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1. Motivation to learn

1.1 String Theory

> unification of all fundamental interactions

»dimensions reduction to lower spacetime dimensions:

— low energy effective theories

»Einstein Gravity + higher curvature terms
— Gauss-Bonnet term is the simplest leading term.
Rép = R? — 4R, R*™ + Ry, pe R**
« EOM contains no more than second derivatives of metric functions

« free of ghosts when expanding about the flat space, evading any
problems with unitarity

Among the gravity theories with higher derivative curvature
terms——Lovelock gravity

D. L. Wiltshire, Phys. Rev. D 38, 2445 (1988) ; R. G. Cai, Phys. Rev. D 65, 084014 (2002)



Motivation

1.2 No-Hair Theorem of Black Holes

Israel, Penrose, Wheeler, ...

€ Stationary black holes (in 4-dim Einstein Gravity) are completely
described by 3 parameters of the Kerr-Newman metric :

mass, charge, and angular momentum (M, Q, J)

€ Novel "no-scalar-hair" theorem for black holes

action
; a 2 1/2 g4
Sw=—5 [t " F¥ LI ) =gy dx
action
Si‘t’;',x,.,,:_'J 5(-79/39-%3 ey w:x’a- . }(_g)”z d4x,

multiplet of scalar fields ¥:Xx> ---> here & is a function,
'.?Egﬂﬁw:awnﬁ? ._?EgaﬁX?aX:ﬁ: -.%EgaﬁX¢a¢wﬁ

energy-momentum tensor r A= — 5, A+ 2(3510.9) i, ath P+ 23518 2) X aX,”
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J.D.Bekenstein, Phys.Rev.D.51, no. 12, R6608 (1995).



Motivation

@ Metric
ds*=g ,pdxdxP= —e’dt*+eMdr*+r*(d 0° +sin8’d ¢?),
with ¥ and A\ dependingonr.
Considering the conservation law 7,”.,=0,
{ r component (=) T,V = (1/2)(—g)"* (dgup/dr)T*=0

=T %

angular Components
—v2 .

Fop) = — o 2, v\t =
<|L/ T (r) T (r<e”<)" &dr.
Fp
Pl e
a) Near horizon r=ry
e” vanishes at r=r;, and must be positive outside it

r’e*? grows with r near the horizon.t 7 r—g
2 >0




Motivation

~

(Trr);= —e V22 (rEEwT): (£+ Trr]

E+T, =2 M(3&0T)h,}+ (&1 D) X, [ =R
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b) Atinfinity r—oo
(T,7) =—e™"2=2 (s2e*) (5+T,7) == (I,/)'<0 T,/>0,

No-Hair Theorem!!

€ Einstein-dilaton-Gauss-Bonnet gravity P. Kanti et al (1996)

® The presence of curvature-squared terms can drastically change the
situation

® Hairy black hole solution is possible in the Einstein-dilaton-Gauss-Bonnet
theory.



Motivation

1.3 Einstein-dilaton-Gauss-Bonnet(EdGB) gravity

®cquations of motions are still of second order and this theory is ghost-
free

® One of the consistent modifications of GR

® Compatible with all solar system tests

PHYSICAL REVIEW D VOLUME 54, NUMBER § 15 OCTOBER 1996

Dilatonic black holes in higher curvature string gravity

P. Kanti,! N. E. Mavromatos,? J. Rizos,’ K. Tamvakis,3** and E. Winstanley?

' Division of Theoretical Physics, Physics Department, University of loannina, loannina GR-451 10, Greece
*Department of Physics (Theoretical Physics), University of Oxford, I Keble Road, Oxford OX1 3NP, United Kingdom
3European Organization for Nuclear Research (CERN), Theory Division, 1211 Geneva 23, Switzerland
(Received 10 November 1995)

We give analytical arguments and demonstrate numerically the existence of black hole solutions of the 4D
effective superstring action in the presence of Gauss-Bonnet quadratic curvature terms. The solutions possess
nontrivial dilaton hair. The hair, however, is of “‘secondary type,” in the sense that the dilaton charge is
expressed in terms of the black hole mass. Our solutions are not covered by the assumptions of existing proofs
of the “‘no-hair’’ theorem. We also find some alternative solutions with singular metric behavior, but finite
energy. The absence of naked singularities in this system is pointed out. [S0356-2821(96)01920-0]

PACS number(s): 04.70.Bw, 04.20.Jb, 04.50.+h, 11.25.Mj



Motivation

» these BHs contain classical non-trivial dilaton fields so that evade the “no-
scalar-hair” theorem.
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»static hairy BH solutions in this model were extensively studied perturbatively,
and numerically.

S. Mignemi and N. R. Stewart, Phys. Rev. D 47 (1993) 5259 [arXiv:hep-th/9212146].

S. Mignemi, Phys. Rev. D 51 (1995) 934 [arXiv:hep-th/9303102].

T. Torii, H. Yajima and K. i. Maeda, Phys. Rev. D 55 (1997) 739 [arXiv:gr-qc/9606034].

S. O. Alexeev and M. V. Pomazanov, Phys. Rev. D 55 (1997) 2110 [arXiv:hep-th/9605106].
J.L.Blazquez-Salcedo et al., IAU Symp. 324, 265 (2016)arXiv:1610.09214

» Einstein-dilaton-Gauss-Bonnet gravity
A particular model of Einstein-Scalar-Tensor Gauss-Bonnet gravity



Motivation

1.4 Einstein-scalar-Gauss Bonnet theory

& Action
163/“'41\/_[‘? -—0 PP+ f(P)REs

here a coupling function f(@), Rép = R* — 4R, R™ + Ryupe R

€ The energy-momentum tensor 7,, , conservation law

r component (T)i= A —(T'=T7) +%g~g -T7)
DT =0 =) B r
angular components TS =T%
8_28 s .
T; = ——a{qb’?[rﬁef‘ +16f(e® —1)] — 8f[B'¢'(e® —3) —2¢"(® - 1)]},
, —% , _8eB(ef =3)fA’
T -2 [ -2 ]
If = —Z—r{qb’z(re — 8fA") —Af[¢'(A? +24") + A'(2¢" —3B'¢')]}.

G. Antoniou, A. Bakopoulos and P. Kanti, Phys. Rev. Lett. 120, no. 13, 131102 (2018), [arXiv:1711.03390 [hep-
th]].



& atinfinity r—
~Ty = —T§ = T; = %4+ O(1°) > Q
2 Lo,
(T) = (TG -TH == 4" <0

@ near-horizon regime - 7

28_3 Il
T =~ 2 A(ﬁf-l-@(?‘—f’h) >0
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FIG. 2. The T}, component for different coupling functions

f(¢), for a =0.01 and ¢, = 1.

e g | % 2fd” + fe") 4f¢’(
Ll e A[ 47 rZ R

1—«.»—BJB’M +0(r-r) <0

»As a result, the no-hair theorem can be evaded.

»Numerical Black hole solutions with scalar hair were

found from Einstein-scalar-Gauss Bonnet theories.

D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120, no. 13, 131103
(2018), [arXiv:1711.01187 [gr-qc]].

H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou and E. Berti, Phys.
Rev. Lett. 120, no. 13, 131104 (2018) [arXiv:1711.02080 [gr-qc]].
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FIG. 1. The scalar field ¢ for different coupling functions f(¢),
for a = 0.01 and ¢, = 1.



2. Instability of black hole without scalar hair in
ESGB gravity

& Action
1
SESGB = = d'z/—g [R — 20,00 ¢ — Vy + A2f(¢)RéB};

where ¢ is the scalar field with a potential Vs and we choose V,, = 0.

€ Equation of motion
G = 20,00,¢ — (06)* g + Ty,
where G, = R, — (R/2)g,, is the Einstein tensor and I',, is given by
L, = 2RVV,)+4V*V,G,, — 8R(u VY,
+ ARV, Usg,, — 4R’ VT

it '
with vdf;(j) 0 = Nf'(6)0,0.

=

Y. S. Myung and D. C.Zou, arXiv:1805.05023 [gr-qc].



® Scalar field equation \2
O¢ + — () Rep = 0.

@ Choosing ¢ =0 and f'(¢)|4=0 = 0

2

dr
&=

Schwarzschild black hole solution

= 45 = gudords’ = —(1- "t )a + + r2d02

r
with r, = 2M

& stability analysis
the metric perturbation #,, and scalar perturbation d¢ propagating
around Schwarzschild solution
dR,..(h) = 0,
A
(D - 472%;3) s = 0.

overbar( ) denotes computation based on the Schwarzchild solution

— e ¥ 2 i ¥ 5 A
“~2R%." plays a role of not a mass M~ but an effective mass m?; for §¢



& Linearized scalar field equation

Considering
5®(t r, 9& 99) = Me—iwt}/}m(gﬂ 99)‘

introducing a tortoise coordinate 7« = r+ryIn(r/ry—1)
defined by @« = dr/(1—=ry/7)

» the radial equation of perturbation scalar field equation

d*u 4 [w2 _ V(-r)]u(?“) =0,

2
dr?

(1 2M’) [211'1 I(l+1) 12)\221{2]
- - 6

where the potential V (r)is V() =) |5 —s =

» a sufficient condition of an unstable bound W. Buell et al (1995)

f2(i; drV(r)/(1 —ry/r) < 0 o 1\[; < 1—?;) =0< rf < 1.095

W. Buell and B. Shadwick, Am. J. Phys. 63, 256 (1995)



& threshold of instability
» the second-order differential equation

i =8 d*u

> p i [QZ + V(-r)}u(r) =10,

»sufficient condition of an unstable bound

r
— < —=0< — < 1.095 not a necessary and sufficient condition

» two boundary conditions:
{ at infinity u(oo) ~ €~

near the horizon u(r.) ~ (r —ry)™"

Qr.,

we read off the unstable bound for scalar mass parameter (1/A)

1 1y th 1.174
0< =< (—) =




the threshold of instability is located at r+ = rc = 1.174 which is greater
than 1.095 (sufficient condition for instability)
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2 graphs as function of mass parameter 1/ for small black holes of r, = 1,2, 3.



€ For comparison, we would like to mention the Lichnerowicz-Ricci
tensor equation around the Schwarzschild black hole in the Einstein-
Weyl gravity

S]gw — / d.433\/ —q {"f’R — O:O!wpgcmjpg} t Cpupo 1S the Weyl tensor

The Lichnerowicz-Ricci tensor equation for the traceless and transverse

Ricci tensor 01,

(AL + m'z)(?R#,, =0, m?= %

AR, =—[0R; — 2Rus0RP.

Which describes a massive spin-2 mode (0 R,.,) with mass m propagating on the
black hole background

the limit of « — 0

(2aAp +7v)0R,, =0. == 6R,, =0



the Gregory-Laflamme instability mass bound for the s(/ = 0)-mode

of linearized Ricci tensor dR;,
0.876

T+

0<m<m® =~

selecting m =1

) the bound for unstable (small) black holes

Vi < T ¥ (.876.
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Plots of unstable modes () on three curves with the horizon radii 7, = 1,2,4

Y.~S.~Myung, Phys. Rev. D,88, no. 2, 024039 (2013) [arXiv:1306.3725 [gr-qc]]



> introducing the negative scalar potential Vv, = —m?%¢?/2 instead of —\?f(¢)R%5

the tachyonic potential takes the form

] = (1_ 211—1’)[2ﬂ-{ Jrl(lJrl) 2}

r r3 r2 T

not types of Regge-Wheeler

: : . . tentials which it
» Zerlli-type potential for GL instability Z:ﬁiir:;th:i/d:thzrﬁo?zirive
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FIG. 2. Zerilli-type potential V(r,) in n = 4 dimensions for the
Schrédinger problem.

-0.05

* blue (bottom) curve: 1/A = 1.095 (sufficient condition for instability),
* red (middle) curve: 1/A =1.174 (threshold of instability),
 green (top) curve :  1/A =1.2 (stable case)

H. L, et al, Phys. Rev. D 96, no. 4, 046006 (2017) [arXiv:1704.05493 [hep-th]]



3. Static scalar perturbation solution

»Considering w = 0(€2 = 0) | the radial equation of perturbation scalar field

ro(ry — ) rd r3 U+ 1)r! 5
" ’ . 2 = X

a new coordinate z — i[z o [Loc-)]

a new parameter A\, = %
25 —1 4 4 1
(ZS Leirta) + %u’(z) _ % [; 10+ 1)} u(z) = A2u(2)

»numerical solution
consider the near-horizon Taylor expansion for u(z)

"
el

e I o

u(z) =uy +uy (z—1)+

i, = (1 —3)\2 no_ 3(BAi+2), 2
), = {(1—3AJuy andaul = Zae - Uj



an asymptotic form of u(z) near z = «

uD
u(2) = Uoo + LR a M) = ue/2 and u® = uy /3.

1.0
0.8
0.6

04 s

»We obtain a discrete spectrum of parameter:
1/As = ry/X € [1.174,0.453,0.280,0.202, - - - |



> these solutions are classified by order number n = 0,1,2.3,---

which is identified with the number of nodes for d¢(z) = u(z)/z

» the n = 0 scalar mode without zero represents a stable black hole,
while the n = 1, 2 scalar modes with zero denote unstable black holes.

» aregular solution to perturbation equation with Q = 0 is found only
when the parameter A takes a specific value r+/A = 1.174 (threshold of
instability=the edge of domain of instability).

» In the small mass regime of 1/A < 1.174/r+, the Schwarzschild
solution becomes unstable and a new branch of solution with
scalar hair bifurcates from the Schwarzschild one.



4. Summary and future work

» the instability of the Schwarzschild black hole in ESGB theory can be
interpreted as a scalar theory version of the GL instability for a small
black hole in the tensor theory of Einstein-Weyl gravity.

Theory ESGB theory Einstein-Weyl gravity
Action Sgsap in (1) Sgw in (10)

BH without hair SBH with ¢(r) = R, =0 SBH with R,, =0
Linearized equation scalar equation (9) tensor equation (11)
GL instability mode s(l = 0)-mode of d¢ s(l = 0)-mode of 6 R,

Unstable mass bound 0< % < % 0<m< %

Bifurcation point 1.174 0.876

Potential V(r) in (15) V,(r) (18) in Ref.[19]
Small unstable SBH | r, < r. = 1.174 for % =1| ri<r.=0876form=1
BH with hair scalar hair in Refs.[2, 3] | Ricci-tensor hair in Ref.[13]

Table 1: Similar Properties for Schwarzschild black hole (SBH) in ESGB theory and
Einstein-Weyl gravity.

»Future work

« instability of the full numerical solutions in ESGB theory

* C.A R.Herdeiro, E.Radu, N. Sanchis-Gual and J.A. Font, "Spontaneous
scalarisation of charged black holes," ‘ arXiv:1806.05190 [gr-qc].
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