SUSY enhancement from T-branes

Raffaele Savelli University of Rome "Tor Vergata"

Based on work with F. Carta, S. Giacomelli arXiv: 1809.04906

- Remarkable phenomenon along certain RG flows of 4d SFT's. [Maruyoshi, Song `16]; [Agarwal, Maruyoshi, Song `16,`18]
- 4d N=2 SCFT w/ non-Abelian flavor G_F + free chiral field M ∈ Adj(G_F).
- Deform with $\delta W = Tr(\mu M)$: $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ μ is the flavor moment map.
- Give vev $\langle M \rangle = \rho(\sigma_+)$ $\rho: su(2) \rightarrow G_F$ is a nilpotent orbit.
- Depending on ρ , δW may trigger RG flow w/ $\mathcal{N}=2$ fixed point!

- Very interesting, but also particularly useful:
 - ▶ IR is non-Lagrangian, but UV may have Lagrangian.
 - Use it to compute RG-invariant quantities for IR theory!

- Very interesting, but also particularly useful:
 - ▶ IR is non-Lagrangian, but UV may have Lagrangian.
 - Use it to compute RG-invariant quantities for IR theory!
- How was it discovered? a-maximization: [Intriligator, Wecht `03]

- ► $\langle M \rangle$: Adj(G_F) $\rightarrow \bigoplus_i V_i$ V_i spin-j irrep. of su(2).
- Only M w/ spin $(j, j_3 = -j)$ stay coupled, i.e. $[M, \rho(\sigma_{-})] = 0$.
- Maximize $32a=9TrR^3-3TrR$ w.r.t. trial R-charge $R=R_0+\epsilon F$.
- Re-iterate until all fields have $D_* = 3/2 R_* > 1$.

- Checks of enhancement: found rational IR central charges & superconformal index in agreement w/ known $\mathcal{N}=2$ theories.
- Involved process, hiding the origin of the phenomenon.

- Checks of enhancement: found rational IR central charges & superconformal index in agreement w/ known $\mathcal{N}=2$ theories.
- Involved process, hiding the origin of the phenomenon.
- Our purpose: show why it occurs by explaining it geometrically.
 - Engineer rank-I SCFT's by probing F-theory singularities.
 - Interpret deformations as T-brane backgrounds.
 - Get simple algebraic criterion to exclude enhancement.

- Checks of enhancement: found rational IR central charges & superconformal index in agreement w/ known $\mathcal{N}=2$ theories.
- Involved process, hiding the origin of the phenomenon.
- Our purpose: show why it occurs by explaining it geometrically.
 - Engineer rank-I SCFT's by probing F-theory singularities.
 - Interpret deformations as T-brane backgrounds.
 - Get simple algebraic criterion to exclude enhancement.
- Bonus: in case of enhancement, IR conformal dimensions are derived algebraically!

Warm-up: 3d SQED

- Easier setting, but key geometric features already apparent.
- Single D2 probing a stack of N D6-branes in flat space:
 - → $3d \mathcal{N}=4 U(I)$ gauge theory w/ flavors in fund of $G_F = U(N)$.
 - → IR dynamics described by an M2 probing ALE $\mathbb{C}^2/\mathbb{Z}_N$.

[Seiberg `96]

Warm-up: 3d SQED

- Easier setting, but key geometric features already apparent.
- Single D2 probing a stack of N D6-branes in flat space:
 - → $3d \mathcal{N}=4 U(I)$ gauge theory w/ flavors in fund of $G_F = U(N)$.
 - → IR dynamics described by an M2 probing ALE $\mathbb{C}^2/\mathbb{Z}_N$.

[Seiberg `96]

1				S_1			S_2 .		→		free hyper!
0	1	2	3	4	5	6	7	,	8 9)	, ,,
×	×	×							ϕ		$(U(I)) \{Q_i, \tilde{Q}^i\}_i \mathbf{N}$
×	×	×		×	×	×	×				
											$N \sim \cdot$
0	1	2	3	4	5	6	7	8	9	10	$W = \sum_{i=1}^{n} Q^{i} \phi Q_{i}$
×	×	×									i = 1
			×					×	×	×	$\longrightarrow V_+V = \phi^N CB$
	$\begin{vmatrix} 0 \\ \times \\ \times \\ \end{vmatrix}$	$\begin{array}{c cc} 0 & 1 \\ \times & \times \\ \times & \times \\ 0 & 1 \\ \times & \times \\ \end{array}$	$\begin{array}{ c c c } 0 & 1 & 2 \\ \times & \times & \times \\ \times & \times & \times \\ \hline 0 & 1 & 2 \\ \times & \times & \times \\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 0 & 1 & 2 & 3 & 4 \\ \times & \times & \times & \\ \times & \times & \times & \times & \\ 0 & 1 & 2 & 3 & 4 \\ \times & \times & \times & \\ & & & & \times & \\ & & & & &$	$\begin{vmatrix} \mathbf{S_1} \\ 0 & 1 & 2 & 3 & 4 & 5 \\ \times & \times & \times & & \\ \times & \times & \times & & \times & \times \\ 0 & 1 & 2 & 3 & 4 & 5 \\ \times & \times & \times & & \\ & & & & \times & \\ & & & &$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Add the IR relevant coupling $\delta W = Tr(\mu M)$:
 - $\mu_i^j \equiv Q_i \tilde{Q}^j$ is the meson matrix.
 - $M = \langle \Phi \rangle$ is vev of scalar controlling D6's position in 8,9 plane.
 - $M \operatorname{constant} \& [M, M^{\dagger}] = 0 \implies \mathcal{N} = 4 \operatorname{preserving} \operatorname{cplx} \operatorname{masses}.$
 - M 3d field \longrightarrow D6's coordinate dependence $\langle \Phi \rangle (S_1, S_2)$.

- Add the IR relevant coupling $\delta W = Tr(\mu M)$:
 - $\mu_i^j \equiv Q_i \tilde{Q}^j$ is the meson matrix.
 - $M = \langle \Phi \rangle$ is vev of scalar controlling D6's position in 8,9 plane.
 - M constant & $[M,M^{\dagger}]=0 \implies \mathcal{N}=4$ preserving cplx masses.
 - ▶ M 3d field \blacksquare D6's coordinate dependence $<\Phi>(s_1,s_2)$.
- Give *M* nilpotent vev \longrightarrow $[M,M^{\dagger}] \neq 0$ & $\mathcal{N}=4 \rightarrow \mathcal{N}=2$:
 - Probing a T6-brane background. [Cecotti, Cordova, Heckman, Vafa `10]
 - ▶ 2 fields among $M_{(j,-j)} \Leftrightarrow s_1, s_2$ take the 2 highest spins.
 - CB gets deformed:

- Add the IR relevant coupling $\delta W = Tr(\mu M)$:
 - $\mu_i^j \equiv Q_i \tilde{Q}^j$ is the meson matrix.
 - $M = \langle \Phi \rangle$ is vev of scalar controlling D6's position in 8,9 plane.
 - $M \operatorname{constant} \& [M, M^{\dagger}] = 0 \implies \mathcal{N} = 4 \operatorname{preserving} \operatorname{cplx} \operatorname{masses}.$
 - ▶ M 3d field \implies D6's coordinate dependence $<\Phi>(s_1,s_2)$.
- Give *M* nilpotent vev \longrightarrow $[M,M^{\dagger}] \neq 0$ & $\mathcal{N}=4 \rightarrow \mathcal{N}=2$:
 - Probing a T6-brane background. [Cecotti, Cordova, Heckman, Vafa `10]
 - ▶ 2 fields among $M_{(j,-j)} \Leftrightarrow s_1, s_2$ take the 2 highest spins.
 - CB gets deformed: $V_+V_- = \det \left[\phi \mathbb{1}_N M(s_1, s_2)\right]$

Consider

$$M = \underbrace{\begin{pmatrix} 0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0 \end{pmatrix}}_{\langle M \rangle} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ s_2 & 0 & 0 \\ s_1 & s_2 & 0 \end{pmatrix}}_{\delta M}$$

• Then $W = \phi \sum_{i=1}^{3} Q_i \tilde{Q}^i + m(Q_2 \tilde{Q}^1 + Q_3 \tilde{Q}^2) + s_2(Q_1 \tilde{Q}^2 + Q_2 \tilde{Q}^3) + s_1 Q_1 \tilde{Q}^3$

Consider

$$M = \underbrace{\begin{pmatrix} 0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0 \end{pmatrix}}_{\langle M \rangle} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ s_2 & 0 & 0 \\ s_1 & s_2 & 0 \end{pmatrix}}_{\delta M}$$

• Then $W = \phi \sum_{i=1}^{3} Q_i \tilde{Q}^i + m(Q_2 \tilde{Q}^1 + Q_3 \tilde{Q}^2) + s_2(Q_1 \tilde{Q}^2 + Q_2 \tilde{Q}^3) + s_1 Q_1 \tilde{Q}^3$

Integrating out

Consider

$$M = \underbrace{\begin{pmatrix} 0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0 \end{pmatrix}}_{\langle M \rangle} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ s_2 & 0 & 0 \\ s_1 & s_2 & 0 \end{pmatrix}}_{\delta M}$$

• Then $W = \phi \sum_{i=1}^{3} Q_i \tilde{Q}^i + m(Q_2 \tilde{Q}^1 + Q_3 \tilde{Q}^2) + s_2(Q_1 \tilde{Q}^2 + Q_2 \tilde{Q}^3) + s_1 Q_1 \tilde{Q}^3$

• Integrating out $W^{\text{eff}} = \left(\frac{\phi^3}{m^2} - \frac{2\phi s_2}{m} + s_1\right)Q_1\tilde{Q}^3$

Consider

$$M = \underbrace{\begin{pmatrix} 0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0 \end{pmatrix}}_{\langle M \rangle} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ s_2 & 0 & 0 \\ s_1 & s_2 & 0 \end{pmatrix}}_{\delta M}$$

• Then $W = \phi \sum_{i=1}^{3} Q_i \tilde{Q}^i + m(Q_2 \tilde{Q}^1 + Q_3 \tilde{Q}^2) + s_2(Q_1 \tilde{Q}^2 + Q_2 \tilde{Q}^3) + s_1 Q_1 \tilde{Q}^3$

• Integrating out $W^{\text{eff}} = \left(\frac{\phi^3}{m^2} - \frac{2\phi s_2}{m} + s_1\right) Q_1 \tilde{Q}^3 \qquad \square \qquad W^{\text{IR}} = s_1 Q_1 \tilde{Q}^3$ IR irrelevant!

Consider

$$M = \underbrace{\begin{pmatrix} 0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0 \end{pmatrix}}_{\langle M \rangle} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ s_2 & 0 & 0 \\ s_1 & s_2 & 0 \end{pmatrix}}_{\delta M}$$

• Then $W = \phi \sum_{i=1}^{3} Q_i \tilde{Q}^i + m(Q_2 \tilde{Q}^1 + Q_3 \tilde{Q}^2) + s_2(Q_1 \tilde{Q}^2 + Q_2 \tilde{Q}^3) + s_1 Q_1 \tilde{Q}^3$

• Integrating out $W^{\text{eff}} = \left(\frac{\phi^3}{m^2} + s_1\right) Q_1 \tilde{Q}^3 \qquad \square \qquad W^{\text{IR}} = s_1 Q_1 \tilde{Q}^3$ IR irrelevant!

• ϕ decouples & S_1 is the new CB operator \rightarrow back to $\mathcal{N}=4$!

Consider

$$M = \underbrace{\begin{pmatrix} 0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0 \end{pmatrix}}_{\langle M \rangle} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ s_2 & 0 & 0 \\ s_1 & s_2 & 0 \end{pmatrix}}_{\delta M}$$

• Then $W = \phi \sum_{i=1}^{3} Q_i \tilde{Q}^i + m(Q_2 \tilde{Q}^1 + Q_3 \tilde{Q}^2) + s_2(Q_1 \tilde{Q}^2 + Q_2 \tilde{Q}^3) + s_1 Q_1 \tilde{Q}^3$

• Integrating out $W^{\text{eff}} = \left(\frac{\phi^3}{m^2} - \frac{2\phi s_2}{m} + s_1\right) Q_1 \tilde{Q}^3 \qquad \square \qquad W^{\text{IR}} = s_1 Q_1 \tilde{Q}^3$ IR irrelevant!

- ϕ decouples & S_1 is the new CB operator \rightarrow back to $\mathcal{N}=4$!
- This is U(I) w/ I flavor \iff theory of I free hyper.

• Geometrically: M2 probing the fourfold (CY₄).

$$V_{+}V_{-} = \phi^{3} - 2m\phi s_{2} + m^{2}s_{1}$$

field-dependent deformation of $\mathbb{C}^2/\mathbb{Z}_3$

• Geometrically: M2 probing the fourfold (CY₄).

$$V_{+}V_{-} = \phi^{3} - 2m\phi s_{2} + m^{2}s_{1}$$

field-dependent deformation of $\mathbb{C}^2/\mathbb{Z}_3$

• In the IR, M2 only "sees" tiny neighbor of the origin.

$$\Rightarrow CY_4 \iff \{ V_+V_- = s_1 \} \times \mathbb{C}^2 \Rightarrow \mathcal{N} = 2 \Rightarrow \mathcal{N} = 4.$$

• Geometrically: M2 probing the fourfold (CY₄).

$$V_+V_- = \phi^3 - 2m\phi s_2 + m^2 s_1$$
 field-dependent
deformation of $\mathbb{C}^2/\mathbb{Z}_3$

• In the IR, M2 only "sees" tiny neighbor of the origin.

$$\Rightarrow CY_4 \iff \{V_+V_- = s_1\} \times \mathbb{C}^2 \Rightarrow \mathcal{N}=2 \rightarrow \mathcal{N}=4.$$

• Physically: D2 hasn't enough energy to "feel" D6's curvature.

• Geometrically: M2 probing the fourfold (CY₄).

$$V_+V_- = \phi^3 - 2m\phi s_2 + m^2 s_1$$
 field-dependent
deformation of $\mathbb{C}^2/\mathbb{Z}_3$

• In the IR, M2 only "sees" tiny neighbor of the origin.

$$\Rightarrow CY_4 \iff \{ V_+V_- = s_1 \} \times \mathbb{C}^2 \Rightarrow \mathcal{N} = 2 \rightarrow \mathcal{N} = 4$$

• Physically: D2 hasn't enough energy to "feel" D6's curvature.

su(3) minimal orbit

- Consider instead $M = \underbrace{\begin{pmatrix} 0 & m & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\langle M \rangle} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ s_1 & 0 & 0 \\ s_2 & 0 & 0 \end{pmatrix}}_{\delta M}$
- $\mathbb{C}^2/\mathbb{Z}_3$ gets deformed to $V_+V_- = \phi^3 2m\phi s_1$
- In the IR, this is equivalent to a conifold! $V_+V_- = \phi s_1$
 - No factorized twofold me no enhancement.
- D2 sees two intersecting D6-branes:

Rank-I 4d SCFT's & F-theory

- 3d case boring: only maximal orbit enhances & IR theory is free.
- Single D3 probing a stack of 7-branes (possibly non-perturb.):
 - \rightarrow 4d $\mathcal{N}=2$ rank-1 theory (possibly non-Lagrangian).
 - ➡ IR physics given by D3 prob. loc. elliptic K3 w/ Kodaira sing. [Banks, Douglas, Seiberg `96]

Rank-I 4d SCFT's & F-theory

- 3d case boring: only maximal orbit enhances & IR theory is free.
- Single D3 probing a stack of 7-branes (possibly non-perturb.):
 - \rightarrow 4d $\mathcal{N}=2$ rank-1 theory (possibly non-Lagrangian).
 - ➡ IR physics given by D3 prob. loc. elliptic K3 w/ Kodaira sing.
 [Banks, Douglas, Seiberg `96]

					S	1	S 2		ϕ		T 2		
F-theory	0	1	2	3	4	5	6	7	8	9	10	11	
D3	×	×	×	×									
ALE									×	×	×	×	

T² ↔ SW curve K3 is NOT a moduli space

singularity \Leftrightarrow flavor structure

- Add the $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ coupling $\delta W = Tr(\mu M)$:
 - $M = \langle \Phi \rangle$ is vev of 7-brane worldvolume scalar.
 - $M = \rho(\sigma_+) + \sum_{j=s_1,s_2} \delta M_{(j,-j)}$
 - ► $[M,M^{\dagger}] \neq 0$ \implies D3 probes a T7-brane background.
 - $\blacktriangleright \mathsf{D}^{\cup \vee}(S_i) = \operatorname{spin}(S_i) + 1.$
- $\delta W \Rightarrow$ field-dependent deformations of K3 :
 - ► Casimir invariants of M ← Versal deform'ns of singularity.

[Katz, Morrison `92]

• For any RG flow & any Energy scale, F-theory geometry is:

 $y^2 = x^3 + f(\phi, s_1, s_2)x + g(\phi, s_1, s_2)$ Elliptic CY₄ in Weierstrass form

- f & g depend on UV theory & choice of nilpotent orbit.
- Original K3 retrieved by $s_1 \equiv s_2 \equiv 0$.
- If SUSY enhances in IR, then:

$$K3^{UV} \stackrel{\text{Def}}{\Longrightarrow} CY_4 \stackrel{\text{IR}}{\Longrightarrow} K3^{\text{IR}} \times \mathbb{C}^2$$

$$K3^{UV} \equiv K3^{\text{IR}} \iff \text{trivial orbit.}$$

► Educated guess: $K_{3^{IR}} = CY_4|_{\phi \equiv S_2 \equiv 0} \implies S_1 \text{ new CB in IR.}$

- Conformal dim. of operators $\iff \mathbb{C}^*$ -action on coordinates:
 - Promote affine variables to projective ones.
- Relative scalings of operators are RG-flow invariants:
 - ▶ Impose homogeneity of CY₄ polynomial.
- Ansatz for IR geom. consistent $\iff \mathsf{D}^{\mathsf{IR}}(\phi) \leq 1 \& \mathsf{D}^{\mathsf{IR}}(S_2) \leq 1$.

- Conformal dim. of operators $\iff \mathbb{C}^*$ -action on coordinates:
 - Promote affine variables to projective ones.
- Relative scalings of operators are RG-flow invariants:
 - Impose homogeneity of CY₄ polynomial.
- Ansatz for IR geom. consistent $\iff \mathsf{D}^{\mathsf{IR}}(\phi) \leq 1 \& \mathsf{D}^{\mathsf{IR}}(s_2) \leq 1$.
- Assign C*-actions: Fiber K3 adiabatic. & force total space be CY.
 - $\Rightarrow \mathsf{D}^{\mathsf{IR}}(x) \mathsf{D}^{\mathsf{IR}}(y) + \mathsf{D}^{\mathsf{IR}}(s_1) = 1.$
 - Equivalent to $D(\lambda^{SW}) = 1$

- Conformal dim. of operators $\iff \mathbb{C}^*$ -action on coordinates:
 - Promote affine variables to projective ones.
- Relative scalings of operators are RG-flow invariants:
 - Impose homogeneity of CY₄ polynomial.
- Ansatz for IR geom. consistent $\iff \mathsf{D}^{\mathsf{IR}}(\phi) \leq 1 \& \mathsf{D}^{\mathsf{IR}}(s_2) \leq 1$.
- Assign C*-actions: Fiber K3 adiabatic. & force total space be CY.
 - $\Rightarrow \mathsf{D}^{\mathsf{IR}}(x) \mathsf{D}^{\mathsf{IR}}(y) + \mathsf{D}^{\mathsf{IR}}(s_1) = 1.$
 - Equivalent to $D(\lambda^{SW}) = 1$ $\partial \lambda^{SW} / \partial \mathcal{O}_{CB} = \Omega_{SW}^{1,0} = dx/y$

- $D^{\cup V}(S_1) \leq D^{\cup V}(\phi)$ **no enhancement!**
- Highest spin multiply populated me no enhancement!
- Consider the Lagrangian th. SU(2) w/ 4 flavors \implies $G_F = SO(8)$.
 - From D3 probing K3^{UV}: $y^2 = x^3 + \tau \phi^2 x + \phi^3$.

- $D^{\cup V}(S_1) \leq D^{\cup V}(\phi)$ is no enhancement!
- Highest spin multiply populated me no enhancement!
- Consider the Lagrangian th. SU(2) w/ 4 flavors $\implies G_F = SO(8)$.
 - From D3 probing $K3^{UV}$: $y^2 = x^3 + \tau \phi^2 x + \phi^3$.
- Deform:

- $D^{\cup \vee}(s_1) \leq D^{\cup \vee}(\phi)$ is no enhancement!
- Highest spin multiply populated me no enhancement!
- Consider the Lagrangian th. SU(2) w/ 4 flavors \implies $G_F = SO(8)$.
 - From D3 probing $K3^{UV}$: $y^2 = x^3 + \tau \phi^2 x + \phi^3$.

• Deform: $M = \begin{pmatrix} A & 0 \\ 0 & -A^T \end{pmatrix}$ $A = \begin{pmatrix} 0 & \sqrt{2} & 0 & 0 \\ s_2 & 0 & \sqrt{2} & 0 \\ s_1 & s_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $P_M(z) = z^8 - 4\sqrt{2}s_2z^6 + 8s_2^2z^4 - 4s_1^2z^2$ \bigcup \bigcup $C_{(2)} = -4\sqrt{2}s_2; \quad C_{(4)} = 8s_2^2; \quad C_{(6)} = -4s_1^2$

- $D^{\cup \vee}(S_1) \leq D^{\cup \vee}(\phi)$ **no enhancement!**
- Highest spin multiply populated me no enhancement!
- Consider the Lagrangian th. SU(2) w/ 4 flavors \implies $G_F = SO(8)$.
 - From D3 probing K3^{UV}: $y^2 = x^3 + \tau \phi^2 x + \phi^3$.

• **Deform:** $M = \begin{pmatrix} A & 0 \\ 0 & -A^T \end{pmatrix}$ $A = \begin{pmatrix} 0 & \sqrt{2} & 0 & 0 \\ s_2 & 0 & \sqrt{2} & 0 \\ s_1 & s_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $P_M(z) = z^8 - 4\sqrt{2}s_2z^6 + 8s_2^2z^4 - 4s_1^2z^2$ \bigcup

 $\Rightarrow y^2 = x^3 + \tau \phi^2 x + 2s_2 \phi x + s_2^2 x + \phi^3 + s_1^2$

- $D^{\cup \vee}(s_1) \leq D^{\cup \vee}(\phi)$ is no enhancement!
- Highest spin multiply populated me no enhancement!
- Consider the Lagrangian th. SU(2) w/ 4 flavors \implies $G_F = SO(8)$.
 - From D3 probing K3^{UV}: $y^2 = x^3 + \tau \phi^2 x + \phi^3$.

• Deform: $M = \begin{pmatrix} A & 0 \\ 0 & -A^T \end{pmatrix}$ $A = \begin{pmatrix} 0 & \sqrt{2} & 0 & 0 \\ s_2 & 0 & \sqrt{2} & 0 \\ s_1 & s_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $P_M(z) = z^8 - 4\sqrt{2}s_2z^6 + 8s_2^2z^4 - 4s_1^2z^2$ \bigcup \bigcup $C_{(2)} = -4\sqrt{2}s_2; \quad C_{(4)} = 8s_2^2; \quad C_{(6)} = -4s_1^2$

 $\Rightarrow y^2 = x^3 + \tau \phi^2 x + 2s_2 \phi x + s_2^2 x + \phi^3 + s_1^2$

• $\mathsf{D}^{\mathsf{IR}}(y) = \mathsf{D}^{\mathsf{IR}}(s_1) = 3/2$; $\mathsf{D}^{\mathsf{IR}}(x) = \mathsf{D}^{\mathsf{IR}}(s_2) = \mathsf{D}^{\mathsf{IR}}(\phi) = 1$.

- $D^{\cup \vee}(s_1) \leq D^{\cup \vee}(\phi)$ **no enhancement!**
- Highest spin multiply populated me no enhancement!
- Consider the Lagrangian th. SU(2) w/ 4 flavors \implies $G_F = SO(8)$.
 - From D3 probing K3^{UV}: $y^2 = x^3 + \tau \phi^2 x + \phi^3$.

• **Deform:** $M = \begin{pmatrix} A & 0 \\ 0 & -A^T \end{pmatrix}$ $A = \begin{pmatrix} 0 & \sqrt{2} & 0 & 0 \\ s_2 & 0 & \sqrt{2} & 0 \\ s_1 & s_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $P_M(z) = z^8 - 4\sqrt{2}s_2z^6 + 8s_2^2z^4 - 4s_1^2z^2$ $[3^2, 1^2]$ $2V_0 \oplus 7V_1 \oplus V_2$ $C_{(2)} = -4\sqrt{2}s_2;$ $C_{(4)} = 8s_2^2;$ $C_{(6)} = -4s_1^2$

- $\Rightarrow y^2 = x^3 + \frac{\tau \phi^2 x + 2s_2 \phi x + s_2^2 x + \phi^3}{1} + s_1^2 \quad \Box > \mathcal{H}_2$
- $\mathsf{D}^{\mathsf{IR}}(y) = \mathsf{D}^{\mathsf{IR}}(s_1) = 3/2$; $\mathsf{D}^{\mathsf{IR}}(x) = \mathsf{D}^{\mathsf{IR}}(s_2) = \mathsf{D}^{\mathsf{IR}}(\phi) = 1$.

Example: No enhancement

- Consider E₈ Minahan-Nemeschanski.
 - From D3 probing $K3^{\cup \vee}$: $y^2 = x^3 + \phi^5$.
- Deform by $E_8(a_2)$ orbit: $V_1 \oplus V_3 \oplus V_5 \oplus V_7 \oplus V_8 \oplus V_9 \oplus 2V_{11} \oplus V_{13} \oplus V_{14} \oplus V_{17} \oplus V_{19}$
 - → s_1 : 20th-order Casimir ; s_2 : 18th-order Casimir.
 - $\Rightarrow y^2 = x^3 + \phi^2 s_2 + s_1 x + \phi^5.$
- $D^{IR}(y) = 1$; $D^{IR}(x) = 2/3$; $D^{IR}(s_1) = 4/3$.
- $D^{IR}(\phi) = 2/5$ where decouples!
- BUT $D^{IR}(s_2) = 6/5$ \longrightarrow prevents enhancement.
- Incorrect conformal dimensions... a-maximization needed!

Lessons & Outlook

- Geometry of IR SUSY enhancement involves local structure of some algebraic space around (singular) point.
- Branch of moduli space for 3d case, but auxiliary space for 4d case (rank-1 F-theory fibration).
- Enhancement only arises when non-trivial factorization occurs
 holonomy reduction in M/F-theory.
- Higher-rank theories ? In class-S, factorization hyperkähler
 structure of moduli space of sol'ns of Hitchin system.
 [in progress with Carta, Giacomelli, Hayashi]
- Geometry behind factorization still obscure... RG-flow changes singularity structure, reminiscent of simultaneous resolutions!