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The origin of LSS is quantum fluctuations!!	
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It is extremely important to prove the quantumness of primordial fluctuations.	



How to characterize the quantumness? 
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How to find quantumness in the cosmological data? 

Campo & Parentani 2006	

Maldacena 2016	

Bell inequality 

Hence, as a first step, we try to classify the quantumness 
                              of the initial quantum state in terms of Bell-like inequality. 

Bell inequality can probe the entanglement of quantum states.	

If we can observe quantumness of primordial fluctuations, 
                                           we can prove that the origin of LSS is quantum fluctuations.	

In particular, detecting quantumness of PGW implies the discovery of gravitons! 
	

To achieve the ultimate aim,  
                   we need to characterize the quantumness of the initial quantum state. 
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Quantum non-locality vs local hidden variable theory	
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ψ = 1
2
0 ⊗ 1 − 1 ⊗ 0{ }

0 = ↑ 1 = ↓

The state is a singlet and  a superposition of 
                               up-down and down-up.	

If Alice measure the spin and get up spin,  
                          Bob should detect down spin, and vice versa.	

Alice	 Bob	

X Y

a b

SAlice and Bob are well separated  
and they cannot communicate each other.	

Is this a spooky action at a distance, quantum non-locality? 
Is there any local hidden variable theory to explain this phenomena?	

From the source S, two particles with opposite spins are ejected. 	



     Spin system in Local hidden variable theories	
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Alice	 Bob	

X Y

a b

Alice choose a measurement X  
and get an outcome a.	

Bob choose a measurement Y  
and get an outcome b.	

From the source S, two particles with opposite spins are ejected. 	

After repeating the measurement many times, 
 we obtain a joint probability	 p(ab | XY )

p(ab | XY ) ≠ p(a | X)p(b |Y )It turned out there exists a correlation	

p(ab | XY ) = dλ q(λ) p(a | X,λ)p(b |Y ,λ)∫A local hidden variable theory	

X,Y = 0,1{ } a,b = −1,1{ }

λ : a hidden variable q λ( ) : a probability for λ

p a | X,λ( ) : a probability for a

S



                          Bell inequality	
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aX bY = abp(ab | XY )
a, b
∑ = dλ q(λ) a p(a | X,λ) b p(b |Y ,λ)∫ = dλ q(λ) aX λ∫ bY λ

S = dλ q(λ)Sλ∫ = 1
2

a0 b0 + a0 b1 + a1b0 − a1b1⎡⎣ ⎤⎦ ≤1

Sλ =
1
2

a0 λ
b0 λ

+ a0 λ
b1 λ

+ a1 λ
b0 λ

− a1 λ
b1 λ

⎡⎣ ⎤⎦

Sλ ≤
1
2
b0 λ

+ b1 λ
+ 1
2
b0 λ

− b1 λ

= 1
2
a0 λ

b0 λ
+ b1 λ{ }+ 12 a1 λ

b0 λ
− b1 λ{ }

a0, 1 λ
≤1

b0 λ
≥ b1 λ

≥ 0Without loosing generality, we can assume	

Sλ ≤ b0 λ
≤1

∴S = dλ q(λ)∫ Sλ ≤1

Bell inequality	

<proof>	

Bell 1964	

Clauser et al  (CHSH)   1969	



Spin system in quantum theory	
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sx = 0 1 + 1 0 sy = −i 0 1 + i 1 0 sz = 0 0 − 1 1

 O = !n i
!s = sinθ sx + cosθ sz

ψ = 1
2
0 ⊗ 1 − 1 ⊗ 0{ }

0 = ↑ 1 = ↓

 
!n1 i
!s( )⊗ !n2 i

!s( )ψ = sinθ1 0 1 + 1 0{ }+ cosθ1 0 0 − 1 1{ }⎡⎣ ⎤⎦

⊗ sinθ2 0 1 + 1 0{ }+ cosθ2 0 0 − 1 1{ }⎡⎣ ⎤⎦
1
2
0 ⊗ 1 − 1 ⊗ 0{ }

= 1
2
sinθ1 sinθ2 − 0 ⊗ 1 + 1 ⊗ 0{ }+ sinθ1 cosθ2 − 1 ⊗ 1 − 0 ⊗ 0{ }⎡⎣

+cosθ1 sinθ2 0 ⊗ 0 + 1 ⊗ 1{ }+ cosθ1 cosθ2 − 0 ⊗ 1 + 1 ⊗ 0{ }⎤⎦

∴ ψ O1⊗O2 ψ = −cos θ1 −θ2( )

S

spin operators	

entangled state	

spin measurement	
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Quantum violation of Bell inequality	
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ψ M 2 ψ = 1
2

−cos θ1 −θ2( )− cos θ1 −θ '2( )− cos θ '1−θ2( ) + cos θ '1−θ '2( )⎡⎣ ⎤⎦

θ1 =
3π
4
, θ '1 = − 3π

4
, θ2 = 0, θ '2 = − π

2

ψ M 2 ψ = 2 >1

θ1 = θ , θ '1 = −θ , θ2 = 0, θ '2 = − π
2

2M 2 =O1⊗O2 +O1⊗O '2+O '1⊗O2 −O '1⊗O '2

Thus, Bell inequality is violated in quantum theory.	

Bell operator	

What is the maximal value?	



Quantum Bell inequality	

　　Another view of Bell inequality	
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M 2( )2 = I − 1
4
O1,O1 '[ ] O2,O '2[ ]

M 2 =
1
2
O1O2 +O1O '2+O '1O2 −O '1O '2[ ]

∴ M 2 ≤ 2

O,O '[ ] ≤ 2

It is useful to see the origin of violation of Bell inequality.	

The square of Bell operator can be calculated using 	

si , s j⎡⎣ ⎤⎦ = 2 iε ijk sk ⇒Since 	

We obtain	

Namely, the non-commutativity  is the origin of the violation of Bell inequality. 
It is also important to realize that the quantum bound of the violation exists. 
If this bound is violated, that means quantum theory is not enough. 	

Cirelson  1980	

si s j =δ ij + iε ijk sk

 O = !n i
!s  
!n i
!n = 1



Experiment	
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 Aspect, Grangier and Roger 1981	

Hensen et al. 2015; Giustina et al. 2015; Shalm et al. 2015	

Hensen et al. 2015	



ENTANGLED QUANTUM VACUUM	
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Scalar field in inflationary universe 
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ds2 = a2 η( ) −dη2 + dx2 + dy2 + dz2⎡⎣ ⎤⎦

a η( ) = − 1
H η − 2ηr( )

a η( ) = η
Hηr

2

−∞ <η <ηr

ηr <η

d 2

dη2 + k
2 − a ''

a
⎛
⎝⎜

⎞
⎠⎟
uk η( ) = 0aφk η( ) = uk η( )ak + uk* η( )a−k†

de Sitter inflation	

radiation dominant	

∇µ∇µ − m
2⎡⎣ ⎤⎦φ = 0

−∞ <η <ηr

ηr <η

de Sitter inflation	

radiation dominant	

d 2

dη2 + k
2 − 2

η − 2ηr( )2
⎛

⎝
⎜

⎞

⎠
⎟ uk η( ) = 0

d 2

dη2 + k
2⎛

⎝⎜
⎞
⎠⎟
uk η( ) = 0



Vacuum is not unique 
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uk
in η( ) = Akukout η( ) + Bk*ukout * η( )

Ak = uk
out ,uk

in

η=ηr
= − e2ikηr

2k2ηr

1− 2ikηr − 2k
2ηr

2( ) Bk
* = − uk

*out ,uk
in

η=ηr
= 1
2k2ηr

2

uk
in η( ) η→−∞⎯ →⎯⎯ 1

2k
1− i

k η − 2ηr( )
⎛

⎝⎜
⎞

⎠⎟
e− ik η−2ηr( )

uk
out η( ) ηr<η

⎯ →⎯⎯ 1
2k

e− ikη

In vacuum mode	

Out  vacuum mode	

aφk η( ) = ukin η( )akin + ukin* η( )a−kin† = ukout η( )akout + ukout* η( )a−kout†

In vacuum	 Out  vacuum	ak
in 0in = 0 ak

out 0out = 0

ak
in = Ak

*ak
out − Bkak

out†

As usual in field theory in curved space, the vacuum is not unique.	

Bogoliubov transformation	



Two-mode squeezed vacuum 
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tanh rk =
Bk
Ak

= −e−2ikηr 1
1+ 2ikηr − 2k

2ηr
2

0in ≡ BD = 1
cosh rk

etanh rkak
out †a−k

out †

k
∏ 0out = 1

cosh rk
tanhn rk

n=0

∞

∑ nk
out ⊗ n−k

out

k
∏

 
= 1
cosh rk

0k
out ⊗ 0−k

out + tanh rk 1k
out ⊗ 1−k

out +!⎡⎣ ⎤⎦
k
∏

ak
in = Ak

*ak
out − Bkak

out†

ak
in 0in = 0

Using  the relations	

we can solve the equation 	 as	

where we defined Bunch-Davies vacuum which is a standard vacuum in inflation. 
 
In the large squeezing limit, the state becomes highly entangled state.	

squeezing parameter	



Four-mode squeezed vacuum 
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S = dη a2 ′φkφk
*′ − k2φkφk

*( )− a4mφ
2φkφk

* + a2 ′χ kχ k
*′ − k2χ kχ k

*( )− a4mφ
2χ kχ k

*⎡
⎣⎢

⎤
⎦⎥k

∑∫

 !ak =α kak
in + βk

*b−k
in†

 
!bk =α kbk

in + βk
*a−k

in†Entangled initial state	

Kanno 2015	

Albrecht et al.  2014	

aφk η( ) = ukin η( )akin + ukin* η( )a−kin† a χ k η( ) = vkin η( )bkin + vkin* η( )b−kin†

φk ⇔ χ−k !ak ψ = 0  
!bk ψ = 0

ψ = N e
−βk
α k

ak
†b−k
†

k
∏ BD

 
= N BD φ ⊗ BD χ −

βk

α k

1k
in

φ
⊗ 1−k

in
χ
− βk

α k

1−k
in

φ
⊗ 1k

in
χ
+!

⎡

⎣
⎢

⎤

⎦
⎥

k
∏

φ−k ⇔ χk

Let us consider two scalar fields.	

If we consider interactions or multi fields, we could have more complicated entanglement.	

−k φ ⇔ k χ

k φ ⇔ −k χ



MERMIN-KLYSHKO INEQUALITY	
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Bell-Mermin-Klyshko inequality 
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Mn =
Mn−1

2
⊗ On +O 'n( ) + M 'n−1

2
⊗ On −O 'n( )

M1 =O1 M '1 =O '1

2M 2 =O1⊗O2 +O1⊗O '2+O '1⊗O2 −O '1⊗O '2

< Mn > ≤1BMK inequality	

 On =
!an ⋅
!s

Recursion relation 	

Klyshko 1993	

Mermin  1990	

 On ' =
!′an ⋅
!s

Ex：	

2M 3 = M 2 ⊗ O3 +O '3( ) +M '2⊗ O3 −O '3( )

Since these operators dichotomic quantities with outcome +1 and -1, 
we have	

We can generalize Bell inequality to multi-partite systems.	



Property of BMK operators 
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Alsina et al.  2016	

< Mn > ≤ 2
n−1
2Quantum BMK inequality	

Mn
2 = I + (−1)s

22s
Oij
,O 'i j⎡⎣ ⎤⎦

j=1

2s

∏
i j
∑

s=1

n
2

⎡
⎣⎢

⎤
⎦⎥

∑

 

Mn
2
max

= 1+ n
2

⎛
⎝⎜

⎞
⎠⎟ +

n
4

⎛
⎝⎜

⎞
⎠⎟ +!+ n

2 n
2

⎡
⎣⎢

⎤
⎦⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2n−1

We can deduce	

From the above formula, we can get the maximal value	

M 3( )2 = I − 1
4
O1,O1 '[ ] O2,O '2[ ]− 14 O1,O1 '[ ] O3,O '3[ ]− 14 O2,O2 '[ ] O3,O '3[ ]

M 4( )2 = I − 1
4
O1,O1 '[ ] O2,O '2[ ]− 14 O1,O1 '[ ] O3,O '3[ ]− 14 O2,O2 '[ ] O3,O '3[ ]

− 1
4
O1,O1 '[ ] O4 ,O '4[ ]− 14 O2,O2 '[ ] O4 ,O '4[ ]− 14 O3,O3 '[ ] O4 ,O '4[ ]

− 1
16

O1,O1 '[ ] O2,O '2[ ] O3,O3 '[ ] O4 ,O '4[ ]

Ex：	



Pseudo-spin operators 
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sz = 2n +1 2n +1 − 2n 2n{ }
n=0

∞

∑

s− = 2n 2n +1
n=0

∞

∑ = s+( )†

sz , s±⎡⎣ ⎤⎦ = ±2 s± s+ , s−[ ] = sz

In order to extend Bell inequality to field theory, we define pseudo-spin operators	

which satisfies the same commutation relations as the spin operators	

 
O = !a ⋅ !s = cosθ sz + sinθ eiϕs− + e

− iϕs+( )

 
!a = sinθ cosϕ,sinθ sinϕ,cosθ( )

O2 = 1

With a unit vector	

We can define	

Chen et al.  2002	



COSMOLOGICAL BELL-MK INEQUALITIES 	
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E a1,a2( ) = TrO1⊗O2 ρ

ρ = BD BD

Bell inequality in Bunch-Davies vacuum 

= cosθ1 cosθ2 + tanh2rk sinθ1 sinθ2

The standard vacuum in de Sitter space is the Bunch-Davies vacuum	

we can calculate	

tanhn rk
cosh rk

nk
out ⊗ n−k

out

n=0

∞

∑ = tanh2n rk
cosh rk

2n( )k
out ⊗ 2n( )−k

out + tanh2n+1 rk
cosh rk

2n +1( )k
out ⊗ 2n +1( )−k

out

n=0

∞

∑
n=0

∞

∑

O = cosθ sz + sinθ s− + s+( )For two-partite system, we can take	

Using the relation	

The density matrix is given by	

BD = 1
cosh rk

tanhn rk
n=0

∞

∑ nk
out ⊗ n−k

out

k
∏
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BD M 2 BD = 1
2
E a1,a2( ) + E a1, ′a2( ) + E ′a1,a2( )− E ′a1, ′a2( )⎡⎣ ⎤⎦

Bell inequality in Bunch-Davies vacuum 

= cosθ1 + tanh2rk sinθ1

′θ1 = −θ1, θ2 = 0, ′θ2 =
π
2

Taking 	

tanθ1 = tanh2rk
maximum at	

∴ BD M 2 BD r→∞⎯ →⎯⎯ 2

BD M 2 BD = 1+ tanh2 2rk >1

In the large squeezed limit, we obtain	

The Bell inequality is always violated in the Bunch-Davies vacuum.  	



φk1 φ−k1

φk2 φ−k2

φk3 φ−k3

 !  !

Increasing the number of modes 

It should be stressed that there are infinitely many modes in field theory.	

 

H2n = H2 ⊗H2 ⊗!⊗H2

2n partite sysyem
" #$$$ %$$$

We focus on the 2n partite system.	

No correlation	

No correlation	



 Bell is sufficient for BD vacuum	
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M 2n =
M 2n−2

2
⊗ M 2 +M '2( ) + M '2n−2

2
⊗ M 2 −M '2( )

M 2n = 1
2
M 2n−2 M 2 + M '2( ) + 12 M '2n−2 M 2 − M '2( )

M '2n = 1
2
M '2n−2 M '2 + M 2( ) + 12 M 2n−2 M '2 − M 2( )

Assume that 2n-2 and 2 have no correlation	

B2n ≡ M 2n
2 + M '2n

2 = 1
2

M 2n−2
2 + M '2n−2

2( ) M 2
2 + M '2

2( )

B2n ≡
1
2
B2n−2 B2 =

1
2

⎛
⎝⎜

⎞
⎠⎟
m

B2n−2m B2
m = 1

2
⎛
⎝⎜

⎞
⎠⎟
n−1

B2
n = 2 log2 q2−1( )n+1

Thus, we can deduce	

q2 ≡ ψ M 2 ψ
2

From these, we get	

Kanno & Soda  2017	

Since            ,    Bell operator is most effective test of quantumness.	

What if we use BMK inequalities?	

By induction, we can prove the relation	

q2 ≤ 2



BMK inequality in non-BD vacuum 

4M 4 =O '1⊗O2 ⊗O3⊗O4 −O '1⊗O '2⊗O '3⊗O4 +O1⊗O '2⊗O3⊗O4 +O1⊗O2 ⊗O '3⊗O4

+O '1⊗O2 ⊗O3⊗O '4−O '1⊗O '2⊗O '3⊗O '4+O1⊗O '2⊗O3⊗O '4+O1⊗O2 ⊗O '3⊗O '4
+O1⊗O '2⊗O '3⊗O4 −O1⊗O2 ⊗O3⊗O4 +O '1⊗O2 ⊗O '3⊗O4 +O '1⊗O '2⊗O3⊗O4

+O1⊗O '2⊗O '3⊗O '4+O1⊗O2 ⊗O3⊗O '4+O '1⊗O2 ⊗O '3⊗O '4+O '1⊗O '2⊗O3⊗O '4

A BMK operator for four-partite system reads	

ψ M 4 ψ

classical bound	

quantum bound 
               for a two-partite system	

The maximal vale is about 1.45.	



φk1 φ−k1
χk1 χ−k1

φk2 φ−k2
χk2 χ−k2

φk3 φ−k3
χk3 χ−k3

 !  !

Increasing the number of modes 

Again, it should be stressed that there are infinitely many modes in field theory.	

 

H 4n = H 4 ⊗H 4 ⊗!⊗H 4

4n partite sysyem
" #$$$ %$$$

We focus on the 4n partite system.	

No correlation	

No correlation	



Infinite violation	
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M 4n =
M 4n−4

2
⊗ M 4 +M '4( ) + M '4n−4

2
⊗ M 4 −M '4( )

M 4n = 1
2
M 4n−4 M 4 + M '4( ) + 12 M '4n−4 M 4 − M '4( )

M '4n = 1
2
M '4n−4 M '4 + M 4( ) + 12 M 4n−4 M '4 − M 4( )

Assume that 4n-4 and 4 have no correlation	

B4n ≡ M 4n
2 + M '4n

2 = 1
2

M 4n−4
2 + M '4n−4

2( ) M 4
2 + M '4

2( )

B4n ≡
1
2
B4n−4 B4 =

1
2

⎛
⎝⎜

⎞
⎠⎟
m

B4n−4m B4
m = 1

2
⎛
⎝⎜

⎞
⎠⎟
n−1

B4
n = 2 log2 q4−1( )n+1

For q>2, the expectation value of BMK exponentially large.	

Thus, we can deduce	

q4 ≡ ψ M 4 ψ
2

q = 1.452 = 2.103For the present case, we have	

Hence, we can see infinite violation of BMK inequality.	

From these, we get	

Kanno & Soda  2017	



More general state	
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Mmn =
Mmn−m

2
⊗ Mm +M 'm( ) + M 'mn−m

2
⊗ Mm −M 'm( )

Assume that mn-m and m have no correlation	

Bmn ≡
1
2
Bmn−m Bm = 1

2
⎛
⎝⎜

⎞
⎠⎟
k

Bmn−km Bm
k = 1

2
⎛
⎝⎜

⎞
⎠⎟
n−1

Bm
n = 2 log2 qm−1( )n+1

Thus, we can deduce	

qm ≡ ψ Mm ψ
2

qm = 2m−1In the maximal case, we have	

Hence, we can see infinite violation of BMK inequality.	

Cf. < Mn >
2 ≤ 2n−1

Bmn = 2
m−2( )n+1

Thus, we can classify entangled vacuum by BMK inequality.	



Summary   
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Ø 　It is shown that Bell inequality is maximally violated in Bunch-Davies 
vacuum 

Ø 　The violation of BMK inequality gets exponentially larger 
                                                               for non-Bunch-Davies vacuum 

Ø 　We have formulated BMK inequality in inflation   

Ø  We have shown that we can characterize the initial quantum state 
  in terms of BMK inequalities.	

Ø  The huge violation indicates the detectability of quantumness.	

Ø  We need to invent a concrete method for detecting the quantumness.	


