On SUSY Wilson Loops in 2d and their dualities

Matteo Poggi

Strings, Branes, and Gauge Theories 2019 APCTP, Pohang

based on 1812.01315 in PRD with R. Panerai and D. Seminara

SUSY Wilson Lines

- SUSY Wilson Lines
- SUSY Wilson Loops

- SUSY Wilson Lines
- SUSY Wilson Loops
- **③** Focus on S^2 : localization results and Seiberg-like duality

SUSY Wilson Lines

N=(2,2) with $\mathrm{U}(1)$ vector-like R-symmetry

 $\bullet\,$ Given a Riemann surface with genus ${\bf g}$ the KSE are

 $(\nabla-\mathrm{i}B)\epsilon=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(\tilde{H}P_{+}+HP_{-})\epsilon\;,\qquad (\nabla-\mathrm{i}B)\tilde{\epsilon}=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(HP_{+}+\tilde{H}P_{-})\tilde{\epsilon}\;.$

N=(2,2) with $\mathrm{U}(1)$ vector-like R-symmetry

 $\bullet\,$ Given a Riemann surface with genus g the KSE are

 $(\nabla-\mathrm{i}B)\epsilon=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(\tilde{H}P_{+}+HP_{-})\epsilon\;,\qquad (\nabla-\mathrm{i}B)\tilde{\epsilon}=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(HP_{+}+\tilde{H}P_{-})\tilde{\epsilon}\;.$

• Supercharges:

$$\mathbf{Q} = \epsilon Q , \qquad \qquad \tilde{\mathbf{Q}} = \tilde{\epsilon} \tilde{Q} .$$

N=(2,2) with $\mathrm{U}(1)$ vector-like R-symmetry

 $\bullet\,$ Given a Riemann surface with genus ${\bf g}$ the KSE are

 $(\nabla-\mathrm{i}B)\epsilon=-\tfrac{1}{2}e^{\mathbf{a}}\gamma^{\mathbf{a}}(\tilde{H}P_{+}+HP_{-})\epsilon\;,\qquad (\nabla-\mathrm{i}B)\tilde{\epsilon}=-\tfrac{1}{2}e^{\mathbf{a}}\gamma^{\mathbf{a}}(HP_{+}+\tilde{H}P_{-})\tilde{\epsilon}\;.$

• Supercharges:

Solutions are [Closset–Cremonesi], [Bae–Imbimbo–Rosa–Rey]:
 g > 1: only A and Ā-twist;

N=(2,2) with $\mathrm{U}(1)$ vector-like R-symmetry

ullet Given a Riemann surface with genus ${\bf g}$ the KSE are

 $(\nabla-\mathrm{i}B)\epsilon=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(\tilde{H}P_{+}+HP_{-})\epsilon\;,\qquad (\nabla-\mathrm{i}B)\tilde{\epsilon}=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(HP_{+}+\tilde{H}P_{-})\tilde{\epsilon}\;.$

• Supercharges:

$$\mathbf{Q} = \epsilon Q , \qquad \qquad \tilde{\mathbf{Q}} = \tilde{\epsilon} \tilde{Q} .$$

Solutions are [Closset-Cremonesi], [Bae-Imbimbo-Rosa-Rey]:
g > 1: only A and Ā-twist;
g = 1: flat case;

N=(2,2) with $\mathrm{U}(1)$ vector-like R-symmetry

 $\bullet\,$ Given a Riemann surface with genus ${\bf g}$ the KSE are

 $(\nabla-\mathrm{i}B)\epsilon=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(\tilde{H}P_{+}+HP_{-})\epsilon\;,\qquad (\nabla-\mathrm{i}B)\tilde{\epsilon}=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(HP_{+}+\tilde{H}P_{-})\tilde{\epsilon}\;.$

• Supercharges:

$$\mathbf{Q} = \epsilon Q , \qquad \qquad \tilde{\mathbf{Q}} = \tilde{\epsilon} \tilde{Q} .$$

- Solutions are [Closset-Cremonesi], [Bae-Imbimbo-Rosa-Rey]:
 - $\mathbf{g} > 1$: only A and A-twist;
 - **g** = 1: flat case;
 - $\mathbf{g} = 0$: many solutions classified by $c_1(B)$.

N=(2,2) with $\mathrm{U}(1)$ vector-like R-symmetry

 $\bullet\,$ Given a Riemann surface with genus g the KSE are

 $(\nabla-\mathrm{i}B)\epsilon=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(\tilde{H}P_{+}+HP_{-})\epsilon\;,\qquad (\nabla-\mathrm{i}B)\tilde{\epsilon}=-\tfrac{1}{2}e^{\mathsf{a}}\gamma^{\mathsf{a}}(HP_{+}+\tilde{H}P_{-})\tilde{\epsilon}\;.$

• Supercharges:

$$\mathbf{Q} = \epsilon Q , \qquad \qquad \tilde{\mathbf{Q}} = \tilde{\epsilon} \tilde{Q} .$$

- Solutions are [Closset-Cremonesi], [Bae-Imbimbo-Rosa-Rey]:
 - $\mathbf{g} > 1$: only A and A-twist;
 - **g** = 1: flat case;
 - $\mathbf{g} = 0$: many solutions classified by $c_1(B)$.
- Multiplets:

$$\mathcal{\boldsymbol{\mathcal{V}}}=(A,\lambda,\tilde{\lambda},\sigma,\tilde{\sigma},D)\;,\quad \; \boldsymbol{\boldsymbol{\chi}}=(\varphi,\psi,F)\;\Rightarrow \text{twisted mass} \propto \tau.$$

Wilson Line

$$W = P \exp \int_{\Gamma} i\mathcal{A}$$

Wilson Line

$$W = P \exp \int_{\Gamma} i\mathcal{A}$$

$$\mathcal{A} = A + f\sigma + \tilde{f}\tilde{\sigma} \; .$$

Wilson Line

$$W = P \exp \int_{\Gamma} i\mathcal{A}$$

$$\mathcal{A} = A + f\sigma + \tilde{f}\tilde{\sigma} \; .$$

•
$$\frac{1}{4}$$
-BPS, for any path Γ :
• ann. by $\mathbf{Q} \Rightarrow f_{\epsilon} = +\frac{\mathbf{i}}{2}\frac{\epsilon^+}{\epsilon^-}(e^1 + \mathbf{i}e^2)$ and $\tilde{f}_{\epsilon} = +\frac{\mathbf{i}}{2}\frac{\epsilon^-}{\epsilon^+}(e^1 - \mathbf{i}e^2).$

Wilson Line

$$W = P \exp \int_{\Gamma} i\mathcal{A}$$

$$\mathcal{A} = A + f\sigma + \tilde{f}\tilde{\sigma} \; .$$

•
$$\frac{1}{4}$$
-BPS, for any path Γ :
• ann. by $\mathbf{Q} \Rightarrow f_{\epsilon} = +\frac{\mathbf{i}}{2}\frac{\epsilon^+}{\epsilon^-}(e^1 + \mathbf{i}e^2)$ and $\tilde{f}_{\epsilon} = +\frac{\mathbf{i}}{2}\frac{\epsilon^-}{\epsilon^+}(e^1 - \mathbf{i}e^2)$.
• ann. by $\tilde{\mathbf{Q}} \Rightarrow f_{\tilde{\epsilon}} = -\frac{\mathbf{i}}{2}\frac{\tilde{\epsilon}^-}{\tilde{\epsilon}^+}(e^1 - \mathbf{i}e^2)$ and $\tilde{f}_{\tilde{\epsilon}} = -\frac{\mathbf{i}}{2}\frac{\tilde{\epsilon}^+}{\tilde{\epsilon}^-}(e^1 + \mathbf{i}e^2)$.

Wilson Line

$$W = P \exp \int_{\Gamma} i\mathcal{A}$$

$$\mathcal{A} = A + f\sigma + \tilde{f}\tilde{\sigma}$$
 .

•
$$\frac{1}{4}$$
-BPS, for any path Γ :
• ann. by $\mathbf{Q} \Rightarrow f_{\epsilon} = +\frac{\mathrm{i}}{2}\frac{\epsilon^{+}}{\epsilon^{-}}(e^{1} + \mathrm{i}e^{2})$ and $\tilde{f}_{\epsilon} = +\frac{\mathrm{i}}{2}\frac{\epsilon^{-}}{\epsilon^{+}}(e^{1} - \mathrm{i}e^{2})$.
• ann. by $\tilde{\mathbf{Q}} \Rightarrow f_{\tilde{\epsilon}} = -\frac{\mathrm{i}}{2}\frac{\tilde{\epsilon}^{-}}{\tilde{\epsilon}^{+}}(e^{1} - \mathrm{i}e^{2})$ and $\tilde{f}_{\tilde{\epsilon}} = -\frac{\mathrm{i}}{2}\frac{\tilde{\epsilon}^{+}}{\tilde{\epsilon}^{-}}(e^{1} + \mathrm{i}e^{2})$.
• $\frac{1}{2}$ -BPS: Γ has to satisfy

$$\frac{\epsilon^-}{\epsilon^+}\frac{\tilde{\epsilon}^-}{\tilde{\epsilon}^+} = -\frac{\dot{x}^1 + \mathrm{i}\dot{x}^2}{\dot{x}^1 - \mathrm{i}\dot{x}^2} \; .$$

• ϵ and $\tilde{\epsilon}$ are constant.

- ϵ and $\tilde{\epsilon}$ are constant.
- ¹/₄-BPS Wilson lines for any path Γ:

 ϵ⁺ ≠ 0 and ϵ⁻ ≠ 0 ⇒ W_ϵ ann. by Q.

- ϵ and $\tilde{\epsilon}$ are constant.
- $\frac{1}{4}$ -BPS Wilson lines for any path Γ :
 - $\epsilon^+ \neq 0$ and $\epsilon^- \neq 0 \Rightarrow W_{\epsilon}$ ann. by \mathbf{Q} .
 - $\tilde{\epsilon}^+ \neq 0$ and $\tilde{\epsilon}^- \neq 0 \implies W_{\tilde{\epsilon}}$ ann. by $\tilde{\mathbf{Q}}$.

- ϵ and $\tilde{\epsilon}$ are constant.
- $\frac{1}{4}$ -BPS Wilson lines for any path Γ : • $\epsilon^+ \neq 0$ and $\epsilon^- \neq 0 \Rightarrow W_{\epsilon}$ ann. by \mathbf{Q} . • $\tilde{\epsilon}^+ \neq 0$ and $\tilde{\epsilon}^- \neq 0 \Rightarrow W_{\tilde{\epsilon}}$ ann. by $\tilde{\mathbf{Q}}$.

• $\frac{1}{2}$ -BPS Wilson lines are straight segments.

Zweibein

$$e^1 = r \,\mathrm{d}\theta$$
 $e^2 = r\sin\theta\,\mathrm{d}\varphi$

Zweibein

$$e^1 = r \,\mathrm{d}\theta \qquad \qquad e^2$$

$$e^2 = r\sin\theta\,\mathrm{d}\varphi$$

SUSY background $B=0\;, \qquad \qquad H=\tilde{H}=-\frac{\mathrm{i}}{r}\;. \label{eq:B}$

Zweibein

$$e^1 = r \,\mathrm{d}\theta$$

$$e^2 = r\sin\theta\,\mathrm{d}\varphi$$

SUSY background

$$B=0\;,\qquad\qquad H=\tilde{H}=-\frac{1}{2}$$

$$\begin{split} & \text{Killing Spinors} \\ & \epsilon = e^{\mathrm{i}\frac{\theta}{2}\gamma^1} e^{\mathrm{i}\frac{\varphi}{2}\gamma^3} \epsilon_0 \;, \qquad \qquad \tilde{\epsilon} = e^{\mathrm{i}\frac{\theta}{2}\gamma^1} e^{\mathrm{i}\frac{\varphi}{2}\gamma^3} \tilde{\epsilon}_0 \;. \end{split}$$

 \bullet Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.

- \bullet Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of f_ϵ and \tilde{f}_ϵ ;
 - zero;
 - pole;

- \bullet Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of f_ϵ and \tilde{f}_ϵ ;
 - zero;
 - pole;

- \bullet Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of f_ϵ and $ilde{f}_\epsilon$;
 - zero;
 - pole;

- \bullet Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of $\,f_\epsilon\,\,{\rm and}\,\,{\widetilde f}_\epsilon\,\,;$
 - zero;
 - pole;
- Any path avoiding poles is $\frac{1}{4}$ -BPS.

- \bullet Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of $\,f_\epsilon\,\,{\rm and}\,\,{\widetilde f}_\epsilon\,\,;$
 - zero;
 - pole;
- Any path avoiding poles is $\frac{1}{4}$ -BPS.

- Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of $\,f_\epsilon\,\, {\rm and}\,\, {\widetilde f}_\epsilon\,$;
 - zero;
 - pole;
- Any path avoiding poles is $\frac{1}{4}$ -BPS.
- Analytic properties of $f_{\widetilde{\epsilon}}$ and $\widetilde{f}_{\widetilde{\epsilon}}$;
 - zero;
 - pole;

- Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of $\,f_\epsilon\,\, {\rm and}\,\, {\widetilde f}_\epsilon\,$;
 - zero;
 - pole;
- Any path avoiding poles is $\frac{1}{4}$ -BPS.
- Analytic properties of $f_{\widetilde{\epsilon}}$ and $\widetilde{f}_{\widetilde{\epsilon}}$;
 - zero;
 - pole;

- Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of $\,f_\epsilon\,\,{\rm and}\,\,{\widetilde f}_\epsilon\,\,;$
 - zero;
 - pole;
- Any path avoiding poles is $\frac{1}{4}$ -BPS.
- Analytic properties of $f_{\tilde{\epsilon}}$ and $\tilde{f}_{\tilde{\epsilon}}$;
 - zero;
 - pole;
- Any path avoiding poles is $\frac{1}{4}$ -BPS.

- Non-trivial $\epsilon(\epsilon_0)$ and $\tilde{\epsilon}(\tilde{\epsilon}_0)$.
- Analytic properties of $\,f_\epsilon\,\,{\rm and}\,\,{\widetilde f}_\epsilon\,\,;$
 - zero;
 - pole;
- Any path avoiding poles is $\frac{1}{4}$ -BPS.
- Analytic properties of $f_{\tilde{\epsilon}}$ and $\tilde{f}_{\tilde{\epsilon}}$;
 - zero;
 - pole;
- Any path avoiding poles is $\frac{1}{4}$ -BPS.

• $\frac{1}{2}$ -BPS Wilson lines lie on circles.

- $\frac{1}{2}$ -BPS Wilson lines lie on circles.
- Axis of the circle determines:
 - zero/pole of $f_{\epsilon} = {\rm zero}/{\rm pole}$ of $f_{\tilde{\epsilon}};$
 - $\bullet\,$ zero/pole of $\tilde{f}_{\epsilon}=$ zero/pole of $\tilde{f}_{\tilde{\epsilon}}.$

on round S^2 : $\frac{1}{2}$ -BPS Wilson lines

- $\frac{1}{2}$ -BPS Wilson lines lie on circles.
- Axis of the circle determines:
 - zero/pole of $f_{\epsilon} = {\rm zero}/{\rm pole}$ of $f_{\tilde{\epsilon}};$
 - $\bullet\,$ zero/pole of $\tilde{f}_{\epsilon}=$ zero/pole of $\tilde{f}_{\tilde{\epsilon}}.$
- $\xi^{\rm a} = \tilde{\epsilon} \gamma^{\rm a} \epsilon$ Killing ${\rm U}(1)$ residual isometry.

on round S^2 : $\frac{1}{2}$ -BPS Wilson lines

- $\frac{1}{2}$ -BPS Wilson lines lie on circles.
- Axis of the circle determines:
 - zero/pole of $f_{\epsilon} = {\rm zero}/{\rm pole}$ of $f_{\tilde{\epsilon}};$
 - zero/pole of $\tilde{f}_{\epsilon}={\rm zero}/{\rm pole}$ of $\tilde{f}_{\tilde{\epsilon}}.$
- ξ^a = ϵ̃γ^aϵ Killing U(1) residual isometry.
 In a suitable polar coordinates one has:
 - $W_{\rm a} = {\rm P} \exp \int_{\varphi_0}^{\varphi_1} [{\rm i} A_\varphi + r (\cos^2 \frac{\theta}{2} \, \sigma + \sin^2 \frac{\theta}{2} \, \tilde{\sigma})] \, {\rm d} \varphi \ , \label{eq:Wa}$

$$W_{\rm b} = {\rm P} \exp \int_{\varphi_0}^{\varphi_1} [{\rm i} A_\varphi + r (\sin^2 \tfrac{\theta}{2} \, \sigma + \cos^2 \tfrac{\theta}{2} \, \tilde{\sigma})] \, {\rm d} \varphi \ . \label{eq:Wb}$$

on round S^2 : $\frac{1}{2}$ -BPS Wilson lines

- $\frac{1}{2}$ -BPS Wilson lines lie on circles.
- Axis of the circle determines:
 - zero/pole of $f_{\epsilon} = {\rm zero}/{\rm pole}$ of $f_{\tilde{\epsilon}};$
 - $\bullet\,$ zero/pole of $\tilde{f}_{\epsilon}={\rm zero}/{\rm pole}$ of $\tilde{f}_{\tilde{\epsilon}}.$
- $\xi^{a} = \tilde{\epsilon}\gamma^{a}\epsilon$ Killing U(1) residual isometry.
- In a suitable polar coordinates one has: l^{φ_1}

$$\begin{split} W_{\rm a} &= {\rm P} \exp \int_{\varphi_0}^{\varphi_1} [{\rm i} A_\varphi + r(\cos^2 \frac{\theta}{2} \, \sigma + \sin^2 \frac{\theta}{2} \, \tilde{\sigma})] \, {\rm d} \varphi \ , \\ W_{\rm b} &= {\rm P} \exp \int_{\varphi_0}^{\varphi_1} [{\rm i} A_\varphi + r(\sin^2 \frac{\theta}{2} \, \sigma + \cos^2 \frac{\theta}{2} \, \tilde{\sigma})] \, {\rm d} \varphi \ . \end{split}$$

"Local" limits:

$$\begin{split} &\lim_{\theta\to 0} W_{\rm a} = e^{r(\varphi_0-\varphi_1)\sigma|_{\theta=0}} \ , \\ &\lim_{\theta\to 0} W_{\rm b} = e^{r(\varphi_0-\varphi_1)\tilde{\sigma}|_{\theta=0}} \ , \end{split}$$

$$\begin{split} &\lim_{\theta\to\pi} W_{\mathbf{a}} = e^{r(\varphi_0-\varphi_1)\tilde{\sigma}|_{\theta=\pi}} \ ,\\ &\lim_{\theta\to\pi} W_{\mathbf{a}} = e^{r(\varphi_0-\varphi_1)\sigma|_{\theta=\pi}} \ . \end{split}$$

Zweibein

$$e^1 = r \,\ell(\theta) \,\mathrm{d}\theta \qquad \qquad e^2 = r \sin\theta \,\mathrm{d}\varphi$$

Zweibein

$$e^1 = r \,\ell(\theta) \,\mathrm{d}\theta \qquad \qquad e^2 = r \sin\theta \,\mathrm{d}\varphi$$

• Isometries are restricted to U(1).

Zweibein

$$e^1 = r\,\ell(\theta)\,\mathrm{d}\theta \qquad \qquad e^2 = r\sin\theta\,\mathrm{d}\varphi$$

- Isometries are restricted to U(1).
- It is possible to find SUSY background [Gomis-S. Lee].

Zweibein

$$e^1 = r \,\ell(\theta) \,\mathrm{d}\theta \qquad \qquad e^2 = r \sin\theta \,\mathrm{d}\varphi$$

- Isometries are restricted to U(1).
- It is possible to find SUSY background [Gomis-S. Lee].

SUSY background

$$B=\mp\frac{1}{2}\Bigl(1-\frac{1}{\ell(\theta)}\Bigr)\mathrm{d}\varphi\;, \qquad \qquad H=\tilde{H}=-\frac{\mathrm{i}}{r\,\ell(\theta)}\;.$$

Zweibein

$$e^1 = r\,\ell(\theta)\,\mathrm{d}\theta \qquad \qquad e^2 = r\sin\theta\,\mathrm{d}\varphi$$

- Isometries are restricted to U(1).
- It is possible to find SUSY background [Gomis-S. Lee].

SUSY background

$$B = \mp \frac{1}{2} \Big(1 - \frac{1}{\ell(\theta)} \Big) \mathrm{d}\varphi \;, \qquad \qquad H = \tilde{H} = -\frac{\mathrm{i}}{r\,\ell(\theta)} \;.$$

• The $\frac{1}{2}$ -BPS Wilson lines run along the U(1) action.

Zweibein

$$e^1 = r\,\ell(\theta)\,\mathrm{d}\theta \qquad \qquad e^2 = r\sin\theta\,\mathrm{d}\varphi$$

- Isometries are restricted to U(1).
- It is possible to find SUSY background [Gomis-S. Lee].

SUSY background

$$B=\mp\frac{1}{2}\Bigl(1-\frac{1}{\ell(\theta)}\Bigr)\mathrm{d}\varphi\;, \qquad \qquad H=\tilde{H}=-\frac{\mathrm{i}}{r\,\ell(\theta)}\;.$$

- The $\frac{1}{2}$ -BPS Wilson lines run along the U(1) action.
- The form of $\frac{1}{2}$ -BPS Wilson line is the same as $W_{\rm a}$ or $W_{\rm b}$ (depending on the background).

Wilson loops

• Let us define
$$\mathcal{F} = d\mathcal{A} - i\mathcal{A} \wedge \mathcal{A}$$
.

- Let us define $\mathcal{F} = d\mathcal{A} i\mathcal{A} \wedge \mathcal{A}$.
- We can use full covariant derivative $\mathbf{D}=\nabla-\mathbf{i}[A,\cdot]-\mathbf{i}qB$ to write

$$*\mathcal{F} = *F - \mathrm{i}\varepsilon^{\mathsf{a}\mathsf{b}}f^{\mathsf{a}}\tilde{f}^{\mathsf{b}}[\sigma,\tilde{\sigma}] + \varepsilon^{\mathsf{a}\mathsf{b}}(f^{\mathsf{b}}\mathrm{D}^{\mathsf{a}}\sigma + \tilde{f}^{\mathsf{b}}\mathrm{D}^{\mathsf{a}}\tilde{\sigma}) + *\mathrm{d}f\,\sigma + *\mathrm{d}\tilde{f}\,\tilde{\sigma} \;.$$

- Let us define $\mathcal{F} = d\mathcal{A} i\mathcal{A} \wedge \mathcal{A}$.
- We can use full covariant derivative $D = \nabla i[A, \cdot] iqB$ to write

$$*\mathcal{F} = *F - \mathrm{i}\varepsilon^{\mathsf{a}\mathsf{b}}f^{\mathsf{a}}\tilde{f}^{\mathsf{b}}[\sigma,\tilde{\sigma}] + \varepsilon^{\mathsf{a}\mathsf{b}}(f^{\mathsf{b}}\mathrm{D}^{\mathsf{a}}\sigma + \tilde{f}^{\mathsf{b}}\mathrm{D}^{\mathsf{a}}\tilde{\sigma}) + *\mathrm{d}f\,\sigma + *\mathrm{d}\tilde{f}\,\tilde{\sigma}\;.$$

• Using SUSY algebra on general background one can prove that

$$*\mathcal{F}_{\epsilon} = -\frac{\mathbf{Q}(\epsilon\lambda)}{2\epsilon^{+}\epsilon^{-}}, \qquad \qquad *\mathcal{F}_{\tilde{\epsilon}} = +\frac{\mathbf{Q}(\tilde{\epsilon\lambda})}{2\tilde{\epsilon}^{+}\tilde{\epsilon}^{-}}.$$

$$L_{\mathcal{R}}(\Gamma) = \operatorname{tr}_{\mathcal{R}} \operatorname{P} \exp \oint_{\Gamma} i\mathcal{A}$$

 $L_{\mathcal{R}}(\Gamma) = \operatorname{tr}_{\mathcal{R}} \operatorname{P} \exp \oint_{\Gamma} i\mathcal{A}$ We take Γ to be smooth and *non-self-intersecting*

$$L_{\mathcal{R}}(\Gamma) = \operatorname{tr}_{\mathcal{R}} \operatorname{P} \exp \oint_{\Gamma} i\mathcal{A}$$

• Let us consider an homotopy of paths $\Gamma(s,t)$.

$$L_{\mathcal{R}}(\Gamma) = \operatorname{tr}_{\mathcal{R}} \operatorname{P} \exp \oint_{\Gamma} i\mathcal{A}$$

- Let us consider an homotopy of paths $\Gamma(s,t).$
- It is possible to define the Wilson line

$$W(s;t_0,t) = \mathrm{P}\exp\int_{t_0}^t \mathrm{d}t'\,\mathrm{i}\mathcal{A}_t(s,t')\;,$$
 with $\mathcal{A}_t = \mathcal{A}^{\mathsf{a}}\partial_t x^{\mathsf{a}}.$

$$L_{\mathcal{R}}(\Gamma) = \operatorname{tr}_{\mathcal{R}} \operatorname{P} \exp \oint_{\Gamma} i\mathcal{A}$$

- Let us consider an homotopy of paths $\Gamma(s,t)$.
- It is possible to define the Wilson line

$$\begin{split} W(s;t_0,t) &= \mathrm{P}\exp\int_{t_0}^t \mathrm{d}t'\,\mathrm{i}\mathcal{A}_t(s,t')\;,\\ \text{with }\mathcal{A}_t &= \mathcal{A}^{\mathsf{a}}\partial_t x^{\mathsf{a}}. \end{split}$$

• It is possible to compute the variation

$$\partial_s L_{\mathcal{R}} = \operatorname{i} \operatorname{tr}_{\mathcal{R}} \int_0^1 \mathrm{d}t' \, W(s;t',1) \mathcal{F}_{st}(s,t') W(s;0,t') \;,$$

with $\mathcal{F}_{st} = \mathcal{F}^{\mathsf{ab}} \partial_t x^{\mathsf{a}} \partial_s x^{\mathsf{b}}$.

Cohomological argument

 $\bullet~$ Using ${\bf Q}$ and $\tilde{{\bf Q}}\text{-exactness}$ of the field strength

$$\begin{split} \partial_s L_{\mathcal{R},\epsilon} &= \mathbf{Q} \operatorname{tr}_{\mathcal{R}} \int_0^1 \mathrm{d}t' \varepsilon^{\mathsf{a}\mathsf{b}} \partial_t x^{\mathsf{a}}(t') \partial_s x^{\mathsf{b}}(t) \\ &\quad \times W_\epsilon(s;t',1) \Big[-\frac{\epsilon \lambda}{2\epsilon^+ \epsilon^-} \Big] W_\epsilon(s;0,t') \;, \\ \partial_s L_{\mathcal{R},\tilde{\epsilon}} &= \tilde{\mathbf{Q}} \operatorname{tr}_{\mathcal{R}} \int_0^1 \mathrm{d}t' \varepsilon^{\mathsf{a}\mathsf{b}} \partial_t x^{\mathsf{a}}(t') \partial_s x^{\mathsf{b}}(t) \\ &\quad \times W_\epsilon(s;t',1) \Big[+\frac{\tilde{\epsilon}\tilde{\lambda}}{2\tilde{\epsilon}^+\tilde{\epsilon}^-} \Big] W_\epsilon(s;0,t') \;, \end{split}$$

Cohomological argument

 $\bullet~$ Using ${\bf Q}$ and $\widetilde{{\bf Q}}\text{-exactness}$ of the field strength

$$\begin{split} \partial_s L_{\mathcal{R},\epsilon} &= \mathbf{Q} \operatorname{tr}_{\mathcal{R}} \int_0^1 \mathrm{d}t' \varepsilon^{\mathsf{a}\mathsf{b}} \partial_t x^{\mathsf{a}}(t') \partial_s x^{\mathsf{b}}(t) \\ &\quad \times W_\epsilon(s;t',1) \Big[-\frac{\epsilon \lambda}{2\epsilon^+\epsilon^-} \Big] W_\epsilon(s;0,t') \;, \\ \partial_s L_{\mathcal{R},\tilde{\epsilon}} &= \tilde{\mathbf{Q}} \operatorname{tr}_{\mathcal{R}} \int_0^1 \mathrm{d}t' \varepsilon^{\mathsf{a}\mathsf{b}} \partial_t x^{\mathsf{a}}(t') \partial_s x^{\mathsf{b}}(t) \\ &\quad \times W_\epsilon(s;t',1) \Big[+\frac{\tilde{\epsilon}\tilde{\lambda}}{2\tilde{\epsilon}^+\tilde{\epsilon}^-} \Big] W_\epsilon(s;0,t') \;, \end{split}$$

• If Γ_1 is homotopic to Γ_2 , we have

$$\langle L_{\mathcal{R}}(\Gamma_1) \rangle = \langle L_{\mathcal{R}}(\Gamma_2) \rangle .$$

On \mathbb{C} , f and \tilde{f} non-singular

$\pi_1(\mathbb{C}) = 0 \implies$ All Wilson loops are trivial

On \mathbb{C} , f and \tilde{f} non-singular

 $\pi_1(\mathbb{C}) = 0 \implies$ All Wilson loops are trivial

On T^2 , f and \tilde{f} non-singular $\pi_1(T^2) = \mathbb{Z} \times \mathbb{Z} \implies$ Non-trivial Wilson loops \leftrightarrow non-trivial cycles

On \mathbb{C} , f and \widetilde{f} non-singular

 $\pi_1(\mathbb{C}) = 0 \ \Rightarrow \ \ \text{All Wilson loops are trivial}$

On T^2 , f and \tilde{f} non-singular $\pi_1(T^2) = \mathbb{Z} \times \mathbb{Z} \implies$ Non-trivial Wilson loops \leftrightarrow non-trivial cycles

On \mathbb{C} , f and \tilde{f} non-singular

 $\pi_1(\mathbb{C}) = 0 \ \Rightarrow \ \ \text{All Wilson loops are trivial}$

On T^2 , f and \tilde{f} non-singular $\pi_1(T^2) = \mathbb{Z} \times \mathbb{Z} \implies$ Non-trivial Wilson loops \leftrightarrow non-trivial cycles

Localization and dualities on S^2

• U(N) SYM with matter ($N_{\rm f}$ fundamental, $N_{\rm a}$ anti-fundamental):

$$\mathscr{L} = \mathscr{L}_{\mathrm{vec}} + \mathscr{L}_{\mathrm{mat}} + \mathscr{L}_{\mathrm{FI}} + \mathscr{L}_{\mathrm{FI$$

with $N_{\rm f}>N_{\rm a}$ (or $N_{\rm f}=N_{\rm a}$ and $\xi>0)$ and $N_{\rm f}\geq N.$

• U(N) SYM with matter ($N_{\rm f}$ fundamental, $N_{\rm a}$ anti-fundamental):

$$\mathscr{L} = \mathscr{L}_{\text{vec}} + \mathscr{L}_{\text{mat}} + \mathscr{L}_{\text{FI}}$$

with $N_{\rm f}>N_{\rm a}$ (or $N_{\rm f}=N_{\rm a}$ and $\xi>0)$ and $N_{\rm f}\geq N.$

• It is possible to localize the theory w.r.t. $\mathcal{Q} = \mathbf{Q}|_{\epsilon_0^+=1} + \tilde{\mathbf{Q}}|_{\tilde{\epsilon}_0^-=-i}$.

• $\mathrm{U}(N)$ SYM with matter (N_{f} fundamental, N_{a} anti-fundamental):

$$\mathscr{L} = \mathscr{L}_{\text{vec}} + \mathscr{L}_{\text{mat}} + \mathscr{L}_{\text{FI}} .$$

with $N_{\rm f}>N_{\rm a}$ (or $N_{\rm f}=N_{\rm a}$ and $\xi>0)$ and $N_{\rm f}\geq N.$

It is possible to localize the theory w.r.t. Q = Q|_{e₀+1} + Q
_{e₀=-i} + Q
_{e₀=-i}.
The BPS locus is parametrized by m ∈ Z^N and y ∈ ℝ^N.

• U(N) SYM with matter ($N_{\rm f}$ fundamental, $N_{\rm a}$ anti-fundamental):

$$\mathscr{L} = \mathscr{L}_{\text{vec}} + \mathscr{L}_{\text{mat}} + \mathscr{L}_{\text{FI}}$$
 .

with $N_{\rm f}>N_{\rm a}$ (or $N_{\rm f}=N_{\rm a}$ and $\xi>0)$ and $N_{\rm f}\geq N.$

- It is possible to localize the theory w.r.t. $\mathcal{Q} = \mathbf{Q}|_{\epsilon_0^+=1} + \tilde{\mathbf{Q}}|_{\tilde{\epsilon_0}=-i}$.
- The BPS locus is parametrized by $\mathfrak{m} \in \mathbb{Z}^N$ and $y \in \mathbb{R}^N$.
- The partition function is given in terms of a matrix model

$$Z(\xi,\vartheta;\tau,\tilde{\tau}) = \prod_{\mathfrak{m}} \int \frac{\mathrm{d}^N y}{(2\pi)^N} Z_{\mathrm{cl}}(\mathfrak{m},y;\xi,\vartheta) Z_{\mathrm{vec}}(\mathfrak{m},y) Z_{\mathrm{mat}}(\mathfrak{m},y;\tau,\tilde{\tau}) \; .$$

• U(N) SYM with matter ($N_{\rm f}$ fundamental, $N_{\rm a}$ anti-fundamental):

$$\mathscr{L} = \mathscr{L}_{\text{vec}} + \mathscr{L}_{\text{mat}} + \mathscr{L}_{\text{FI}}$$
 .

with $N_{\rm f}>N_{\rm a}$ (or $N_{\rm f}=N_{\rm a}$ and $\xi>0)$ and $N_{\rm f}\geq N.$

- It is possible to localize the theory w.r.t. $\mathcal{Q} = \mathbf{Q}|_{\epsilon_0^+=1} + \tilde{\mathbf{Q}}|_{\tilde{\epsilon}_0^-=-i}$.
- The BPS locus is parametrized by $\mathfrak{m} \in \mathbb{Z}^N$ and $y \in \mathbb{R}^N$.
- The partition function is given in terms of a matrix model

$$Z(\xi,\vartheta;\tau,\tilde{\tau}) = \prod_{\mathfrak{m}} \int \frac{\mathrm{d}^N y}{(2\pi)^N} Z_{\mathrm{cl}}(\mathfrak{m},y;\xi,\vartheta) Z_{\mathrm{vec}}(\mathfrak{m},y) Z_{\mathrm{mat}}(\mathfrak{m},y;\tau,\tilde{\tau}) \; .$$

It can be cast into the form

• Given a path (avoiding N and S) it is $\frac{1}{4}$ -BPS.

- Given a path (avoiding N and S) it is $\frac{1}{4}$ -BPS.
- $\frac{1}{4}$ -BPS Wilson loops are annihilated either by ${f Q}$ or by ${f \widetilde Q}$.

- Given a path (avoiding N and S) it is $\frac{1}{4}$ -BPS.
- $\frac{1}{4}$ -BPS Wilson loops are annihilated either by ${\bf Q}$ or by ${\bf \widetilde{Q}}$.
- Localizing supercharge $\mathcal{Q} = \mathbf{Q}|_{\epsilon_0^+=1} + \tilde{\mathbf{Q}}|_{\tilde{\epsilon}_0^-=-i}$.

- Given a path (avoiding N and S) it is $\frac{1}{4}$ -BPS.
- $\frac{1}{4}$ -BPS Wilson loops are annihilated either by ${\bf Q}$ or by ${\bf \widetilde{Q}}$.
- Localizing supercharge $\mathcal{Q} = \mathbf{Q}|_{\epsilon_0^+=1} + \tilde{\mathbf{Q}}|_{\tilde{\epsilon}_0^-=-i}$.
- It is not possible to localize these WLs directly.

- Given a path (avoiding N and S) it is $\frac{1}{4}$ -BPS.
- $\frac{1}{4}$ -BPS Wilson loops are annihilated either by ${\bf Q}$ or by ${\bf \widetilde{Q}}$.
- Localizing supercharge $\mathcal{Q} = \mathbf{Q}|_{\epsilon_0^+=1} + \tilde{\mathbf{Q}}|_{\tilde{\epsilon}_0^-=-i}$.
- It is not possible to localize these WLs directly.
- However there are $\frac{1}{2}$ BPS WL which are annihilated both by ${\bf Q}$ and $\widetilde{{\bf Q}}.$

- Given a path (avoiding N and S) it is $\frac{1}{4}$ -BPS.
- $\frac{1}{4}$ -BPS Wilson loops are annihilated either by ${\bf Q}$ or by ${\bf \widetilde{Q}}$.
- Localizing supercharge $\mathcal{Q} = \mathbf{Q}|_{\epsilon_0^+=1} + \tilde{\mathbf{Q}}|_{\tilde{\epsilon}_0^-=-i}$.
- It is not possible to localize these WLs directly.
- However there are $\frac{1}{2}$ BPS WL which are annihilated both by ${\bf Q}$ and $\tilde{{\bf Q}}.$
- We can use our ${\bf Q}$ or $\widetilde{{\bf Q}}\mbox{-cohomological argument to deform a given WL to a <math display="inline">\frac{1}{2}$ BPS one.
• Three types of non-self-intersecting paths

• Three types of non-self-intersecting paths

• Evaluation of local operator

$$\operatorname{tr}_{\mathcal{R}} e^0 = \dim \mathcal{R} ,$$

• Three types of non-self-intersecting paths

• Evaluation of local operator

$$\operatorname{tr}_{\mathcal{R}} e^{-2\pi r\sigma}|_{\operatorname{BPS}} = \sum_{\Lambda \in \mathcal{R}} e^{-2\pi \Lambda(y) + \mathrm{i} \pi \Lambda(\mathfrak{m})} \;,$$

• Three types of non-self-intersecting paths

• Evaluation of local operator

$$\operatorname{tr}_{\mathcal{R}} e^{+2\pi r\sigma}|_{\operatorname{BPS}} = \sum_{\Lambda \in \mathcal{R}} e^{+2\pi \Lambda(y) - \mathrm{i}\pi \Lambda(\mathfrak{m})} \, .$$

• The Abelian Matrix Model [DGLL], [BC] is

$$\begin{split} Z_{\mathrm{U}(1)}(\xi,\vartheta;\tau,\tilde{\tau}) &= \sum_{\mathfrak{m}} \int \frac{\mathrm{d}y}{2\pi} e^{-4\pi\mathrm{i}\xi y - \mathrm{i}\mathfrak{m}\vartheta} \\ &\times \prod_{f=1}^{N_{\mathrm{f}}} \frac{\Gamma(-\mathrm{i}y - \mathrm{i}\tau_f - \mathfrak{m}/2)}{\Gamma(1 + \mathrm{i}y + \mathrm{i}\tau_f - \mathfrak{m}/2)} \prod_{a=1}^{N_{\mathrm{a}}} \frac{\Gamma(\mathrm{i}y - \mathrm{i}\tilde{\tau}_a + \mathfrak{m}/2)}{\Gamma(1 - \mathrm{i}y + \mathrm{i}\tilde{\tau}_a + \mathfrak{m}/2)} \end{split}$$

• The Abelian Matrix Model [DGLL], [BC] is

$$\begin{split} Z_{\mathrm{U}(1)}(\xi,\vartheta;\tau,\tilde{\tau}) &= \sum_{\mathfrak{m}} \int \frac{\mathrm{d}y}{2\pi} e^{-4\pi\mathrm{i}\xi y - \mathrm{i}\mathfrak{m}\vartheta} \\ &\times \prod_{f=1}^{N_{\mathrm{f}}} \frac{\Gamma(-\mathrm{i}y - \mathrm{i}\tau_f - \mathfrak{m}/2)}{\Gamma(1 + \mathrm{i}y + \mathrm{i}\tau_f - \mathfrak{m}/2)} \prod_{a=1}^{N_{\mathrm{a}}} \frac{\Gamma(\mathrm{i}y - \mathrm{i}\tilde{\tau}_a + \mathfrak{m}/2)}{\Gamma(1 - \mathrm{i}y + \mathrm{i}\tilde{\tau}_a + \mathfrak{m}/2)} \end{split}$$

• Then we have

$$\langle e^{-2\pi r\sigma} \rangle_{\mathrm{U}(1),\Lambda} = \frac{Z_{\mathrm{U}(1)}(\xi - \Lambda_{2}^{\mathrm{i}}, \vartheta - \Lambda \pi; \tau, \tilde{\tau})}{Z_{\mathrm{U}(1)}(\xi, \vartheta; \tau, \tilde{\tau})}$$

٠

Non-Abelian Case

• The non-Abelian Matrix Model [DGLL], [BC] is

$$\begin{split} Z_{\mathrm{U}(N)}(\xi,\vartheta;\tau,\tilde{\tau}) &= \frac{1}{N!} \sum_{\mathfrak{m}\in\mathbb{Z}^N} \int \frac{\mathrm{d}y}{(2\pi)^N} e^{-4\pi \mathrm{i}\xi y_r - \mathrm{i}\mathfrak{m}_r \vartheta} \prod_{1 \leq t < s \leq N} [\frac{1}{4}(\mathfrak{m}_t - \mathfrak{m}_s)^2 + (y_t - y_s)^2] \\ & \times \prod_{r=1}^N \left[\prod_{f=1}^{N_\mathrm{f}} \frac{\Gamma(-\mathrm{i}y_r - \mathrm{i}\tau_f - \mathfrak{m}_r/2)}{\Gamma(1 + \mathrm{i}y_r + \mathrm{i}\tau_f - \mathfrak{m}_r/2)} \prod_{a=1}^{N_\mathrm{a}} \frac{\Gamma(\mathrm{i}y_r - \mathrm{i}\tilde{\tau}_a + \mathfrak{m}_r/2)}{\Gamma(1 - \mathrm{i}y_r + \mathrm{i}\tilde{\tau}_a + \mathfrak{m}_r/2)} \right]. \end{split}$$

Non-Abelian Case

• The non-Abelian Matrix Model [DGLL], [BC] is

$$\begin{split} Z_{\mathrm{U}(N)}(\xi,\vartheta;\tau,\tilde{\tau}) &= \frac{1}{N!} \sum_{\mathfrak{m}\in\mathbb{Z}^N} \int \frac{\mathrm{d}y}{(2\pi)^N} e^{-4\pi\mathrm{i}\xi y_r - \mathrm{i}\mathfrak{m}_r \vartheta} \prod_{1 \leq t < s \leq N} [\frac{1}{4}(\mathfrak{m}_t - \mathfrak{m}_s)^2 + (y_t - y_s)^2] \\ & \times \prod_{r=1}^N \left[\prod_{f=1}^{N_\mathrm{f}} \frac{\Gamma(-\mathrm{i}y_r - \mathrm{i}\tau_f - \mathfrak{m}_r/2)}{\Gamma(1 + \mathrm{i}y_r + \mathrm{i}\tau_f - \mathfrak{m}_r/2)} \prod_{a=1}^{N_\mathrm{a}} \frac{\Gamma(\mathrm{i}y_r - \mathrm{i}\tilde{\tau}_a + \mathfrak{m}_r/2)}{\Gamma(1 - \mathrm{i}y_r + \mathrm{i}\tilde{\tau}_a + \mathfrak{m}_r/2)} \right]. \end{split}$$

• It is possible to express the MM in terms of the finite sum

$$Z(\xi,\vartheta;\tau,\tilde{\tau})_{\mathrm{U}(N)} = \langle\!\!\langle \mathbf{1} \rangle\!\!\rangle = \sum_{l \in \mathsf{C}(N_{\mathrm{f}},N)} \!\!\!e^{4\pi\mathrm{i}\sum_{r}\tau_{l_{r}}} \mathcal{Z}_{1\text{-loop}}^{(l)}(\tau,\tilde{\tau}) \mathcal{Z}_{\mathrm{v}}^{(l)}(\xi,\vartheta;\tau,\tilde{\tau}) \mathcal{Z}_{\mathrm{av}}^{(l)}(\xi,\vartheta;\tau,\tilde{\tau}) \; .$$

Non-Abelian Case

• The non-Abelian Matrix Model [DGLL], [BC] is

$$\begin{split} Z_{\mathrm{U}(N)}(\xi,\vartheta;\tau,\tilde{\tau}) &= \frac{1}{N!} \sum_{\mathfrak{m}\in\mathbb{Z}^N} \int \frac{\mathrm{d}y}{(2\pi)^N} e^{-4\pi\mathrm{i}\xi y_r - \mathrm{i}\mathfrak{m}_r \cdot \vartheta} \prod_{1 \leq t < s \leq N} [\frac{1}{4}(\mathfrak{m}_t - \mathfrak{m}_s)^2 + (y_t - y_s)^2] \\ & \times \prod_{r=1}^N \left[\prod_{f=1}^{N_\mathrm{f}} \frac{\Gamma(-\mathrm{i}y_r - \mathrm{i}\tau_f - \mathfrak{m}_r/2)}{\Gamma(1 + \mathrm{i}y_r + \mathrm{i}\tau_f - \mathfrak{m}_r/2)} \prod_{a=1}^{N_\mathrm{a}} \frac{\Gamma(\mathrm{i}y_r - \mathrm{i}\tilde{\tau}_a + \mathfrak{m}_r/2)}{\Gamma(1 - \mathrm{i}y_r + \mathrm{i}\tilde{\tau}_a + \mathfrak{m}_r/2)} \right]. \end{split}$$

• It is possible to express the MM in terms of the finite sum

$$Z(\xi,\vartheta;\tau,\tilde{\tau})_{\mathrm{U}(N)} = \langle\!\!\langle \mathbf{1} \rangle\!\!\rangle = \sum_{l \in \mathsf{C}(N_{\mathrm{f}},N)} \!\!\!e^{4\pi\mathrm{i}\sum_{r}\tau_{l_{r}}} \mathcal{Z}_{1\text{-loop}}^{(l)}(\tau,\tilde{\tau}) \mathcal{Z}_{\mathrm{v}}^{(l)}(\xi,\vartheta;\tau,\tilde{\tau}) \mathcal{Z}_{\mathrm{av}}^{(l)}(\xi,\vartheta;\tau,\tilde{\tau}) \; .$$

• Insertions of local operators are easy to write

$$\langle \operatorname{tr}_{\mathcal{R}} e^{-2\pi r\sigma} \rangle_{\operatorname{U}(N)} = \langle\!\!\langle \chi_{\mathcal{R}}(x_{l_1}, \dots, x_{l_N}) \rangle\!\!\rangle \;,$$

where $\chi_{\mathcal{R}}$ is the character of \mathcal{R} , and $x_l = e^{2\pi\tau_l}$.

• $\mathrm{U}(N)$ irreps are labeled by a set iof N integers $oldsymbol{\lambda}$

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N$$
 .

For instance

- $\bullet\,$ the fundamental has label $(1,0,\ldots,0)$,
- $\bullet\,$ the anti-fundamental has label $(0,\ldots,0,-1)$,
- \bullet the adjoint has label $(1,0,\ldots,0,-1)$

• $\mathrm{U}(N)$ irreps are labeled by a set iof N integers $oldsymbol{\lambda}$

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N$$
 .

For instance

- $\bullet\,$ the fundamental has label $(1,0,\ldots,0)$,
- $\bullet\,$ the anti-fundamental has label $(0,\ldots,0,-1)$,
- \bullet the adjoint has label $(1,0,\ldots,0,-1)$
- The character is defined:

$$\chi^{\mathrm{U}(N)}_{\pmb{\lambda}}(x_1,\ldots,x_N) = \frac{a_{(\lambda_1+N-1,\lambda_2+N-2,\ldots,\lambda_N)}(x_1,\ldots,x_N)}{a_{(N-1,N-2,\ldots,0)}(x_1,\ldots,x_N)} \;,$$

where $a_{(\varrho_1,\ldots,\varrho_N)}(x_1,\ldots,x_N)=\det[x_i^{\varrho_j}]_{i,j=1}^N.$

• We can repeat our argument for (non-intersecting) WL:

$$\langle L_{\mathcal{R}_1}(\Gamma_1) \dots L_{\mathcal{R}_n}(\Gamma_n) \rangle_{\mathrm{U}(N)} = \prod_{\Gamma_i \in [0]} \dim \mathcal{R}_i \left\langle \prod_{\Gamma_j \in [+1]} \mathrm{tr}_{\mathcal{R}_j} \, e^{-2\pi r \sigma} \prod_{\Gamma_k \in [-1]} \mathrm{tr}_{\mathcal{R}_k} \, e^{+2\pi r \sigma} \right\rangle \, .$$

• We can repeat our argument for (non-intersecting) WL:

$$\langle L_{\mathcal{R}_1}(\Gamma_1) \dots L_{\mathcal{R}_n}(\Gamma_n) \rangle_{\mathrm{U}(N)} = \prod_{\Gamma_i \in [0]} \dim \mathcal{R}_i \left\langle \prod_{\Gamma_j \in [+1]} \mathrm{tr}_{\mathcal{R}_j} \, e^{-2\pi r \sigma} \prod_{\Gamma_k \in [-1]} \mathrm{tr}_{\mathcal{R}_k} \, e^{+2\pi r \sigma} \right\rangle$$

• Using properties of characters we have

$$\langle L_{\mathcal{R}_1}(\Gamma_1) \dots L_{\mathcal{R}_n}(\Gamma_n) \rangle_{\mathrm{U}(N)} = \prod_{\Gamma_i \in [0]} \dim \mathcal{R}_i \left\langle\!\!\!\left\langle \chi_{\bigotimes_{\Gamma_j \in [+1]} \mathcal{R}_j \bigotimes_{\Gamma_k \in [-1]} \overline{\mathcal{R}}_k} (x_{l_1}, \dots, x_{l_N}) \right\rangle\!\!\!\right\rangle \,.$$

• We can repeat our argument for (non-intersecting) WL:

$$\langle L_{\mathcal{R}_1}(\Gamma_1) \dots L_{\mathcal{R}_n}(\Gamma_n) \rangle_{\mathrm{U}(N)} = \prod_{\Gamma_i \in [0]} \dim \mathcal{R}_i \left\langle \prod_{\Gamma_j \in [+1]} \mathrm{tr}_{\mathcal{R}_j} \, e^{-2\pi r \sigma} \prod_{\Gamma_k \in [-1]} \mathrm{tr}_{\mathcal{R}_k} \, e^{+2\pi r \sigma} \right\rangle$$

• Using properties of characters we have

$$\langle L_{\mathcal{R}_1}(\Gamma_1) \dots L_{\mathcal{R}_n}(\Gamma_n) \rangle_{\mathrm{U}(N)} = \prod_{\Gamma_i \in [0]} \dim \mathcal{R}_i \left\langle\!\!\!\left\langle \chi_{\bigotimes_{\Gamma_j \in [+1]} \mathcal{R}_j \bigotimes_{\Gamma_k \in [-1]} \overline{\mathcal{R}}_k}(x_{l_1}, \dots, x_{l_N}) \right\rangle\!\!\!\right\rangle \,.$$

• Homomorphism: algebra of WL and irreps of G.

• 4d infrared duality [Seiberg].

- 4d infrared duality [Seiberg].
- 2d dualities [Hori–Tong], [Hori], [Hanany–Hori].

- 4d infrared duality [Seiberg].
- 2d dualities [Hori–Tong], [Hori], [Hanany–Hori].
- Test at the level of partition function [DGLL], [BC].

- 4d infrared duality [Seiberg].
- 2d dualities [Hori–Tong], [Hori], [Hanany–Hori].
- Test at the level of partition function [DGLL], [BC].
- Test for Coloumb branch operators (topological twist)

[Closset-Mekareeya-Park]

- 4d infrared duality [Seiberg].
- 2d dualities [Hori–Tong], [Hori], [Hanany–Hori].
- Test at the level of partition function [DGLL], [BC].
- Test for Coloumb branch operators (topological twist)

[Closset-Mekareeya-Park]

Dictionary between Wilson loops

in the spirit of [Kapustin-Willett]

Electric Theory	Magnetic Theory
• $\mathbf{G}^{\mathrm{D}} = \mathrm{U}(N);$	• $\mathbf{G} = \mathbf{U}(N_{\mathrm{f}} - N);$

Electric Theory	Magnetic Theory
• $\mathbf{G}^{\mathrm{D}} = \mathrm{U}(N);$	• $\mathbf{G} = \mathrm{U}(N_\mathrm{f} - N);$
• $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}} = \mathrm{SU}(N_{\mathrm{f}});$	• $\mathbf{G}_{\mathrm{F}} = \mathrm{SU}(N_{\mathrm{f}});$

$$\sum_{f} \tau_{f} = 0 \qquad \Rightarrow \qquad \prod_{f} x_{f} = 1 \; .$$

Electric Theory

- $G^{D} = U(N);$
- $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}} = \mathrm{SU}(N_{\mathrm{f}});$

Magnetic Theory

• $\mathbf{G} = \mathrm{U}(N_{\mathrm{f}} - N);$

•
$$\mathbf{G}_{\mathrm{F}} = \mathrm{SU}(N_{\mathrm{f}});$$

• FI:
$$\xi^{\mathrm{D}} = \xi;$$

Electric Theory

- $\mathbf{G}^{\mathrm{D}} = \mathrm{U}(N);$
- $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}} = \mathrm{SU}(N_{\mathrm{f}});$
- FI: *ξ*;
- ϑ -angle: ϑ ;

Magnetic Theory

• $\mathbf{G} = \mathrm{U}(N_{\mathrm{f}} - N);$

•
$$\mathbf{G}_{\mathrm{F}} = \mathrm{SU}(N_{\mathrm{f}});$$

• FI:
$$\xi^{\mathrm{D}} = \xi$$

•
$$\vartheta$$
-angle: $\vartheta^{\mathrm{D}} = \vartheta - N_{\mathrm{f}}\pi$;

Electric Theory	Magnetic Theory
• $\mathbf{G}^{\mathrm{D}} = \mathrm{U}(N);$	• $\mathbf{G} = \mathrm{U}(N_{\mathrm{f}} - N);$
• $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}} = \mathrm{SU}(N_{\mathrm{f}});$	• $\mathbf{G}_{\mathrm{F}} = \mathrm{SU}(N_{\mathrm{f}})$;
 FI: ξ; 	• FI: $\xi^{\mathrm{D}} = \xi;$
• ϑ -angle: ϑ ;	• $artheta ext{-angle:} \ artheta^{ ext{D}} = artheta - N_{ ext{f}}\pi$;
• $l \in C(N_{\mathrm{f}}, N).$	$\bullet \ l^{\rm D} \in {\rm C}(N_{\rm f}-N,N).$

 $l\cap l^{\mathrm{D}}=\emptyset$.

Electric Theory

- $\mathbf{G}^{\mathrm{D}} = \mathrm{U}(N);$
- $\bullet \ {\bf G}_{\rm F}^{\rm D}={\rm SU}(N_{\rm f});$
- FI: ξ;
- ϑ -angle: ϑ ;
- $l \in \mathsf{C}(N_{\mathrm{f}}, N).$
- twisted mass: $\tau_{r\in l}$,

Magnetic Theory

- $\mathbf{G} = \mathrm{U}(N_{\mathrm{f}} N);$
- $\mathbf{G}_{\mathrm{F}} = \mathrm{SU}(N_{\mathrm{f}});$
- FI: $\xi^{\mathrm{D}} = \xi;$
- ϑ -angle: $\vartheta^{\mathrm{D}} = \vartheta N_{\mathrm{f}}\pi$;

$$\bullet \ l^{\rm D} \in {\sf C}(N_{\rm f}-N,N).$$

 \bullet twisted mass: $\tau^{\rm D}_{r \notin l^{\rm D}} = - \tau_{r \in l}$,

Electric Theory

- $\mathbf{G}^{\mathrm{D}} = \mathrm{U}(N);$
- $\bullet \ {\bf G}_{\rm F}^{\rm D}={\rm SU}(N_{\rm f});$
- FI: ξ;
- ϑ -angle: ϑ ;
- $l \in \mathsf{C}(N_{\mathrm{f}}, N).$
- twisted mass: $\tau_{r\notin l}$,

Magnetic Theory

- $\mathbf{G} = \mathrm{U}(N_{\mathrm{f}} N);$
- $\mathbf{G}_{\mathrm{F}} = \mathrm{SU}(N_{\mathrm{f}});$
- FI: $\xi^{\mathrm{D}} = \xi;$
- ϑ -angle: $\vartheta^{\mathrm{D}} = \vartheta N_{\mathrm{f}}\pi$;

$$\bullet \ l^{\rm D} \in {\sf C}(N_{\rm f}-N,N).$$

 \bullet twisted mass: $\tau^{\rm D}_{r\in l^{\rm D}}=-\tau_{r\notin l},$

Electric Theory Magnetic Theory • $\mathbf{G}^{\mathrm{D}} = \mathrm{U}(N);$ • $\mathbf{G} = \mathrm{U}(N_{\mathrm{f}} - N);$ • $\mathbf{G}_{\mathbf{F}}^{\mathbf{D}} = \mathrm{SU}(N_{\mathbf{f}});$ • $\mathbf{G}_{\mathrm{F}} = \mathrm{SU}(N_{\mathrm{f}});$ • FI: $\xi^{\rm D} = \xi$: FI: ξ; • ϑ -angle: $\vartheta^{\mathrm{D}} = \vartheta - N_{\mathrm{f}}\pi$; • ϑ -angle: ϑ ; • $l^{\mathrm{D}} \in \mathsf{C}(N_{\mathrm{f}} - N, N).$ • $l \in \mathsf{C}(N_{\mathsf{f}}, N)$. • twisted mass: $\tau^{\rm D} = -\tau$. • twisted mass: τ . • $\mathbf{\mathfrak{z}}^{(l^{\mathrm{D}})}(\boldsymbol{\xi}^{\mathrm{D}}, \boldsymbol{\vartheta}^{\mathrm{D}}; \boldsymbol{\tau}^{\mathrm{D}}) = \mathbf{\mathfrak{z}}^{(l)}(\boldsymbol{\xi}, \boldsymbol{\vartheta}; \boldsymbol{\tau}).$ • $\mathfrak{z}^{(l)}(\xi, \vartheta; \tau).$

$$Z(\xi,\vartheta;\tau)_{\mathrm{U}(N)} = \sum_{l\in\mathsf{C}(N_{\mathrm{f}},N)}\mathfrak{z}^{(l)}(\xi,\vartheta;\tau)$$

Electric Theory	Magnetic Theory
• $\mathbf{G}^{\mathrm{D}} = \mathrm{U}(N);$	• $\mathbf{G} = \mathrm{U}(N_{\mathrm{f}} - N);$
• $\mathbf{G}_{\mathrm{F}}^{\mathrm{D}} = \mathrm{SU}(N_{\mathrm{f}})$;	• $\mathbf{G}_{\mathrm{F}} = \mathrm{SU}(N_{\mathrm{f}});$
 FI: ξ; 	• FI: $\xi^{\mathrm{D}} = \xi;$
• ϑ -angle: ϑ ;	• ϑ -angle: $\vartheta^{\mathrm{D}} = \vartheta - N_{\mathrm{f}} \pi$;
• $l \in C(N_{\mathrm{f}}, N).$	$\bullet \ l^{\rm D} \in {\rm C}(N_{\rm f}-N,N).$
• twisted mass: $ au$,	$ullet$ twisted mass: $ au^{ m D}=- au$,
• $\mathfrak{z}^{(l)}(\xi, \vartheta; \tau).$	• $\mathfrak{z}^{(l^{\mathrm{D}})}(\xi^{\mathrm{D}}, \vartheta^{\mathrm{D}}; \tau^{\mathrm{D}}) = \mathfrak{z}^{(l)}(\xi, \vartheta; \tau).$

$$Z(\xi,\vartheta;\tau)_{\mathrm{U}(N)}=Z(\xi^\mathrm{D},\vartheta^\mathrm{D};\tau^\mathrm{D})_{\mathrm{U}(N_\mathrm{f}-N)}\;.$$

• At the level of partition functions one has

 $Z = \mathfrak{z}^{(3)} + \mathfrak{z}^{(2)} + \mathfrak{z}^{(1)} \;, \qquad Z^{\mathrm{D}} = \mathfrak{z}^{\mathrm{D},(12)} + \mathfrak{z}^{\mathrm{D},(13)} + \mathfrak{z}^{\mathrm{D},(23)} \;.$

• At the level of partition functions one has

 $Z = \mathfrak{z}^{(3)} + \mathfrak{z}^{(2)} + \mathfrak{z}^{(1)} \;, \qquad Z^{\mathrm{D}} = \mathfrak{z}^{\mathrm{D},(12)} + \mathfrak{z}^{\mathrm{D},(13)} + \mathfrak{z}^{\mathrm{D},(23)} \;.$

• The duality states that

$$\mathfrak{z}^{\mathrm{D},(12)} = \mathfrak{z}^{(3)} \;, \qquad \mathfrak{z}^{\mathrm{D},(13)} = \mathfrak{z}^{(2)} \;, \qquad \mathfrak{z}^{\mathrm{D},(23)} = \mathfrak{z}^{(1)} \;,$$

• At the level of partition functions one has

$$Z = \mathfrak{z}^{(3)} + \mathfrak{z}^{(2)} + \mathfrak{z}^{(1)} , \qquad Z^{\mathrm{D}} = \mathfrak{z}^{\mathrm{D},(12)} + \mathfrak{z}^{\mathrm{D},(13)} + \mathfrak{z}^{\mathrm{D},(23)}$$

• The duality states that

$$\mathfrak{z}^{\mathrm{D},(12)} = \mathfrak{z}^{(3)} \;, \qquad \mathfrak{z}^{\mathrm{D},(13)} = \mathfrak{z}^{(2)} \;, \qquad \mathfrak{z}^{\mathrm{D},(23)} = \mathfrak{z}^{(1)} \;,$$

• Evaluation of a non-trivial fundamental Wilson loop ($x_i = e^{2\pi\tau_i}$):

$$\begin{split} \langle L_{\mathbf{f}} \rangle Z &= x_1 \mathfrak{z}^{(1)} + x_2 \mathfrak{z}^{(2)} + x_3 \mathfrak{z}^{(3)} \\ &= [x_1 + x_2 + x_3] \mathfrak{z}^{(1)} - [x_2 + x_3] \mathfrak{z}^{(1)} \\ &+ [x_1 + x_2 + x_3] \mathfrak{z}^{(2)} - [x_1 + x_3] \mathfrak{z}^{(2)} \\ &+ [x_1 + x_2 + x_3] \mathfrak{z}^{(3)} - [x_1 + x_2] \mathfrak{z}^{(3)} \end{split}$$

• At the level of partition functions one has

$$Z = \mathfrak{z}^{(3)} + \mathfrak{z}^{(2)} + \mathfrak{z}^{(1)} , \qquad Z^{\mathrm{D}} = \mathfrak{z}^{\mathrm{D},(12)} + \mathfrak{z}^{\mathrm{D},(13)} + \mathfrak{z}^{\mathrm{D},(23)}$$

• The duality states that

$$\mathfrak{z}^{\mathrm{D},(12)} = \mathfrak{z}^{(3)} \;, \qquad \mathfrak{z}^{\mathrm{D},(13)} = \mathfrak{z}^{(2)} \;, \qquad \mathfrak{z}^{\mathrm{D},(23)} = \mathfrak{z}^{(1)} \;,$$

• Evaluation of a non-trivial fundamental Wilson loop $(x_i = e^{2\pi\tau_i})$:

$$\begin{split} \langle L_{\mathbf{f}} \rangle Z &= x_1 \mathfrak{z}^{(1)} + x_2 \mathfrak{z}^{(2)} + x_3 \mathfrak{z}^{(3)} \\ &= [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(23)} - [(x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(23)} \\ &+ [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(13)} - [(x_1^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(13)} \\ &+ [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(12)} - [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(12)} \end{split}$$

• At the level of partition functions one has

$$Z = \mathfrak{z}^{(3)} + \mathfrak{z}^{(2)} + \mathfrak{z}^{(1)} , \qquad Z^{\mathrm{D}} = \mathfrak{z}^{\mathrm{D},(12)} + \mathfrak{z}^{\mathrm{D},(13)} + \mathfrak{z}^{\mathrm{D},(23)}$$

• The duality states that

$$\mathfrak{z}^{\mathrm{D},(12)} = \mathfrak{z}^{(3)} \;, \qquad \mathfrak{z}^{\mathrm{D},(13)} = \mathfrak{z}^{(2)} \;, \qquad \mathfrak{z}^{\mathrm{D},(23)} = \mathfrak{z}^{(1)} \;,$$

• Evaluation of a non-trivial fundamental Wilson loop $(x_i = e^{2\pi\tau_i})$:

$$\begin{split} \langle L_{\mathbf{f}} \rangle Z &= x_1 \mathfrak{z}^{(1)} + x_2 \mathfrak{z}^{(2)} + x_3 \mathfrak{z}^{(3)} \\ &= [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(23)} - [(x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(23)} \\ &+ [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(13)} - [(x_1^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(13)} \\ &+ [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(12)} - [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1}] \mathfrak{z}^{\mathrm{D},(12)} \\ &= [(x_1^{\mathrm{D}})^{-1} + (x_2^{\mathrm{D}})^{-1} + (x_3^{\mathrm{D}})^{-1}] Z^{\mathrm{D}} - \langle L_{\mathbf{a}} \rangle^{\mathrm{D}} Z^{\mathrm{D}} \,. \end{split}$$

• At the level of partition functions one has

$$Z = \mathfrak{z}^{(3)} + \mathfrak{z}^{(2)} + \mathfrak{z}^{(1)} , \qquad Z^{\mathrm{D}} = \mathfrak{z}^{\mathrm{D},(12)} + \mathfrak{z}^{\mathrm{D},(13)} + \mathfrak{z}^{\mathrm{D},(23)}$$

• The duality states that

$$\mathfrak{z}^{\mathrm{D},(12)} = \mathfrak{z}^{(3)} \;, \qquad \mathfrak{z}^{\mathrm{D},(13)} = \mathfrak{z}^{(2)} \;, \qquad \mathfrak{z}^{\mathrm{D},(23)} = \mathfrak{z}^{(1)} \;,$$

• Evaluation of a non-trivial fundamental Wilson loop ($x_i = e^{2\pi\tau_i}$):

$$\begin{split} \langle L_{\rm f} \rangle Z &= x_1 \mathfrak{z}^{(1)} + x_2 \mathfrak{z}^{(2)} + x_3 \mathfrak{z}^{(3)} \\ &= [(x_1^{\rm D})^{-1} + (x_2^{\rm D})^{-1} + (x_3^{\rm D})^{-1}] \mathfrak{z}^{{\rm D},(23)} - [(x_2^{\rm D})^{-1} + (x_3^{\rm D})^{-1}] \mathfrak{z}^{{\rm D},(23)} \\ &+ [(x_1^{\rm D})^{-1} + (x_2^{\rm D})^{-1} + (x_3^{\rm D})^{-1}] \mathfrak{z}^{{\rm D},(13)} - [(x_1^{\rm D})^{-1} + (x_3^{\rm D})^{-1}] \mathfrak{z}^{{\rm D},(13)} \\ &+ [(x_1^{\rm D})^{-1} + (x_2^{\rm D})^{-1} + (x_3^{\rm D})^{-1}] \mathfrak{z}^{{\rm D},(12)} - [(x_1^{\rm D})^{-1} + (x_2^{\rm D})^{-1}] \mathfrak{z}^{{\rm D},(12)} \\ &= [(x_1^{\rm D})^{-1} + (x_2^{\rm D})^{-1} + (x_3^{\rm D})^{-1}] Z^{\rm D} - \langle L_{\rm a} \rangle^{\rm D} Z^{\rm D} \,. \end{split}$$

 \bullet Therefore $\langle L_{\rm f} \rangle = \chi_{\rm a}^{\rm U(3)} - \langle L_{\rm a} \rangle^{\rm D} \; .$

Fun with characters

 \bullet It is possible to express $\chi^{\mathrm{U}(N)}_{\pmb{\lambda}}(x_1,\ldots,x_n)$ in terms of power sums

$$p_{\boldsymbol{\nu}}(x_1,\ldots,x_N)=p_{\nu_1}(x_1,\ldots,x_N)p_{\nu_2}(x_1,\ldots,x_N)\cdot\ldots\cdot p_{\nu_N}(x_1,\ldots,x_N)\;,$$

where $p_k(x_1,\ldots,x_N)=x_1^k+\ldots+x_N^k.$

Fun with characters

 \bullet It is possible to express $\chi^{\mathrm{U}(N)}_{\pmb{\lambda}}(x_1,\ldots,x_n)$ in terms of power sums

$$p_{\boldsymbol{\nu}}(x_1,\ldots,x_N)=p_{\nu_1}(x_1,\ldots,x_N)p_{\nu_2}(x_1,\ldots,x_N)\cdot\ldots\cdot p_{\nu_N}(x_1,\ldots,x_N)\;,$$

where $p_k(x_1,\ldots,x_N)=x_1^k+\ldots+x_N^k.$

• Power sums are easy to manipulate

$$p_k(x_1,\ldots,x_N)=p_k(x_1,\ldots,x_N,y_1,\ldots,y_M)-p_k(y_1,\ldots,y_M)\;.$$
Fun with characters

 \bullet It is possible to express $\chi^{\mathrm{U}(N)}_{\pmb{\lambda}}(x_1,\ldots,x_n)$ in terms of power sums

$$p_{\boldsymbol{\nu}}(x_1,\ldots,x_N)=p_{\nu_1}(x_1,\ldots,x_N)p_{\nu_2}(x_1,\ldots,x_N)\cdot\ldots\cdot p_{\nu_N}(x_1,\ldots,x_N)\;,$$

where $p_k(x_1,\ldots,x_N)=x_1^k+\ldots+x_N^k.$

Power sums are easy to manipulate

$$p_k(x_1,\ldots,x_N)=p_k(x_1,\ldots,x_N,y_1,\ldots,y_M)-p_k(y_1,\ldots,y_M)\;.$$

• Every power sum can be expressed in terms of characters.

Fun with characters

 \bullet It is possible to express $\chi^{\mathrm{U}(N)}_{\pmb{\lambda}}(x_1,\ldots,x_n)$ in terms of power sums

$$p_{\boldsymbol{\nu}}(x_1,\ldots,x_N)=p_{\nu_1}(x_1,\ldots,x_N)p_{\nu_2}(x_1,\ldots,x_N)\cdot\ldots\cdot p_{\nu_N}(x_1,\ldots,x_N)\;,$$

where
$$p_k(x_1,\ldots,x_N)=x_1^k+\ldots+x_N^k.$$

Power sums are easy to manipulate

$$p_k(x_1,\ldots,x_N)=p_k(x_1,\ldots,x_N,y_1,\ldots,y_M)-p_k(y_1,\ldots,y_M)\;.$$

• Every power sum can be expressed in terms of characters.

All in all we have

$$\begin{split} \chi^{\mathrm{U}(N)}_{\pmb{\lambda}}(x_{l_1},\ldots,x_{l_N}) &= \sum_{\pmb{\mu}} c_{\pmb{\mu}}(x_1,\ldots,x_{N_{\mathrm{f}}}) \chi^{\mathrm{U}(N_{\mathrm{f}}-N)}_{\pmb{\mu}}(x_{l_1}^{\mathrm{D}},\ldots,x_{l_{N_{\mathrm{f}}-N}}^{\mathrm{D}}) \\ &= \sum_{\pmb{\mu}} c_{-\pmb{\mu}}(x_1^{\mathrm{D}},\ldots,x_{N_{\mathrm{f}}}^{\mathrm{D}}) \chi^{\mathrm{U}(N_{\mathrm{f}}-N)}_{-\pmb{\mu}}(x_{l_1}^{\mathrm{D}},\ldots,x_{l_{N_{\mathrm{f}}-N}}^{\mathrm{D}}) \;, \end{split}$$

where $c_{-\mu}$ are characters of $U(N_f)$ (and of $SU(N_f)$ once $\prod_f x_f = 1$).

$$\begin{split} & L^{\mathrm{U}(N)}_{(0,\dots,0)} \mapsto L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\dots,0)} \ , \\ & L^{\mathrm{U}(N)}_{(1,0,\dots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\dots,0,-1)} - L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\dots,0,-1)} \ , \\ & L^{\mathrm{U}(N)}_{(2,0,\dots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\dots,0,-2)} - \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\dots,0,-1)} L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\dots,0,-1)} + L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\dots,0,-1,-1)} \ , \\ & L^{\mathrm{U}(N)}_{(1,1,0,\dots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\dots,0,-1,-1)} - \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\dots,0,-1)} L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\dots,0,-1)} + L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\dots,0,-2)} \ . \end{split}$$

$$\begin{split} & L^{\mathrm{U}(N)}_{(0,\ldots,0)} \mapsto L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0)} \ , \\ & L^{\mathrm{U}(N)}_{(1,0,\ldots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-1)} - L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-1)} \ , \\ & L^{\mathrm{U}(N)}_{(2,0,\ldots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-2)} - \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-1)} L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-1)} + L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-1,-1)} \ , \\ & L^{\mathrm{U}(N)}_{(1,1,0,\ldots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-1,-1)} - \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-1)} L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-1)} + L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-2)} \ . \end{split}$$

• The duality is an involution;

$$\begin{split} & L^{\mathrm{U}(N)}_{(0,\ldots,0)} \mapsto L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0)} \ , \\ & L^{\mathrm{U}(N)}_{(1,0,\ldots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-1)} - L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-1)} \ , \\ & L^{\mathrm{U}(N)}_{(2,0,\ldots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-2)} - \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-1)} L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-1)} + L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-1,-1)} \ , \\ & L^{\mathrm{U}(N)}_{(1,1,0,\ldots,0)} \mapsto \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-1,-1)} - \chi^{\mathrm{U}(N_{\mathrm{f}})}_{(0,\ldots,0,-1)} L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-1)} + L^{\mathrm{U}(N_{\mathrm{f}}-N)}_{(0,\ldots,0,-2)} \ . \end{split}$$

- The duality is an involution;
- More direct duality if we insert matter field in the connection.

Conclusion and outlook

What we did

proposed a family of Wilson Loop in 2d;

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^2 ;

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^2 ;
- checked Seiberg-like duality.

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^2 ;
- checked Seiberg-like duality.

Outlook

• Nontrivial WLs on T^2 ;

Conclusion and outlook

What we did

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^2 ;
- checked Seiberg-like duality.

- Nontrivial WLs on T^2 ;
- IR properties;

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^2 ;
- checked Seiberg-like duality.

- Nontrivial WLs on T^2 ;
- IR properties;
- Wedges, intersection WLs;

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^2 ;
- checked Seiberg-like duality.

- Nontrivial WLs on T^2 ;
- IR properties;
- Wedges, intersection WLs;
- More general background: S^2_{Ω} ;

- proposed a family of Wilson Loop in 2d;
- studied their invariance under homotopy;
- localized these WLs on S^2 ;
- checked Seiberg-like duality.

- Nontrivial WLs on T^2 ;
- IR properties;
- Wedges, intersection WLs;
- More general background: S_{Ω}^2 ;
- Uplift in 3d.

Thank you for your attention!