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Topological vertex as sum over plane partitions

Sum over 3D partitions with fixed 2D asympotics λ, µ, ν:

Cλ,µ,ν =
∑

π∈Pλ,µ,ν

q|π|

[Okounkov, Reshetikhin, Vafa 2003]

(In this talk, we ignore the framing factors for simplicity.)
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Main applications

This simple combinatorial object is related to:

Topological strings amplitudes

Topological invariants of Calabi-Yau 3-folds (Gromov-Witten, Gopakumar-Vafa)

N = (2, 2) 2D superconformal sigma models

U(N) Chern-Simons theory on S3 at large N

Mirror symmetry

5D N = 1 supersymmetric gauge theories

(instanton partitions functions)

(p, q)-brane webs in IIB string theory

5D BPS black hole

...

Quantum groups and integrable systems
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Topological strings amplitudes

Consider a toric Calabi-Yau 3-fold (i.e. a fibration of T 2 × R over R3).

 The toric diagram in R3 encodes the degeneration locus of the cycles.

Example I: C3 (= topological vertex)

Example II: Local CP1 (O(−1)⊕O(−1)→ CP1)

Obtained by gluings A =
∑
λ C∅,∅,λCλ′,∅,∅. (λ′ is the transposed of λ.)
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Topological vertex

• The topological vertex can be written using skew Schur polynomials sλ/µ(x):

Cλ,µ,ν =
∑

η⊂λ′,µ

sλ′/η(x)sµ/η(y),

with x = (q−ν1+1/2, q−ν2+3/2, · · · ) and y = (q−ν
′
1+1/2, q−ν

′
2+3/2, · · · ).

• Skew-Schur polynomials coincide with correlators of a free boson:

sλ/µ(x) = 〈λ|
∏
i>0

Γ−(xi ) |µ〉 = 〈µ|
∏
i>0

Γ+(xi ) |λ〉 ,

with Γ±(z) = e
∑

k>0
zk

k
α±k , [αk , αl ] = kδk+l .

(Here the state |λ〉 is built as sλ(X ) |∅〉 with
∑

i X
k
i ≡ α−k .)

• Using this property, and
∑
η |η〉 〈η| = 1, we find

Cλ,µ,ν = 〈λ′|
∏
i>0

Γ−(xi )
∏
i>0

Γ+(yi ) |µ〉
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Slicing interpretation

The bosonic formula is interpreted as a slicing of the 3D partition.

Cλ,µ,ν = 〈λ′|
∏
i>0

Γ−(xi )
∏
i>0

Γ+(yi ) |µ〉

(There is also a free fermion construction by fermionization of the modes αk .)



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

A short computation

Let us perform this short computation: x = (q−ν1+1/2, q−ν2+3/2, · · · )

∑
i

xi =
∞∑
i=1

q−νi+i−1/2 =
∞∑
i=1

qi−1/2 +

`(ν)∑
i=1

qi−1/2(q−νi − 1)

= − 1

q1/2 − q−1/2
+

`(ν)∑
i=1

qi−1/2(q−1 − 1)

νi∑
j=1

q−(j−1)

This gives (replacing q → qk) and denoting χ(i,j) = qi−j :∑
i

xk
i = − 1

qk/2 − q−k/2
− (qk/2 − q−k/2)

∑
(i,j)∈ν

χk
(i,j),

and, for the variables yi = q−ν
′
i +i−1/2,∑

i

y k
i = − 1

qk/2 − q−k/2
− (qk/2 − q−k/2)

∑
(i,j)∈ν

χ−k
(i,j).
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Rewriting the topological vertex

Using our previous result, we can rewrite the topological vertex:

Cλ,µ,ν = 〈λ′|
∏
i>0

Γ−(xi )
∏
i>0

Γ+(yi ) |µ〉 = 〈λ′|Φν |µ〉

with (χ = qi−j for = (i , j) ∈ ν):

Φν =: Φ∅
∏
∈ν

η(χ ) :,

η(z) =: exp

−∑
k 6=0

z−k

k
(qk/2 − q−k/2)αk

 :

Φ∅ =: exp

−∑
k 6=0

1

k(qk/2 − q−k/2)
αk

 :
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Refined topological vertex

• A refined topological vertex is obtained by tuning the weight qa for boxes in a slice a.

Cλ,µ,ν =
∑

π∈Pλ,µ,ν

q|π|a

• This requires the choice of a preferred direction (here vertical).

• The weights qa are determined in order to reproduce Nekrasov’s instanton partition

functions with omega-background parameters ε1, ε2 (unrefined case ε1 + ε2 = 0).

 qa equals either q = eε2 or t = e−ε1 depending on a and the shape of ν.
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Bosonic expression for the refined vertex

• For our purpose, we only need the skew-Schur polynomials expression (p = q/t):

Cλ,µ,ν =
∑

η⊂λ′,µ

p(|η|+|µ|)/2sλ′/η(x)sµ/η(y),

with x = (q−ν1t1/2, q−ν2t3/2, · · · ) and y = (t−ν
′
1q1/2, t−ν

′
2q3/2, · · · ).

• The bosonic presentation still reads

Cλ,µ,ν = 〈λ′|
∏
i>0

Γ−(xi )
∏
i>0

Γ+(p−
1
2 yi ) |µ〉 ,

but now ∑
i

xk
i = − 1

tk/2 − t−k/2
− pk/2(qk/2 − q−k/2)

∑
∈ν

χk ,

∑
i

y k
i = − 1

qk/2 − q−k/2
− p−k/2(tk/2 − t−k/2)

∑
∈ν

χ−k .

where χ = pt i−1q−(j−1) for = (i , j) ∈ ν.
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Bosonic expression for the refined vertex

Using the same trick, we end up with

Cλ,µ,ν = 〈λ′|Φν |µ〉 , with Φν =: Φ∅
∏
∈ν

η(χ ) :,

and,

η(z) = exp

(
−
∑
k>0

1− t−k

k
p−k/2zkβ−k

)
exp

(∑
k>0

1− tk

k
p−k/2z−kβk

)
,

Φ∅ = exp

(∑
k>0

p−k/2

k(1− qk)
β−k

)
exp

(∑
k>0

p−k/2

k(1− qk)
βk

)
,

where we have used the rescaled modes

βk = pk/2t−k/2αk , β−k =
1− qk

1− tk
tk/2p−k/2α−k ⇒ [βk , βl ] = k

1− q|k|

1− t|k|
δk+l .

This is the topological vertex of Awata, Feigin and Shiraishi!!!

Bonus: Awata-Kanno topological vertex 〈Pλ|Φν |Pµ〉
(Pλ,Pµ Macdonald polynomials).
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Interpretation in terms of 3D partitions

Noticing that (here ν∞ is a fully filled Young diagram)

Φ∅ ':
∏
∈ν∞

η(χ )−1 : ⇒ Φν = :
∏
∈ν∞\ν

η(χ )−1 :

We can interpret η(χ )−1 as a creation of a column of cubes at location = (i , j).

j

i
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Quantum toroidal gl(1) : definition
(or [Ding, Iohara 1997 - Miki 2007] algebra)

• The quantum toroidal gl(1) algebra depends on the parameters

q1 = t, q2 = q−1, q3 = p = q/t ⇒ q1q2q3 = 1.

• It is formulated in terms of a central element c and 4 Drinfeld currents

x±(z) =
∑
k∈Z

z−kx±k , ψ±(z) =
∑
k≥0

z∓kψ±±k .

• It has a second central element c̄ obtained as ψ±0 = q
∓ 1

2
c̄

3 .

• The parameters define the structure function

g(z) =
∏

α=1,2,3

1− qαz

1− q−1
α z

.
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Quantum toroidal gl(1) : definition

The algebraic relations read

ψ+(z)x±(w) = g(q
±c/4
3 z/w)±1x±(w)ψ±(z),

ψ−(z)x±(w) = g(q
∓c/4
3 z/w)±1x±(w)ψ−(z),

[ψ±(z), ψ±(w)] = 0, ψ+
0 ψ
−
0 = ψ−0 ψ

+
0 = 1

ψ+(z)ψ−(w) =
g(q

c/2
3 z/w)

g(q
−c/2
3 z/w)

ψ−(w)ψ+(z),

x±(z)x±(w) = g(z/w)±1x±(w)x±(z),

[x+(z), x−(w)] = δ(q
−c/2
3 z/w)ψ+(q

−c/4
3 z)− δ(q

c/2
3 z/w)ψ−(q

c/4
3 z),

together with Serre relations.

(Here δ(z) =
∑

k∈Z z
k denotes the multiplicative Dirac delta function.)
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Quantum toroidal gl(p): coalgebraic structure

The algebra has the structure of a Hopf algebra with the Drinfeld coproduct

∆(x+(z)) = x+(z)⊗ 1 + ψ−(q
c(1)/4

3 z)⊗ x+(q
c(1)/2

3 z),

∆(x−(z)) = x−(q
c(2)/2

3 z)⊗ ψ+(q
c(2)/4

3 z) + 1⊗ x−(z),

∆(ψ±(z)) = ψ±(q
±c(2)/4

3 z)⊗ ψ±(q
∓c(1)/4

3 z).

We denoted c(1) = c ⊗ 1, c(2) = 1⊗ c, and ∆(c) = c(1) + c(2).
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Horizontal representations

• Horizontal representations ρ
(1,n)
u have levels (c, c̄) = (1, n), and weight u ∈ C×.

(They are also called “level one”, or “vertex” representations)

• Formulated in terms of a q-deformed bosonic modes βk ,

[βk , βl ] = k
1− q|k|

1− t|k|
δk+l .

 Usual vacuum |∅〉 such that βk>0 |∅〉 = 0, PBW basis acting with βk<0.

(Other basis: Schur basis |λ〉, Macdonald basis |Pλ〉,...)
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Horizontal representations

• Drinfeld currents are represented in terms of vertex operators,

ρ(1,n)
u (x±(z)) = u±1z∓nη±(z), ρ(1,n)

u (ψ±(z)) = γ∓nϕ±(z),

with:

η+(z) = exp

(
∞∑
k=1

1− t−k

k
zkβ−k

)
exp

(
−
∞∑
k=1

1− tk

k
z−kβk

)
,

η−(z) = exp

(
−
∞∑
k=1

1− t−k

k
pk/2zkβ−k

)
exp

(
∞∑
k=1

1− tk

k
pk/2z−kβk

)
,

ϕ+(z) = exp

(
−
∞∑
k=1

1− tk

k
(1− pk)p−k/4z−kβk

)
,

ϕ−(z) = exp

(
∞∑
k=1

1− t−k

k
(1− pk)p−k/4zkβ−k

)
.

Identify η−(z) ≡ η(z) !!!
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Vertical representations

• Vertical representations ρ
(0,1)
v have levels (c, c̄) = (0, 1), and weight v ∈ C×.

(Generalize the finite dimensional representations of quantum affine algebras.)

• Drinfeld currents act on states |λ〉〉 parameterized by a Young diagram λ:

ρ(0,1)
v (x+(z)) |λ〉〉 =

∑
∈A(λ)

δ(z/χ ) Res
z=χ

1

zYλ(z)
|λ+ 〉〉,

ρ(0,1)
v (x−(z)) |λ〉〉 = q

−1/2
3

∑
∈R(λ)

δ(z/χ ) Res
z=χ

z−1Yλ(q−1
3 z) |λ− 〉〉,

ρ(0,1)
v (ψ±(z)) |λ〉〉 = q

−1/2
3

[
Yλ(q−1

3 z)

Yλ(z)

]
±
|λ〉〉.

• χ = vqi−1
1 qj−1

2 ∈ C× for a box = (i , j) ∈ λ (“instanton position”).

• A(λ) denote the set of boxes that can be added to λ.

• R(λ) denote the set of boxes that can be removed from λ.

• [f (z)]± denotes an expansion of f (z) in powers of z∓1.
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Vertical representation

• The function Yλ(z) is Nekrasov’s Y-observable.

 It appears in recursion of formulas for the Nekrasov factor of 5D N = 1 theories,

N(v (1), λ(1)|v (2), λ(2) + )

N(v (1), λ(1)|v (2), λ(2))
= Yλ(1) (χ ),

N(v (1), λ(1) + |v (2), λ(2))

N(v (1), λ(1)|v (2), λ(2))
= Yλ(2) (q

−1
3 χ ).

• Explicitly, it writes

Yλ(z) =

∏
∈A(λ) 1− χ /z∏

∈R(λ) 1− χ /(q3z)
.



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

Vertical representation

• The function Yλ(z) is Nekrasov’s Y-observable.

 It appears in recursion of formulas for the Nekrasov factor of 5D N = 1 theories,

N(v (1), λ(1)|v (2), λ(2) + )

N(v (1), λ(1)|v (2), λ(2))
= Yλ(1) (χ ),

N(v (1), λ(1) + |v (2), λ(2))

N(v (1), λ(1)|v (2), λ(2))
= Yλ(2) (q

−1
3 χ ).

• Explicitly, it writes

Yλ(z) =

∏
∈A(λ) 1− χ /z∏

∈R(λ) 1− χ /(q3z)
.



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

Vertical representation

Remark: Note that we can also write the Cartan currents ψ±(z) as

ψ±(z) = ψ±0 exp

(
±
∑
k>0

z∓ka±k

)

with

ρ(0,1)
v (ak>0) |λ〉〉 =

1

k
(p−1/2v)k

tk/2 − t−k/2

pk/2 − p−k/2

∑
i

xk
i |λ〉〉,

ρ(0,1)
v (ak<0) |λ〉〉 =

1

k
(p−1/2v)k

qk/2 − q−k/2

pk/2 − p−k/2

∑
i

y−k
i |λ〉〉,

where x = (q−λ1t1/2, q−λ2t3/2, · · · ) and y = (t−λ
′
1q1/2, t−λ

′
2q3/2, · · · ).
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Intertwining operators

Intertwining operators introduced as a generalization of Virasoro vertex operators.

( quantum Knizhnik-Zamolodchikov equations) [Frenkel, Reshetikhin 1992]

They were used to solve the XXZ model in relation with Uq(ŝl(2)) symmetry.

[Davies, Foda, Jimbo, Miwa, Nakayashiki 1992]

These operators Φ± are obtained by solving the following equation:

ρ
(1,n+1)
u′ (e)Φ+ = Φ+

(
ρ(0,1)
v ⊗ ρ(1,n)

u ∆(e)
)
,(

ρ(0,1)
v ⊗ ρ(1,n)

u ∆′(e)
)

Φ− = Φ−ρ
(1,n+1)
u′ (e),

for every element e = x±(z), ψ±(z), c of the algebra.

(∆′ is the opposite coproduct obtained by permutation.)

The solution is decomposed on the vertical basis,

Φ+ =
∑
λ

Φ+
λ〈〈λ| , Φ− =

∑
λ

Φ−λ |λ〉〉, with Φ±λ =: Φ±∅
∏
∈λ

η±(χ ) :,

where Φ±λ are vertex operators acting on horizontal modules.
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Identification of the topological vertex

(0, 1)

(1, n)

(1, n + 1)

Φ+

(1, n + 1)

(1, n)

(0, 1)

Φ−

The intertwiner Φ−λ identifies with the refined topological vertex Φλ!

[Awata, Feigin, Shiraishi, 2011]
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Recent results

This algebraic realization of the topological vertex led to several generalizations:

Higher level vertical representations ρ
(0,m)
v and U(m) gauge groups.

[Bourgine, Fukuda, Harada, Matsuo, Zhu 2017]

Quantum toroidal gl(p) algebra and orbifolds S1 × (Cε1 × Cε2 )�Zp.

[Awata, Kanno, Mironov, Morozov, Suetake, Zenkevich 2017]

Elliptic toroidal algebra and 6D gauge theories (compactified on T 2).

[Foda, Zhu 2018]

Affine Yangian double and 4D N = 2 gauge theories.

[Bourgine, Zhang 2018]

New quantum toroidal algebra and deformed orbifold S1 × (Cε1 × Cε2 )�Zp.

[Bourgine, Jeong 2019]

 Determine the algebra from the Nekrasov factor, construct the topological vertex.

Other interests of the construction: (q, t)-Knizhnik-Zamolodchikov equations,

Zamolodchikov-Faddev algebra, q-AGT correspondence,...
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Correspondence algebra - topological strings

ρ
(0,1)
v |ν〉〉

ρ
(1,1)
u′ 〈λ′|

ρ
(1,0)
u |µ〉

Each direction of the 3D partition is assigned to a representation:

Levels (c, c̄) label the cycle of the T 2-fibration that degenerates.

Weights u, v , u′ give the Kähler moduli of the Calabi-Yau.

In the preferred direction, x± describe the variation of the Young diagram.

(This diagram encodes the instanton configurations of the 5D gauge theory.)

How does the algebra acts in other directions?
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Model B perspective

The topological vertex describes the Calabi-Yau C3 in model A.

 Becomes the Calabi-Yau uv −H(x , p) = 0 with H(x , p) = ex + ep + 1 in model B.

The degenerate locus of the fibration H(x , p) = 0 is a sphere with three punctures.

The modular group PSL(2,Z) acts on the Riemann sphere.

Generators S : z → −1/z and T : z → z + 1 map the different punctures.

 Identify the three marked points with the axis of the toric diagram!
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Automorphisms of the algebra

The quantum toroidal gl(1) algebra has a group of SL(2,Z) automorphisms,

S rotates the generators by 90◦. [Miki 2007]

T twist the generators (move up modes on the left, down on the right).

! S is now of order four! (extra orientation)
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Automorphisms of the algebra

• Explicitly:

T (c, c̄) = (c, c̄ + c), T (x±k ) = x±k∓1, T (ψ±±k) = p∓c/2ψ±±k ,

S(c, c̄) = (−c̄, c), S(x±k ) = y±k , S(ψ±±k) = ξ±±k

with

y±k ∝
(

adx+
0

)k−1

x+
∓1, y±−k ∝

(
ad

x−0

)k−1

x−∓1,

ξ±±k ∝ ad
x±∓1

(
ad

x±0

)k−2

x±±1, ξ±±1 ∝ x±0 .
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Action of the algebra on plane partitions

• Use these automorphisms to define the action in non-preferred direction!

ρ(1,0) = ρ(0,1) ◦ S−1, ρ(1,1) = ρ(1,0) ◦ T .

! We have to choose the correct basis in the horizontal module: |Pλ〉.
 y±(z) add/remove boxes to the states |Pλ〉.
(S maps vertical to horizontal, sending the Cartan modes ak to the oscillators βk .)
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Unrefined limit

• When q = t, the quantum toroidal gl(1) algebra reduces to quantum W1+∞:

(more precisely ak → X0,k , x±k → X±1,k)

[Xm,n,Xm′,n′ ] = (qmn′ − qm′n)Xm+m′,n+n′ + δn+n′δm+m′(mc̄ + nc)q−mn.

• This algebra has a fermionic representation of levels (1, 0).

({ψr , ψ
†
s } = δr+s , {ψr , ψs} = {ψ†r , ψ†s } = 0)

ρ(1,0)(Xm,n) =
∑

r∈Z+1/2

qm(r−1/2) : ψr+nψ
†
−r :

• Accordingly the free boson of the (1, 0) representation is fermionized, ψ(z) = eφ(z).

η+(z) = ψ(z)ψ†(qz), η−(z) = ψ(qz)ψ†(z).

• Under Miki’s automorphism S, the generators transform as

Xm,n =

∮
: ψ(z)znqmz∂zψ†(z) :→ XSm,n =

∮
: ψ(z)qnz∂z z−mψ†(z) :

 Classically it reduces to a Fourier transform (z , p)→ (−p, z).

[Sasa, Watanabe, Matsuo 2019]
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Unrefined limit

This fermionic description is well-known for the topological vertex!

To each patch of the three-punctured sphere correspond a free fermion.

Classically, the fermions in different patches are related by a Fourier transform.

Fermions ψ(z) (ψ†(z)) are interpreted as B-brane (antibrane).

[Aganagic, Dijkgraaf, Klemm, Marino, Vafa 2003]

This leads to several interesting questions:

Interpretation of η(z) = ψ(qz)ψ†(z) as brane-antibrane bound state?

(distance ∼ gs)

What is the action of the full quantum toroidal algebra from the B-model

perspective?

What is the connection with (q,t)-deformed integrable hierarchies? with

topological recursion?
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Perspectives

New formalism to describe the action of (strings) S-duality!

It can be employed to address the several important problems:

q-AGT correspondence: duality with W-algebra seen in horizontal representations,

but AGT formulated in vertical modules.

Formulate proofs of S-duality relations between gauge theories’ partition functions.

Understand dualities between integrable systems using the coproduct twist

∆S = (S−1 ⊗ S−1) ◦∆ ◦ S.

Describe the S-duality transformation of other objects (qq-characters).

 Some of these ideas are discussed in [Bourgine 2018]



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

Perspectives

New formalism to describe the action of (strings) S-duality!

It can be employed to address the several important problems:

q-AGT correspondence: duality with W-algebra seen in horizontal representations,

but AGT formulated in vertical modules.

Formulate proofs of S-duality relations between gauge theories’ partition functions.

Understand dualities between integrable systems using the coproduct twist

∆S = (S−1 ⊗ S−1) ◦∆ ◦ S.

Describe the S-duality transformation of other objects (qq-characters).

 Some of these ideas are discussed in [Bourgine 2018]



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

Perspectives

New formalism to describe the action of (strings) S-duality!

It can be employed to address the several important problems:

q-AGT correspondence: duality with W-algebra seen in horizontal representations,

but AGT formulated in vertical modules.

Formulate proofs of S-duality relations between gauge theories’ partition functions.

Understand dualities between integrable systems using the coproduct twist

∆S = (S−1 ⊗ S−1) ◦∆ ◦ S.

Describe the S-duality transformation of other objects (qq-characters).

 Some of these ideas are discussed in [Bourgine 2018]



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

Perspectives

New formalism to describe the action of (strings) S-duality!

It can be employed to address the several important problems:

q-AGT correspondence: duality with W-algebra seen in horizontal representations,

but AGT formulated in vertical modules.

Formulate proofs of S-duality relations between gauge theories’ partition functions.

Understand dualities between integrable systems using the coproduct twist

∆S = (S−1 ⊗ S−1) ◦∆ ◦ S.

Describe the S-duality transformation of other objects (qq-characters).

 Some of these ideas are discussed in [Bourgine 2018]



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

Perspectives

New formalism to describe the action of (strings) S-duality!

It can be employed to address the several important problems:

q-AGT correspondence: duality with W-algebra seen in horizontal representations,

but AGT formulated in vertical modules.

Formulate proofs of S-duality relations between gauge theories’ partition functions.

Understand dualities between integrable systems using the coproduct twist

∆S = (S−1 ⊗ S−1) ◦∆ ◦ S.

Describe the S-duality transformation of other objects (qq-characters).

 Some of these ideas are discussed in [Bourgine 2018]



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

Outline

1 Introduction

2 Bosonic formula for the topological vertex

3 Intertwiners of quantum toroidal gl(1)

4 S-duality and Miki’s automorphism

5 Perspectives



Introduction Bosonic formula for the topological vertex Intertwiners of quantum toroidal gl(1) S-duality and Miki’s automorphism Perspectives

Why should you care?

If you are a string theorist...

Quantum affine algebras were introduced to describe the mathematical structure

of quantum integrable systems.

Intertwiners were defined as a generalization of 2D CFT vertex operators.

The (refined) topological vertex is the same object for an affine version of the

algebras ( quantum toroidal algebras).

Isolating these mathematical structures offers the possibility to

generalize the method to solve new problems.
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Why should you care?

If you are an integrabilist...

The correspondence with topological strings involves a new form of integrability!

(Specific features: two spectral parameters, rich automorphism groups,...)

String theory is guiding us in the construction of the integrable system.

(choice of representations, boundaries,...)

Geometric intuition: quantum integrable system ⇔ topological strings on X4×X6.

 X4 determines the symmetry algebra A.

 X6 defines a A-covariant operator T (gluing Φ along the toric diagram).

 Good choice of X6 gives the transfer matrix (Hamiltonians generating function).

String theory provides a geometric understanding of quantum

integrability, extending the traditional algebraic framework.

Thank you !!!
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