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Introduction
I Calabi-Yau (CY) compactification has played a central role

in string theory. Reduced holonomy⇒ low-energy SUSY
I Type II compactifications preserve 4d N = 2 and are the

setting of mirror symmetry
I Heterotic and orientifold compactifications preserve 4d
N = 1 and provide semi-realistic starting points for string
phenomenology

I Setting in which much of our non-perturbative
understanding of string theory has been developed
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K3

I K3 has played a particularly important role
I SU(2) = Sp(1), so in 4d Calabi-Yau = hyper-Kähler. Only

compact examples are K3 and T 4

I A concrete way to think about K3 is as T 4/Z2 orbifold.
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Introduction (continued...)

I Since K3 is hyper-Kähler, preserves even more SUSY (e.g.
K3×T 2 has 4d N = 4)

I Heterotic (on T 4) - type IIA (on K3) duality plays an
essential role in our understanding of how the various
perturbative superstring theories are related. Can fiber this
duality over a P1 base to find dual 4d N = 2 theories

I Earliest example of black hole microstate counting in string
theory
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Introduction (continued...)

I Remarkably, all of this was achieved without an explicit
form of the metric! Indeed, no smooth (compact,
non-toroidal) Ricci-flat Calabi-Yau metric is known!

I Why might this matter to a string theorist? Supposedly,
(tree-level) string vacuum from CFT, such as non-linear
sigma model with action

i
8πα′

∫
(gij − Bij)∂x i ∂̄x j d2z − 2π

∫
ΦR(2) d2z + . . .

(where the . . . involve fermions). But, in reality since we
don’t have the metric, this formulation is rather useless.
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K3 Non-Linear Sigma Models

I This question is particularly well-motivated for K3 (as
opposed to other Calabi-Yaus) because the β function of
the non-linear sigma model is exactly 0 – not just to
leading order in α′

I As an example of our ignorance, even for K3 the
worldsheet partition function is not known at almost all
points in moduli space.
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We now can get K3 metric
Based on recent work with

Shamit Kachru, Arnav Tripathy

The key step is to realize the K3 surface as the moduli space of
a little string theory.
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Little string theory

I Type IIB NS5-brane has a decoupling limit [Seiberg ’97].
(Small lie: need N > 1 NS5-branes.) At low energies, 6d
U(1), g2 = 1/M2

s .
I From supergravity perspective, this works because the

corresponding soliton is so singular. In particular, an
infinite throat with diverging gs develops.
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Physics of LST

I A crucial aspect of LSTs for us is that they exhibit
Hagedorn behavior:

S(E) = E/TH , TH ∼ Ms .

This is much faster than field theories, but slower than
gravity.

I It is not a QFT – it has T-duality, for example, so there is no
unique stress-energy tensor.
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Moduli space on T 2

I Let’s now compactify on T 2. In addition to the R4 free
hypermultiplet moduli parametrizing the center of mass,
there is a Coulomb branch coming from U(1) Wilson lines.
So, the Coulomb branch is T 2.
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Moduli space on T 3

I Repeating this for T 3 would naïvely tell us the moduli
space is T 3. Not hyper-Kähler. Dual photon→ T 4.

I Instead of thinking of the extra dimension as coming from
the dual photon, it will be useful to think of it as a Wilson
line for the magnetic 4d gauge field (a.k.a. a ’t Hooft line).

M. Zimet Stanford

K3 Metrics from Little String Theory



Introduction Little string theory and K3 BPS states and the metric BPS states and string duality Conclusions

Geometrizing the moduli space

I S-duality takes us to D5-brane. Now, to study the moduli
space of the theory on T 2, use T-duality twice to replace
D5 by D3. The Wilson lines of the D5 become the position
of the D3 in the two new transverse dimensions!

I Similarly, to study the theory on T 3, use T-duality three
times to replace D5 by D2. The extra circle parametrized
by the dual photon is the M-theory circle!
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Heterotic little string theory

I To get from T 4 to K3, we replace the IIB NS5-brane by a
SO(32) heterotic 5-brane which is associated to a small
instanton in the transverse dimensions. At low energies,
this has a 6d N = (1,0) SU(2) gauge theory with a free
hyper and 16 fundamental hypers.
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Moduli space

I On T 2, the moduli space B of SU(2) Wilson lines is
T 2/Z2 ∼ S2 ∼ P1, where the quotient comes from the Weyl
group of SU(2). On T 3, the moduli spaceM is
T 4/Z2 ∼ K 3. This is classical reasoning, and quantum
corrections will generically smooth out the K3 surface.
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Geometrizing the moduli space, I: heterotic / F-theory
duality

I Strong-weak duality takes us to D5-brane in type I. Now, to
study the moduli space of the theory on T 2, use T-duality
twice to replace D5 by D3. Wilson lines→ position.

I Heterotic (T 2)↔ type IIB orientifold on T 2/Z2 → F-theory
on K3
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Geometrizing the moduli space, II: heterotic / M-theory
duality

I Similarly, to study the theory on T 3, use T-duality three
times to replace D5 by D2. The extra circle parametrized
by the dual photon is the M-theory circle.

I Heterotic (T 3)↔ M-theory on K3
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Parameters of LST

I Moduli of the heterotic string theory become parameters of
the LST. Similarly, gauge symmetry in spacetime descends
to global symmetry of LST.
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Parameter and moduli spaces on T 2

I Moduli space of relevant K3 metrics:[
O(Γ18,2)\O(18,2)/(O(18)×O(2))

]
× R+ × R+ .

F-theory is missing one R+ (fibers not part of spacetime),
and LST is missing both (zero heterotic coupling / volume
of base).

I Moduli space of the LST is the base P1 probed by the
D3-brane. I’ll use u as my homogeneous coordinate.

I Low energies: 4d N = 2 gauge theory sees an
infinitesimal piece of P1
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Parameter and moduli spaces on T 3

I Moduli space of hyper-Kähler K3 metrics:[
O(Γ19,3)\O(19,3)/(O(19)×O(3))

]
× R+

0 heterotic coupling→ zero volume.
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Compactification of the 4d theory

I Study little string theory on T 2, further compactified on S1
R

I R →∞ limit is large complex structure / semi-flat limit
studied by [Greene-Shapere-Vafa-Yau ’90] and familiar
from F-theory on K3

I Corrections away from this limit are determined by
instantons in this theory

I These instantons are obtained by taking the worldlines of
4d BPS particles and wrapping them around S1

R
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Supersymmetric Wilson-’t Hooft lines, I

I To get the metric on this moduli space, we use some ideas
from [Gaiotto-Moore-Neitzke ’08, ’10]. IR BPS Wilson-’t
Hooft line operators:

TrR P exp
∮ (

ϕ

2ζ
+ A +

ζϕ̄

2

)
After compactifying on S1

R, we obtain a function Xγ on the
moduli space
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Semi-flat

X sf
γ = exp

[
πR
ζ

Zγ + iθγ + πRζZγ

]
, γ ∈ Γ̂ .

R ds2 = eφ(u,ū)dudū + ∂∂̄K (u, ū, z, z̄)

eφ = τ2

∣∣∣∣∣η2
24∏

a=1

(u − ua)−1/12

∣∣∣∣∣
2

, K = −(z − z̄)2/2τ2 .

z =
θm − τθe

2π
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Supersymmetric Wilson-’t Hooft lines, II

I These functions are important because they have a
number of nice mathematical properties.

I Hyper-Kähler manifolds have a whole P1 worth of complex
structures. Xγ(ζ) is holomorphic in the complex structure
parametrized by ζ ∈ P1, by virtue of SUSY.

I They satisfy the algebra

XγXγ′ = (−1)〈γ,γ
′〉Xγ+γ′ .

This reflects the shift in the fermion number of a bound
state.

I They give canonical coordinates onMζ
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Metric from Wilson lines

Y i(u, θ; ζ) = logXγ i (u, θ; ζ)

$(ζ) =
1

8π2R
εijdY i(ζ) ∧ dY j(ζ) = − i

2ζ
ω+ + ω3 −

i
2
ζω−

(Compare to ω = dp ∧ dq = 1
2εIJdQI ∧ dQJ , QI = (p,q) .)

ω± = ω1 ± iω2

g = −ω3ω
−1
1 ω2
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Supersymmetric Wilson-’t Hooft lines, III

I The Xγ are discontinuous in a precise way. These
discontinuities are given by symplectomorphisms
[Kontsevich-Soibelman ’04, ’08], so $(ζ) is smooth!

I GMN: Riemann-Hilbert problem on P1 whose solution is
Xγ(ζ). Furthermore, can solve it at large R.

I Certain formulae in this solution only converge because of
(at most) Hagedorn growth.
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Xγ(ζ) = X sf
γ (ζ) exp

− 1
4πi

∑
γ′∈Γ̂′

u

Ω(γ′; u)
〈
γ, γ′

〉
×
∫
`γ′ (u)

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1−Xγ′(ζ ′))

]
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Instanton corrections

I Summary: at large R, these Xγ take a universal form, up to
corrections that result from 4d BPS states running around
this circle. We have thus reduced the determination of a
K3 metric to the simpler problem of counting BPS states in
a little string theory on T 2.

I So, now we just need the BPS index (second helicity
supertrace) Ω(γ; u) that counts 4d BPS states at a point in
(4d) moduli space u.
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LST BPS states in F-theory
I Recall heterotic on T 2 is dual to F-theory on

(elliptically-fibered) K3. The 5-brane giving our little string
theory maps to a D3-brane probing the K3 surface.

I BPS states in this frame are (p,q)-string webs running
along the P1 base and ending on 7-branes.

I Related, via duality, to open string K3 Gromov-Witten
invariants, furnishes proof of [Strominger-Yau-Zaslow ’96]
mirror symmetry conjecture for K3
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Geometric engineering

I Can geometrically engineer LSTs using F-theory on a CY3
I LST on T 2 = IIA on CY3
I BPS state counting = Donaldson-Thomas theory
I Periods of mirror = open + closed periods of K3 (moduli +

parameters of LST)!
I Very big moduli space of CY3s – includes lots of flopped

geometries
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Conclusions

I We’ve shown how to compute the metric given the BPS
state counts. There are lots of ways to attack this problem:
open string Gromov-Witten theory of K3 (Lin ’14-’17), plus
the tools physicists have for studying little string theories
(holography, geometric engineering, DLCQ).

I Even without counts, we have some very accurate
approximations

I This provides an interesting physical application of LST
which makes use of many of its known properties,
including its Hagedorn growth
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