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The origin of LSS is quantum fluctuations!!
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It is extremely important to prove the quantumness of primordial fluctuations.



How to characterize the quantumness?
I

If we can observe quantumness of primordial fluctuations,
we can prove that the origin of LSS is quantum fluctuations.

In particular, detecting quantumness of PGW implies the discovery of gravitons!

To achieve the ultimate aim,
we need to characterize the quantumness of the initial quantum state.

How to find quantumness in the cosmological data?

Bell inequality Campo & Parentani 2006
Maldacena 2016
Bell inequality can probe the entanglement of quantum states.

Hence, as a first step, we try to classify the quantumness
of the initial quantum state in terms of Bell-like inequality.
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Quantum non-locality vs local hidden variable theory
I

From the source S, two particles with opposite spins are ejected.

0)=[T) |1y=|{) X Y
v ¥
Alice and Bob are well separated _ S
and they cannot communicate each other. Alice | «m [ll=» t BoD
The state is a singlet and a superposition of v v

up-down and down-up.

\/—{| )®|1)—[1)®|0)
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If Alice measure the spin and get up spin,
Bob should detect down spin, and vice versa.

Is this a spooky action at a distance, quantum non-locality?
Is there any local hidden variable theory to explain this phenomena?



S Join system in Local hidden variable theories

From the source S, two particles with opposite spins are ejected.

Alice choose a measurement X X Y
and get an outcome a. ! \

Bob choose a measurement Y
and get an outcome b.

x,y ={0,1} a,b={-11)} ¥ v

After repeating the measurement many times, a b
we obtain a joint probability p(ab| XY)

It turned out there exists a correlation plabl XY)# p(al X)p(b1Y)

A local hidden variable theory  p(ab| XY )= Jdﬂ, qg(A) p(al X,)p(b1Y 1)

A :ahidden variable  g(1):a probability for A
p(al X,A):a probability for a



Bell 1964

Bell inequa[ity Clauser et al (CHSH) 1969
o —

Bell inequality {S:J’dﬂvqa)sz:%[<aobo>+<aob1>+<a1bo>_<a1b1>]S1 }

<proof> zabp(ab 1XY)=[dAq(A) apal X.A) b p(b1Y.2)=[dAq(2)(a

2 (by),

Without loosing generality, we can assume (by), 2(b), 20
S, <(b,), <1

.S = _[dxl g(A) S, <1



Spin system in quantum theory
R

s
0)=|T) [1)=[) ] o= ll= 1
soincperators 5, =|o><1|+| >< R 1) T R D R

entangled state \/— {‘ |1 ®|O>}

spin measurement O =15 =sinf s, +cosO s,
(7, +5) ® (7, + 5)|w) = sin,{ |0){1] +|1){0[ } + cos®, {|0){0]-|1){1]} ]

®|sin6,{ |0)(1]+[1)(0[} + cos®, {]0)(0] [ 1){1]} 1)®]0)}

+loe
sinf, sin6, {—|0) ®|1)+|1) ®|0)} +sin6, cosH, {-|1) ®|1)—|0) ®|0)}

1
5

+cos6,sin6,{|0) ®]0)+[1)®|1)} +cos6, cos, {~|0) ®|1) +[1) ®|0)} ]

~{(y|0,®0,|y)= —c:os(H1 —92)



Quantum violation of Bell inequality
I

Bell operator 2M,=0,80,+0,®0,+0',®0,-0',®0/,

1
<l//|M2|1//> = 5[—cos(01 —6’2)—cos(91 —9'2)—cos(@‘l—92)+cos(9'1—9'2)]

What is the maximal value? 6-=0, 0, =—0, 6,=0, 6, =—"

(w|M,|y)

1.5

Thus, Bell inequality is violated in quantum theory.



Another view of Bell inequality Cirelson 1980
S

It is useful to see the origin of violation of Bell inequality.
1
M2:5[0102+010'2+0‘102—0'10'2] O=iies iieii=1
The square of Bell operator can be calculated using s,s, =0, +i€,, s,

(M,) = 1—%[01,01'][02,0'2]

Since | 5. 5; |=2ig; s, = [[0,07]<2

We obtain
Quantum Bell inequality .'.|M2| <\2

Namely, the non-commutativity is the origin of the violation of Bell inequality.
It is also important to realize that the quantum bound of the violation exists.
If this bound is violated, that means quantum theory is not enough.
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f p t Aspect, Grangier and Roger 1981
xﬁerlmen Hensen et al. 2015; Giustina et al. 2015; Shalm et al. 2015

S=(z- y)(0,0) +(z- y)(O,l)
+ (- y)(l,o) —(z- y)(l,l) <2

Hensen et al. 2015
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ENTANGLED QUANTUM VACUUM
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Scalar field in inflationary universe
I

[V“Vu—mZJ(P:O ds’ =a2(n)[—dn2+dx2+dy2+dz2]
1
de Sitter inflation a(n)=- —co <N <,
(n)=-— (n=2m) n<n
radiation dominant a(n)= Hinz n,<n
* d? ) "
ag,(m) = (M), +a () Pt O

de Sitter inflation [ d —+ k-
dn

radiation dominant ( . +k2)uk(n): 0 n.<n
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Yacuum is not unique
I

As usual in field theory in curved space, the vacuum is not unique.

. 1 : .
In vacuum mode i () —= Vﬁ[l‘m]e o
O out « 1 —ikn
ut vacuum mode " (n)—=— —

out out* outt

ag,(n)=u (M), +u” (n)as =u (n)a" +u" (n)a’y

out

0,)=0 Out vacuum q;

In vacuum a 0,,)=0

Bogoliubov transformation

' (n)= Al (n)+ Bl *(n) <y @' =Aa." - Ba;"

(1-2ikn, —2&’n?) By =~(u ) = Yo

. e
= 2k’n

r
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Two-mode squeezed vacuum
I

Using the relations

B Yy 1
tanhr, = —% = —¢ "

A, 1+ 2ikn, — 2k*n?

in __ A% out _ outt
a, =Aq. —Ba;

we can solve the equation

in>:0 as

Oin> E|BD> _ COShrk 1:[etanhrkazurfa‘”;j+ Oout — . H%tanhn 0ut> aut>
_ 1 [T[|0z)®|0% )+ tanhr, 1) @1 )+ |

coshr, 7

squeezing parameter

where we defined Bunch-Davies vacuum which is a standard vacuum in inflation.

In the large squeezing limit, the state becomes highly entangled state.
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Albrecht et al. 2014
Four-mode squeezed vacuum a0 2016

L]
Let us consider two scalar fields.

$= [any| a* (010 - K0.00)-a'mio g+ (il ~K 7 i) -tz
k

ag,(n)=u(n)ay +u;" (n)a’y ay,(n)=v{ (M +v;" (n)by
Entangled initial state a, =oa"+Bb" b =ab"+Ba"
[ a|w)=0 b ly)=0 } O =Xk O S X
B, k), <|-k),

k N

1Z>¢® 1i_nk> -— li_nk> ® 1Z>x+:| |_k>¢ <:>|k>%

oo ¢

If we consider interactions or multi fields, we could have more complicated entanglement.
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MERMIN-KLYSHKO INEQUALITY



Mermin 1990

Bell-Mermin-Klyshko inequality Klyshko 1993

We can generalize Bell inequality to multi-partite systems.
Recursion relation M = % ®(0,+0')+ % ®(0,-0',)
M, =0, M' =0
Ex: 2M,=0,80,+0,®0',+0',®0,-0'®0,
O =a,-s O, '=a s
2M,=M,®(0,+0",)+M',®(0,-0",)

Since these operators dichotomic quantities with outcome +1 and -1,
we have

BMK inequality <M, > <1
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Property of BMIXK operators Alsina et al. 2016

We can deduce

1
NS

|
w1 S S 0.0

S= lj

p—

1 1
Ex: (M3)2 = I__[OI’OI'][02’0'2]_Z[01’01'][03’0'3]_Z[02’02'][03’0'3]

(M,) =1-4[0,.0,10,.0]-710.0,]0..0']-;[0..0,[0,.0']

1 I I
—Z1o.0/0..0']-2[0..0,][0,.0,]-7[0:.0:][0,.0']

_1
16

From the above formula, we can get the maximal value

<M,f>max =1+(§)+(%)+...+ ﬁ _

n
2

[0,.0/][0,,0:][0,.0:|0,.0,]

|
[

n

|

Quantum BMK inequality <M, >[<2
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Pseudo-spin operators Chen et al. 2002
I

In order to extend Bell inequality to field theory, we define pseudo-spin operators

;. :g{|2n+1><2n+l|—|2n><2n|}

s =Y |2n){2n+1=(s,)

n=0

which satisfies the same commutation relations as the spin operators
|:sz,si:|=i2si [S+,S_]=SZ

With a unit vector d =(sinOcos@,sinOsing,cosH)

We can define

O:ﬁ-§=cos(9sz+sin9(e’”’s_+e""”s+) —) () =]
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COSMOLOGICAL BELL-MK INEQUALITIES
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Bell inequality in Bunch-Davies vacuum
I

The standard vacuum in de Sitter space is the Bunch-Davies vacuum

| BD H 2 tanh” 0ut> 0ut>

coshr, ;5
The density matrix is given by p =|BD){BD|
For two-partite system, we can take O =cosB s+ sinO(s_ + S+)

Using the relation

i tanh" r, nﬁ”’>® nff> 2 tanh™" 7, ‘ (20) out>®‘ out>+i tanh*""' rk‘(2n+1)im>®‘(2”+1)iz>

"= coshr, ' coshr, ' coshr,

we can calculate
E(a,,a,)=TrO,®0, p

= c0s0, cosO, +tanh2r, sin6, sin6,
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Bell inequality in Bunch-Davies vacuum
I

Taking 0/=-0, 6,=0, 0, zg

1
(BD|M,|BD)= E[E(al,a2)+E(al,a;)+E(a1',a2)—E(al',a;)]
= cos 6, +tanh2r, sin6,

maximum at
tan 6, = tanh2r,

(BD|M,|BD)=/1+tanh>2r, >1

The Bell inequality is always violated in the Bunch-Davies vacuum.
In the large squeezed limit, we obtain
~.(BD|M,|BD)———+2

r—yo0
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Increasing the number of modes

It should be stressed that there are infinitely many modes in field theory.

b —a,

No correlation

No correlation

RN

We focus on the 2n partite system.

H, =H,®H,®---®H,

~
2 n partite sysyem




Bell is sufficient for BD vacuum Kanno & Soda 2017
I

What if we use BMK inequalities?

By induction, we can prove the relation

M,, :%®(M2+M'2)+%®(MZ—M'2)

Assume that 2n-2 and 2 have no correlation

(M )= (M) (M) (M) (M) ()= ()

(M) = (M, (M) (ML) 20, ) (M) - (00,)

From these, we get
B, = (M, + (M, = (M, ) + (M, ) ) (0, +(m,))
Thus, we can deduce

1 1Y 1" N _ :
B,, EEan—z B, :(5) By, 2. B :(Ej B; :2(1 B2y q, = <W|M2|l//>

Since ¢, <2, Bell operator is most effective test of quantumness.
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BMK inequality in non-BD vacuum
R

A BMK operator for four-partite system reads
4M,=0'®0,80,80,-0'®0',00',80,+0,80',0,80,+0,890,00',80,
+0'®0,¥0,¥0',-0'®0',800',00',+0,80',00,80',+0,0,00"',80’,
+0,®0',00,®0,-0,90,%0,%0,+0'®0,80,0,+0'®0',80,%0,
+0,®0',00',90',+0,¥0,%0,90',+0'®0,¥0',800',+0'®0',80,%0',
(WM., |y)

1.5

. { quantum bound
/ \ ! for a two-partite system
1.0 '

The maximal vale is about 1.45.

0.0




Increasing the number of modes

Again, it should be stressed that there are infinitely many modes in field theory.

[ ¢k1 — ¢—k1 %k1<—>)(_k1 }

} } No correlation
}} No correlation

[ ¢k2 — ¢—k2 Xk, X%,

[ ¢k3 — ¢—k3 Xk, L O IR

We focus on the 4n partite system.

H, =H,®H,®---®H,

-
4 n partite sysyem




Infinite violation Kanno & Soda 2017
I

M, :%®(M4+M'4)+%®(M4—M'4)

Assume that 4n-4 and 4 have no correlation

(M) =2 (M (ML) + (M) 4 (M, (M) (M)
(M) =2 (M ) (M) (0, ) ()= ()

From these, we get

1

B, = <M4n>2 +<M‘4n>2 = 5(<M4n—4 >2 +<M'4n—4 >2)(<M4 >2 +<M'4 >2)

Thus, we can deduce
1 1Y A D . 2
B, = 5B4n—4 B, = (5) B, 4, B, = (5) B, = 2(1 el q, = <W‘M4|l//>

For g>2, the expectation value of BMK exponentially large.
For the present case, we have  ¢g=1.45"=2.103

Hence, we can see infinite violation of BMK inequality.
28



Movre general state

M :—M;"-m ®(Mm+M'm)+—M'§”‘m ®(M,-M',)

mn

Assume that mn-m and m have no correlation

Thus, we can deduce

1 1 k 1 n—1 .
an Ean—m Bm = (—) an—km B’i = (_j Br’:l — 2(10g2qm l)n 1

. m—1
In the maximal case, we have ¢, =2

Hence, we can see infinite violation of BMK inequality.

B — 2(m—2)n+1

mn

4, =(w|M,|v)

Cf. |<Mm, > <2"

Thus, we can classify entangled vacuum by BMK inequality.
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Summary
I

> We have formulated BMK inequality in inflation

» It is shown that Bell inequality is maximally violated in Bunch-Davies
vacuum

» The violation of BMK inequality gets exponentially larger
for non-Bunch-Davies vacuum

» We have shown that we can characterize the initial quantum state
in terms of BMK inequalities.

» The huge violation indicates the detectability of quantumness.

» We need to invent a concrete method for detecting the quantumness.
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