SUSY enhancement from T-branes

Raffaele Savelli
University of Rome
"Tor Vergata"

Based on work with
F. Carta, S. Giacomelli
arXiv: I809.04906

SUSY enhancement

- Remarkable phenomenon along certain RG flows of 4d SFT's. [Maruyoshi, Song `16]; [Agarwal, Maruyoshi, Song `I6, 'I8]
- 4d $\mathrm{N}=2$ SCFT w/ non-Abelian flavor $\mathrm{G}_{\mathrm{F}}+$ free chiral field $M \in \operatorname{Adj}\left(\mathrm{G}_{\mathrm{F}}\right)$.
- Deform with $\delta W=\operatorname{Tr}(\mu M): \mathscr{N}=2 \rightarrow \mathcal{N}=1 \quad \boldsymbol{\mu}$ is the flavor moment map.
- Give vev $\langle M\rangle=\rho\left(\sigma_{+}\right) \quad \rho: s u(2) \rightarrow G_{F}$ is a nilpotent orbit.
- Depending on $\rho, \delta \mathrm{W}$ may trigger RG flow $\mathrm{w} / \mathcal{N}=2$ fixed point!

SUSY enhancement

- Very interesting, but also particularly useful:
- IR is non-Lagrangian, but UV may have Lagrangian.
- Use it to compute RG-invariant quantities for IR theory!

SUSY enhancement

- Very interesting, but also particularly useful:
- IR is non-Lagrangian, but UV may have Lagrangian.
- Use it to compute RG-invariant quantities for IR theory!
- How was it discovered? a-maximization:
- $\langle M\rangle: \operatorname{Adj}\left(G_{F}\right) \rightarrow \oplus_{j} V_{j} \quad V_{j} \quad$ spin-j irrep. of su(2).
- Only $M \mathrm{w} / \mathrm{spin}\left(\mathrm{j}, \mathrm{j}_{3}=-\mathrm{j}\right)$ stay coupled, i.e. $\left[M, \rho\left(\sigma_{-}\right)\right]=0$.
- Maximize $32 \mathrm{a}=9 \mathrm{Tr}^{3} 3-3 \operatorname{Tr} \mathrm{R}$ w.r.t. trial R -charge $\mathrm{R}=\mathrm{R}_{0}+\epsilon \mathrm{F}$.
- Re-iterate until all fields have $\mathrm{D}_{*}=3 / 2 \mathrm{R}_{*}>\mathrm{I}$.

SUSY enhancement

- Checks of enhancement: found rational IR central charges \& superconformal index in agreement w/ known $\mathcal{N}=2$ theories.
- Involved process, hiding the origin of the phenomenon.

SUSY enhancement

- Checks of enhancement: found rational IR central charges \& superconformal index in agreement w/ known $\mathcal{N}=2$ theories.
- Involved process, hiding the origin of the phenomenon.
- Our purpose: show why it occurs by explaining it geometrically.
- Engineer rank-I SCFT's by probing F-theory singularities.
- Interpret deformations as T-brane backgrounds.
- Get simple algebraic criterion to exclude enhancement.

SUSY enhancement

- Checks of enhancement: found rational IR central charges \& superconformal index in agreement w/ known $\mathcal{N}=2$ theories.
- Involved process, hiding the origin of the phenomenon.
- Our purpose: show why it occurs by explaining it geometrically.
- Engineer rank-I SCFT's by probing F-theory singularities.
- Interpret deformations as T-brane backgrounds.
- Get simple algebraic criterion to exclude enhancement.
- Bonus: in case of enhancement, IR conformal dimensions are derived algebraically!

Warm-up: 3d SQED

- Easier setting, but key geometric features already apparent.
- Single D2 probing a stack of N D6-branes in flat space:
$\Rightarrow 3 \mathrm{~d} \mathscr{N}=4 \mathrm{U}(\mathrm{I})$ gauge theory $w /$ flavors in fund of $G_{F}=U(N)$.
\Rightarrow IR dynamics described by an $M 2$ probing $\operatorname{ALE} \mathbb{C}^{2} / \mathbb{Z}_{N}$.

Warm-up: 3d SQED

- Easier setting, but key geometric features already apparent.
- Single D2 probing a stack of N D6-branes in flat space:
\Rightarrow 3d $\mathscr{N}=4 \mathrm{U}(\mathrm{I})$ gauge theory $w /$ flavors in fund of $G_{F}=U(N)$.
\Rightarrow IR dynamics described by an M2 probing ALE $\mathbb{C}^{2} / \mathbb{Z}_{N}$.

Deformations

- Add the IR relevant coupling $\delta W=\operatorname{Tr}(\mu M)$:
- $\mu_{i}^{j} \equiv Q_{i} \tilde{Q}^{j}$ is the meson matrix.
- $M=\langle\boldsymbol{\Phi}\rangle$ is vev of scalar controlling D6's position in 8,9 plane.
- M constant \& $\left[M, M^{\dagger}\right]=0 \quad$ N$=4$ preserving cplx masses.
- M 3d field

Deformations

- Add the IR relevant coupling $\delta \mathrm{W}=\operatorname{Tr}(\mu M)$:
- $\mu_{i}^{j} \equiv Q_{i} \tilde{Q}^{j}$ is the meson matrix.
- $M=\langle\Phi\rangle$ is vev of scalar controlling D6's position in 8,9 plane.
- M constant \& $\left[M, M^{\dagger}\right]=0 \quad$ lilt $\mathcal{N}=4$ preserving cplx masses.
- M 3d field Int D6's coordinate dependence $<\Phi>\left(s_{1}, S_{2}\right)$.
- Give M nilpotent vev ${ }^{\mathrm{In}} \quad\left[M_{1}, M^{\dagger}\right] \neq 0 \quad \& \quad \mathcal{N}=4 \rightarrow \mathcal{N}=2$:
- Probing a T6-brane background.
[Cecotti, Cordova, Heckman, Vafa `IO]
- 2 fields among $M_{(\mathrm{j},-\mathrm{j})} \leftrightarrow s_{1}, s_{2} \quad$ take the 2 highest spins.
- CB gets deformed:

Deformations

- Add the IR relevant coupling $\delta \mathrm{W}=\operatorname{Tr}(\mu M)$:
- $\mu_{i}^{j} \equiv Q_{i} \tilde{Q}^{j}$ is the meson matrix.
- $M=\langle\Phi\rangle$ is vev of scalar controlling D6's position in 8,9 plane.
- M constant \& $\left[M, M^{\dagger}\right]=0 \quad$ lilt $\mathcal{N}=4$ preserving cplx masses.
- M 3d field Int D6's coordinate dependence $<\Phi>\left(s_{1}, S_{2}\right)$.
- Give M nilpotent vev ${ }^{\mathrm{In}} \quad\left[M_{1}, M^{\dagger}\right] \neq 0 \quad \& \quad \mathcal{N}=4 \rightarrow \mathcal{N}=2$:
- Probing a T6-brane background.
[Cecotti, Cordova, Heckman, Vafa `IO]
- 2 fields among $M_{(\mathrm{j}, \mathrm{j})} \Leftrightarrow s_{1}, s_{2} \quad$ take the 2 highest spins.
- CB gets deformed: $V_{+} V_{-}=\operatorname{det}\left[\phi \mathbb{1}_{N}-M\left(s_{1}, s_{2}\right)\right]$

su(3) principal orbit

- Consider $\quad M=\underbrace{\left(\begin{array}{lll}0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0\end{array}\right)}_{\langle M\rangle}+\underbrace{\left(\begin{array}{lll}0 & 0 & 0 \\ s_{2} & 0 & 0 \\ s_{1} & s_{2} & 0\end{array}\right)}_{\delta M}$

Then $W=\phi \sum_{i=1}^{3} Q_{i} \tilde{Q}^{i}+m\left(Q_{2} \tilde{Q}^{1}+Q_{3} \tilde{Q}^{2}\right)+s_{2}\left(Q_{1} \tilde{Q}^{2}+Q_{2} \tilde{Q}^{3}\right)+s_{1} Q_{1} \tilde{Q}^{3}$

su(3) principal orbit

- Consider

$$
M=\underbrace{\left(\begin{array}{lll}
0 & m & 0 \\
0 & 0 & m \\
0 & 0 & 0
\end{array}\right)}_{\langle M\rangle}+\underbrace{\left(\begin{array}{lll}
0 & 0 & 0 \\
s_{2} & 0 & 0 \\
s_{1} & s_{2} & 0
\end{array}\right)}_{\delta M}
$$

Then $W=\phi \sum_{i=1}^{3} Q_{i} \tilde{Q}^{i}+m\left(Q_{2} \tilde{Q}^{1}+Q_{3} \tilde{Q}^{2}\right)+s_{2}\left(Q_{1} \tilde{Q}^{2}+Q_{2} \tilde{Q}^{3}\right)+s_{1} Q_{1} \tilde{Q}^{3}$

- Integrating out

su(3) principal orbit

- Consider

$$
M=\underbrace{\left(\begin{array}{lll}
0 & m & 0 \\
0 & 0 & m \\
0 & 0 & 0
\end{array}\right)}_{\langle M\rangle}+\underbrace{\left(\begin{array}{ccc}
0 & 0 & 0 \\
s_{2} & 0 & 0 \\
s_{1} & s_{2} & 0
\end{array}\right)}_{\delta M}
$$

Then $W=\phi \sum_{i=1}^{3} Q_{i} \tilde{Q}^{i}+m\left(Q_{2} \tilde{Q}^{1}+Q_{3} \tilde{Q}^{2}\right)+s_{2}\left(Q_{1} \tilde{Q}^{2}+Q_{2} \tilde{Q}^{3}\right)+s_{1} Q_{1} \tilde{Q}^{3}$

- Integrating out $W^{\text {eff }}=\left(\frac{\phi^{3}}{m^{2}}-\frac{2 \phi s_{2}}{m}+s_{1}\right) Q_{1} \tilde{Q}^{3}$

su(3) principal orbit

- Consider

$$
M=\underbrace{\left(\begin{array}{lll}
0 & m & 0 \\
0 & 0 & m \\
0 & 0 & m
\end{array}\right)}_{\langle M\rangle}+\underbrace{\left(\begin{array}{ccc}
0 & 0 & 0 \\
s_{2} & 0 & 0 \\
s_{1} & s_{2} & 0
\end{array}\right)}_{\delta M}
$$

Then $W=\phi \sum_{i=1}^{3} Q_{i} \tilde{Q}^{i}+m\left(Q_{2} \tilde{Q}^{1}+Q_{3} \tilde{Q}^{2}\right)+s_{2}\left(Q_{1} \tilde{Q}^{2}+Q_{2} \tilde{Q}^{3}\right)+s_{1} Q_{1} \tilde{Q}^{3}$

su(3) principal orbit

- Consider $\quad M=\underbrace{\left(\begin{array}{ccc}0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0\end{array}\right)}_{\langle M\rangle}+\underbrace{\left(\begin{array}{lll}0 & 0 & 0 \\ s_{2} & 0 & 0 \\ s_{1} & s_{2} & 0\end{array}\right)}_{\delta M}$
- Then $W=\phi \sum_{i=1}^{3} Q_{i} \tilde{Q}^{i}+m\left(Q_{2} \tilde{Q}^{1}+Q_{3} \tilde{Q}^{2}\right)+s_{2}\left(Q_{1} \tilde{Q}^{2}+Q_{2} \tilde{Q}^{3}\right)+s_{1} Q_{1} \tilde{Q}^{3}$
- Integrating out $W^{\text {eff }}=\left(\frac{\phi^{2}}{m^{2}} \frac{2 \phi s_{2}}{w^{2}}+s_{1}\right) Q_{1} \tilde{Q}^{3} \leadsto \mathbb{R}^{\square} \sim W^{\mathrm{IR}}=s_{1} Q_{1} \tilde{Q}^{3}$

IR irrelevant!

- ϕ decouples \& s_{1} is the new CB operator back to $\mathcal{N}=4$!

su(3) principal orbit

- Consider $\quad M=\underbrace{\left(\begin{array}{ccc}0 & m & 0 \\ 0 & 0 & m \\ 0 & 0 & 0\end{array}\right)}_{\langle M\rangle}+\underbrace{\left(\begin{array}{lll}0 & 0 & 0 \\ s_{2} & 0 & 0 \\ s_{1} & s_{2} & 0\end{array}\right)}_{\delta M}$
- Then $W=\phi \sum_{i=1}^{3} Q_{i} \tilde{Q}^{i}+m\left(Q_{2} \tilde{Q}^{1}+Q_{3} \tilde{Q}^{2}\right)+s_{2}\left(Q_{1} \tilde{Q}^{2}+Q_{2} \tilde{Q}^{3}\right)+s_{1} Q_{1} \tilde{Q}^{3}$
- Integrating out $W^{\text {eff }}=\left(\frac{\phi^{2}}{m^{2}} \frac{2 \phi s_{2}}{m_{2}}+s_{1}\right) Q_{1} \tilde{Q}^{3} \leadsto \mathbb{R}^{\mathrm{R}} \leadsto W^{\mathrm{IR}}=s_{1} Q_{1} \tilde{Q}^{3}$

IR irrelevant!

- ϕ decouples \& s_{1} is the new CB operator back to $\mathcal{N}=4$!
- This is $U(I) w /$ I flavor \Longleftrightarrow theory of I free hyper.

su(3) principal orbit

- Geometrically: M2 probing the fourfold $\left(C Y_{4}\right)$.

$$
V_{+} V_{-}=\phi^{3}-2 m \phi s_{2}+m^{2} s_{1}
$$

field-dependent deformation of $\mathbb{C}^{2} / \mathbb{Z}_{3}$

su(3) principal orbit

- Geometrically: M2 probing the fourfold $\left(\mathrm{CY}_{4}\right)$.

$$
V_{+} V_{-}=\phi^{3}-2 m \phi s_{2}+m^{2} s_{1} \quad \begin{aligned}
& \text { field-dependent } \\
& \text { deformation of } \mathbb{C}^{2} / \mathbb{Z}_{3}
\end{aligned}
$$

- In the IR, M2 only "sees" tiny neighbor of the origin.
$\Rightarrow \mathrm{CY}_{4} \leadsto \leadsto\left\{V_{+} V_{-}=s_{1}\right\} \times \mathbb{C}^{2} \Rightarrow \mathscr{N}=2 \rightarrow \mathcal{N}=4$.

su(3) principal orbit

- Geometrically: M2 probing the fourfold $\left(\mathrm{CY}_{4}\right)$.

$$
V_{+} V_{-}=\phi^{3}-2 m \phi s_{2}+m^{2} s_{1} \quad \begin{aligned}
& \text { field-dependent } \\
& \text { deformation of } \mathbb{C}^{2} / \mathbb{Z}_{3}
\end{aligned}
$$

- In the IR, M2 only "sees" tiny neighbor of the origin.
$\Rightarrow \mathrm{CY}_{4} \leftrightarrow\left\{V_{+} V_{-}=s_{1}\right\} \times \mathbb{C}^{2} \Rightarrow \mathscr{N}=2 \rightarrow \mathcal{N}=4$.
- Physically: D2 hasn't enough energy to "feel" D6's curvature.

su(3) principal orbit

- Geometrically: M2 probing the fourfold $\left(\mathrm{CY}_{4}\right)$.

$$
V_{+} V_{-}=\phi^{3}-2 m \phi s_{2}+m^{2} s_{1} \quad \begin{aligned}
& \text { field-dependent } \\
& \text { deformation of } \mathbb{C}^{2} / \mathbb{Z}_{3}
\end{aligned}
$$

- In the IR, M2 only "sees" tiny neighbor of the origin.
$\Rightarrow \mathrm{CY}_{4} \leadsto\left\{V_{+} V_{-}=s_{1}\right\} \times \mathbb{C}^{2} \Rightarrow \mathscr{N}=2 \rightarrow \mathcal{N}=4$.
- Physically: D2 hasn't enough energy to "feel" D6's curvature.

su(3) minimal orbit

- Consider instead $M=\underbrace{\left(\begin{array}{lll}0 & m & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)}_{\langle M\rangle}+\underbrace{\left(\begin{array}{lll}0 & 0 & 0 \\ s_{1} & 0 & 0 \\ s_{2} & 0 & 0\end{array}\right)}_{\delta M}$
- $\mathbb{C}^{2} / \mathbb{Z}_{3}$ gets deformed to $V_{+} V_{-}=\phi^{3}-2 m \phi s_{1}$
- In the IR, this is equivalent to a conifold! $\quad V_{+} V_{-}=\phi s_{1}$
- No factorized twofold no no enhancement.
- D2 sees two intersecting D6-branes:

Rank-1 4d SCFT's \& F-theory

- 3d case boring: only maximal orbit enhances \& IR theory is free.
- Single D3 probing a stack of 7-branes (possibly non-perturb.):
\Rightarrow 4d $\mathscr{N}=2$ rank-I theory (possibly non-Lagrangian).
\Rightarrow IR physics given by D3 prob. loc. elliptic K3 w/ Kodaira sing. [Banks, Douglas, Seiberg '96]

Rank-I 4d SCFT's \& F-theory

- 3d case boring: only maximal orbit enhances \& IR theory is free.
- Single D3 probing a stack of 7-branes (possibly non-perturb.): $\Rightarrow 4 \mathrm{~d} \mathscr{N}=2$ rank-I theory (possibly non-Lagrangian).
\Rightarrow IR physics given by D3 prob. loc. elliptic K3 w/ Kodaira sing. [Banks, Douglas, Seiberg `96]

K3 is NOT a moduli space

singularity \leftrightarrow flavor structure

Deformations

- Add the $\mathscr{N}=2 \rightarrow \mathscr{N}=\mathrm{I}$ coupling $\delta W=\operatorname{Tr}(\mu M)$:
- $M=\langle\boldsymbol{\Phi}\rangle$ is vev of 7-brane worldvolume scalar.
- $M=\rho\left(\sigma_{+}\right)+\sum_{j=s_{1}, s_{2}} \delta M_{(j,-j)}$
- $\left[M, M^{\dagger}\right] \neq 0$ Int D3 probes a T7-brane background.
- $\mathrm{D}^{\mathrm{UV}}\left(s_{i}\right)=\operatorname{spin}\left(s_{i}\right)+1$.
- $\boldsymbol{\delta} W \Rightarrow$ field-dependent deformations of K3:
- Casimir invariants of $M \leadsto \leadsto$ Versal deform'ns of singularity.

Enhancement criterion

- For any RG flow \& any Energy scale, F-theory geometry is:
$y^{2}=x^{3}+f\left(\phi, s_{1}, s_{2}\right) x+g\left(\phi, s_{1}, s_{2}\right) \quad$ Elliptic CY_{4} in Weierstrass form
- $f \& g$ depend on UV theory \& choice of nilpotent orbit.
- Original K3 retrieved by $s_{1} \equiv s_{2} \equiv 0$.
- If SUSY enhances in IR, then:

$$
\mathrm{K} 3^{\mathrm{UV}} \xrightarrow{\mathrm{Def}} \mathrm{CY}_{4} \xrightarrow{\mathrm{IR}} \quad \mathrm{~K}_{3}{ }^{\mathrm{IR}} \times \mathbb{C}^{2}
$$

- K3UV $\equiv \mathrm{K} 3 \mathrm{R}^{\mathrm{R}} \Longleftrightarrow$ trivial orbit.
- Educated guess: $\mathrm{K} 3^{\mathrm{IR}}=\left.\mathrm{CY}_{4}\right|_{\phi \equiv s_{2} \equiv 0}$ (1N+ s_{1} new CB in IR.

Enhancement criterion

- Conformal dim. of operators $\Longleftrightarrow \mathbb{C}^{*}$-action on coordinates:
- Promote affine variables to projective ones.
- Relative scalings of operators are RG-flow invariants:
- Impose homogeneity of CY_{4} polynomial.
- Ansatz for IR geom. consistent $\Longleftrightarrow \mathrm{D}^{\mathbb{R}}(\phi) \leq 1 \quad \& \quad \mathrm{D}^{\mathbb{R}}\left(s_{2}\right) \leq 1$.

Enhancement criterion

- Conformal dim. of operators $\Longleftrightarrow \mathbb{C}^{*}$-action on coordinates:
- Promote affine variables to projective ones.
- Relative scalings of operators are RG-flow invariants:
- Impose homogeneity of CY_{4} polynomial.
- Ansatz for \mathbb{R} geom. consistent $\Longleftrightarrow \mathrm{D}^{\mathrm{R}}(\phi) \leq 1 \quad \& \quad \mathrm{D}^{\mathrm{R}}\left(s_{2}\right) \leq 1$.
- Assign \mathbb{C}^{*}-actions: Fiber K3 adiabatic. \& force total space be CY.
$\Rightarrow \mathrm{D}^{\mathbb{R}}(x)-\mathrm{D}^{\mathbb{R}}(y)+\mathrm{D}^{\mathbb{R}}\left(s_{1}\right)=1$.
- Equivalent to $\mathrm{D}\left(\lambda^{s W}\right)=1$

Enhancement criterion

- Conformal dim. of operators $\Longleftrightarrow \mathbb{C}^{*}$-action on coordinates:
- Promote affine variables to projective ones.
- Relative scalings of operators are RG-flow invariants:
- Impose homogeneity of CY_{4} polynomial.
- Ansatz for \mathbb{R} geom. consistent $\Longleftrightarrow \mathrm{D}^{\mathrm{R}}(\phi) \leq 1 \quad \& \quad \mathrm{D}^{\mathrm{R}}\left(s_{2}\right) \leq 1$.
- Assign \mathbb{C}^{*}-actions: Fiber K3 adiabatic. \& force total space be CY.
$\Rightarrow \mathrm{D}^{\operatorname{R}}(x)-\mathrm{D}^{\mathbb{R}}(y)+\mathrm{D}^{\operatorname{R}}\left(s_{1}\right)=1$.
- Equivalent to $\mathrm{D}\left(\lambda^{\mathrm{sW}}\right)=1$

$$
\partial \lambda^{\mathrm{SW}} / \partial \mathcal{O}_{\mathrm{CB}}=\Omega_{\mathrm{SW}}^{1,0}=\mathrm{d} x / y
$$

Example: $\mathrm{D}_{4} \leadsto \mathscr{T}_{2}$

- $\mathrm{D}^{\mathrm{UV}}\left(s_{1}\right) \leq \mathrm{D}^{\mathrm{UV}}(\phi)$ nime no enhancement!
- Highest spin multiply populated
- Consider the Lagrangian th. $\mathrm{SU}(2) \mathrm{w} / 4$ flavors $\mathrm{G}_{\mathrm{F}}=\mathrm{SO}(8)$.
- From D3 probing K3UV: $y^{2}=x^{3}+\tau \phi^{2} x+\phi^{3}$.

Example: $\mathrm{D}_{4} \leadsto \mathscr{T}_{2}$

- $\mathrm{D}^{\mathrm{UV}}\left(s_{1}\right) \leq \mathrm{D}^{\mathrm{UV}}(\phi)$ nime no enhancement!
- Highest spin multiply populated
- Consider the Lagrangian th. $\mathrm{SU}(2) \mathrm{w} / 4$ flavors $\mathrm{G}_{\mathrm{F}}=\mathrm{SO}(8)$.
- From D3 probing K3UV: $y^{2}=x^{3}+\tau \phi^{2} x+\phi^{3}$.
- Deform:

Example: $\mathrm{D}_{4} \leadsto \mathscr{T}_{2}$

- $\mathrm{D}^{\mathrm{UV}}\left(s_{1}\right) \leq \mathrm{D}^{\mathrm{UV}}(\phi)$ nime no enhancement!
- Highest spin multiply populated mm no enhancement!
- Consider the Lagrangian th. $\operatorname{SU}(2) \mathrm{w} / 4$ flavors $\mathrm{m} \| \mathrm{GF}=\mathrm{SO}(8)$.
- From D3 probing K3UV: $y^{2}=x^{3}+\tau \phi^{2} x+\phi^{3}$.
- Deform: $\left.M=\frac{\left(\begin{array}{cc}A & 0 \\ 0 & -A^{T}\end{array}\right)}{\left(\begin{array}{cccc}0 & \sqrt{2} & 0 & 0 \\ s_{2} & 0 & \sqrt{2} & 0 \\ s_{1} & s_{2} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)} \quad \begin{array}{l}P_{M}(z)=z^{8}-4 \sqrt{2} s_{2} z^{6}+8 s_{2}^{2} z^{4}-4 s_{1}^{2} z^{2}\end{array}\right\}$

Example: $\mathrm{D}_{4} \leadsto \mathscr{T}_{2}$

- $\mathrm{D}^{\mathrm{UV}}\left(s_{1}\right) \leq \mathrm{D}^{\mathrm{UV}}(\phi)$ nime no enhancement!
- Highest spin multiply populated mm no enhancement!
- Consider the Lagrangian th. $\operatorname{SU}(2) \mathrm{w} / 4$ flavors $\mathrm{m} \| \mathrm{GF}=\mathrm{SO}(8)$.
- From D3 probing K3UV: $y^{2}=x^{3}+\tau \phi^{2} x+\phi^{3}$.
- Deform: $M=\frac{\left(\begin{array}{cc}A & 0 \\ 0 & -A^{T}\end{array}\right)}{\left(\begin{array}{cccc}0 & \sqrt{2} & 0 & 0 \\ s_{2} & 0 & \sqrt{2} & 0 \\ s_{1} & s_{2} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)} \quad \begin{gathered}P_{M}(z)=z^{8}-4 \sqrt{2} s_{2} z^{6}+8 s_{2}^{2} z^{4}-4 s_{1}^{2} z^{2}\end{gathered}$

$$
y^{2}=x^{3}+\tau \phi^{2} x+2 s_{2} \phi x+s_{2}^{2} x+\phi^{3}+s_{1}^{2}
$$

Example: $\mathrm{D}_{4} \leadsto \mathscr{T}_{2}$

- $\mathrm{D}^{\mathrm{UV}}\left(s_{1}\right) \leq \mathrm{D}^{\mathrm{UV}}(\phi)$ NIL no enhancement!
- Highest spin multiply populated mm no enhancement!
- Consider the Lagrangian th. $\operatorname{SU}(2) \mathrm{w} / 4$ flavors $\ln \mathrm{G}_{\mathrm{F}}=\mathrm{SO}(8)$.
- From D3 probing K3Uv: $y^{2}=x^{3}+\tau \phi^{2} x+\phi^{3}$.
- Deform: $M=\begin{aligned} & \left(\begin{array}{cc}A & 0 \\ 0 & -A^{T}\end{array}\right) \\ & \underline{\left[3^{2}, 1^{1}\right]} \longrightarrow\left(\begin{array}{cccc}0 & \sqrt{2} & 0 & 0 \\ s_{2} & 0 & \sqrt{2} & 0 \\ s_{1} & s_{2} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \\ & 2 V_{0} \oplus 7 V_{1} \oplus V_{2}\end{aligned} \quad \begin{gathered}P_{M}(z)=z^{8}-4 \sqrt{2} s_{2} z^{6}+8 s_{2}^{2} z^{4}-4 s_{1}^{2} z^{2} \\ C_{(2)}=-4 \sqrt{2} s_{2} ; \\ \quad C_{(6)}=8 s_{2}^{2} ; \quad C_{(6)}=-4 s_{1}^{2}\end{gathered}$

$$
y^{2}=x^{3}+\tau \phi^{2} x+2 s_{2} \phi x+s_{2}^{2} x+\phi^{3}+s_{1}^{2}
$$

- $\mathrm{D}^{\mathbb{R}}(y)=\mathrm{D}^{\mathbb{R}}\left(s_{1}\right)=3 / 2 ; \mathrm{D}^{\mathbb{R}}(x)=\mathrm{D}^{\mathbb{R}}\left(s_{2}\right)=\mathrm{D}^{\mathbb{R}}(\phi)=1$.

Example: $\mathrm{D}_{4} \leadsto \mathscr{T}_{2}$

- $\mathrm{D}^{\mathrm{UV}}\left(s_{1}\right) \leq \mathrm{D}^{\mathrm{UV}}(\phi)$ nime no enhancement!
- Highest spin multiply populated mm no enhancement!
- Consider the Lagrangian th. $\operatorname{SU}(2) \mathrm{w} / 4$ flavors $\ln \mathrm{G}_{\mathrm{F}}=\mathrm{SO}(8)$.
- From D3 probing K3 ${ }^{U v}: y^{2}=x^{3}+\tau \phi^{2} x+\phi^{3}$.

$$
y^{2}=x^{3}+\epsilon^{2} x+2 s_{2} \phi x+s_{2}^{2} x+\phi^{3}+s_{1}{ }^{2} \Rightarrow \mathscr{T}(2
$$

- $\mathrm{D}^{\mathbb{R}}(y)=\mathrm{D}^{\mathbb{R}}\left(s_{1}\right)=3 / 2 ; \mathrm{D}^{\mathbb{R}}(x)=\mathrm{D}^{\mathbb{R}}\left(s_{2}\right)=\mathrm{D}^{\mathbb{R}}(\phi)=1$.

Example: No enhancement

- Consider E8 Minahan-Nemeschanski.
- From D3 probing K3uv: $y^{2}=x^{3}+\phi^{5}$.
- Deform by $\mathrm{E}_{8}\left(a_{2}\right)$ orbit: $V_{1} \oplus V_{3} \oplus V_{5} \oplus V_{7} \oplus V_{8} \oplus V_{9} \oplus 2 V_{11} \oplus V_{13} \oplus V_{14} \oplus V_{17} \oplus V_{19}$
$\Rightarrow s_{1}$: 20th-order Casimir ; s_{2} : 18th-order Casimir.
$\Rightarrow y^{2}=x^{3}+\phi^{2} S_{2}+s_{1} x+\phi^{5}$.
- $\mathrm{D}^{\operatorname{Rr}}(y)=1 ; \mathrm{D}^{\operatorname{R}}(x)=2 / 3 ; \mathrm{D}^{\operatorname{R}}\left(s_{1}\right)=4 / 3$.
- $\mathrm{D}^{\operatorname{IR}}(\phi)=2 / 5 \quad$ InIt \quad decouples!
- BUT $\mathrm{D}^{\text {IR }}\left(S_{2}\right)=6 / 5 \quad \mathrm{ln}$ " prevents enhancement.
- Incorrect conformal dimensions... a-maximization needed!

Lessons \& Outlook

\checkmark Geometry of IR SUSY enhancement involves local structure of some algebraic space around (singular) point.
\checkmark Branch of moduli space for 3d case, but auxiliary space for 4d case (rank-I
\checkmark Enhancement only arises when non-trivial factorization occurs nut holonomy reduction in M/F-theory.

- Higher-rank theories ? In class-S, factorization IIt hyperkähler structure of moduli space of sol'ns of Hitchin system. [in progress with Carta, Giacomelli, Hayashi]
- Geometry behind factorization still obscure... RG-flow changes singularity structure, reminiscent of simultaneous resolutions!

