fluctuations q̃i(⌧̃ , r̃)
in (42) are governed by the classical equations of motion
in (28). The action SNG[q̃Ii , q̃

J
j ] is the on-shell formula

of the string worldsheet in the bulk, with two boundary
values q̃Ai and q̃Bi of the string endpoints.
Finally, from (??) and (48), the o↵-diagonal one is re-

lated to the retarded Green’s function as (21) in the main
text,
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If restoring the physical units, the exponential index be-
comes exp[� ~!

kBTa
], and Ta = ~ a
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Nambo-Goto action of string becomes

S ' �T0L
2

Z
d⌧̃dr̃

2r̃3/2

 
1 + 2r̃f

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
,

(13)

and T0 is the tension of string. The equations of motion
for the fluctuations on the string are

@r̃

⇣2f �̃0i
r̃1/2

⌘
� @⌧̃

⇣ ˙̃
�i

2f r̃3/2

⌘
= 0. (14)

Performing a Fourier transform, and assigning i to x, y

�̃i(r̃, ⌧̃) =

Z
d!

2⇡
e�i!⌧̃ �̃i(!)Y!(r̃), (15)

where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely

6

fields, which is identified with the total on-shell action
of the dual field in the bulk gravity [27].

In our case, the bulk fields are the string fluctuations
[32], which are governed by the on-shell Nambu-Goto ac-
tion in the bulk gravity SNG[q̃Ii , q̃

J
j ] in (??), with the

fluctuations q̃Ii and q̃Ji on the two boundaries. Thus, the
generating function of the holographic EPR pair is

ZEPR ⌘ he i
~SEPRi

AdS/CFT
' e

i
~SNG[q̃Ii ,q̃

J
j ]. (46)

After considering the holographic advanced and retarded
Green’s functions in (??) (??), taking functional deriva-
tives of ZEPR with respect to q̃Ii and q̃Jj will yields the
Schwinger-Keldysh correlators in the holographic EPR
pair
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where SEPR ' SNG[q̃Ii , q̃
J
j ] has been used. From the

boundary theory’s viewpoint, the operators F i
I conjugate

to the sources q̃Ii are quantized through path integral

quantization. The action SNG[q̃Ii , q̃
J
j ] in (??) could be

o↵-shell in terms of the variables q̃Ii . However, from the
bulk theory’s viewpoint, the string fluctuations q̃i(⌧̃ , r̃)
in (42) are governed by the classical equations of motion
in (28). The action SNG[q̃Ii , q̃

J
j ] is the on-shell formula

of the string worldsheet in the bulk, with two boundary
values q̃Ai and q̃Bi of the string endpoints.
Finally, from (??) and (48), the o↵-diagonal one is re-

lated to the retarded Green’s function as (21) in the main
text,
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If restoring the physical units, the exponential index be-
comes exp[� ~!

kBTa
], and Ta = ~ a
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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)

⌧�1
c ' k2

4⇡Tc

9

H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.

?

2

I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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