Extremization principles from geometry

Seyed Morteza Hosseini

Kavli IPMU

Pohang, July 2019
Strings, Branes and Gauge Theories

In collaboration with A. Zaffaroni; 1901.05977, 1904.04269

Motivations

- The R-symmetry current is not unique!

Motivations

- The R-symmetry current is not unique!

Extremization principles
How to determine the exact R-symmetry?

Motivations

- The R-symmetry current is not unique!

Extremization principles

How to determine the exact R-symmetry?

- a-maximization in $4 \mathrm{D} \mathcal{N}=1$ gauge theories: $\left.\frac{\partial a(\Delta)}{\partial \Delta}\right|_{\bar{\Delta}}=0$.
[Intriligator, Wecht'03]
 [Jafferis'10]
$\Delta \Delta$: R-charges of the fields
- $\bar{\Delta}$: exact R -charges of the fields
- a : trial central charge
- $F_{S^{3}} \equiv-\log \left|Z_{S^{3}}\right|$

Motivations

$\triangleright c_{r}$-extremization in 2D $\mathcal{N}=(0,2)$ gauge theories: $\left.\frac{\partial c_{r}(\Delta)}{\partial \Delta}\right|_{\bar{\Delta}}=0$. [Benini, Bobev' 12]

- \mathcal{I}-extremization in $\mathcal{N}=2$ quantum mechanics: $\left.\frac{\partial \mathcal{I}(\Delta)}{\partial \Delta}\right|_{\bar{\Delta}}=0$. [Benini, Hristov, Zaffaroni' 15]
- c_{r} : trial right-moving central charge
- $\mathcal{I} \equiv-\log \left|Z_{S^{1}}\right|$

Motivations

- c_{r}-extremization in 2D $\mathcal{N}=(0,2)$ gauge theories: $\left.\frac{\partial c_{r}(\Delta)}{\partial \Delta}\right|_{\bar{\Delta}}=0$. [Benini, Bobev' 12]
- \mathcal{I}-extremization in $\mathcal{N}=2$ quantum mechanics: $\left.\frac{\partial \mathcal{I}(\Delta)}{\partial \Delta}\right|_{\bar{\Delta}}=0$. [Benini, Hristov, Zaffaroni' 15]
- c_{r} : trial right-moving central charge
- $\mathcal{I} \equiv-\log \left|Z_{S^{1}}\right|$

Geometric perspective

- Volume minimization
[Martelli, Sparks, Yau'05]
- $S_{\text {susy-extremization }}$

a-maximization $=$ volume minimization

AdS/CFT correspondence

$\mathrm{AdS}_{5} \times Y_{5} \leftrightarrow \mathcal{N}=1 \mathrm{SCFT}$ on N D3-branes at the tip of $\mathrm{CY}_{3}=C\left(Y_{5}\right)$.

- Y_{5} : Sasaki-Einstein five-manifold.

a-maximization $=$ volume minimization

AdS/CFT correspondence

$\mathrm{AdS}_{5} \times Y_{5} \leftrightarrow \mathcal{N}=1 \mathrm{SCFT}$ on N D3-branes at the tip of $\mathrm{CY}_{3}=C\left(Y_{5}\right)$.

- Y_{5} : Sasaki-Einstein five-manifold.

Klebanov-Witten theory $\left(Y_{5}=T^{1,1}\right)$

$$
\begin{gathered}
W=\operatorname{Tr}\left(A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}\right) \\
\Delta_{A_{1}}+\Delta_{A_{2}}+\Delta_{B_{1}}+\Delta_{B_{2}}=2 \\
\mathrm{U}(1)_{R} \times \mathrm{SU}(2)_{1} \times \mathrm{SU}(2)_{2} \times \mathrm{U}(1)_{B}
\end{gathered}
$$

- The toric cone $C\left(T^{1,1}\right)$ is determined by the vectors

$$
\vec{v}_{1}=(0,0), \quad \vec{v}_{2}=(1,0), \quad \vec{v}_{3}=(1,1), \quad \vec{v}_{4}=(0,1)
$$

- Toric R-charges:

$$
\Delta_{1}=\Delta_{A_{1}}, \quad \Delta_{2}=\Delta_{A_{2}}, \quad \Delta_{3}=\Delta_{B_{1}}, \quad \Delta_{4}=\Delta_{B_{2}}
$$

a-maximization $=$ volume minimization

$\mathcal{N}=1$ fields theories

- The theory has an R-symmetry and $d-1$ global symmetries.
- $d-3$ baryonic symmetries \equiv nontrivial 3-cycles $S_{a} \subset Y_{5}$.
- 3 mesonic symmetries (one is the R -symmetry).

Supergravity language

$\downarrow d-3$ gauge fields from reducing of IIB 4-form potential on S_{a}.

- 3 gauge fields associated $\mathrm{w} /$ the isometries of Y_{5}.
- $d-1 \mathrm{~g}$-symmetries can be parameterized by $\left(F_{a} \in \mathbb{R}\right) \rightarrow v_{a} \mathrm{w} /$

$$
\sum_{a=1}^{d} F_{a}=0
$$

- There are $|G| \mathrm{SU}(N)$ gauge groups $=2$ Area (toric diagram).

a-maximization $=$ volume minimization

- Define $w_{a} \equiv v_{a+1}-v_{a}$ (note that $v_{d+1} \equiv v_{1}$).
- $\left|\left(e_{1}, w_{a}, w_{b}\right)\right|$ bi-fundamental chiral fields $\Phi_{a b} \mathrm{w} /$ charge

$$
F_{a+1}+F_{a+2}+\ldots+F_{b},
$$

for each pair (a, b).

- Baryonic symmetries: $\sum_{a=1}^{d} B_{a} v_{a}=0$.
\triangleright R-charges of the fields: $\Delta_{a+1}+\Delta_{a+2}+\ldots+\Delta_{b}, \quad \sum_{a=1}^{d} \Delta_{a}=2$.

Trial $a(\Delta)$ central charge - large N

$$
a(\Delta) \equiv \frac{9}{32} \operatorname{Tr} R\left(\Delta_{a}\right)^{3}=\frac{9}{32} N^{2}\left(|G|+\sum_{\Phi_{a b}} \operatorname{mult}\left(\Phi_{a b}\right)\left(\Delta_{\Phi_{a b}}-1\right)^{3}\right) .
$$

a-maximization $=$ volume minimization

An equivalent formula

$$
a(\Delta)=\frac{27}{32} N^{2} \sum_{1 \leq a<b<c \leq d}\left(v_{a}, v_{b}, v_{c}\right) \Delta_{a} \Delta_{b} \Delta_{c}
$$

[Benvenuti, Pando Zayas, Tachikawa'06]
t' Hooft anomaly coefficient: $c_{a b c}=\frac{N^{2}}{2}\left(v_{a}, v_{b}, v_{c}\right)>0$.
> a-maximization: $\left.\frac{\partial a(\Delta)}{\partial \Delta_{a}}\right|_{\bar{\Delta}_{a}}=0$.

AdS/CFT dictionary

$$
\bar{\Delta}_{a}=\frac{\pi}{3} \frac{\operatorname{Vol}\left(S_{a}\right)}{\operatorname{Vol}\left(Y_{5}\right)}, \quad a\left(\bar{\Delta}_{a}\right)=\frac{\pi^{3} N^{2}}{4 \operatorname{Vol}\left(Y_{5}\right)}
$$

[Gubser, Klebanov'98; Gubser'98]

a-maximization $=$ volume minimization

off-shell backgrounds

Preserve supersymmetry but relax the equations of motion.

- The SE metric on Y_{5} is replaced with a general Sasaki metric.
\Rightarrow The metric depends on a Reeb vector $b=\left(b_{1}, b_{2}, b_{3}\right)$.

$$
\zeta=\sum_{i=1}^{3} b_{i} \partial_{\phi_{i}}, \quad \text { susy requires } b_{1}=3
$$

$>\partial_{\phi_{i}}$: vector fields generating the toric $\mathrm{U}(1)^{3}$ action.

- Volumes are now functions of the Reeb vector, i.e.

$$
\begin{gathered}
\operatorname{Vol}_{\mathrm{S}}\left(Y_{5}\right)=\frac{\pi^{3}}{b_{1}} \sum_{a=1}^{d} \frac{\left(v_{a-1}, v_{a}, v_{a+1}\right)}{\left(v_{a-1}, v_{a}, b\right)\left(v_{a}, v_{a+1}, b\right)} \\
\operatorname{Vol}_{\mathrm{S}}\left(S_{a}\right)=2 \pi^{2} \frac{\left(v_{a-1}, v_{a}, v_{a+1}\right)}{\left(v_{a-1}, v_{a}, b\right)\left(v_{a}, v_{a+1}, b\right)}
\end{gathered}
$$

a-maximization $=$ volume minimization

a-functional

$$
a\left(b_{i}\right) \equiv \frac{\pi^{3} N^{2}}{4 \operatorname{Vol}_{\mathrm{S}}\left(Y_{5}\left(b_{i}\right)\right)}
$$

[Martelli, Sparks, Yau'05]

Volume minimization

It reproduces the Reeb vector \bar{b} and the $\operatorname{Vol}\left(Y_{5}\left(\bar{b}_{i}\right)\right)$.

- $a\left(\bar{b}_{i}\right) \equiv a\left(\bar{\Delta}_{a}\right)$ by construction.

a-maximization $=$ volume minimization

a-functional

$$
a\left(b_{i}\right) \equiv \frac{\pi^{3} N^{2}}{4 \operatorname{Vol}_{\mathrm{S}}\left(Y_{5}\left(b_{i}\right)\right)}
$$

Volume minimization

It reproduces the Reeb vector \bar{b} and the $\operatorname{Vol}\left(Y_{5}\left(\bar{b}_{i}\right)\right)$.
$\Rightarrow a\left(\bar{b}_{i}\right) \equiv a\left(\bar{\Delta}_{a}\right)$ by construction.

- R-charges parameterization:

$$
\Delta_{a}\left(b_{i}\right)=\frac{\pi \operatorname{Vol}_{\mathrm{S}}\left(S_{a}\left(b_{i}\right)\right)}{b_{1} \operatorname{Vol}_{\mathrm{S}}\left(Y_{5}\left(b_{i}\right)\right)}, \quad \sum_{a=1}^{d} \Delta_{a}=2
$$

- One then proves that

$$
\left.\left.a\left(b_{i}\right) \equiv a\left(\Delta_{a}\right)\right|_{\Delta_{a}\left(b_{i}\right)} \equiv \frac{27}{32} N^{2} \sum_{1 \leq a<b<c \leq d}\left(v_{a}, v_{b}, v_{c}\right) \Delta_{a} \Delta_{b} \Delta_{c}\right|_{\Delta_{a}\left(b_{i}\right)}
$$

a-maximization $=$ volume minimization

A puzzle!

- $a(\Delta)$-maximization is performed over $d-1$ ind. parameters.
- $a\left(b_{i}\right)$-maximization is performed over 2 ind. parameters.

Question: is $a(\Delta)$-maximization $=a\left(b_{i}\right)$-maximization?

a-maximization $=$ volume minimization

A puzzle!

- $a(\Delta)$-maximization is performed over $d-1$ ind. parameters.
- $a\left(b_{i}\right)$-maximization is performed over 2 ind. parameters.

Question: is $a(\Delta)$-maximization $=a\left(b_{i}\right)$-maximization?

Key point

$a\left(\Delta_{a}\right)$ is automatically extremized wrt the baryonic directions.

- Baryon decoupling:

$$
\left.\sum_{a=1}^{d} B_{a} \frac{\partial a(\Delta)}{\partial \Delta_{a}}\right|_{\Delta_{a}(b)} \equiv 0
$$

\# of ind. parameters: $(d-1)-(d-3)=2$.

Outline

- c_{r}-extremization equals its gravitational dual
$\downarrow \mathcal{I}$-extremization from geometry
- Outlook

c_{r}-extremization equals its gravitational dual

Twisted compactification of $4 \mathrm{D} \mathcal{N}=1$ theories

$4 \mathrm{D} \mathcal{N}=1$ field theories $\xrightarrow{\Sigma_{\mathfrak{g}}} 2 \mathrm{D} \mathcal{N}=(0,2)$ field theories labeled by \mathfrak{n}_{a}.

- Supersymmetry is preserved by a topological twist.
- \mathfrak{n}_{a} : magnetic fluxes associated w / v_{a}.
- Twisting condition: $\sum_{a=1}^{d} \mathfrak{n}_{a}=2-2 \mathfrak{g}$.

Gravitational dual: $\mathrm{AdS}_{5} \times Y_{5} \longrightarrow \mathrm{AdS}_{3} \times_{W} Y_{7}$

- Y_{7} is topologically a fibration of Y_{5} over $\Sigma_{\mathfrak{g}}$.

Trial right-moving central charge

$$
c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)=3 \operatorname{Tr} \gamma_{3} R\left(\Delta_{a}\right)^{2} .
$$

γ_{3} : chirality operator in two dimensions.

- Trace runs over all the two-dimensional fermions.

c_{r}-extremization equals its gravitational dual

An index theorem - large N

[SMH, Nedelin, Zaffaroni' 16]

$$
\begin{aligned}
c_{r}(\Delta, \mathfrak{n}) & =-\frac{32}{9} \sum_{a=1}^{d} \mathfrak{n}_{a} \frac{\partial a(\Delta)}{\partial \Delta_{a}}=-3 \sum_{a, b, c=1}^{d} c_{a b c} \mathfrak{n}_{a} \Delta_{b} \Delta_{c} \\
& =3 N^{2} \sum_{1 \leq a<b<c \leq d}\left(v_{a}, v_{b}, v_{c}\right)\left(\mathfrak{n}_{a} \Delta_{b} \Delta_{c}+\mathfrak{n}_{b} \Delta_{a} \Delta_{c}+\mathfrak{n}_{c} \Delta_{a} \Delta_{b}\right)
\end{aligned}
$$

c_{r}-extremization equals its gravitational dual

An index theorem - large N

[SMH, Nedelin, Zaffaroni' 16]

$$
\begin{aligned}
c_{r}(\Delta, \mathfrak{n}) & =-\frac{32}{9} \sum_{a=1}^{d} \mathfrak{n}_{a} \frac{\partial a(\Delta)}{\partial \Delta_{a}}=-3 \sum_{a, b, c=1}^{d} c_{a b c} \mathfrak{n}_{a} \Delta_{b} \Delta_{c} \\
& =3 N^{2} \sum_{1 \leq a<b<c \leq d}\left(v_{a}, v_{b}, v_{c}\right)\left(\mathfrak{n}_{a} \Delta_{b} \Delta_{c}+\mathfrak{n}_{b} \Delta_{a} \Delta_{c}+\mathfrak{n}_{c} \Delta_{a} \Delta_{b}\right)
\end{aligned}
$$

off-shell backgrounds

Preserve supersymmetry but relax the equations of motion.
[Couzens, Gauntlett, Martelli, Sparks'18; Gauntlett, Martelli, Sparks'18]
\Rightarrow a Reeb vector $b=\left(b_{1}, b_{2}, b_{3}\right)$ - susy requires $b_{1}=2$.

- d parameters $\lambda_{a} \rightarrow D_{a}$ - determine the Kähler class.
$\Rightarrow d$ fluxes $\mathfrak{n}_{a} \rightarrow D_{a}$.

c_{r}-extremization equals its gravitational dual

Quasi-regular case

The quotient $V=Y_{5} / \mathrm{U}(1)_{\text {Reeb }}$ is a 4 D compact toric orbifold.
The Kähler class of V is given by $\omega=-2 \pi \sum_{a=1}^{d} \lambda_{a} c_{a}$.
c_{a} : Poincaré dual of the restriction of D_{a} to V.
$>$ Only $d-2 \lambda_{a}$ are independent (\# of ind. 2-cycles in V).
$\Rightarrow d \mathfrak{n}_{a} \rightarrow(d-3) \mathfrak{n}_{\alpha}+3 n^{i}$.

Remark

- $n^{i}=\sum_{a=1}^{d} v_{a}^{i} \mathfrak{n}_{a}$ are associated $\mathrm{w} /$ the isometries \rightarrow mesonic.
- \mathfrak{n}_{α} enter in the supergravity five-form flux \rightarrow baryonic.

c_{r}-extremization equals its gravitational dual

Master volume

$$
\mathcal{V}=4 \pi^{3} \sum_{a=1}^{d} \lambda_{a} \frac{\lambda_{a-1}\left(v_{a}, v_{a+1}, b\right)-\lambda_{a}\left(v_{a-1}, v_{a+1}, b\right)+\lambda_{a+1}\left(v_{a-1}, v_{a}, b\right)}{\left(v_{a-1}, v_{a}, b\right)\left(v_{a}, v_{a+1}, b\right)}
$$

susy + flux quantization conditions:

$$
\begin{aligned}
& N=-\sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_{a}} \\
& \mathfrak{n}_{a} N=-\frac{A}{2 \pi} \sum_{b=1}^{d} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial \lambda_{b}}-b_{1} \sum_{i=1}^{3} n^{i} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial b_{i}} \\
& A \sum_{a, b=1}^{d} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial \lambda_{b}}=2 \pi n^{1} \sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_{a}}-2 \pi b_{1} \sum_{i=1}^{3} n^{i} \sum_{a=1}^{d} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial b_{i}}
\end{aligned}
$$

- A is a constant parameterizing the Kähler class of $\Sigma_{\mathfrak{g}}$.
- $(d-1)$ ind. equations.
- $(d-2) \lambda_{a}+A \rightarrow(d-1)$ ind. parameters.

c_{r}-extremization equals its gravitational dual

$$
c\left(b_{i}, \mathfrak{n}_{a}\right)=-\left.48 \pi^{2}\left(A \sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_{a}}+2 \pi b_{1} \sum_{i=1}^{3} n^{i} \frac{\partial \mathcal{V}}{\partial b_{i}}\right)\right|_{\lambda_{a}(b, \mathfrak{n}), A(b, \mathfrak{n})}
$$

- R-charges parameterization:

$$
\Delta_{a}\left(b_{i}, \mathfrak{n}_{a}\right)=-\left.\frac{2}{N} \frac{\partial \mathcal{V}}{\partial \lambda_{a}}\right|_{\lambda_{a}(b, \mathfrak{n}), A(b, \mathfrak{n})}, \quad \sum_{a=1}^{d} \Delta_{a}=2 .
$$

- One then proves that

$$
\left.c\left(b_{i}, \mathfrak{n}_{a}\right) \equiv c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)\right|_{\Delta_{a}(b, \mathfrak{n})} \equiv-\left.\frac{32}{9} \sum_{a=1}^{d} \mathfrak{n}_{a} \frac{\partial a\left(\Delta_{a}\right)}{\partial \Delta_{a}}\right|_{\Delta_{a}(b, \mathfrak{n})}
$$

c_{r}-extremization equals its gravitational dual

A puzzle!

- $c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)$-extremization is performed over $d-1$ ind. parameters.
- $c\left(b_{i}, \mathfrak{n}_{a}\right)$-extremization is performed over 2 ind. parameters.

Question: is $c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)$-extremization $=c\left(b_{i}, \mathfrak{n}_{a}\right)$-extremization?

c_{r}-extremization equals its gravitational dual

A puzzle!
$c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)$-extremization is performed over $d-1$ ind. parameters.
$\Rightarrow c\left(b_{i}, \mathfrak{n}_{a}\right)$-extremization is performed over 2 ind. parameters.
Question: is $c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)$-extremization $=c\left(b_{i}, \mathfrak{n}_{a}\right)$-extremization?

Key point

$c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)$ is automatically extremized wrt the baryonic directions.
[SMH, Zaffaroni' ${ }^{19]}$

- Baryon decoupling:

$$
\left.\sum_{a=1}^{d} B_{a} \frac{\partial c_{r}(\Delta, \mathfrak{n})}{\partial \Delta_{a}}\right|_{\Delta_{a}(b, \mathfrak{n})}=\left.\sum_{a, b=1}^{d} B_{a} \mathfrak{n}_{b} \frac{\partial^{2} a(\Delta)}{\partial \Delta_{a} \partial \Delta_{b}}\right|_{\Delta_{a}(b, \mathfrak{n})} \equiv 0
$$

$\#$ of ind. parameters: $(d-1)-(d-3)=2$.

\mathcal{I}-extremization from geometry

AdS/CFT correspondence

$\mathrm{AdS}_{4} \times Y_{7} \leftrightarrow \mathcal{N}=2$ SCFT on N M2-branes at the tip of $\mathrm{CY}_{4}=C\left(Y_{7}\right)$.

- Y_{7} : Sasaki-Einstein seven-manifold.
[Herzog, Klebanov, Pufu, Tesileanu' 10]

Holographic dictionary:

$$
F_{S^{3}}=N^{3 / 2} \sqrt{\frac{2 \pi^{6}}{27 \operatorname{Vol}\left(Y_{7}\right)}}
$$

\mathcal{I}-extremization from geometry

AdS/CFT correspondence

$\mathrm{AdS}_{4} \times Y_{7} \leftrightarrow \mathcal{N}=2 \mathrm{SCFT}$ on N M2-branes at the tip of $\mathrm{CY}_{4}=C\left(Y_{7}\right)$.

- Y_{7} : Sasaki-Einstein seven-manifold.
[Herzog, Klebanov, Pufu, Tesileanu' 10]
Holographic dictionar
off-shell backgrounds

$$
F_{S^{3}}=N^{3 / 2} \sqrt{\frac{2 \pi^{6}}{27 \operatorname{Vol}\left(Y_{7}\right)}}
$$

Preserve supersymmetry but relax the equations of motion.

- The SE metric on Y_{7} is replaced with a general Sasaki metric.
\downarrow The metric depends on a Reeb vector $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$.

$$
\zeta=\sum_{i=1}^{4} b_{i} \partial_{\phi_{i}}, \quad \text { susy requires } b_{1}=4
$$

$\Rightarrow \partial_{\phi_{i}}$: vector fields generating the toric $\mathrm{U}(1)^{4}$ action.

\mathcal{I}-extremization from geometry

- Volumes are now functions of the Reeb vector.

$F_{S^{3}-\text { maximization }}=\operatorname{Vol}\left(Y_{7}\right)$-minimization

$F_{S^{3}}\left(\Delta_{a}\right)=N^{3 / 2} \sqrt{\frac{2 \pi^{6}}{27 \operatorname{Vol}_{S}\left(Y_{7}\left(b_{i}\right)\right)}}$.
$\Rightarrow \operatorname{Vol}_{S}\left(Y_{7}\left(b_{i}\right)\right)$ reproduces the Reeb vector \bar{b} and the $\operatorname{Vol}\left(Y_{7}\right)$.

- R-charge parameterization: $\Delta_{a}\left(b_{i}\right) \equiv \frac{2 \pi}{3 b_{1}} \frac{\operatorname{Vol}_{\mathrm{S}}\left(S_{a}\left(b_{i}\right)\right)}{\operatorname{Vol}_{\mathrm{S}}\left(Y_{7}\left(b_{i}\right)\right)}$.
- No proof for a generic Y_{7} !

Remark

$F_{S^{3}}$, at large N, does not depend on baryonic symmetries.

\mathcal{I}-extremization from geometry

Twisted compactification of $3 \mathrm{D} \mathcal{N}=2$ theories

$3 \mathrm{D} \mathcal{N}=2$ field theories $\xrightarrow{\Sigma_{\mathfrak{g}}} \mathcal{N}=2 \mathrm{QM}$ labeled by \mathfrak{n}_{a}.

- Supersymmetry is preserved by a topological twist.
- \mathfrak{n}_{a} : magnetic fluxes associated w / v_{a}.
- Twisting condition: $\sum_{a=1}^{d} \mathfrak{n}_{a}=2-2 \mathfrak{g}$.

Gravitational dual: $\mathrm{AdS}_{4} \times Y_{7} \longrightarrow \mathrm{AdS}_{2} \times_{W} Y_{9}$

- Y_{9} is topologically a fibration of Y_{7} over $\Sigma_{\mathfrak{g}}$.
- Black holes territory!

Topologically twisted index (TTI)

$$
\mathcal{I}\left(\Delta_{a}, \mathfrak{n}_{a}\right)=\operatorname{Tr}_{\mathcal{H}_{\Sigma_{\mathfrak{g}}}}(-1)^{F} e^{-\beta H} e^{i J_{a} \Delta_{a}} .
$$

\mathcal{I}-extremization from geometry

An index theorem - large N

$$
\mathcal{I}\left(\Delta_{a}, \mathfrak{n}_{a}\right)=-\frac{1}{2} \sum_{a=1}^{d} \mathfrak{n}_{a} \frac{\partial F_{S^{3}}\left(\Delta_{a}\right)}{\partial \Delta_{a}}
$$

\mathcal{I}-extremization from geometry

An index theorem - large N

$$
\mathcal{I}\left(\Delta_{a}, \mathfrak{n}_{a}\right)=-\frac{1}{2} \sum_{a=1}^{d} \mathfrak{n}_{a} \frac{\partial F_{S^{3}}\left(\Delta_{a}\right)}{\partial \Delta_{a}}
$$

off-shell backgrounds

Preserve supersymmetry but relax the equations of motion.
[Couzens, Gauntlett, Martelli, Sparks'18; Gauntlett, Martelli, Sparks'18]

- a Reeb vector $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ - susy requires $b_{1}=1$.
$\downarrow d$ parameters $\lambda_{a} \rightarrow D_{a}$ - determine the Kähler class.
$\triangleright d$ fluxes $\mathfrak{n}_{a} \rightarrow D_{a}$.

Entropy functional

$$
S\left(b_{i}, \mathfrak{n}_{a}\right)=-\left.8 \pi^{2}\left(A \sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_{a}}+2 \pi b_{1} \sum_{i=1}^{4} n_{i} \frac{\partial \mathcal{V}}{\partial b_{i}}\right)\right|_{\lambda_{a}(b, \mathfrak{n}), A(b, \mathfrak{n})}
$$

\mathcal{I}-extremization from geometry

Mesonic twist

$$
\sum_{a=1}^{d} B_{a}^{(i)} \lambda_{a}=0, \quad \forall i=1, \ldots, d-4
$$

$B_{a}^{(i)}$: baryonic symmetries that can be defined by

$$
\sum_{a=1}^{d} B_{a}^{(i)} v_{a}=0, \quad \forall i=1, \ldots, d-4
$$

- It depends on 3 ind. R-charges and 3 ind. magnetic fluxes, i.e.

$$
\mathfrak{n}_{a}=\frac{1}{2} \nabla\left(b_{1} \Delta_{a}\right), \quad \forall a=1, \ldots, d
$$

leaving only the $n_{i}=\sum_{a=1}^{d} v_{a}^{i} \mathfrak{n}_{a}$ as independent fluxes.

\mathcal{I}-extremization $=$ its gravitational dual

$$
\left.S\left(b_{i}, n_{i}\right)\right|_{b_{1}=1}=\mathcal{I}\left(\Delta_{a}, \mathfrak{n}_{a}\right)
$$

Outlook

- Define

$$
a_{3 \mathrm{~d}}\left(\Delta_{a}\right) \equiv \frac{1}{24} \sum_{a, b, c, e=1}^{d}\left|\left(v_{a}, v_{b}, v_{c}, v_{e}\right)\right| \Delta_{a} \Delta_{b} \Delta_{c} \Delta_{e}
$$

+ quartic corrections.
$\triangleright a_{3 \mathrm{~d}}\left(\Delta_{a}\right)=F_{S^{3}}^{2}\left(\Delta_{a}\right)$ for Sasakian parameterization.

Constraints on R -charges and fluxes

$$
\begin{gathered}
\sum_{a=1}^{d} B_{a}^{(i)} \frac{\partial a_{3 \mathrm{~d}}(\Delta)}{\partial \Delta_{a}}=0, \quad \forall i=1, \ldots, d-4 \\
\sum_{a, b=1}^{d} B_{a}^{(i)} \mathfrak{n}_{b} \frac{\partial^{2} a_{3 \mathrm{~d}}(\Delta)}{\partial \Delta_{a} \partial \Delta_{b}}=0, \quad \forall i=1, \ldots, d-4
\end{gathered}
$$

- $a_{3 \mathrm{~d}}\left(\Delta_{a}\right)$ sees what $F_{S^{3}}\left(\Delta_{a}\right)$ is seemingly blind to!

Outlook

Puzzle!

Baryonic symmetries disappear in the large N limit of the TTI.
[SMH, Zaffaroni' 16; SMH, Mekareeya’16; Azzurli, Bobev, Crichigno, Min, Zaffaroni’ 17]

- There are black holes w/ only baryonic charges...
[Halmagyi, Petrini, Zaffaroni" 13; see Hyojoong's talk.]
- Prove
\mathcal{I}-extremization $=$ its gravitational dual
for $Y_{9} \mathrm{w} /$ a generic twist.
- Find explicit examples of magnetic BPS black holes.

Outlook

Puzzle!

Baryonic symmetries disappear in the large N limit of the TTI.
[SMH, Zaffaroni' 16; SMH, Mekareeya'16; Azzurli, Bobev, Crichigno, Min, Zaffaroni' 17]

- There are black holes w / only baryonic charges. . .
[Halmagyi, Petrini, Zaffaroni" 13 ; see Hyojoong's talk.]
- Prove
\mathcal{I}-extremization $=$ its gravitational dual
for $Y_{9} \mathrm{w} /$ a generic twist.
- Find explicit examples of magnetic BPS black holes.

Thank you for your attention!

