On SUSY Wilson Loops in 2d and their dualities

Matteo Poggi

Strings, Branes, and Gauge Theories 2019

APCTP, Pohang

KIAS
KOREA ADVANCED
sTuDY

Plan of the Talk

(1) SUSY Wilson Lines

Plan of the Talk

(1) SUSY Wilson Lines
(2) SUSY Wilson Loops

Plan of the Talk

(1) SUSY Wilson Lines
(2) SUSY Wilson Loops
(3) Focus on S^{2} : localization results and Seiberg-like duality

SUSY Wilson Lines

Supersymmetry

$N=(2,2)$ with $\mathrm{U}(1)$ vector-like R-symmetry

- Given a Riemann surface with genus \mathbf{g} the KSE are

$$
(\nabla-\mathrm{i} B) \epsilon=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(\tilde{H} P_{+}+H P_{-}\right) \epsilon, \quad(\nabla-\mathrm{i} B) \tilde{\epsilon}=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(H P_{+}+\tilde{H} P_{-}\right) \tilde{\epsilon}
$$

Supersymmetry

$N=(2,2)$ with $\mathrm{U}(1)$ vector-like R-symmetry

- Given a Riemann surface with genus \mathbf{g} the KSE are

$$
(\nabla-\mathrm{i} B) \epsilon=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(\tilde{H} P_{+}+H P_{-}\right) \epsilon, \quad(\nabla-\mathrm{i} B) \tilde{\epsilon}=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(H P_{+}+\tilde{H} P_{-}\right) \tilde{\epsilon}
$$

- Supercharges:

$$
\mathbf{Q}=\epsilon Q, \quad \tilde{\mathbf{Q}}=\tilde{\epsilon} \tilde{Q}
$$

Supersymmetry

$N=(2,2)$ with $\mathrm{U}(1)$ vector-like R-symmetry

- Given a Riemann surface with genus \mathbf{g} the KSE are

$$
(\nabla-\mathrm{i} B) \epsilon=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(\tilde{H} P_{+}+H P_{-}\right) \epsilon, \quad(\nabla-\mathrm{i} B) \tilde{\epsilon}=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(H P_{+}+\tilde{H} P_{-}\right) \tilde{\epsilon}
$$

- Supercharges:

$$
\mathbf{Q}=\epsilon Q, \quad \tilde{\mathbf{Q}}=\tilde{\epsilon} \tilde{Q}
$$

- Solutions are [Closset-Cremonesi], [Bae-Imbimbo-Rosa-Rey]:
- $\mathbf{g}>1$: only A and $\overline{\mathrm{A}}$-twist;

Supersymmetry

$N=(2,2)$ with $\mathrm{U}(1)$ vector-like R-symmetry

- Given a Riemann surface with genus \mathbf{g} the KSE are

$$
(\nabla-\mathrm{i} B) \epsilon=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(\tilde{H} P_{+}+H P_{-}\right) \epsilon, \quad(\nabla-\mathrm{i} B) \tilde{\epsilon}=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(H P_{+}+\tilde{H} P_{-}\right) \tilde{\epsilon}
$$

- Supercharges:

$$
\mathbf{Q}=\epsilon Q, \quad \tilde{\mathbf{Q}}=\tilde{\epsilon} \tilde{Q}
$$

- Solutions are [Closset-Cremonesi], [Bae-Imbimbo-Rosa-Rey]:
- $\mathbf{g}>1$: only A and \bar{A}-twist;
- $\mathbf{g}=1$: flat case;

Supersymmetry

$N=(2,2)$ with $\mathrm{U}(1)$ vector-like R-symmetry

- Given a Riemann surface with genus \mathbf{g} the KSE are

$$
(\nabla-\mathrm{i} B) \epsilon=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(\tilde{H} P_{+}+H P_{-}\right) \epsilon, \quad(\nabla-\mathrm{i} B) \tilde{\epsilon}=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(H P_{+}+\tilde{H} P_{-}\right) \tilde{\epsilon}
$$

- Supercharges:

$$
\mathbf{Q}=\epsilon Q, \quad \tilde{\mathbf{Q}}=\tilde{\epsilon} \tilde{Q}
$$

- Solutions are [Closset-Cremonesi], [Bae-Imbimbo-Rosa-Rey]:
- $\mathbf{g}>1$: only A and $\overline{\mathrm{A}}$-twist;
- $\mathbf{g}=1$: flat case;
- $\mathbf{g}=0$: many solutions classified by $c_{1}(B)$.

Supersymmetry

$N=(2,2)$ with $\mathrm{U}(1)$ vector-like R-symmetry

- Given a Riemann surface with genus \mathbf{g} the KSE are
$(\nabla-\mathrm{i} B) \epsilon=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(\tilde{H} P_{+}+H P_{-}\right) \epsilon$,
$(\nabla-\mathrm{i} B) \tilde{\epsilon}=-\frac{1}{2} e^{\mathrm{a}} \gamma^{\mathrm{a}}\left(H P_{+}+\tilde{H} P_{-}\right) \tilde{\epsilon}$.
- Supercharges:

$$
\mathbf{Q}=\epsilon Q, \quad \tilde{\mathbf{Q}}=\tilde{\epsilon} \tilde{Q}
$$

- Solutions are [Closset-Cremonesi], [Bae-Imbimbo-Rosa-Rey]:
- $\mathbf{g}>1$: only A and \bar{A}-twist;
- $\mathbf{g}=1$: flat case;
- $\mathbf{g}=0$: many solutions classified by $c_{1}(B)$.
- Multiplets:

$$
\mathcal{V}=(A, \lambda, \tilde{\lambda}, \sigma, \tilde{\sigma}, D), \quad \chi=(\varphi, \psi, F) \Rightarrow \text { twisted mass } \propto \tau
$$

Generalized connection

Wilson Line

$$
W=\mathrm{P} \exp \int_{\Gamma} \mathrm{i} \mathcal{A}
$$

Generalized connection

Wilson Line

$$
W=\mathrm{P} \exp \int_{\Gamma} \mathrm{i} \mathcal{A}
$$

- Superconnection defined as

$$
\mathcal{A}=A+f \sigma+\tilde{f} \tilde{\sigma}
$$

Generalized connection

Wilson Line

$$
W=\mathrm{P} \exp \int_{\Gamma} \mathrm{i} \mathcal{A}
$$

- Superconnection defined as

$$
\mathcal{A}=A+f \sigma+\tilde{f} \tilde{\sigma} .
$$

- $\frac{1}{4}$-BPS, for any path Γ :
- ann. by $\mathbf{Q} \Rightarrow f_{\epsilon}=+\frac{\mathrm{i}}{2} \frac{\epsilon^{+}}{\epsilon^{-}}\left(e^{1}+\mathrm{i} e^{2}\right)$ and $\tilde{f}_{\epsilon}=+\frac{\mathrm{i}}{2} \frac{\epsilon^{-}}{\epsilon^{+}}\left(e^{1}-\mathrm{i} e^{2}\right)$.

Generalized connection

Wilson Line

$$
W=\mathrm{P} \exp \int_{\Gamma} \mathrm{i} \mathcal{A}
$$

- Superconnection defined as

$$
\mathcal{A}=A+f \sigma+\tilde{f} \tilde{\sigma} .
$$

- $\frac{1}{4}$-BPS, for any path Γ :
- ann. by $\mathbf{Q} \Rightarrow f_{\epsilon}=+\frac{\mathrm{i}}{2} \frac{\epsilon^{+}}{\epsilon^{-}}\left(e^{1}+\mathrm{i} e^{2}\right)$ and $\tilde{f}_{\epsilon}=+\frac{\mathrm{i}}{2} \frac{\epsilon^{-}}{\epsilon^{+}}\left(e^{1}-\mathrm{i} e^{2}\right)$.
- ann. by $\tilde{\mathbf{Q}} \Rightarrow f_{\tilde{\epsilon}}=-\frac{\mathrm{i}}{2} \frac{\tilde{\epsilon}^{-}}{\tilde{\epsilon}^{+}}\left(e^{1}-\mathrm{i} e^{2}\right)$ and $\tilde{f}_{\tilde{\epsilon}}=-\frac{\mathrm{i}}{2} \frac{\tilde{\epsilon}^{+}}{\tilde{\epsilon}^{-}}\left(e^{1}+\mathrm{i} e^{2}\right)$.

Generalized connection

Wilson Line

$$
W=\mathrm{P} \exp \int_{\Gamma} \mathrm{i} \mathcal{A}
$$

- Superconnection defined as

$$
\mathcal{A}=A+f \sigma+\tilde{f} \tilde{\sigma}
$$

- $\frac{1}{4}$-BPS, for any path Γ :
- ann. by $\mathbf{Q} \Rightarrow f_{\epsilon}=+\frac{\mathrm{i}}{2} \frac{\epsilon^{+}}{\epsilon^{-}}\left(e^{1}+\mathrm{i} e^{2}\right)$ and $\tilde{f}_{\epsilon}=+\frac{\mathrm{i}}{2} \frac{\epsilon^{-}}{\epsilon^{+}}\left(e^{1}-\mathrm{i} e^{2}\right)$.
- ann. by $\tilde{\mathbf{Q}} \Rightarrow f_{\tilde{\epsilon}}=-\frac{\mathrm{i}}{2} \frac{\tilde{\epsilon}^{-}}{\tilde{\epsilon}^{+}}\left(e^{1}-\mathrm{i} e^{2}\right)$ and $\tilde{f}_{\tilde{\epsilon}}=-\frac{\mathrm{i}}{2} \frac{\tilde{\epsilon}^{+}}{\tilde{\epsilon}^{-}}\left(e^{1}+\mathrm{i} e^{2}\right)$.
- $\frac{1}{2}$-BPS: Γ has to satisfy

$$
\frac{\epsilon^{-}}{\epsilon^{+}} \tilde{\epsilon}^{-} \tilde{\epsilon}^{+}=-\frac{\dot{x}^{1}+\mathrm{i} \dot{x}^{2}}{\dot{x}^{1}-\mathrm{i} \dot{x}^{2}} .
$$

Flat Backgrounds

- ϵ and $\tilde{\epsilon}$ are constant.

Flat Backgrounds

- ϵ and $\tilde{\epsilon}$ are constant.
- $\frac{1}{4}$-BPS Wilson lines for any path Γ :
- $\epsilon^{+} \neq 0$ and $\epsilon^{-} \neq 0 \Rightarrow W_{\epsilon}$ ann. by \mathbf{Q}.

Flat Backgrounds

- ϵ and $\tilde{\epsilon}$ are constant.
- $\frac{1}{4}$-BPS Wilson lines for any path Γ :
- $\epsilon^{+} \neq 0$ and $\epsilon^{-} \neq 0 \Rightarrow W_{\epsilon}$ ann. by \mathbf{Q}.
- $\tilde{\epsilon}^{+} \neq 0$ and $\tilde{\epsilon}^{-} \neq 0 \Rightarrow W_{\tilde{\epsilon}}$ ann. by $\tilde{\mathbf{Q}}$.

Flat Backgrounds

- ϵ and $\tilde{\epsilon}$ are constant.
- $\frac{1}{4}$-BPS Wilson lines for any path Γ :
- $\epsilon^{+} \neq 0$ and $\epsilon^{-} \neq 0 \Rightarrow W_{\epsilon}$ ann. by \mathbf{Q}.
- $\tilde{\epsilon}^{+} \neq 0$ and $\tilde{\epsilon}^{-} \neq 0 \Rightarrow W_{\tilde{\epsilon}}$ ann. by $\tilde{\mathbf{Q}}$.
- $\frac{1}{2}$-BPS Wilson lines are straight segments.

on round S^{2} : background

Zweibein

$$
e^{1}=r \mathrm{~d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

on round S^{2} : background

Zweibein

$$
e^{1}=r \mathrm{~d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

SUSY background

$$
B=0, \quad H=\tilde{H}=-\frac{\mathrm{i}}{r}
$$

on round S^{2} : background

Zweibein

$$
e^{1}=r \mathrm{~d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

SUSY background

$$
B=0, \quad H=\tilde{H}=-\frac{\mathrm{i}}{r}
$$

Killing Spinors

$$
\epsilon=e^{\mathrm{i} \frac{\theta}{2} \gamma^{1}} e^{\mathrm{i} \frac{\varphi}{2} \gamma^{3}} \epsilon_{0}, \quad \tilde{\epsilon}=e^{\mathrm{i} \frac{\theta}{2} \gamma^{1}} e^{\mathrm{i} \frac{\varphi}{2} \gamma^{3}} \tilde{\epsilon}_{0}
$$

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;
- Any path avoiding poles is $\frac{1}{4}$-BPS.

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;
- Any path avoiding poles is $\frac{1}{4}$-BPS.

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;
- Any path avoiding poles is $\frac{1}{4}$-BPS.
- Analytic properties of $f_{\tilde{\epsilon}}$ and $\tilde{f}_{\tilde{\epsilon}}$;
- zero;
- pole;

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;
- Any path avoiding poles is $\frac{1}{4}$-BPS.
- Analytic properties of $f_{\tilde{\epsilon}}$ and $\tilde{f}_{\tilde{\epsilon}}$;
- zero;
- pole;

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;
- Any path avoiding poles is $\frac{1}{4}$-BPS.
- Analytic properties of $f_{\tilde{\epsilon}}$ and $\tilde{f}_{\tilde{\epsilon}}$;
- zero;
- pole;
- Any path avoiding poles is $\frac{1}{4}$-BPS.

on round $S^{2}: \frac{1}{4}$-BPS Wilson lines

- Non-trivial $\epsilon\left(\epsilon_{0}\right)$ and $\tilde{\epsilon}\left(\tilde{\epsilon}_{0}\right)$.
- Analytic properties of f_{ϵ} and \tilde{f}_{ϵ};
- zero;
- pole;
- Any path avoiding poles is $\frac{1}{4}$-BPS.
- Analytic properties of $f_{\tilde{\epsilon}}$ and $\tilde{f}_{\tilde{\epsilon}}$;
- zero;
- pole;
- Any path avoiding poles is $\frac{1}{4}$-BPS.

on round $S^{2}: \frac{1}{2}$-BPS Wilson lines

- $\frac{1}{2}$-BPS Wilson lines lie on circles.

on round $S^{2}: \frac{1}{2}$-BPS Wilson lines

- $\frac{1}{2}$-BPS Wilson lines lie on circles.
- Axis of the circle determines:
- zero/pole of $f_{\epsilon}=$ zero/pole of $f_{\tilde{\epsilon}}$;
- zero/pole of $\tilde{f}_{\epsilon}=$ zero/pole of $\tilde{f}_{\tilde{\epsilon}}$.

on round $S^{2}: \frac{1}{2}$-BPS Wilson lines

- $\frac{1}{2}$-BPS Wilson lines lie on circles.
- Axis of the circle determines:
- zero/pole of $f_{\epsilon}=$ zero/pole of $f_{\tilde{\epsilon}}$;
- zero/pole of $\tilde{f}_{\epsilon}=$ zero/pole of $\tilde{f}_{\tilde{\epsilon}}$.
- $\xi^{\mathrm{a}}=\tilde{\epsilon} \gamma^{\mathrm{a}} \epsilon$ Killing $\mathrm{U}(1)$ residual isometry.

on round $S^{2}: \frac{1}{2}$-BPS Wilson lines

- $\frac{1}{2}$-BPS Wilson lines lie on circles.
- Axis of the circle determines:
- zero/pole of $f_{\epsilon}=$ zero/pole of $f_{\tilde{\epsilon}}$;
- zero/pole of $\tilde{f}_{\epsilon}=$ zero/pole of $\tilde{f}_{\tilde{\epsilon}}$.
- $\xi^{\mathrm{a}}=\tilde{\epsilon} \gamma^{\mathrm{a}} \epsilon$ Killing $\mathrm{U}(1)$ residual isometry.
- In a suitable polar coordinates one has:

$$
\begin{aligned}
& W_{\mathrm{a}}=\mathrm{P} \exp \int_{\varphi_{0}}^{\varphi_{1}}\left[\mathrm{i} A_{\varphi}+r\left(\cos ^{2} \frac{\theta}{2} \sigma+\sin ^{2} \frac{\theta}{2} \tilde{\sigma}\right)\right] \mathrm{d} \varphi \\
& W_{\mathrm{b}}=\mathrm{P} \exp \int_{\varphi_{0}}^{\varphi_{1}}\left[\mathrm{i} A_{\varphi}+r\left(\sin ^{2} \frac{\theta}{2} \sigma+\cos ^{2} \frac{\theta}{2} \tilde{\sigma}\right)\right] \mathrm{d} \varphi
\end{aligned}
$$

on round $S^{2}: \frac{1}{2}$-BPS Wilson lines

- $\frac{1}{2}$-BPS Wilson lines lie on circles.
- Axis of the circle determines:
- zero/pole of $f_{\epsilon}=$ zero/pole of $f_{\tilde{\epsilon}}$;
- zero/pole of $\tilde{f}_{\epsilon}=$ zero/pole of $\tilde{f}_{\tilde{\epsilon}}$.
- $\xi^{\mathrm{a}}=\tilde{\epsilon} \gamma^{\mathrm{a}} \epsilon$ Killing $\mathrm{U}(1)$ residual isometry.
- In a suitable polar coordinates one has:

$$
\begin{aligned}
& W_{\mathrm{a}}=\mathrm{P} \exp \int_{\varphi_{0}}^{\varphi_{1}}\left[\mathrm{i} A_{\varphi}+r\left(\cos ^{2} \frac{\theta}{2} \sigma+\sin ^{2} \frac{\theta}{2} \tilde{\sigma}\right)\right] \mathrm{d} \varphi \\
& W_{\mathrm{b}}=\mathrm{P} \exp \int_{\varphi_{0}}^{\varphi_{1}}\left[\mathrm{i} A_{\varphi}+r\left(\sin ^{2} \frac{\theta}{2} \sigma+\cos ^{2} \frac{\theta}{2} \tilde{\sigma}\right)\right] \mathrm{d} \varphi
\end{aligned}
$$

- "Local" limits:

$$
\begin{array}{ll}
\lim _{\theta \rightarrow 0} W_{\mathrm{a}}=e^{\left.r\left(\varphi_{0}-\varphi_{1}\right) \sigma\right|_{\theta=0}}, & \lim _{\theta \rightarrow \pi} W_{\mathrm{a}}=e^{\left.r\left(\varphi_{0}-\varphi_{1}\right) \tilde{\sigma}\right|_{\theta=\pi}} \\
\lim _{\theta \rightarrow 0} W_{\mathrm{b}}=e^{\left.r\left(\varphi_{0}-\varphi_{1}\right) \tilde{\sigma}\right|_{\theta=0}}, & \lim _{\theta \rightarrow \pi} W_{\mathrm{a}}=e^{\left.r\left(\varphi_{0}-\varphi_{1}\right) \sigma\right|_{\theta=\pi}}
\end{array}
$$

on squashed S^{2}

Zweibein

$$
e^{1}=r \ell(\theta) \mathrm{d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

on squashed S^{2}

Zweibein

$$
e^{1}=r \ell(\theta) \mathrm{d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

- Isometries are restricted to $\mathrm{U}(1)$.

on squashed S^{2}

Zweibein

$$
e^{1}=r \ell(\theta) \mathrm{d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

- Isometries are restricted to $\mathrm{U}(1)$.
- It is possible to find SUSY background [Gomis-S. Lee].

on squashed S^{2}

Zweibein

$$
e^{1}=r \ell(\theta) \mathrm{d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

- Isometries are restricted to $\mathrm{U}(1)$.
- It is possible to find SUSY background [Gomis-S. Lee].

SUSY background

$$
B=\mp \frac{1}{2}\left(1-\frac{1}{\ell(\theta)}\right) \mathrm{d} \varphi, \quad H=\tilde{H}=-\frac{\mathrm{i}}{r \ell(\theta)} .
$$

on squashed S^{2}

Zweibein

$$
e^{1}=r \ell(\theta) \mathrm{d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

- Isometries are restricted to $\mathrm{U}(1)$.
- It is possible to find SUSY background [Gomis-S. Lee].

SUSY background

$$
B=\mp \frac{1}{2}\left(1-\frac{1}{\ell(\theta)}\right) \mathrm{d} \varphi, \quad H=\tilde{H}=-\frac{\mathrm{i}}{r \ell(\theta)}
$$

- The $\frac{1}{2}$-BPS Wilson lines run along the $\mathrm{U}(1)$ action.

on squashed S^{2}

Zweibein

$$
e^{1}=r \ell(\theta) \mathrm{d} \theta \quad e^{2}=r \sin \theta \mathrm{~d} \varphi
$$

- Isometries are restricted to $\mathrm{U}(1)$.
- It is possible to find SUSY background [Gomis-S. Lee].

SUSY background

$$
B=\mp \frac{1}{2}\left(1-\frac{1}{\ell(\theta)}\right) \mathrm{d} \varphi, \quad H=\tilde{H}=-\frac{\mathrm{i}}{r \ell(\theta)}
$$

- The $\frac{1}{2}$-BPS Wilson lines run along the $\mathrm{U}(1)$ action.
- The form of $\frac{1}{2}$-BPS Wilson line is the same as W_{a} or W_{b} (depending on the background).

Wilson loops

Generalized field strength

- Let us define $\mathcal{F}=\mathrm{d} \mathcal{A}-\mathrm{i} \mathcal{A} \wedge \mathcal{A}$.

Generalized field strength

- Let us define $\mathcal{F}=\mathrm{d} \mathcal{A}-\mathrm{i} \mathcal{A} \wedge \mathcal{A}$.
- We can use full covariant derivative $\mathrm{D}=\nabla-\mathrm{i}[A, \cdot]-\mathrm{i} q B$ to write

$$
* \mathcal{F}=* F-\mathrm{i} \varepsilon^{\mathrm{ab}} f^{\mathrm{a}} \tilde{f}^{\mathrm{b}}[\sigma, \tilde{\sigma}]+\varepsilon^{\mathrm{ab}}\left(f^{\mathrm{b}} \mathrm{D}^{\mathrm{a}} \sigma+\tilde{f}^{\mathrm{b}} \mathrm{D}^{\mathrm{a}} \tilde{\sigma}\right)+* \mathrm{~d} f \sigma+* \mathrm{~d} \tilde{f} \tilde{\sigma}
$$

Generalized field strength

- Let us define $\mathcal{F}=\mathrm{d} \mathcal{A}-\mathrm{i} \mathcal{A} \wedge \mathcal{A}$.
- We can use full covariant derivative $\mathrm{D}=\nabla-\mathrm{i}[A, \cdot]-\mathrm{i} q B$ to write

$$
* \mathcal{F}=* F-\mathrm{i} \varepsilon^{\mathrm{ab}} f^{\mathrm{a}} \tilde{f}^{\mathrm{b}}[\sigma, \tilde{\sigma}]+\varepsilon^{\mathrm{ab}}\left(f^{\mathrm{b}} \mathrm{D}^{\mathrm{a}} \sigma+\tilde{f}^{\mathrm{b}} \mathrm{D}^{\mathrm{a}} \tilde{\sigma}\right)+* \mathrm{~d} f \sigma+* \mathrm{~d} \tilde{f} \tilde{\sigma}
$$

- Using SUSY algebra on general background one can prove that

$$
* \mathcal{F}_{\epsilon}=-\frac{\mathbf{Q}(\epsilon \lambda)}{2 \epsilon^{+} \epsilon^{-}}, \quad * \mathcal{F}_{\tilde{\epsilon}}=+\frac{\tilde{\mathbf{Q}}(\tilde{\epsilon} \tilde{\lambda})}{2 \tilde{\epsilon}^{+} \tilde{\epsilon}^{-}}
$$

Wilson loops and homotopy

$$
L_{\mathcal{R}}(\Gamma)=\operatorname{tr}_{\mathcal{R}} \mathrm{P} \exp \oint_{\Gamma} \mathrm{i} \mathcal{A}
$$

Wilson loops and homotopy

$$
L_{\mathcal{R}}(\Gamma)=\operatorname{tr}_{\mathcal{R}} \mathrm{P} \exp \oint_{\Gamma_{\Lambda}} \mathrm{i} \mathcal{A}
$$

We take Γ to be smooth and non-self-intersecting

Wilson loops and homotopy

$$
L_{\mathcal{R}}(\Gamma)=\operatorname{tr}_{\mathcal{R}} \mathrm{P} \exp \oint_{\Gamma} \mathrm{i} \mathcal{A}
$$

- Let us consider an homotopy of paths $\Gamma(s, t)$.

Wilson loops and homotopy

$$
L_{\mathcal{R}}(\Gamma)=\operatorname{tr}_{\mathcal{R}} \mathrm{P} \exp \oint_{\Gamma} \mathrm{i} \mathcal{A}
$$

- Let us consider an homotopy of paths $\Gamma(s, t)$.
- It is possible to define the Wilson line

$$
W\left(s ; t_{0}, t\right)=\mathrm{P} \exp \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \mathrm{i} \mathcal{A}_{t}\left(s, t^{\prime}\right)
$$

with $\mathcal{A}_{t}=\mathcal{A}^{\mathrm{a}} \partial_{t} x^{\mathrm{a}}$.

Wilson loops and homotopy

$$
L_{\mathcal{R}}(\Gamma)=\operatorname{tr}_{\mathcal{R}} \mathrm{P} \exp \oint_{\Gamma} \mathrm{i} \mathcal{A}
$$

- Let us consider an homotopy of paths $\Gamma(s, t)$.
- It is possible to define the Wilson line

$$
W\left(s ; t_{0}, t\right)=\mathrm{P} \exp \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \mathrm{i} \mathcal{A}_{t}\left(s, t^{\prime}\right)
$$

with $\mathcal{A}_{t}=\mathcal{A}^{\mathrm{a}} \partial_{t} x^{\mathrm{a}}$.

- It is possible to compute the variation

$$
\partial_{s} L_{\mathcal{R}}=\mathrm{i} \operatorname{tr}_{\mathcal{R}} \int_{0}^{1} \mathrm{~d} t^{\prime} W\left(s ; t^{\prime}, 1\right) \mathcal{F}_{s t}\left(s, t^{\prime}\right) W\left(s ; 0, t^{\prime}\right)
$$

with $\mathcal{F}_{s t}=\mathcal{F}^{\mathrm{ab}} \partial_{t} x^{\mathrm{a}} \partial_{s} x^{\mathrm{b}}$.

Cohomological argument

- Using \mathbf{Q} and $\tilde{\mathbf{Q}}$-exactness of the field strength

$$
\begin{aligned}
& \partial_{s} L_{\mathcal{R}, \epsilon}= \mathbf{Q} \operatorname{tr}_{\mathcal{R}} \int_{0}^{1} \mathrm{~d} t^{\prime} \varepsilon^{\mathrm{ab}} \partial_{t} x^{\mathrm{a}}\left(t^{\prime}\right) \partial_{s} x^{\mathrm{b}}(t) \\
& \times W_{\epsilon}\left(s ; t^{\prime}, 1\right)\left[-\frac{\epsilon \lambda}{2 \epsilon^{+} \epsilon^{-}}\right] W_{\epsilon}\left(s ; 0, t^{\prime}\right) \\
& \partial_{s} L_{\mathcal{R}, \tilde{\epsilon}}=\tilde{\mathbf{Q}} \operatorname{tr}_{\mathcal{R}} \int_{0}^{1} \mathrm{~d} t^{\prime} \varepsilon^{\mathrm{ab}} \partial_{t} x^{\mathrm{a}}\left(t^{\prime}\right) \partial_{s} x^{\mathrm{b}}(t) \\
& \times W_{\epsilon}\left(s ; t^{\prime}, 1\right)\left[+\frac{\tilde{\epsilon} \tilde{\lambda}}{2 \tilde{\epsilon}^{+} \tilde{\epsilon}^{-}}\right] W_{\epsilon}\left(s ; 0, t^{\prime}\right)
\end{aligned}
$$

Cohomological argument

- Using \mathbf{Q} and $\tilde{\mathbf{Q}}$-exactness of the field strength

$$
\begin{aligned}
& \partial_{s} L_{\mathcal{R}, \epsilon}= \mathbf{Q} \operatorname{tr}_{\mathcal{R}} \int_{0}^{1} \mathrm{~d} t^{\prime} \varepsilon^{\mathrm{ab}} \partial_{t} x^{\mathrm{a}}\left(t^{\prime}\right) \partial_{s} x^{\mathrm{b}}(t) \\
& \times W_{\epsilon}\left(s ; t^{\prime}, 1\right)\left[-\frac{\epsilon \lambda}{2 \epsilon^{+} \epsilon^{-}}\right] W_{\epsilon}\left(s ; 0, t^{\prime}\right) \\
& \partial_{s} L_{\mathcal{R}, \tilde{\epsilon}}=\tilde{\mathbf{Q}} \operatorname{tr}_{\mathcal{R}} \int_{0}^{1} \mathrm{~d} t^{\prime} \varepsilon^{\mathrm{ab}} \partial_{t} x^{\mathrm{a}}\left(t^{\prime}\right) \partial_{s} x^{\mathrm{b}}(t) \\
& \times W_{\epsilon}\left(s ; t^{\prime}, 1\right)\left[+\frac{\tilde{\epsilon} \tilde{\lambda}}{2 \tilde{\epsilon}^{+} \tilde{\epsilon}^{-}}\right] W_{\epsilon}\left(s ; 0, t^{\prime}\right)
\end{aligned}
$$

- If Γ_{1} is homotopic to Γ_{2}, we have

$$
\left\langle L_{\mathcal{R}}\left(\Gamma_{1}\right)\right\rangle=\left\langle L_{\mathcal{R}}\left(\Gamma_{2}\right)\right\rangle
$$

Examples

On \mathbb{C}, f and \tilde{f} non-singular $\pi_{1}(\mathbb{C})=0 \Rightarrow$ All Wilson loops are trivial

Examples

On \mathbb{C}, f and \tilde{f} non-singular $\pi_{1}(\mathbb{C})=0 \Rightarrow$ All Wilson loops are trivial

On T^{2}, f and \tilde{f} non-singular

$$
\pi_{1}\left(T^{2}\right)=\mathbb{Z} \times \mathbb{Z} \quad \Rightarrow \quad \text { Non-trivial Wilson loops } \leftrightarrow \text { non-trivial cycles }
$$

Examples

On \mathbb{C}, f and \tilde{f} non-singular

$$
\pi_{1}(\mathbb{C})=0 \Rightarrow \text { All Wilson loops are trivial }
$$

On T^{2}, f and \tilde{f} non-singular

$$
\pi_{1}\left(T^{2}\right)=\mathbb{Z} \times \mathbb{Z} \quad \Rightarrow \quad \text { Non-trivial Wilson loops } \leftrightarrow \text { non-trivial cycles }
$$

On S^{2}, f and \tilde{f} have singularities

$$
\pi_{1}\left(S^{2}-\{N, S\}\right)=\mathbb{Z} \Rightarrow \text { Non-trivial Wilson loops! }
$$

Examples

On \mathbb{C}, f and \tilde{f} non-singular

$$
\pi_{1}(\mathbb{C})=0 \Rightarrow \text { All Wilson loops are trivial }
$$

On T^{2}, f and \tilde{f} non-singular

$$
\pi_{1}\left(T^{2}\right)=\mathbb{Z} \times \mathbb{Z} \quad \Rightarrow \quad \text { Non-trivial Wilson loops } \leftrightarrow \text { non-trivial cycles }
$$

On S^{2}, f and \tilde{f} have singularities

$$
\pi_{1}\left(S^{2}-\{N, S\}\right)=\mathbb{Z} \Rightarrow \text { Non-trivial Wilson loops! }
$$

Localization on S^{2}

- $\mathrm{U}(N)$ SYM with matter (N_{f} fundamental, N_{a} anti-fundamental):

$$
\mathscr{L}=\mathscr{L}_{\mathrm{vec}}+\mathscr{L}_{\mathrm{mat}}+\mathscr{L}_{\mathrm{FI}}
$$

with $N_{\mathrm{f}}>N_{\mathrm{a}}\left(\right.$ or $N_{\mathrm{f}}=N_{\mathrm{a}}$ and $\left.\xi>0\right)$ and $N_{\mathrm{f}} \geq N$.

Localization on S^{2}

- $\mathrm{U}(N)$ SYM with matter (N_{f} fundamental, N_{a} anti-fundamental):

$$
\mathscr{L}=\mathscr{L}_{\mathrm{vec}}+\mathscr{L}_{\mathrm{mat}}+\mathscr{L}_{\mathrm{FI}}
$$

with $N_{\mathrm{f}}>N_{\mathrm{a}}$ (or $N_{\mathrm{f}}=N_{\mathrm{a}}$ and $\xi>0$) and $N_{\mathrm{f}} \geq N$.

- It is possible to localize the theory w.r.t. $\mathcal{Q}=\left.\mathbf{Q}\right|_{\epsilon_{0}^{+}=1}+\left.\tilde{\mathbf{Q}}\right|_{\tilde{\epsilon}_{0}=-\mathrm{i}}$.

Localization on S^{2}

- $\mathrm{U}(N)$ SYM with matter (N_{f} fundamental, N_{a} anti-fundamental):

$$
\mathscr{L}=\mathscr{L}_{\mathrm{vec}}+\mathscr{L}_{\mathrm{mat}}+\mathscr{L}_{\mathrm{FI}}
$$

with $N_{\mathrm{f}}>N_{\mathrm{a}}$ (or $N_{\mathrm{f}}=N_{\mathrm{a}}$ and $\xi>0$) and $N_{\mathrm{f}} \geq N$.

- It is possible to localize the theory w.r.t. $\mathcal{Q}=\left.\mathbf{Q}\right|_{\epsilon_{0}^{+}=1}+\left.\tilde{\mathbf{Q}}\right|_{\tilde{\epsilon}_{0}=-\mathrm{i}}$.
- The BPS locus is parametrized by $\mathfrak{m} \in \mathbb{Z}^{N}$ and $y \in \mathbb{R}^{N}$.

Localization on S^{2}

- $\mathrm{U}(N)$ SYM with matter (N_{f} fundamental, N_{a} anti-fundamental):

$$
\mathscr{L}=\mathscr{L}_{\mathrm{vec}}+\mathscr{L}_{\mathrm{mat}}+\mathscr{L}_{\mathrm{FI}}
$$

with $N_{\mathrm{f}}>N_{\mathrm{a}}\left(\right.$ or $N_{\mathrm{f}}=N_{\mathrm{a}}$ and $\left.\xi>0\right)$ and $N_{\mathrm{f}} \geq N$.

- It is possible to localize the theory w.r.t. $\mathcal{Q}=\left.\mathbf{Q}\right|_{\epsilon_{0}^{+}=1}+\left.\tilde{\mathbf{Q}}\right|_{\tilde{\epsilon}_{0}=-\mathrm{i}}$.
- The BPS locus is parametrized by $\mathfrak{m} \in \mathbb{Z}^{N}$ and $y \in \mathbb{R}^{N}$.
- The partition function is given in terms of a matrix model

$$
Z(\xi, \vartheta ; \tau, \tilde{\tau})=\prod_{\mathfrak{m}} \int \frac{\mathrm{d}^{N} y}{(2 \pi)^{N}} Z_{\mathrm{cl}}(\mathfrak{m}, y ; \xi, \vartheta) Z_{\mathrm{vec}}(\mathfrak{m}, y) Z_{\mathrm{mat}}(\mathfrak{m}, y ; \tau, \tilde{\tau})
$$

Localization on S^{2}

- $\mathrm{U}(N)$ SYM with matter (N_{f} fundamental, N_{a} anti-fundamental):

$$
\mathscr{L}=\mathscr{L}_{\mathrm{vec}}+\mathscr{L}_{\mathrm{mat}}+\mathscr{L}_{\mathrm{FI}}
$$

with $N_{\mathrm{f}}>N_{\mathrm{a}}$ (or $N_{\mathrm{f}}=N_{\mathrm{a}}$ and $\xi>0$) and $N_{\mathrm{f}} \geq N$.

- It is possible to localize the theory w.r.t. $\mathcal{Q}=\left.\mathbf{Q}\right|_{\epsilon_{0}^{+}=1}+\left.\tilde{\mathbf{Q}}\right|_{\tilde{\epsilon}_{0}=-\mathrm{i}}$.
- The BPS locus is parametrized by $\mathfrak{m} \in \mathbb{Z}^{N}$ and $y \in \mathbb{R}^{N}$.
- The partition function is given in terms of a matrix model

$$
Z(\xi, \vartheta ; \tau, \tilde{\tau})=\prod_{\mathfrak{m}} \int \frac{\mathrm{d}^{N} y}{(2 \pi)^{N}} Z_{\mathrm{cl}}(\mathfrak{m}, y ; \xi, \vartheta) Z_{\mathrm{vec}}(\mathfrak{m}, y) Z_{\mathrm{mat}}(\mathfrak{m}, y ; \tau, \tilde{\tau})
$$

- It can be cast into the form

$$
Z(\xi, \vartheta ; \tau, \tilde{\tau})=\sum_{l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)} e^{4 \pi \mathrm{i} \sum_{r} \tau_{l_{r}} \mathcal{Z}_{1-\mathrm{loop}}^{(l)}(\tau, \tilde{\tau}) \mathcal{Z}_{\mathrm{v}}^{(l)}(\xi, \vartheta ; \tau, \tilde{\tau}) \mathcal{Z}_{\mathrm{av}}^{(l)}(\xi, \vartheta ; \tau, \tilde{\tau})}
$$

Localizing Wilson loops

- Given a path (avoiding N and S) it is $\frac{1}{4}$-BPS.

Localizing Wilson loops

- Given a path (avoiding N and S) it is $\frac{1}{4}$-BPS.
- $\frac{1}{4}$-BPS Wilson loops are annihilated either by \mathbf{Q} or by $\tilde{\mathbf{Q}}$.

Localizing Wilson loops

- Given a path (avoiding N and S) it is $\frac{1}{4}$-BPS.
- $\frac{1}{4}$-BPS Wilson loops are annihilated either by \mathbf{Q} or by $\tilde{\mathbf{Q}}$.
- Localizing supercharge $\mathcal{Q}=\left.\mathbf{Q}\right|_{\epsilon_{0}^{+}=1}+\left.\tilde{\mathbf{Q}}\right|_{\tilde{\epsilon}_{0}^{-}=-\mathrm{i}}$.

Localizing Wilson loops

- Given a path (avoiding N and S) it is $\frac{1}{4}$-BPS.
- $\frac{1}{4}$-BPS Wilson loops are annihilated either by \mathbf{Q} or by $\tilde{\mathbf{Q}}$.
- Localizing supercharge $\mathcal{Q}=\left.\mathbf{Q}\right|_{\epsilon_{0}^{+}=1}+\left.\tilde{\mathbf{Q}}\right|_{\tilde{\epsilon}_{0}^{-}=-\mathrm{i}}$.
- It is not possible to localize these WLs directly.

Localizing Wilson loops

- Given a path (avoiding N and S) it is $\frac{1}{4}$-BPS.
- $\frac{1}{4}$-BPS Wilson loops are annihilated either by \mathbf{Q} or by $\tilde{\mathbf{Q}}$.
- Localizing supercharge $\mathcal{Q}=\left.\mathbf{Q}\right|_{\epsilon_{0}^{+}=1}+\left.\tilde{\mathbf{Q}}\right|_{\tilde{\epsilon}_{0}^{-}=-\mathrm{i}}$.
- It is not possible to localize these WLs directly.
- However there are $\frac{1}{2}$ BPS WL which are annihilated both by \mathbf{Q} and $\tilde{\mathbf{Q}}$.

Localizing Wilson loops

- Given a path (avoiding N and S) it is $\frac{1}{4}$-BPS.
- $\frac{1}{4}$-BPS Wilson loops are annihilated either by \mathbf{Q} or by $\tilde{\mathbf{Q}}$.
- Localizing supercharge $\mathcal{Q}=\left.\mathbf{Q}\right|_{\epsilon_{0}^{+}=1}+\left.\tilde{\mathbf{Q}}\right|_{\tilde{\epsilon}_{0}^{-}=-\mathrm{i}}$.
- It is not possible to localize these WLs directly.
- However there are $\frac{1}{2}$ BPS WL which are annihilated both by \mathbf{Q} and $\tilde{\mathbf{Q}}$.
- We can use our \mathbf{Q} or $\tilde{\mathbf{Q}}$-cohomological argument to deform a given $W L$ to a $\frac{1}{2}$ BPS one.

Wilson loops on BPS locus

- Three types of non-self-intersecting paths

Wilson loops on BPS locus

- Three types of non-self-intersecting paths

[-1]

- Evaluation of local operator

$$
\operatorname{tr}_{\mathcal{R}} e^{0}=\operatorname{dim} \mathcal{R}
$$

Wilson loops on BPS locus

- Three types of non-self-intersecting paths

[-1]

- Evaluation of local operator

$$
\left.\operatorname{tr}_{\mathcal{R}} e^{-2 \pi r \sigma}\right|_{\mathrm{BPS}}=\sum_{\Lambda \in \mathcal{R}} e^{-2 \pi \Lambda(y)+\mathrm{i} \pi \Lambda(\mathfrak{m})}
$$

Wilson loops on BPS locus

- Three types of non-self-intersecting paths

[-1]

- Evaluation of local operator

$$
\left.\operatorname{tr}_{\mathcal{R}} e^{+2 \pi r \sigma}\right|_{\mathrm{BPS}}=\sum_{\Lambda \in \mathcal{R}} e^{+2 \pi \Lambda(y)-\mathrm{i} \pi \Lambda(\mathfrak{m})}
$$

Abelian Case

- The Abelian Matrix Model [DGLL], [BC] is

$$
\begin{aligned}
& Z_{\mathrm{U}(1)}(\xi, \vartheta ; \tau, \tilde{\tau})=\sum_{\mathfrak{m}} \int \frac{\mathrm{d} y}{2 \pi} e^{-4 \pi \mathrm{i} \xi y-\mathrm{i} \mathfrak{m} \vartheta} \\
& \quad \times \prod_{f=1}^{N_{\mathrm{f}}} \frac{\Gamma\left(-\mathrm{i} y-\mathrm{i} \tau_{f}-\mathfrak{m} / 2\right)}{\Gamma\left(1+\mathfrak{i} y+\mathrm{i} \tau_{f}-\mathfrak{m} / 2\right)} \prod_{a=1}^{N_{\mathrm{a}}} \frac{\Gamma\left(\mathrm{i} y-\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m} / 2\right)}{\Gamma\left(1-\mathrm{i} y+\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m} / 2\right)}
\end{aligned}
$$

Abelian Case

- The Abelian Matrix Model [DGLL], [BC] is

$$
\begin{aligned}
& Z_{\mathrm{U}(1)}(\xi, \vartheta ; \tau, \tilde{\tau})=\sum_{\mathfrak{m}} \int \frac{\mathrm{d} y}{2 \pi} e^{-4 \pi \mathrm{i} \xi y-\mathrm{i} \mathfrak{m} \vartheta} \\
& \quad \times \prod_{f=1}^{N_{\mathrm{f}}} \frac{\Gamma\left(-\mathrm{i} y-\mathrm{i} \tau_{f}-\mathfrak{m} / 2\right)}{\Gamma\left(1+\mathfrak{i} y+\mathrm{i} \tau_{f}-\mathfrak{m} / 2\right)} \prod_{a=1}^{N_{\mathrm{a}}} \frac{\Gamma\left(\mathrm{i} y-\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m} / 2\right)}{\Gamma\left(1-\mathrm{i} y+\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m} / 2\right)}
\end{aligned}
$$

- Then we have

$$
\left\langle e^{-2 \pi r \sigma}\right\rangle_{\mathrm{U}(1), \Lambda}=\frac{Z_{\mathrm{U}(1)}\left(\xi-\Lambda \frac{\mathrm{i}}{2}, \vartheta-\Lambda \pi ; \tau, \tilde{\tau}\right)}{Z_{\mathrm{U}(1)}(\xi, \vartheta ; \tau, \tilde{\tau})}
$$

Non-Abelian Case

- The non-Abelian Matrix Model [DGLL], [BC] is

$$
\begin{aligned}
Z_{\mathrm{U}(N)}(\xi, \vartheta ; \tau, \tilde{\tau}) & =\frac{1}{N!} \sum_{\mathfrak{m} \in \mathbb{Z}^{N}} \int \frac{\mathrm{~d} y}{(2 \pi)^{N}} e^{-4 \pi \mathrm{i} \xi y_{r}-\mathrm{i} \mathfrak{m}_{r} \vartheta} \prod_{1 \leq t<s \leq N}\left[\frac{1}{4}\left(\mathfrak{m}_{t}-\mathfrak{m}_{s}\right)^{2}+\left(y_{t}-y_{s}\right)^{2}\right] \\
& \times \prod_{r=1}^{N}\left[\prod_{f=1}^{N_{\mathrm{f}}} \frac{\Gamma\left(-\mathrm{i} y_{r}-\mathrm{i} \tau_{f}-\mathfrak{m}_{r} / 2\right)}{\Gamma\left(1+\mathfrak{i} y_{r}+\mathrm{i} \tau_{f}-\mathfrak{m}_{r} / 2\right)} \prod_{a=1}^{N_{\mathrm{a}}} \frac{\Gamma\left(\mathrm{i} y_{r}-\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m} \mathfrak{m}_{r} / 2\right)}{\Gamma\left(1-\mathrm{i} y_{r}+\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m} \mathfrak{m}_{r} / 2\right)}\right]
\end{aligned}
$$

Non-Abelian Case

- The non-Abelian Matrix Model [DGLL], [BC] is

$$
\begin{aligned}
Z_{\mathrm{U}(N)}(\xi, \vartheta ; \tau, \tilde{\tau}) & =\frac{1}{N!} \sum_{\mathfrak{m} \in \mathbb{Z}^{N}} \int \frac{\mathrm{~d} y}{(2 \pi)^{N}} e^{-4 \pi \mathrm{i} \xi y_{r}-\mathrm{i} \mathfrak{m}_{r} \vartheta} \prod_{1 \leq t<s \leq N}\left[\frac{1}{4}\left(\mathfrak{m}_{t}-\mathfrak{m}_{s}\right)^{2}+\left(y_{t}-y_{s}\right)^{2}\right] \\
& \times \prod_{r=1}^{N}\left[\prod_{f=1}^{N_{\mathrm{f}}} \frac{\Gamma\left(-\mathrm{i} y_{r}-\mathrm{i} \tau_{f}-\mathfrak{m}_{r} / 2\right)}{\Gamma\left(1+\mathfrak{i} y_{r}+\mathrm{i} \tau_{f}-\mathfrak{m}_{r} / 2\right)} \prod_{a=1}^{N_{\mathrm{a}}} \frac{\Gamma\left(\mathrm{i} y_{r}-\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m} \mathfrak{m}_{r} / 2\right)}{\Gamma\left(1-\mathrm{i} y_{r}+\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m} \mathfrak{m}_{r} / 2\right)}\right]
\end{aligned}
$$

- It is possible to express the MM in terms of the finite sum

$$
Z(\xi, \vartheta ; \tau, \tilde{\tau})_{\mathrm{U}(N)}=\langle\langle\mathbf{1}\rangle\rangle=\sum_{l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)} e^{4 \pi \mathrm{i} \sum_{r} \tau_{l_{r}} \mathcal{Z}_{1-\operatorname{loop}}^{(l)}(\tau, \tilde{\tau}) \mathcal{Z}_{\mathrm{v}}^{(l)}(\xi, \vartheta ; \tau, \tilde{\tau}) \mathcal{Z}_{\mathrm{av}}^{(l)}(\xi, \vartheta ; \tau, \tilde{\tau})}
$$

Non-Abelian Case

- The non-Abelian Matrix Model [DGLL], [BC] is

$$
\begin{aligned}
Z_{\mathrm{U}(N)}(\xi, \vartheta ; \tau, \tilde{\tau}) & =\frac{1}{N!} \sum_{\mathfrak{m} \in \mathbb{Z}^{N}} \int \frac{\mathrm{~d} y}{(2 \pi)^{N}} e^{-4 \pi \mathrm{i} \xi y_{r}-\mathrm{i} \mathfrak{m}_{r} \vartheta} \prod_{1 \leq t<s \leq N}\left[\frac{1}{4}\left(\mathfrak{m}_{t}-\mathfrak{m}_{s}\right)^{2}+\left(y_{t}-y_{s}\right)^{2}\right] \\
& \times \prod_{r=1}^{N}\left[\prod_{f=1}^{N_{\mathrm{f}}} \frac{\Gamma\left(-\mathrm{i} y_{r}-\mathrm{i} \tau_{f}-\mathfrak{m}_{r} / 2\right)}{\Gamma\left(1+\mathfrak{i} y_{r}+\mathrm{i} \tau_{f}-\mathfrak{m}_{r} / 2\right)} \prod_{a=1}^{N_{a}} \frac{\Gamma\left(\mathrm{i} y_{r}-\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m}_{r} / 2\right)}{\Gamma\left(1-\mathrm{i} y_{r}+\mathrm{i} \tilde{\tau}_{a}+\mathfrak{m}_{r} / 2\right)}\right] .
\end{aligned}
$$

- It is possible to express the MM in terms of the finite sum

$$
Z(\xi, \vartheta ; \tau, \tilde{\tau})_{\mathrm{U}(N)}=\langle\langle\mathbf{1}\rangle\rangle=\sum_{l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)} e^{4 \pi \mathrm{i} \sum_{r} \tau_{l_{r}} \mathcal{Z}_{1-\operatorname{loop}}^{(l)}(\tau, \tilde{\tau}) \mathcal{Z}_{\mathrm{v}}^{(l)}(\xi, \vartheta ; \tau, \tilde{\tau}) \mathcal{Z}_{\mathrm{av}}^{(l)}(\xi, \vartheta ; \tau, \tilde{\tau})}
$$

- Insertions of local operators are easy to write

$$
\left\langle\operatorname{tr}_{\mathcal{R}} e^{-2 \pi r \sigma}\right\rangle_{\mathrm{U}(N)}=\left\langle\left\langle\chi_{\mathcal{R}}\left(x_{l_{1}}, \ldots, x_{l_{N}}\right)\right\rangle\right.
$$

where $\chi_{\mathcal{R}}$ is the character of \mathcal{R}, and $x_{l}=e^{2 \pi \tau_{l}}$.

$\mathrm{U}(N)$ irreps and characters

- $\mathrm{U}(N)$ irreps are labeled by a set iof N integers $\boldsymbol{\lambda}$

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{N}
$$

For instance

- the fundamental has label $(1,0, \ldots, 0)$,
- the anti-fundamental has label $(0, \ldots, 0,-1)$,
- the adjoint has label $(1,0, \ldots, 0,-1)$

$\mathrm{U}(N)$ irreps and characters

- $\mathrm{U}(N)$ irreps are labeled by a set iof N integers $\boldsymbol{\lambda}$

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{N}
$$

For instance

- the fundamental has label $(1,0, \ldots, 0)$,
- the anti-fundamental has label $(0, \ldots, 0,-1)$,
- the adjoint has label $(1,0, \ldots, 0,-1)$
- The character is defined:

$$
\chi_{\boldsymbol{\lambda}}^{\mathrm{U}(N)}\left(x_{1}, \ldots, x_{N}\right)=\frac{a_{\left(\lambda_{1}+N-1, \lambda_{2}+N-2, \ldots, \lambda_{N}\right)}\left(x_{1}, \ldots, x_{N}\right)}{a_{(N-1, N-2, \ldots, 0)}\left(x_{1}, \ldots, x_{N}\right)}
$$

where $a_{\left(\varrho_{1}, \ldots, \varrho_{N}\right)}\left(x_{1}, \ldots, x_{N}\right)=\operatorname{det}\left[x_{i}^{\varrho_{j}}\right]_{i, j=1}^{N}$.

Correlators of Wilson loops

- We can repeat our argument for (non-intersecting) WL:

$$
\left\langle L_{\mathcal{R}_{1}}\left(\Gamma_{1}\right) \ldots L_{\mathcal{R}_{n}}\left(\Gamma_{n}\right)\right\rangle_{\mathrm{U}(N)}=\prod_{\Gamma_{i} \in[0]} \operatorname{dim} \mathcal{R}_{i}\left\langle\prod_{\Gamma_{j} \in[+1]} \operatorname{tr}_{\mathcal{R}_{j}} e^{-2 \pi r \sigma} \prod_{\Gamma_{k} \in[-1]} \operatorname{tr}_{\mathcal{R}_{k}} e^{+2 \pi r \sigma}\right\rangle .
$$

Correlators of Wilson loops

- We can repeat our argument for (non-intersecting) WL:

$$
\left\langle L_{\mathcal{R}_{1}}\left(\Gamma_{1}\right) \ldots L_{\mathcal{R}_{n}}\left(\Gamma_{n}\right)\right\rangle_{\mathrm{U}(N)}=\prod_{\Gamma_{i} \in[0]} \operatorname{dim} \mathcal{R}_{i}\left\langle\prod_{\Gamma_{j} \in[+1]} \operatorname{tr}_{\mathcal{R}_{j}} e^{-2 \pi r \sigma} \prod_{\Gamma_{k} \in[-1]} \operatorname{tr}_{\mathcal{R}_{k}} e^{+2 \pi r \sigma}\right\rangle .
$$

- Using properties of characters we have

$$
\left\langle L_{\mathcal{R}_{1}}\left(\Gamma_{1}\right) \ldots L_{\mathcal{R}_{n}}\left(\Gamma_{n}\right)\right\rangle_{\mathrm{U}(N)}=\prod_{\Gamma_{i} \in[0]} \operatorname{dim} \mathcal{R}_{i}\left\langle\chi_{\bigotimes_{\left.\Gamma_{j} \in \mid+1\right]} \mathcal{R}_{j} \otimes_{\left.\Gamma_{k} \in \mid-1\right]} \overline{\mathcal{R}}_{k}}\left(x_{l_{1}}, \ldots, x_{l_{N}}\right)\right\rangle .
$$

Correlators of Wilson loops

- We can repeat our argument for (non-intersecting) WL:

$$
\left\langle L_{\mathcal{R}_{1}}\left(\Gamma_{1}\right) \ldots L_{\mathcal{R}_{n}}\left(\Gamma_{n}\right)\right\rangle_{\mathrm{U}(N)}=\prod_{\Gamma_{i} \in[0]} \operatorname{dim} \mathcal{R}_{i}\left\langle\prod_{\Gamma_{j} \in[+1]} \operatorname{tr}_{\mathcal{R}_{j}} e^{-2 \pi r \sigma} \prod_{\Gamma_{k} \in[-1]} \operatorname{tr}_{\mathcal{R}_{k}} e^{+2 \pi r \sigma}\right\rangle .
$$

- Using properties of characters we have
$\left\langle L_{\mathcal{R}_{1}}\left(\Gamma_{1}\right) \ldots L_{\mathcal{R}_{n}}\left(\Gamma_{n}\right)\right\rangle_{\mathrm{U}(N)}=\prod_{\Gamma_{i} \in[0]} \operatorname{dim} \mathcal{R}_{i}\left\langle\left\langle\chi_{\bigotimes_{\left.\Gamma_{j} \in \mid+1\right]}} \mathcal{R}_{j} \otimes_{\left.\Gamma_{k} \in \mid-1\right]} \overline{\mathcal{R}}_{k}\left(x_{l_{1}}, \ldots, x_{l_{N}}\right)\right\rangle\right.$.
- Homomorphism: algebra of WL and irreps of G.

Seiberg-like dualities

- 4d infrared duality [Seiberg].

Seiberg-like dualities

- 4d infrared duality [Seiberg].
- 2d dualities [Hori-Tong], [Hori], [Hanany-Hori].

Seiberg-like dualities

- 4d infrared duality [Seiberg].
- 2d dualities [Hori-Tong], [Hori], [Hanany-Hori].
- Test at the level of partition function [DGLL], [BC].

Seiberg-like dualities

- 4d infrared duality [Seiberg].
- 2d dualities [Hori-Tong], [Hori], [Hanany-Hori].
- Test at the level of partition function [DGLL], [BC].
- Test for Coloumb branch operators (topological twist)
[Closset-Mekareeya-Park]

Seiberg-like dualities

- 4d infrared duality [Seiberg].
- 2d dualities [Hori-Tong], [Hori], [Hanany-Hori].
- Test at the level of partition function [DGLL], [BC].
- Test for Coloumb branch operators (topological twist)
[Closset-Mekareeya-Park]

Dictionary between Wilson loops

in the spirit of [Kapustin-Willett]

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathrm{G}^{\mathrm{D}}=\mathrm{U}(N)$;

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathbf{G}^{\mathrm{D}}=\mathrm{U}(\mathrm{N})$;
- $\mathrm{G}_{\mathrm{F}}^{\mathrm{D}}=\operatorname{SU}\left(N_{\mathrm{f}}\right)$;

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;
- $\mathbf{G}_{\mathrm{F}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;

$$
\sum_{f} \tau_{f}=0 \quad \Rightarrow \quad \prod_{f} x_{f}=1
$$

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathbf{G}^{\mathrm{D}}=\mathrm{U}(N)$;
- $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: ξ;

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;
- $\mathbf{G}_{\mathrm{F}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: $\xi^{\mathrm{D}}=\xi$;

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathbf{G}^{\mathrm{D}}=\mathrm{U}(N)$;
- $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: ξ;
- ϑ-angle: ϑ;

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;
- $\mathbf{G}_{\mathrm{F}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: $\xi^{\mathrm{D}}=\xi$;
- ϑ-angle: $\vartheta^{\mathrm{D}}=\vartheta-N_{\mathrm{f}} \pi$;

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathbf{G}^{\mathrm{D}}=\mathrm{U}(\mathrm{N})$;
- $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: ξ;
- ϑ-angle: ϑ;
- $l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)$.

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;
- $\mathbf{G}_{\mathrm{F}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: $\xi^{\mathrm{D}}=\xi$;
- ϑ-angle: $\vartheta^{\mathrm{D}}=\vartheta-N_{\mathrm{f}} \pi$;
- $l^{\mathrm{D}} \in \mathrm{C}\left(N_{\mathrm{f}}-N, N\right)$.

$$
l \cap l^{\mathrm{D}}=\emptyset .
$$

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathbf{G}^{\mathrm{D}}=\mathrm{U}(\mathrm{N})$;
- $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: ξ;
- ϑ-angle: ϑ;
- $l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)$.
- twisted mass: $\tau_{r \in l}$,

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;
- $\mathbf{G}_{\mathrm{F}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: $\xi^{\mathrm{D}}=\xi$;
- ϑ-angle: $\vartheta^{\mathrm{D}}=\vartheta-N_{\mathrm{f}} \pi$;
- $l^{\mathrm{D}} \in \mathrm{C}\left(N_{\mathrm{f}}-N, N\right)$.
- twisted mass: $\tau_{r \notin l^{\mathrm{D}}}^{\mathrm{D}}=-\tau_{r \in l}$,

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathbf{G}^{\mathrm{D}}=\mathrm{U}(N)$;
- $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: ξ;
- ϑ-angle: ϑ;
- $l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)$.
- twisted mass: $\tau_{r \notin l}$,

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;
- $\mathbf{G}_{\mathrm{F}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: $\xi^{\mathrm{D}}=\xi$;
- ϑ-angle: $\vartheta^{\mathrm{D}}=\vartheta-N_{\mathrm{f}} \pi$;
- $l^{\mathrm{D}} \in \mathrm{C}\left(N_{\mathrm{f}}-N, N\right)$.
- twisted mass: $\tau_{r \in l^{\mathrm{D}}}^{\mathrm{D}}=-\tau_{r \notin l}$,

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathbf{G}^{\mathrm{D}}=\mathrm{U}(N)$;
- $\mathrm{G}_{\mathrm{F}}^{\mathrm{D}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: ξ;
- ϑ-angle: ϑ;
- $l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)$.
- twisted mass: τ,
- $\mathfrak{z}^{(l)}(\xi, \vartheta ; \tau)$.

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;
- $\mathbf{G}_{\mathrm{F}}=\operatorname{SU}\left(N_{\mathrm{f}}\right)$;
- FI: $\xi^{\mathrm{D}}=\xi$;
- ϑ-angle: $\vartheta^{\mathrm{D}}=\vartheta-N_{\mathrm{f}} \pi$;
- $l^{\mathrm{D}} \in \mathrm{C}\left(N_{\mathrm{f}}-N, N\right)$.
- twisted mass: $\tau^{\mathrm{D}}=-\tau$,
- $\mathfrak{z}^{\left(l^{\mathrm{D}}\right)}\left(\xi^{\mathrm{D}}, \vartheta^{\mathrm{D}} ; \tau^{\mathrm{D}}\right)=\mathfrak{z}^{(l)}(\xi, \vartheta ; \tau)$.

$$
Z(\xi, \vartheta ; \tau)_{\mathrm{U}(N)}=\sum_{l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)} \mathfrak{z}^{(l)}(\xi, \vartheta ; \tau)
$$

Partition function duality $\left(N_{\mathrm{a}}=0\right)$

Electric Theory

- $\mathbf{G}^{\mathrm{D}}=\mathrm{U}(\mathrm{N})$;
- $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: ξ;
- ϑ-angle: ϑ;
- $l \in \mathrm{C}\left(N_{\mathrm{f}}, N\right)$.
- twisted mass: τ,
- $\mathfrak{z}^{(l)}(\xi, \vartheta ; \tau)$.

Magnetic Theory

- $\mathbf{G}=\mathrm{U}\left(N_{\mathrm{f}}-N\right)$;
- $\mathbf{G}_{\mathrm{F}}=\mathrm{SU}\left(N_{\mathrm{f}}\right)$;
- FI: $\xi^{\mathrm{D}}=\xi$;
- ϑ-angle: $\vartheta^{\mathrm{D}}=\vartheta-N_{\mathrm{f}} \pi$;
- $l^{\mathrm{D}} \in \mathrm{C}\left(N_{\mathrm{f}}-N, N\right)$.
- twisted mass: $\tau^{\mathrm{D}}=-\tau$,
- $\mathfrak{z}^{\left(l^{\mathrm{D}}\right)}\left(\xi^{\mathrm{D}}, \vartheta^{\mathrm{D}} ; \tau^{\mathrm{D}}\right)=\mathfrak{z}^{(l)}(\xi, \vartheta ; \tau)$.

$$
Z(\xi, \vartheta ; \tau)_{\mathrm{U}(N)}=Z\left(\xi^{\mathrm{D}}, \vartheta^{\mathrm{D}} ; \tau^{\mathrm{D}}\right)_{\mathrm{U}\left(N_{\mathrm{f}}-N\right)} .
$$

Wilson loop duality: Idea $\left(N_{\mathrm{f}}=3, N=1\right)$

- At the level of partition functions one has

$$
Z=\mathfrak{z}^{(3)}+\mathfrak{z}^{(2)}+\mathfrak{z}^{(1)}, \quad Z^{\mathrm{D}}=\mathfrak{z}^{\mathrm{D},(12)}+\mathfrak{z}^{\mathrm{D},(13)}+\mathfrak{z}^{\mathrm{D},(23)}
$$

Wilson loop duality: Idea $\left(N_{\mathrm{f}}=3, N=1\right)$

- At the level of partition functions one has

$$
Z=\mathfrak{z}^{(3)}+\mathfrak{z}^{(2)}+\mathfrak{z}^{(1)}, \quad Z^{\mathrm{D}}=\mathfrak{z}^{\mathrm{D},(12)}+\mathfrak{z}^{\mathrm{D},(13)}+\mathfrak{z}^{\mathrm{D},(23)} .
$$

- The duality states that

$$
\mathfrak{z}^{\mathrm{D},(12)}=\mathfrak{z}^{(3)}, \quad \mathfrak{z}^{\mathrm{D},(13)}=\mathfrak{z}^{(2)}, \quad \mathfrak{z}^{\mathrm{D},(23)}=\mathfrak{z}^{(1)}
$$

Wilson loop duality: Idea $\left(N_{\mathrm{f}}=3, N=1\right)$

- At the level of partition functions one has

$$
Z=\mathfrak{z}^{(3)}+\mathfrak{z}^{(2)}+\mathfrak{z}^{(1)}, \quad Z^{\mathrm{D}}=\mathfrak{z}^{\mathrm{D},(12)}+\mathfrak{z}^{\mathrm{D},(13)}+\mathfrak{z}^{\mathrm{D},(23)} .
$$

- The duality states that

$$
\mathfrak{z}^{\mathrm{D},(12)}=\mathfrak{z}^{(3)}, \quad \mathfrak{z}^{\mathrm{D},(13)}=\mathfrak{z}^{(2)}, \quad \mathfrak{z}^{\mathrm{D},(23)}=\mathfrak{z}^{(1)},
$$

- Evaluation of a non-trivial fundamental Wilson loop $\left(x_{i}=e^{2 \pi \tau_{i}}\right)$:

$$
\begin{aligned}
\left\langle L_{\mathrm{f}}\right\rangle Z & =x_{1} \mathfrak{z}^{(1)}+x_{2} \mathfrak{z}^{(2)}+x_{3} \mathfrak{z}^{(3)} \\
& =\left[x_{1}+x_{2}+x_{3}\right] \mathfrak{z}^{(1)}-\left[x_{2}+x_{3}\right] \mathfrak{z}^{(1)} \\
& +\left[x_{1}+x_{2}+x_{3}\right] \mathfrak{z}^{(2)}-\left[x_{1}+x_{3}\right] \mathfrak{z}^{(2)} \\
& +\left[x_{1}+x_{2}+x_{3}\right] \mathfrak{z}^{(3)}-\left[x_{1}+x_{2}\right] \mathfrak{z}^{(3)}
\end{aligned}
$$

Wilson loop duality: Idea $\left(N_{\mathrm{f}}=3, N=1\right)$

- At the level of partition functions one has

$$
Z=\mathfrak{z}^{(3)}+\mathfrak{z}^{(2)}+\mathfrak{z}^{(1)}, \quad Z^{\mathrm{D}}=\mathfrak{z}^{\mathrm{D},(12)}+\mathfrak{z}^{\mathrm{D},(13)}+\mathfrak{z}^{\mathrm{D},(23)} .
$$

- The duality states that

$$
\mathfrak{z}^{\mathrm{D},(12)}=\mathfrak{z}^{(3)}, \quad \mathfrak{z}^{\mathrm{D},(13)}=\mathfrak{z}^{(2)}, \quad \mathfrak{z}^{\mathrm{D},(23)}=\mathfrak{z}^{(1)}
$$

- Evaluation of a non-trivial fundamental Wilson loop $\left(x_{i}=e^{2 \pi \tau_{i}}\right)$:

$$
\begin{aligned}
\left\langle L_{\mathrm{f}}\right\rangle Z & =x_{1} \mathfrak{z}^{(1)}+x_{2} \mathfrak{z}^{(2)}+x_{3} \mathfrak{z}^{(3)} \\
& =\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(23)}-\left[\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(23)} \\
& +\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(13)}-\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(13)} \\
& +\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(12)}-\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(12)}
\end{aligned}
$$

Wilson loop duality: Idea $\left(N_{\mathrm{f}}=3, N=1\right)$

- At the level of partition functions one has

$$
Z=\mathfrak{z}^{(3)}+\mathfrak{z}^{(2)}+\mathfrak{z}^{(1)}, \quad Z^{\mathrm{D}}=\mathfrak{z}^{\mathrm{D},(12)}+\mathfrak{z}^{\mathrm{D},(13)}+\mathfrak{z}^{\mathrm{D},(23)} .
$$

- The duality states that

$$
\mathfrak{z}^{\mathrm{D},(12)}=\mathfrak{z}^{(3)}, \quad \mathfrak{z}^{\mathrm{D},(13)}=\mathfrak{z}^{(2)}, \quad \mathfrak{z}^{\mathrm{D},(23)}=\mathfrak{z}^{(1)}
$$

- Evaluation of a non-trivial fundamental Wilson loop $\left(x_{i}=e^{2 \pi \tau_{i}}\right)$:

$$
\begin{aligned}
\left\langle L_{\mathrm{f}}\right\rangle Z & =x_{1} \mathfrak{z}^{(1)}+x_{2} \mathfrak{z}^{(2)}+x_{3} \mathfrak{z}^{(3)} \\
& =\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(23)}-\left[\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(23)} \\
& +\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(13)}-\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(13)} \\
& +\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(12)}-\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(12)} \\
& =\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] Z^{\mathrm{D}}-\left\langle L_{\mathrm{a}}\right\rangle^{\mathrm{D}} Z^{\mathrm{D}}
\end{aligned}
$$

Wilson loop duality: Idea $\left(N_{\mathrm{f}}=3, N=1\right)$

- At the level of partition functions one has

$$
Z=\mathfrak{z}^{(3)}+\mathfrak{z}^{(2)}+\mathfrak{z}^{(1)}, \quad Z^{\mathrm{D}}=\mathfrak{z}^{\mathrm{D},(12)}+\mathfrak{z}^{\mathrm{D},(13)}+\mathfrak{z}^{\mathrm{D},(23)} .
$$

- The duality states that

$$
\mathfrak{z}^{\mathrm{D},(12)}=\mathfrak{z}^{(3)}, \quad \mathfrak{z}^{\mathrm{D},(13)}=\mathfrak{z}^{(2)}, \quad \mathfrak{z}^{\mathrm{D},(23)}=\mathfrak{z}^{(1)}
$$

- Evaluation of a non-trivial fundamental Wilson loop $\left(x_{i}=e^{2 \pi \tau_{i}}\right)$:

$$
\begin{aligned}
\left\langle L_{\mathrm{f}}\right\rangle Z & =x_{1} \mathfrak{z}^{(1)}+x_{2} \mathfrak{z}^{(2)}+x_{3} \mathfrak{z}^{(3)} \\
& =\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(23)}-\left[\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(23)} \\
& +\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(13)}-\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(13)} \\
& +\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(12)}-\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}\right] \mathfrak{z}^{\mathrm{D},(12)} \\
& =\left[\left(x_{1}^{\mathrm{D}}\right)^{-1}+\left(x_{2}^{\mathrm{D}}\right)^{-1}+\left(x_{3}^{\mathrm{D}}\right)^{-1}\right] Z^{\mathrm{D}}-\left\langle L_{\mathrm{a}}\right\rangle^{\mathrm{D}} Z^{\mathrm{D}} .
\end{aligned}
$$

- Therefore

$$
\left\langle L_{\mathrm{f}}\right\rangle=\chi_{\mathrm{a}}^{\mathrm{U}(3)}-\left\langle L_{\mathrm{a}}\right\rangle^{\mathrm{D}}
$$

Fun with characters

- It is possible to express $\chi_{\boldsymbol{\lambda}}^{\mathrm{U}(N)}\left(x_{1}, \ldots, x_{n}\right)$ in terms of power sums $p_{\boldsymbol{\nu}}\left(x_{1}, \ldots, x_{N}\right)=p_{\nu_{1}}\left(x_{1}, \ldots, x_{N}\right) p_{\nu_{2}}\left(x_{1}, \ldots, x_{N}\right) \cdot \ldots \cdot p_{\nu_{N}}\left(x_{1}, \ldots, x_{N}\right)$, where $p_{k}\left(x_{1}, \ldots, x_{N}\right)=x_{1}^{k}+\ldots+x_{N}^{k}$.

Fun with characters

- It is possible to express $\chi_{\boldsymbol{\lambda}}^{\mathrm{U}(N)}\left(x_{1}, \ldots, x_{n}\right)$ in terms of power sums $p_{\nu}\left(x_{1}, \ldots, x_{N}\right)=p_{\nu_{1}}\left(x_{1}, \ldots, x_{N}\right) p_{\nu_{2}}\left(x_{1}, \ldots, x_{N}\right) \cdot \ldots \cdot p_{\nu_{N}}\left(x_{1}, \ldots, x_{N}\right)$, where $p_{k}\left(x_{1}, \ldots, x_{N}\right)=x_{1}^{k}+\ldots+x_{N}^{k}$.
- Power sums are easy to manipulate

$$
p_{k}\left(x_{1}, \ldots, x_{N}\right)=p_{k}\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{M}\right)-p_{k}\left(y_{1}, \ldots, y_{M}\right) .
$$

Fun with characters

- It is possible to express $\chi_{\boldsymbol{\lambda}}^{\mathrm{U}(N)}\left(x_{1}, \ldots, x_{n}\right)$ in terms of power sums $p_{\nu}\left(x_{1}, \ldots, x_{N}\right)=p_{\nu_{1}}\left(x_{1}, \ldots, x_{N}\right) p_{\nu_{2}}\left(x_{1}, \ldots, x_{N}\right) \cdot \ldots \cdot p_{\nu_{N}}\left(x_{1}, \ldots, x_{N}\right)$, where $p_{k}\left(x_{1}, \ldots, x_{N}\right)=x_{1}^{k}+\ldots+x_{N}^{k}$.
- Power sums are easy to manipulate

$$
p_{k}\left(x_{1}, \ldots, x_{N}\right)=p_{k}\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{M}\right)-p_{k}\left(y_{1}, \ldots, y_{M}\right) .
$$

- Every power sum can be expressed in terms of characters.

Fun with characters

- It is possible to express $\chi_{\boldsymbol{\lambda}}^{\mathrm{U}(N)}\left(x_{1}, \ldots, x_{n}\right)$ in terms of power sums

$$
p_{\boldsymbol{\nu}}\left(x_{1}, \ldots, x_{N}\right)=p_{\nu_{1}}\left(x_{1}, \ldots, x_{N}\right) p_{\nu_{2}}\left(x_{1}, \ldots, x_{N}\right) \cdot \ldots \cdot p_{\nu_{N}}\left(x_{1}, \ldots, x_{N}\right)
$$ where $p_{k}\left(x_{1}, \ldots, x_{N}\right)=x_{1}^{k}+\ldots+x_{N}^{k}$.

- Power sums are easy to manipulate

$$
p_{k}\left(x_{1}, \ldots, x_{N}\right)=p_{k}\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{M}\right)-p_{k}\left(y_{1}, \ldots, y_{M}\right) .
$$

- Every power sum can be expressed in terms of characters.
- All in all we have

$$
\begin{aligned}
\chi_{\boldsymbol{\lambda}}^{\mathrm{U}(N)}\left(x_{l_{1}}, \ldots, x_{l_{N}}\right) & =\sum_{\mu} c_{\mu}\left(x_{1}, \ldots, x_{N_{\mathrm{f}}}\right) \chi_{\boldsymbol{\mu}}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}\left(x_{l_{1}^{\mathrm{D}}}, \ldots, x_{l_{N_{\mathrm{f}}-N}}\right) \\
& =\sum_{\mu} c_{-\mu}\left(x_{1}^{\mathrm{D}}, \ldots, x_{N_{\mathrm{f}}}^{\mathrm{D}}\right) \chi_{-\mu}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}\left(x_{l_{1}^{\mathrm{D}}}^{\mathrm{D}}, \ldots, x_{l_{N_{\mathrm{f}}-N}^{\mathrm{D}}}^{\mathrm{D}}\right),
\end{aligned}
$$

where $c_{-\mu}$ are characters of $\mathrm{U}\left(N_{\mathrm{f}}\right)$ (and of $\mathrm{SU}\left(N_{\mathrm{f}}\right)$ once $\prod_{f} x_{f}=1$).

Dictionary

$$
\begin{aligned}
L_{(0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto L_{(0, \ldots, 0)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(1,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(2,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-2)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-\chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)} L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}+L_{(0, \ldots, 0,-1,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(1,1,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-1,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-\chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)} L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}+L_{(0, \ldots, 0,-2)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)} .
\end{aligned}
$$

Dictionary

$$
\begin{aligned}
L_{(0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto L_{(0, \ldots, 0)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(1,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(2,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-2)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-\chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)} L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}+L_{(0, \ldots, 0,-1,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(1,1,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-1,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-\chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)} L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}+L_{(0, \ldots, 0,-2)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)} .
\end{aligned}
$$

- The duality is an involution;

Dictionary

$$
\begin{aligned}
L_{(0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto L_{(0, \ldots, 0)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(1,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(2,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-2)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-\chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)} L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}+L_{(0, \ldots, 0,-1,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}, \\
L_{(1,1,0, \ldots, 0)}^{\mathrm{U}(N)} & \mapsto \chi_{(0, \ldots, 0,-1,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)}-\chi_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}\right)} L_{(0, \ldots, 0,-1)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)}+L_{(0, \ldots, 0,-2)}^{\mathrm{U}\left(N_{\mathrm{f}}-N\right)} .
\end{aligned}
$$

- The duality is an involution;
- More direct duality if we insert matter field in the connection.

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^{2};

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^{2};
- checked Seiberg-like duality.

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^{2};
- checked Seiberg-like duality.

Outlook

- Nontrivial WLs on T^{2};

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^{2};
- checked Seiberg-like duality.

Outlook

- Nontrivial WLs on T^{2};
- IR properties;

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^{2};
- checked Seiberg-like duality.

Outlook

- Nontrivial WLs on T^{2};
- IR properties;
- Wedges, intersection WLs;

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^{2};
- checked Seiberg-like duality.

Outlook

- Nontrivial WLs on T^{2};
- IR properties;
- Wedges, intersection WLs;
- More general background: S_{Ω}^{2};

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^{2};
- checked Seiberg-like duality.

Outlook

- Nontrivial WLs on T^{2};
- IR properties;
- Wedges, intersection WLs;
- More general background: S_{Ω}^{2};
- Uplift in 3d.

Thank you for your attention!

