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SUSY enhancement

• Remarkable phenomenon along certain RG flows of 4d SFT’s.                          
[Maruyoshi, Song `16];  [Agarwal, Maruyoshi, Song `16,`18]

• 4d N=2 SCFT w/  non-Abelian flavor GF   +  free chiral field             
M ∈ Adj(GF).

• Deform with  𝛅W = Tr(𝝁M):  N =2 → N =1     𝝁 is the flavor 

moment map.

• Give vev  <M> = 𝞺(σ+)     𝞺: su(2)→ GF   is a nilpotent orbit.

• Depending on 𝞺,  𝛅W may trigger RG flow w/ N =2 fixed point!
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• Very interesting, but also particularly useful:

‣ IR is non-Lagrangian,  but UV may have Lagrangian.

‣ Use it to compute RG-invariant quantities for IR theory!
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• Very interesting, but also particularly useful:

‣ IR is non-Lagrangian,  but UV may have Lagrangian.

‣ Use it to compute RG-invariant quantities for IR theory!

• How was it discovered?  a-maximization:         [Intriligator, Wecht `03]

‣ <M> :  Adj(GF) → ⨁j Vj         Vj   spin-j irrep. of su(2).

‣ Only M  w/ spin (j,j3=-j) stay coupled,  i.e. [M , 𝞺(σ-)] = 0.

‣ Maximize  32a=9TrR3-3TrR w.r.t.  trial R-charge  R=R0+𝟄F.

‣ Re-iterate until all fields have  D* = 3/2 R* > 1.
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superconformal index in agreement w/ known N =2 theories.

• Involved process,  hiding the origin of the phenomenon.
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SUSY enhancement

• Checks of enhancement:  found rational IR central charges & 
superconformal index in agreement w/ known N =2 theories.

• Involved process,  hiding the origin of the phenomenon.

• Our purpose: show why it occurs by explaining it geometrically.

‣ Engineer rank-1  SCFT’s  by probing  F-theory singularities.

‣ Interpret deformations as  T-brane backgrounds.

‣ Get simple algebraic criterion to exclude enhancement.

• Bonus: in case of enhancement, IR conformal dimensions are 
derived algebraically!



Warm-up:  3d SQED

• Easier setting,  but key geometric features already apparent. 

• Single D2 probing a stack of N D6-branes in flat space:

➡ 3d N =4 U(1) gauge theory w/ flavors in fund of GF = U(N).

➡ IR dynamics described by an M2  probing  ALE  ℂ2/ℤN .
[Seiberg `96]
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2 Warm-up: SQED in three dimensions

In this section we would like to introduce the main ideas behind our investigation. We do it

in the context of 3d Abelian field theories because, on the one hand the analysis is technically

easier, and on the other hand this allows us to lay down the general string-theory set-up which,

with few important variations, will also be relevant for the study of 4d theories.

2.1 Geometric set-up

The theory we start from is engineered by type IIA string theory with a single D2-brane probing

a stack of N D6-branes in flat space-time. Branes are extended as in the following table:

Type IIA 0 1 2 3 4 5 6 7 8 9

D2 ⇥ ⇥ ⇥

N D6 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

It is well known that the low-energy theory living on the probe is a 3d N = 4 field theory

with U(1) gauge group and N hypermultiplets (originating from 2� 6 strings) transforming in

the fundamental of the U(N) flavor symmetry. We call {Qi, Q̃
i}i=1,...,N the chiral components of

such hypermultiplets, with gauge charge +1,�1 respectively. Strings stretching from the D2 to

itself, instead, give rise to a vector multiplet and a neutral hypermultiplet. The former comprises

a vector field Aµ, a complex scalar field � describing the motion of the probe transverse to the

D6-stack, i.e. in the (8, 9)-plane, and a real scalar field � for the motion along direction 3.

The latter, whose chiral halves we call s1, s2, is associated to the motion of the probe in the

directions longitudinal to the D6-stack, namely along 4, 5, 6, 7, and in the N = 4 theory is a free

field. Interactions are described by a superpotential of the form

W =
NX

i=1

Q̃
i
�Qi . (2.1)

This theory has a non-trivial IR physics, and here we are mostly interested in the Coulomb

branch of its moduli space, which can be described as follows [39,40]. We first Hodge-dualize the

photon to a real scalar �: The latter is periodic and lives on a circle of radius equal to the square

of the gauge coupling g. Then we cast the fields �,� in the so-called “monopole operators”:

V± ⇠ e
±(�+i�/g2)

. (2.2)

The above are to be interpreted as classical relations, valid far out along the Coulomb branch,

where they satisfy the obvious constraint V+V� = 1. However, at distances of order g
2 from
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the origin, the Coulomb branch drastically deviates from a cylindrical shape, due to strong

quantum corrections. For a definition of the monopole operators V± valid in the full quantum

theory, see [41]. Quantum corrections turn the Coulomb branch into the following ALF space:

V+V� = �
N
. (2.3)

This phenomenon is elegantly described by the M-theory lift of the above type IIA set-up, where

the D6-branes precisely become the N -center Taub-NUT space described by (2.3) and probed by

a M2-brane, while the gauge coupling gets “geometrized” into the radius of the 11th dimension.

The IR fixed point of the theory on the probe corresponds to sending the gauge coupling to

infinity, and thus to turning the Taub-NUT into C2
/ZN , an ALE space with an AN�1-type

singularity at the origin. Given C3 with coordinates u, v, z, this space is conveniently modeled

by the following holomorphic surface

uv = z
N
, (2.4)

where u, v are to be understood as “fiber” coordinates, whereas z parametrizes the base, being

identified with the field �. The M-theory configuration we are considering is summarized in the

following table

M-theory 0 1 2 3 4 5 6 7 8 9 10

M2 ⇥ ⇥ ⇥

ALE ⇥ ⇥ ⇥ ⇥

We are now interested in adding a specific class of field-dependent relevant deformations to

the superpotential (2.1), which can be described as

�W = Tr(µM) , (2.5)

where µ
j
i ⌘ QiQ̃

j is the meson matrix (or the so-called “moment map” associated to the U(N)

flavor symmetry), and M is a gauge-invariant chiral superfield that we are adding to the theory,

transforming in the adjoint of the flavor group. The string-theory set-up we are using to engineer

the field theory leads to interpret the extra field M as the vacuum expectation value of the

“Higgs field” � of the D6-branes, namely of the background field whose spectral data describe

the motion of the D6-stack in the (8, 9)-plane:

M = h�i . (2.6)

IfM is constant and such that [M,M
†] = 0, its entries are (complex) masses from the probe point

of view, and the corresponding deformation (2.5) preserves N = 4 supersymmetry. However,
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• Easier setting,  but key geometric features already apparent. 

• Single D2 probing a stack of N D6-branes in flat space:

➡ 3d N =4 U(1) gauge theory w/ flavors in fund of GF = U(N).

➡ IR dynamics described by an M2  probing  ALE  ℂ2/ℤN .
[Seiberg `96]



Deformations

• Add the IR relevant coupling  𝛅W = Tr(𝝁M)  :

‣                 is the meson matrix.

‣ M=<𝜱>  is vev of scalar controlling D6’s position in 8,9 plane.
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• 𝜙 decouples  &  s1  is the new CB operator  ➠  back to N =4 !

• This is  U(1)  w/  1 flavor    ⟺    theory of  1 free hyper.



su(3) principal orbit

• Geometrically:  M2  probing the fourfold  (CY4).

V+V� = det [�1N �M(s1, s2)]

M =

0

@
0 m 0
0 0 m
0 0 0

1

A

| {z }
hMi

+

0

@
0 0 0
s2 0 0
s1 s2 0

1

A

| {z }
�M

W = �
3X

i=1

QiQ̃
i +m(Q2Q̃

1 +Q3Q̃
2) + s2(Q1Q̃

2 +Q2Q̃
3) + s1Q1Q̃

3

W e↵ =

✓
�3

m2
� 2�s2

m
+ s1

◆
Q1Q̃

3 �!IR s1Q1Q̃
3

W IR = s1Q1Q̃
3

V+V� = �3 � 2m�s2 +m2s1

1

field-dependent 
deformation of ℂ2/ℤ3



su(3) principal orbit

• Geometrically:  M2  probing the fourfold  (CY4).
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• In the IR,  M2  only  “sees”   tiny neighbor of the origin.
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• Physically:  D2 hasn’t enough energy to “feel” D6’s curvature.
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su(3) minimal orbit

• Consider instead

• ℂ2/ℤ3   gets deformed to

• In the IR, this is equivalent to a conifold!

‣ No factorized twofold   ➠  no enhancement.

• D2 sees two intersecting D6-branes:
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Rank-1 4d SCFT’s  &  F-theory

• 3d case boring: only maximal orbit enhances & IR theory is free.

• Single D3 probing a stack of 7-branes  (possibly non-perturb.):

➡ 4d N =2 rank-1 theory (possibly non-Lagrangian).

➡ IR physics given by D3 prob. loc. elliptic K3  w/  Kodaira sing.
[Banks, Douglas, Seiberg `96]
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• 3d case boring: only maximal orbit enhances & IR theory is free.

• Single D3 probing a stack of 7-branes  (possibly non-perturb.):

➡ 4d N =2 rank-1 theory (possibly non-Lagrangian).

➡ IR physics given by D3 prob. loc. elliptic K3  w/  Kodaira sing.

T
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CYK3

CB(𝜙)

singularity ⇿ flavor structure 

of F-theory, which will help us explore the question of supersymmetry enhancement in purely

algebraic terms. Our results agree and provide an explanation of the phenomena observed

in [2, 5, 8] using field-theoretic methods. Moreover, for the RG flows leading to supersymmetry

enhancement, we are able to compute algebraically the correct IR conformal dimensions of all

fields, i.e. without using any maximization procedure.

3.1 Geometric set-up

The geometric engineering of 4d N = 2 field theories and of their N = 1 deformations in F-

theory is closely related to the M-theory setting we used to engineer 3d theories in Section 2.1.

There are, however, a few important di↵erences which we would like to highlight here.

Rank-1 field theories can be realized as theories on a single D3-brane probing a stack of

7-branes in type IIB string theory [46]. Contrary to the previous case, the 7-branes can be

mutually non-perturbative, thus realizing exceptional flavor symmetries6. The corresponding

probe theories are the so-called Minahan-Nemeschansky theories [47]. F-theory provides the

set-up to analyze these systems with geometric methods. It uses an auxiliary 2-torus fibered over

the physical space, which from the field-theory viewpoint plays the role of the Seiberg-Witten

curve. As in M-theory, one probes isolated singularities of elliptically-fibered ALE spaces, which

will now be of di↵erent Kodaira types, according to the flavor structure. Probe and singular

space for the starting theory in the UV extend in twelve dimensions as follows:

F-theory 0 1 2 3 4 5 6 7 8 9 10 11

D3 ⇥ ⇥ ⇥ ⇥

ALE ⇥ ⇥ ⇥ ⇥

In the above table, 10 and 11 represent the torus directions and, unlike in M-theory, do not

correspond to any physical operator of the probe theory. Instead, the (8, 9)-plane, which the

torus is fibered over, is parametrized by the UV Coulomb-branch operator (this is the motion of

the D3 probe transverse to the 7-branes). Like in the previous section, the 4, 5, 6, 7 coordinates,

s1, s2, correspond to a free hypermultiplet parameterizing the motion of the probe along the

7-brane stack, which will be coupled when deforming the theory.

Deformations are again formulated as in (2.5), where µ is the moment map associated to the

flavor symmetry of the starting theory, which in most of the cases is a non-Lagrangian theory.

6
or giving a non-perturbative realization of classical flavor symmetries, as is the case for the Argyres-Douglas

theories.

10

s1 s2 𝜙 T2

T2  ⇿  SW curve

K3 is NOT a moduli space 

[Banks, Douglas, Seiberg `96]



Deformations

• Add the  N =2 → N =1  coupling   𝛅W = Tr(𝝁M)  :

‣ M = <𝜱>   is vev of 7-brane worldvolume scalar.

‣  

‣ [M,M†] ≠ 0   ➠  D3 probes a T7-brane background.

‣ DUV(si) = spin(si) + 1.

• 𝛅W  ➾  field-dependent deformations of K3 :

‣ Casimir invariants of M   ↭   Versal deform’ns of singularity.

M is the extra chiral field added to the theory, which, following [44], we will split as

M = ⇢(�+) +
X

j=s1,s2

�M(j,�j) , (3.1)

where the first term is its vacuum expectation value, taken along the nilpotent element ⇢(�+).

Again, for the purpose of discussing the possible appearance of supersymmetry enhancement in

the IR, it will be su�cient to restrict the above sum of fluctuations to the two highest spins,

s1, s2, in the decomposition of the adjoint representation of the original flavor symmetry. We

name them such that spin(s1) � spin(s2). The UV conformal dimension D
UV(·) of such fields

is related to their spin by [44] (see also [2])

D
UV(si) = spin(si) + 1 , (3.2)

as we will review in Appendix A. Hence fields of vanishing spin are free fields.

Like in the M-theory construction, M induces a deformation of the ALE space in F-theory,

because it corresponds to the vacuum expectation value of the 7-brane Higgs-field. The probed

configuration is again of T-brane type. In this case, however, there is a technical complication:

The characteristic polynomial of M does not directly appear in the one defining the geometry,

like in (2.7). Nevertheless, there exists a precise one-to-one correspondence between the Casimir

invariants of M and the versal7 deformations of the original singular geometry (see e.g. [48]).

See Table 1, taken from [49], for a summary of the complete unfolding of the singularities which

are relevant to us in this section. By using this correspondence, we are able to write down the

deformed F-theory geometry for any given nilpotent orbit.

Kodaira Surface Flavor

II
⇤

y
2 = x

3 + x(M2z
3 +M8z

2 +M14z +M20) + (z5 +M12z
3 +M18z

2 +M24z +M30) E8

III
⇤

y
2 = x

3 + x(z3 +M8z +M12) + (M2z
4 +M6z

3 +M10z
2 +M14z +M18) E7

IV
⇤

y
2 = x

3 + x(M2z
2 +M5z +M8) + (z4 +M6z

2 +M9z +M12) E6

I
⇤
0 y

2 = x
3 + x(⌧z2 +M2z +M4) + (z3 + M̃4z +M6) SO(8)

IV y
2 = x

3 + xM2 + (z2 +M3) SU(3)

III y
2 = x

3 + xz +M2 SU(2)

II y
2 = x

3 + z no

Table 1: Maximally deformed singularities. Mi is the degree-i Casimir invariant of the corre-

sponding flavor symmetry. M̃4 indicates the Pfa�an of the so(8) matrix. Table taken from [49].

7
Roughly said, these are all deformations which cannot be undone by coordinate redefinitions.

11

[Katz, Morrison `92]



Enhancement criterion

• For any RG flow & any Energy scale,  F-theory geometry is:

‣ f  &  g  depend on UV theory & choice of nilpotent orbit.

‣ Original K3 retrieved by   s1 ≡ s2 ≡ 0.

• If SUSY enhances in IR,  then:

‣ K3UV  ≡  K3IR     ⟺    trivial orbit.

‣ Educated guess:    K3IR = CY4|𝜙 ≡ s2 ≡ 0    ➠   s1  new CB in IR.
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• Conformal dim. of operators   ⟺   ℂ*-action on coordinates:

‣ Promote affine variables to projective ones.

• Relative scalings of operators are RG-flow invariants:

‣ Impose homogeneity of  CY4  polynomial.

• Ansatz for IR geom. consistent  ⟺  DIR(𝜙) ≤ 1   &   DIR(s2) ≤ 1.
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• Highest spin multiply populated   ➠   no enhancement!

• Consider the Lagrangian th.  SU(2) w/ 4 flavors  ➠  GF = SO(8).

‣ From D3 probing   K3UV :   y2 = x3 + 𝜏𝜙2x + 𝜙3 .
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Orbit O dim CŌ Decomposition of Adj Enhancement?

[7, 1] 24 V1 � 2V3 � V5 Yes, H0
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[5, 13] 20 3V0 � V1 � 3V2 � V3 Yes, H1

[42]I 20 3V0 � V1 � 3V2 � V3 Yes, H1
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[32, 12] 18 2V0 � 7V1 � V2 Yes, H2

[3, 22, 1] 16 3V0 � 4V 1
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� 3V1 � 2V 3
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No

[3, 15] 12 10V0 � 6V1 No

[24]I 12 10V0 � 6V1 No

[24]II 12 10V0 � 6V1 No

[22, 14] 10 9V0 � 8V 1
2
� V1 No

[18] 0 28V0 No

Table 2: All nilpotent orbits of so(8) and their adjoint decomposition. By Vj we indicate the

representation of spin j under the embedded SU(2).

2, will single out all and only the enhancing orbits. There is in principle no need to use the

inequalities (A.12) in this case. Nevertheless, checking them, one sees that they are satisfied in

the enhancing cases, as they should be. Let us perform this check explicitly.

The undeformed Weierstrass model reads (see Table 1)

y
2 = x

3 + ⌧xz
2 + z

3 (A.13)

From the homogeneity of the curve and the CY condition we can determine the dimensions of

the coordinates and of the CB operator. We get

D
UV(x) = 2, D

UV(y) = 3, D
UV(z) = 2. (A.14)

The inequalities (A.12) now read

D
UV(s1) � 3

D
UV(s1) � D

UV(s2) + 1
(A.15)

and simply by looking at Table 2, we can see that they are indeed satisfied in the enhancing

cases.
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• DUV(s1) ≤ DUV(𝜙)   ➠   no enhancement!

• Highest spin multiply populated   ➠   no enhancement!

• Consider the Lagrangian th.  SU(2) w/ 4 flavors  ➠  GF = SO(8).

‣ From D3 probing   K3UV :   y2 = x3 + 𝜏𝜙2x + 𝜙3 .

• Deform:
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inequalities (A.12) in this case. Nevertheless, checking them, one sees that they are satisfied in

the enhancing cases, as they should be. Let us perform this check explicitly.

The undeformed Weierstrass model reads (see Table 1)

y
2 = x

3 + ⌧xz
2 + z

3 (A.13)

From the homogeneity of the curve and the CY condition we can determine the dimensions of

the coordinates and of the CB operator. We get

D
UV(x) = 2, D

UV(y) = 3, D
UV(z) = 2. (A.14)

The inequalities (A.12) now read

D
UV(s1) � 3

D
UV(s1) � D

UV(s2) + 1
(A.15)

and simply by looking at Table 2, we can see that they are indeed satisfied in the enhancing

cases.
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• DUV(s1) ≤ DUV(𝜙)   ➠   no enhancement!

• Highest spin multiply populated   ➠   no enhancement!

• Consider the Lagrangian th.  SU(2) w/ 4 flavors  ➠  GF = SO(8).

‣ From D3 probing   K3UV :   y2 = x3 + 𝜏𝜙2x + 𝜙3 .

• Deform:

➡ y2 = x3 + 𝜏𝜙2x + 2s2𝜙x + s22x + 𝜙3 + s12

• DIR(y) = DIR(s1) = 3/2   ;   DIR(x) = DIR(s2) = DIR(𝜙) = 1 .

Example:   D4  ⤳  H2
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Orbit O dim CŌ Decomposition of Adj Enhancement?

[7, 1] 24 V1 � 2V3 � V5 Yes, H0

[5, 3] 22 3V1 � V2 � 2V3 No

[5, 13] 20 3V0 � V1 � 3V2 � V3 Yes, H1

[42]I 20 3V0 � V1 � 3V2 � V3 Yes, H1

[42]II 20 3V0 � V1 � 3V2 � V3 Yes, H1

[32, 12] 18 2V0 � 7V1 � V2 Yes, H2

[3, 22, 1] 16 3V0 � 4V 1
2
� 3V1 � 2V 3

2
No

[3, 15] 12 10V0 � 6V1 No

[24]I 12 10V0 � 6V1 No

[24]II 12 10V0 � 6V1 No

[22, 14] 10 9V0 � 8V 1
2
� V1 No

[18] 0 28V0 No

Table 2: All nilpotent orbits of so(8) and their adjoint decomposition. By Vj we indicate the

representation of spin j under the embedded SU(2).

2, will single out all and only the enhancing orbits. There is in principle no need to use the

inequalities (A.12) in this case. Nevertheless, checking them, one sees that they are satisfied in

the enhancing cases, as they should be. Let us perform this check explicitly.

The undeformed Weierstrass model reads (see Table 1)

y
2 = x

3 + ⌧xz
2 + z

3 (A.13)

From the homogeneity of the curve and the CY condition we can determine the dimensions of

the coordinates and of the CB operator. We get

D
UV(x) = 2, D

UV(y) = 3, D
UV(z) = 2. (A.14)

The inequalities (A.12) now read

D
UV(s1) � 3

D
UV(s1) � D

UV(s2) + 1
(A.15)

and simply by looking at Table 2, we can see that they are indeed satisfied in the enhancing

cases.
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Example:  No enhancement

• Consider E8 Minahan-Nemeschanski.

‣ From D3 probing   K3UV :   y2 = x3 + 𝜙5 .

• Deform by E8(a2) orbit:

➡ s1 :  20th-order Casimir    ;    s2 :  18th-order Casimir.

➡ y2 = x3 + 𝜙2s2 + s1x + 𝜙5 .

• DIR(y) = 1   ;   DIR(x) = 2/3   ;   DIR(s1) = 4/3 .

• DIR(𝜙) = 2/5     ➠    decouples!

• BUT   DIR(s2) = 6/5     ➠    prevents enhancement.

• Incorrect conformal dimensions… a-maximization needed!

Orbit O dim CŌ Decomposition of Adj Enhancement?

E8 240 V1 � V7 � V11 � V13 � V17 � V19 � V23 � V29 Yes, H0 theory

E8(a1) 238 V1 � V5 � V7 � V9 � V11 � V13 � V14 � V17 � V19 � V23 No

E8(a2) 236 V1 � V3 � V5 � V7 � V8 � V9 � 2V11 � V13 � V14 � V17 � V19 No

E8(a3) 234 2V1 � V4 � 2V5 � V7 � V8 � 2V9 � V11 � 2V13 � V14 � V17 No

E8(a4) 232 V1 � V2 � V3 � V4 � 2V5 � 3V7 � V8 � 2V9 � 2V11 � V13 � V14 No

E7 232 3V0 � V1 � 2V 9
2
� V5 � V7 � 2V 17

2
� V9 � V11 � V13 � 2V 27

2
� V17 No

E8(b4) 230 2V1 � V2 � 2V3 � 2V5 � V6 � 2V7 � 2V8 � V9 � V10 � 2V11 � V13 No

E8(a5) 228 3V1 � V2 � V3 � V4 � 4V5 � 2V6 � 3V7 � V8 � V9 � V10 � 2V11 No

E7(a1) 228
3V0 � V1 � 2V 5

2
� V3 � 2V5 � 2V 11

2
� V7�

�2V 15
2
� V8 � V9 � 2V 21

2
� V11 � V13

No

E8(b5) 226 4V1 � V2 � 2V3 � 3V4 � 3V5 � 3V7 � 3V8 � 2V9 � V11 No

D7 226
3V0 � V1 � 2V 3

2
� V3 � 2V 9

2
� V5 � 2V 11

2
�

�3V6 � V7 � 2V 15
2
� V9 ��2V 21

2
� V11

No

E8(a6) 224 3V1 � V2 � 5V3 � 3V4 � 3V5 � 3V6 � 3V7 � V8 � 2V9 No

E7(a2) 224
3V1 � 2V2 � 2V 3

2
� V3 � 2V 7

2
� V4 � 2V 9

2
� 2V5�

�2V7 � 2V 15
2
� V8 � 2V 17

2
� V9 � V11

No

E6 +A1 222
3V0 � 4V 1

2
� 2V1 � 2V 7

2
� 3V4 � 2V 9

2
�

�V5 � V7 � 2V 15
2
� 3V8 � 2V 17

2
� V11

No

D7(a1) 222 V0 � 4V1 � 2V2 � 3V3 � 3V4 � 6V5 � V6 � 3V7 � 2V8 � V9 No

E8(b6) 220 4V1 � 4V2 � 5�3 �3V4 � 6V5 � 2V6 � 3V7 � V8 No

E7(a3) 220
3V0 � 2V 1

2
� 2V1 � V2 � 2V 5

2
� 2V3 � V4�

�4V 9
2
� 3V5 � 2V 11

2
� 2V7 � 2V 15

2
� V8 � V9

No

E6(a1) +A1 218
V0 � 2V 1

2
� 2V1 � 2V 3

2
� 3V2 � 2V 5

2
� V3 � 2V 7

2
�

�3V4 � 2V 9
2
� 2V5 � 2V 11

2
� 2V6 � 2V 13

2
� V7 � V8

No

A7 218
3V0 � V1 � 2V 3

2
� 3V2 � 2V 5

2
� V3 � 4V 7

2
�

�3V4 � 2V 9
2
� V5 � 2V 11

2
� 3V6 � V7 � 2V 15

2

No

D7(a2) 216
V0 � 2V 1

2
� 2V1 � 2V 3

2
� 3V2 � 2V 5

2
� 3V3 � 4V 7

2
�

�3V4 � 2V 9
2
� 2V5 � 2V 11

2
� V6 � 2V 13

2
� V7

No

E6 216 14V0 � V1 � 7V4 � V5 � V7 � 7V8 � V11 No

D6 216 10V0 � V1 � 4V 5
2
� V3 � 4V 9

2
� 6V5 � V7 � 4V 15

2
� V9 No

D5 +A2 214 V0 � 8V1 � 5V2 � 5V3 � 5V4 � 7V5 � 2V6 � V7 No

E6(a1) 214 8V0 � V1 � 7V2 � V3 � 7V4 � 2V5 � 6V6 � V7 � V8 No

E7(a4) 212
3V0 � 2V 1

2
� 4V1 � 4V 3

2
� 2V2 � 2V 5

2
� 3V3 � 2V 7

2
�

�2V4 � 4V 9
2
� 4V5 � 2V 11

2 � V6 � V7

No

A6 +A1 212
3V0 � 2V 1

2
� 2V1 � 2V 3

2
� 3V2 � 4V 5

2
� 5V3�

4V� 7
2
� 3V4 � 2V 9

2 � V5 � 2V 11
2
� 3V6

No

D6(a1) 210 6V0 � 6V1 � 4V 3
2
� 4V 5

2
� 2V3 � 5V4 � 4V 9

2
� 2V5 � 4V 11

2
� V7 No

A6 210 6V0 � 5V1 � 3V2 � 13V3 � 3V4 � 5V5 � 3V6 No

E8(a7) 208 10V1 � 10V2 � 10V3 � 6V4 � 4V5 No

D5 +A1 208
6V0 � 6V 1

2
� 2V1 � 2V 3

2
� 4V2 � 2V 5

2
� V3�

�2V 7
2
� 3V4 � 4V 9

2
� 5V5 � 2V 11

2
� V7

No

E7(a5) 206 3V0 � 6V1 � 6V 3
2
� 4V2 � 6V 5

2
� 5V3 � 4V 7

2
� 3V4 � 2V 9

2
� 3V5 No

E6(a3) +A1 204
3V0 � 4V 1

2
� 4V1 � 4V 3

2
� 7V2 � 6V 5

2
�

�4V3 � 5V 7
2
� 4V4 � 2V 9

2
� 2V5

No

D6(a2) 204 6V0 � 3V1 � 8V 3
2
� 5V2 � 4V 5

2
� 7V3 � 4V 7

2
� V4 � 4V 9

2
� 2V5 No

D5(a1) +A2 202
3V0 � 4V 1

2
� 7V1 � 4V 3

2
� 6V2 � 6V 5

2
�

�4V3 � 6V 7
2
� 3V4 � 2V 9

2
� V5

No

A5 +A1 202
6V0 � 4V 1

2
� 2V1 � 4V 3

2
� 7V2�

�8V 5
2
� 5V3 � 2V 7

2
� 3V4 � 4V 9

2
� V5

No

A4 +A3 200 3V0 � 4V 1
2
� 6V1 � 8V 3

2
� 6V2 � 6V 5

2
� 6V3 � 4V 7

2
� 3V4 � 2V 9

2
No

D5 200 21V0 � V1 � 8V2 � V3 � 7V4 � 9V5 � V7 No

Table 5: All the orbits or e8 and their adjoint decomposition. Part 1. Table taken from [56].
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Lessons & Outlook

✓ Geometry of IR SUSY enhancement involves local structure of 
some algebraic space around (singular) point.

✓ Branch of moduli space for 3d case, but auxiliary space for 4d 
case (rank-1 ➠ F-theory fibration).

✓ Enhancement only arises when non-trivial factorization occurs  
➠  holonomy reduction in M/F-theory.

๏ Higher-rank theories ? In class-S,  factorization  ➠  hyperkähler 
structure of moduli space of sol’ns of Hitchin system.              
[in progress with Carta, Giacomelli, Hayashi]

๏ Geometry behind factorization still obscure… RG-flow changes 
singularity structure, reminiscent of simultaneous resolutions!


