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SUSY Wilson Lines



Supersymmetry

𝑁 = (2, 2) with U(1) vector-like R-symmetry

Given a Riemann surface with genus g the KSE are
(∇ − i𝐵)𝜖 = − 1

2 𝑒a𝛾a(�̃�𝑃+ + 𝐻𝑃−)𝜖 , (∇ − i𝐵) ̃𝜖 = − 1
2 𝑒a𝛾a(𝐻𝑃+ + �̃�𝑃−) ̃𝜖 .

Supercharges:
Q = 𝜖𝑄 , Q̃ = ̃𝜖�̃� .

Solutions are [Closset–Cremonesi], [Bae–Imbimbo–Rosa–Rey]:
g > 1: only A and Ā-twist;
g = 1: flat case;
g = 0: many solutions classified by 𝑐1(𝐵).

Multiplets:
𝓥 = (𝐴, 𝜆, �̃�, 𝜎, �̃�, 𝐷) , 𝝌 = (𝜑, 𝜓, 𝐹) ⇒ twisted mass ∝ 𝜏 .
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Generalized connection

Wilson Line

𝑊 = P exp ∫
Γ

iA

Superconnection defined as

A = 𝐴 + 𝑓𝜎 + ̃𝑓�̃� .
1
4 -BPS, for any path Γ:

ann. by Q ⇒ 𝑓𝜖 = + i
2

𝜖+

𝜖− (𝑒1 + i𝑒2) and ̃𝑓𝜖 = + i
2

𝜖−

𝜖+ (𝑒1 − i𝑒2).

ann. by Q̃ ⇒ 𝑓 ̃𝜖 = − i
2

̃𝜖−

̃𝜖+ (𝑒1 − i𝑒2) and ̃𝑓 ̃𝜖 = − i
2

̃𝜖+

̃𝜖− (𝑒1 + i𝑒2).
1
2 -BPS: Γ has to satisfy

𝜖−

𝜖+
̃𝜖−

̃𝜖+ = − ̇𝑥1 + i ̇𝑥2

̇𝑥1 − i ̇𝑥2 .
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Flat Backgrounds

𝜖 and ̃𝜖 are constant.

1
4 -BPS Wilson lines for any path Γ:

𝜖+ ≠ 0 and 𝜖− ≠ 0 ⇒ 𝑊𝜖 ann. by Q.
̃𝜖+ ≠ 0 and ̃𝜖− ≠ 0 ⇒ 𝑊 ̃𝜖 ann. by Q̃.

1
2 -BPS Wilson lines are straight segments.
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on round 𝑆2: background

Zweibein
𝑒1 = 𝑟 d𝜃 𝑒2 = 𝑟 sin 𝜃 d𝜑

SUSY background
𝐵 = 0 , 𝐻 = �̃� = − i

𝑟 .

Killing Spinors
𝜖 = 𝑒i 𝜃

2 𝛾1𝑒i 𝜑
2 𝛾3𝜖0 , ̃𝜖 = 𝑒i 𝜃

2 𝛾1𝑒i 𝜑
2 𝛾3 ̃𝜖0 .
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on round 𝑆2: 1
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on round 𝑆2: 1
2-BPS Wilson lines

1
2 -BPS Wilson lines lie on circles.
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[i𝐴𝜑 + 𝑟(cos2 𝜃

2 𝜎 + sin2 𝜃
2 �̃�)] d𝜑 ,

𝑊b = P exp ∫
𝜑1

𝜑0
[i𝐴𝜑 + 𝑟(sin2 𝜃

2 𝜎 + cos2 𝜃
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𝜃→0
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on squashed 𝑆2

Zweibein
𝑒1 = 𝑟 ℓ(𝜃) d𝜃 𝑒2 = 𝑟 sin 𝜃 d𝜑

Isometries are restricted to U(1).
It is possible to find SUSY background [Gomis–S. Lee].

SUSY background
𝐵 = ∓1

2(1 − 1
ℓ(𝜃))d𝜑 , 𝐻 = �̃� = − i

𝑟 ℓ(𝜃) .

The 1
2 -BPS Wilson lines run along the U(1) action.

The form of 1
2 -BPS Wilson line is the same as 𝑊a or 𝑊b

(depending on the background).
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Wilson loops



Generalized field strength

Let us define F = dA − iA ∧ A.

We can use full covariant derivative D = ∇ − i[𝐴, ⋅] − i𝑞𝐵 to write

∗F = ∗𝐹 − i𝜀ab𝑓a ̃𝑓b[𝜎, �̃�] + 𝜀ab(𝑓bDa𝜎 + ̃𝑓bDa�̃�) + ∗d𝑓 𝜎 + ∗d ̃𝑓 �̃� .

Using SUSY algebra on general background one can prove that

∗F𝜖 = −Q(𝜖𝜆)
2𝜖+𝜖− , ∗F ̃𝜖 = +Q̃( ̃𝜖�̃�)

2 ̃𝜖+ ̃𝜖− .
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Wilson loops and homotopy

𝐿R(Γ) = trR P exp ∮
Γ

iA
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Wilson loops and homotopy

𝐿R(Γ) = trR P exp ∮
Γ

iA

We take Γ to be smooth and non-self-intersecting
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Wilson loops and homotopy

𝐿R(Γ) = trR P exp ∮
Γ

iA

Let us consider an homotopy of paths Γ(𝑠, 𝑡).
Γ(1,

𝑡)

Γ(0,
𝑡)

Γ(𝑠, 𝑡)
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Wilson loops and homotopy

𝐿R(Γ) = trR P exp ∮
Γ

iA

Let us consider an homotopy of paths Γ(𝑠, 𝑡).
It is possible to define the Wilson line

𝑊(𝑠; 𝑡0, 𝑡) = P exp ∫
𝑡

𝑡0

d𝑡′ iA𝑡(𝑠, 𝑡′) ,

with A𝑡 = Aa𝜕𝑡𝑥a.

Γ(1,
𝑡)

Γ(0,
𝑡)

Γ(𝑠, 𝑡)
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Γ(1,
𝑡)

Γ(0,
𝑡)

Γ(𝑠, 𝑡)

It is possible to compute the variation

𝜕𝑠𝐿R = i trR ∫
1

0
d𝑡′ 𝑊(𝑠; 𝑡′, 1)F𝑠𝑡(𝑠, 𝑡′)𝑊(𝑠; 0, 𝑡′) ,

with F𝑠𝑡 = Fab𝜕𝑡𝑥a𝜕𝑠𝑥b.
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Cohomological argument

Using Q and Q̃-exactness of the field strength

𝜕𝑠𝐿R,𝜖 = Q trR ∫
1

0
d𝑡′𝜀ab𝜕𝑡𝑥a(𝑡′)𝜕𝑠𝑥b(𝑡)

× 𝑊𝜖(𝑠; 𝑡′, 1)[ − 𝜖𝜆
2𝜖+𝜖− ]𝑊𝜖(𝑠; 0, 𝑡′) ,

𝜕𝑠𝐿R, ̃𝜖 = Q̃ trR ∫
1

0
d𝑡′𝜀ab𝜕𝑡𝑥a(𝑡′)𝜕𝑠𝑥b(𝑡)

× 𝑊𝜖(𝑠; 𝑡′, 1)[ + ̃𝜖�̃�
2 ̃𝜖+ ̃𝜖− ]𝑊𝜖(𝑠; 0, 𝑡′) ,

If Γ1 is homotopic to Γ2, we have

⟨𝐿R(Γ1)⟩ = ⟨𝐿R(Γ2)⟩ .

On SUSY Wilson Loops in 2d and their dualities Wilson loops 14



Cohomological argument

Using Q and Q̃-exactness of the field strength

𝜕𝑠𝐿R,𝜖 = Q trR ∫
1

0
d𝑡′𝜀ab𝜕𝑡𝑥a(𝑡′)𝜕𝑠𝑥b(𝑡)

× 𝑊𝜖(𝑠; 𝑡′, 1)[ − 𝜖𝜆
2𝜖+𝜖− ]𝑊𝜖(𝑠; 0, 𝑡′) ,

𝜕𝑠𝐿R, ̃𝜖 = Q̃ trR ∫
1

0
d𝑡′𝜀ab𝜕𝑡𝑥a(𝑡′)𝜕𝑠𝑥b(𝑡)

× 𝑊𝜖(𝑠; 𝑡′, 1)[ + ̃𝜖�̃�
2 ̃𝜖+ ̃𝜖− ]𝑊𝜖(𝑠; 0, 𝑡′) ,

If Γ1 is homotopic to Γ2, we have

⟨𝐿R(Γ1)⟩ = ⟨𝐿R(Γ2)⟩ .

On SUSY Wilson Loops in 2d and their dualities Wilson loops 14



Examples

On C, 𝑓 and ̃𝑓 non-singular
𝜋1(C) = 0 ⇒ All Wilson loops are trivial

On 𝑇 2, 𝑓 and ̃𝑓 non-singular
𝜋1(𝑇 2) = Z × Z ⇒ Non-trivial Wilson loops ↔ non-trivial cycles

On 𝑆2, 𝑓 and ̃𝑓 have singularities
𝜋1(𝑆2 − {𝑁, 𝑆}) = Z ⇒ Non-trivial Wilson loops!
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Localization and dualities on 𝑆2



Localization on 𝑆2 [Doroud–Gomis–Le Floch–S. Lee], [Benini–Cremonesi]

U(𝑁) SYM with matter (𝑁f fundamental, 𝑁a anti-fundamental):

ℒ = ℒvec + ℒmat + ℒFI .
with 𝑁f > 𝑁a (or 𝑁f = 𝑁a and 𝜉 > 0) and 𝑁f ≥ 𝑁 .

It is possible to localize the theory w.r.t. Q = Q|𝜖+
0 =1 + Q̃| ̃𝜖−

0 =−i.
The BPS locus is parametrized by 𝔪 ∈ Z𝑁 and 𝑦 ∈ R𝑁 .
The partition function is given in terms of a matrix model

𝑍(𝜉, 𝜗; 𝜏, ̃𝜏) = ∏
𝔪

∫ d𝑁𝑦
(2𝜋)𝑁 𝑍cl(𝔪, 𝑦; 𝜉, 𝜗)𝑍vec(𝔪, 𝑦)𝑍mat(𝔪, 𝑦; 𝜏, ̃𝜏) .

It can be cast into the form

𝑍(𝜉, 𝜗; 𝜏, ̃𝜏) = ∑
𝑙∈C(𝑁f,𝑁)

𝑒4𝜋i ∑𝑟 𝜏𝑙𝑟Z(𝑙)
1-loop(𝜏, ̃𝜏)Z(𝑙)

v (𝜉, 𝜗; 𝜏, ̃𝜏)Z(𝑙)
av(𝜉, 𝜗; 𝜏, ̃𝜏) .
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Localizing Wilson loops

Given a path (avoiding 𝑁 and 𝑆) it is 1
4 -BPS.

1
4 -BPS Wilson loops are annihilated either by Q or by Q̃.
Localizing supercharge Q = Q|𝜖+

0 =1 + Q̃| ̃𝜖−
0 =−i.

It is not possible to localize these WLs directly.
However there are 1

2 BPS WL which are annihilated both by Q and Q̃.
We can use our Q or Q̃-cohomological argument to deform a given
WL to a 1

2 BPS one.
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Wilson loops on BPS locus

Three types of non-self-intersecting paths

[0] [+1] [-1]
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Wilson loops on BPS locus

Three types of non-self-intersecting paths

[0] [+1] [-1]

Evaluation of local operator

trR 𝑒0 = dimR ,
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Wilson loops on BPS locus

Three types of non-self-intersecting paths

[0] [+1] [-1]

Evaluation of local operator

trR 𝑒−2𝜋𝑟𝜎|BPS = ∑
Λ∈R

𝑒−2𝜋Λ(𝑦)+i𝜋Λ(𝔪) ,
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Wilson loops on BPS locus

Three types of non-self-intersecting paths

[0] [+1] [-1]

Evaluation of local operator

trR 𝑒+2𝜋𝑟𝜎|BPS = ∑
Λ∈R

𝑒+2𝜋Λ(𝑦)−i𝜋Λ(𝔪) .
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Abelian Case

The Abelian Matrix Model [DGLL], [BC] is

𝑍U(1)(𝜉, 𝜗; 𝜏, ̃𝜏) = ∑
𝔪

∫ d𝑦
2𝜋𝑒−4𝜋i𝜉𝑦−i𝔪𝜗

×
𝑁f

∏
𝑓=1

Γ(−i𝑦 − i𝜏𝑓 − 𝔪/2)
Γ(1 + 𝔦𝑦 + i𝜏𝑓 − 𝔪/2)

𝑁a

∏
𝑎=1

Γ(i𝑦 − i ̃𝜏𝑎 + 𝔪/2)
Γ(1 − i𝑦 + i ̃𝜏𝑎 + 𝔪/2) .

Then we have

⟨𝑒−2𝜋𝑟𝜎⟩U(1),Λ =
𝑍U(1)(𝜉 − Λ i

2 , 𝜗 − Λ𝜋; 𝜏, ̃𝜏)
𝑍U(1)(𝜉, 𝜗; 𝜏, ̃𝜏) .
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Non-Abelian Case
The non-Abelian Matrix Model [DGLL], [BC] is

𝑍U(𝑁)(𝜉, 𝜗; 𝜏, ̃𝜏) = 1
𝑁! ∑

𝔪∈Z𝑁
∫ d𝑦

(2𝜋)𝑁 𝑒−4𝜋i𝜉𝑦𝑟−i𝔪𝑟𝜗 ∏
1≤𝑡<𝑠≤𝑁

[ 1
4 (𝔪𝑡 − 𝔪𝑠)2 + (𝑦𝑡 − 𝑦𝑠)2]

×
𝑁
∏
𝑟=1

[
𝑁f

∏
𝑓=1

Γ(−i𝑦𝑟 − i𝜏𝑓 − 𝔪𝑟/2)
Γ(1 + 𝔦𝑦𝑟 + i𝜏𝑓 − 𝔪𝑟/2)

𝑁a

∏
𝑎=1

Γ(i𝑦𝑟 − i ̃𝜏𝑎 + 𝔪𝑟/2)
Γ(1 − i𝑦𝑟 + i ̃𝜏𝑎 + 𝔪𝑟/2) ] .

It is possible to express the MM in terms of the finite sum

𝑍(𝜉, 𝜗; 𝜏, ̃𝜏)U(𝑁) = ⟨⟨1⟩⟩ = ∑
𝑙∈C(𝑁f,𝑁)

𝑒4𝜋i ∑𝑟 𝜏𝑙𝑟 Z(𝑙)
1-loop(𝜏, ̃𝜏)Z(𝑙)

v (𝜉, 𝜗; 𝜏, ̃𝜏)Z(𝑙)
av(𝜉, 𝜗; 𝜏, ̃𝜏) .

Insertions of local operators are easy to write

⟨trR 𝑒−2𝜋𝑟𝜎⟩U(𝑁) = ⟨⟨𝜒R(𝑥𝑙1
, … , 𝑥𝑙𝑁

)⟩⟩ ,

where 𝜒R is the character of R, and 𝑥𝑙 = 𝑒2𝜋𝜏𝑙 .
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U(𝑁) irreps and characters

U(𝑁) irreps are labeled by a set iof 𝑁 integers 𝝀

𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑁 .

For instance
the fundamental has label (1, 0, … , 0) ,
the anti-fundamental has label (0, … , 0, −1) ,
the adjoint has label (1, 0, … , 0, −1)

The character is defined:

𝜒U(𝑁)
𝝀 (𝑥1, … , 𝑥𝑁) =

𝑎(𝜆1+𝑁−1,𝜆2+𝑁−2,…,𝜆𝑁)(𝑥1, … , 𝑥𝑁)
𝑎(𝑁−1,𝑁−2,…,0)(𝑥1, … , 𝑥𝑁) ,

where 𝑎(𝜚1,…,𝜚𝑁)(𝑥1, … , 𝑥𝑁) = det[𝑥𝜚𝑗
𝑖 ]𝑁𝑖,𝑗=1.
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Correlators of Wilson loops

We can repeat our argument for (non-intersecting) WL:

⟨𝐿R1
(Γ1) … 𝐿R𝑛

(Γ𝑛)⟩U(𝑁) = ∏
Γ𝑖∈[0]

dimR𝑖 ⟨ ∏
Γ𝑗∈[+1]

trR𝑗
𝑒−2𝜋𝑟𝜎 ∏

Γ𝑘∈[−1]
trR𝑘

𝑒+2𝜋𝑟𝜎⟩ .

Using properties of characters we have

⟨𝐿R1
(Γ1) … 𝐿R𝑛

(Γ𝑛)⟩U(𝑁) = ∏
Γ𝑖∈[0]

dimR𝑖⟨⟨𝜒⨂Γ𝑗∈[+1] R𝑗 ⨂Γ𝑘∈[−1] R𝑘
(𝑥𝑙1

, … , 𝑥𝑙𝑁
)⟩⟩ .

Homomorphism: algebra of WL and irreps of G.
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Seiberg-like dualities

4d infrared duality [Seiberg].

2d dualities [Hori–Tong], [Hori], [Hanany–Hori].
Test at the level of partition function [DGLL], [BC].
Test for Coloumb branch operators (topological twist)

[Closset–Mekareeya–Park]

Dictionary between Wilson loops

in the spirit of [Kapustin–Willett]
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Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);

Magnetic Theory
G = U(𝑁f − 𝑁);
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Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);
GD

F = SU(𝑁f);

Magnetic Theory
G = U(𝑁f − 𝑁);
GF = SU(𝑁f);

∑
𝑓

𝜏𝑓 = 0 ⇒ ∏
𝑓

𝑥𝑓 = 1 .

On SUSY Wilson Loops in 2d and their dualities Localization and dualities on 𝑆2 25



Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);
GD

F = SU(𝑁f);
FI: 𝜉;

Magnetic Theory
G = U(𝑁f − 𝑁);
GF = SU(𝑁f);
FI: 𝜉D = 𝜉;
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Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);
GD

F = SU(𝑁f);
FI: 𝜉;
𝜗-angle: 𝜗;

Magnetic Theory
G = U(𝑁f − 𝑁);
GF = SU(𝑁f);
FI: 𝜉D = 𝜉;
𝜗-angle: 𝜗D = 𝜗 − 𝑁f𝜋;
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Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);
GD

F = SU(𝑁f);
FI: 𝜉;
𝜗-angle: 𝜗;
𝑙 ∈ C(𝑁f, 𝑁).

Magnetic Theory
G = U(𝑁f − 𝑁);
GF = SU(𝑁f);
FI: 𝜉D = 𝜉;
𝜗-angle: 𝜗D = 𝜗 − 𝑁f𝜋;
𝑙D ∈ C(𝑁f − 𝑁, 𝑁).

𝑙 ∩ 𝑙D = ∅ .
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Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);
GD

F = SU(𝑁f);
FI: 𝜉;
𝜗-angle: 𝜗;
𝑙 ∈ C(𝑁f, 𝑁).
twisted mass: 𝜏𝑟∈𝑙,

Magnetic Theory
G = U(𝑁f − 𝑁);
GF = SU(𝑁f);
FI: 𝜉D = 𝜉;
𝜗-angle: 𝜗D = 𝜗 − 𝑁f𝜋;
𝑙D ∈ C(𝑁f − 𝑁, 𝑁).
twisted mass: 𝜏D

𝑟∉𝑙D = −𝜏𝑟∈𝑙,

On SUSY Wilson Loops in 2d and their dualities Localization and dualities on 𝑆2 25



Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);
GD

F = SU(𝑁f);
FI: 𝜉;
𝜗-angle: 𝜗;
𝑙 ∈ C(𝑁f, 𝑁).
twisted mass: 𝜏𝑟∉𝑙,

Magnetic Theory
G = U(𝑁f − 𝑁);
GF = SU(𝑁f);
FI: 𝜉D = 𝜉;
𝜗-angle: 𝜗D = 𝜗 − 𝑁f𝜋;
𝑙D ∈ C(𝑁f − 𝑁, 𝑁).
twisted mass: 𝜏D

𝑟∈𝑙D = −𝜏𝑟∉𝑙,

On SUSY Wilson Loops in 2d and their dualities Localization and dualities on 𝑆2 25



Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);
GD

F = SU(𝑁f);
FI: 𝜉;
𝜗-angle: 𝜗;
𝑙 ∈ C(𝑁f, 𝑁).
twisted mass: 𝜏 ,
𝔷(𝑙)(𝜉, 𝜗; 𝜏).

Magnetic Theory
G = U(𝑁f − 𝑁);
GF = SU(𝑁f);
FI: 𝜉D = 𝜉;
𝜗-angle: 𝜗D = 𝜗 − 𝑁f𝜋;
𝑙D ∈ C(𝑁f − 𝑁, 𝑁).
twisted mass: 𝜏D = −𝜏 ,
𝔷(𝑙D)(𝜉D, 𝜗D; 𝜏D) = 𝔷(𝑙)(𝜉, 𝜗; 𝜏).

𝑍(𝜉, 𝜗; 𝜏)U(𝑁) = ∑
𝑙∈C(𝑁f,𝑁)

𝔷(𝑙)(𝜉, 𝜗; 𝜏)
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Partition function duality (𝑁a = 0)

Electric Theory
GD = U(𝑁);
GD

F = SU(𝑁f);
FI: 𝜉;
𝜗-angle: 𝜗;
𝑙 ∈ C(𝑁f, 𝑁).
twisted mass: 𝜏 ,
𝔷(𝑙)(𝜉, 𝜗; 𝜏).

Magnetic Theory
G = U(𝑁f − 𝑁);
GF = SU(𝑁f);
FI: 𝜉D = 𝜉;
𝜗-angle: 𝜗D = 𝜗 − 𝑁f𝜋;
𝑙D ∈ C(𝑁f − 𝑁, 𝑁).
twisted mass: 𝜏D = −𝜏 ,
𝔷(𝑙D)(𝜉D, 𝜗D; 𝜏D) = 𝔷(𝑙)(𝜉, 𝜗; 𝜏).

𝑍(𝜉, 𝜗; 𝜏)U(𝑁) = 𝑍(𝜉D, 𝜗D; 𝜏D)U(𝑁f−𝑁) .
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Wilson loop duality: Idea (𝑁f = 3, 𝑁 = 1)
At the level of partition functions one has

𝑍 = 𝔷(3) + 𝔷(2) + 𝔷(1) , 𝑍D = 𝔷D,(12) + 𝔷D,(13) + 𝔷D,(23) .

On SUSY Wilson Loops in 2d and their dualities Localization and dualities on 𝑆2 26



Wilson loop duality: Idea (𝑁f = 3, 𝑁 = 1)
At the level of partition functions one has

𝑍 = 𝔷(3) + 𝔷(2) + 𝔷(1) , 𝑍D = 𝔷D,(12) + 𝔷D,(13) + 𝔷D,(23) .
The duality states that

𝔷D,(12) = 𝔷(3) , 𝔷D,(13) = 𝔷(2) , 𝔷D,(23) = 𝔷(1) ,
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Wilson loop duality: Idea (𝑁f = 3, 𝑁 = 1)
At the level of partition functions one has

𝑍 = 𝔷(3) + 𝔷(2) + 𝔷(1) , 𝑍D = 𝔷D,(12) + 𝔷D,(13) + 𝔷D,(23) .
The duality states that

𝔷D,(12) = 𝔷(3) , 𝔷D,(13) = 𝔷(2) , 𝔷D,(23) = 𝔷(1) ,
Evaluation of a non-trivial fundamental Wilson loop (𝑥𝑖 = 𝑒2𝜋𝜏𝑖):

⟨𝐿f⟩𝑍 = 𝑥1𝔷(1) + 𝑥2𝔷(2) + 𝑥3𝔷(3)

= [𝑥1 + 𝑥2 + 𝑥3]𝔷(1) − [𝑥2 + 𝑥3]𝔷(1)

+ [𝑥1 + 𝑥2 + 𝑥3]𝔷(2) − [𝑥1 + 𝑥3]𝔷(2)

+ [𝑥1 + 𝑥2 + 𝑥3]𝔷(3) − [𝑥1 + 𝑥2]𝔷(3)
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Wilson loop duality: Idea (𝑁f = 3, 𝑁 = 1)
At the level of partition functions one has
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⟨𝐿f⟩𝑍 = 𝑥1𝔷(1) + 𝑥2𝔷(2) + 𝑥3𝔷(3)

= [(𝑥D
1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(23) − [(𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(23)

+ [(𝑥D
1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(13) − [(𝑥D

1 )−1 + (𝑥D
3 )−1]𝔷D,(13)

+ [(𝑥D
1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(12) − [(𝑥D

1 )−1 + (𝑥D
2 )−1]𝔷D,(12)
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1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(12) − [(𝑥D

1 )−1 + (𝑥D
2 )−1]𝔷D,(12)

= [(𝑥D
1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝑍D − ⟨𝐿a⟩D𝑍D .

On SUSY Wilson Loops in 2d and their dualities Localization and dualities on 𝑆2 26



Wilson loop duality: Idea (𝑁f = 3, 𝑁 = 1)
At the level of partition functions one has

𝑍 = 𝔷(3) + 𝔷(2) + 𝔷(1) , 𝑍D = 𝔷D,(12) + 𝔷D,(13) + 𝔷D,(23) .
The duality states that

𝔷D,(12) = 𝔷(3) , 𝔷D,(13) = 𝔷(2) , 𝔷D,(23) = 𝔷(1) ,
Evaluation of a non-trivial fundamental Wilson loop (𝑥𝑖 = 𝑒2𝜋𝜏𝑖):

⟨𝐿f⟩𝑍 = 𝑥1𝔷(1) + 𝑥2𝔷(2) + 𝑥3𝔷(3)

= [(𝑥D
1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(23) − [(𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(23)

+ [(𝑥D
1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(13) − [(𝑥D

1 )−1 + (𝑥D
3 )−1]𝔷D,(13)

+ [(𝑥D
1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝔷D,(12) − [(𝑥D

1 )−1 + (𝑥D
2 )−1]𝔷D,(12)

= [(𝑥D
1 )−1 + (𝑥D

2 )−1 + (𝑥D
3 )−1]𝑍D − ⟨𝐿a⟩D𝑍D .

Therefore ⟨𝐿f⟩ = 𝜒U(3)
a − ⟨𝐿a⟩D .
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Fun with characters

It is possible to express 𝜒U(𝑁)
𝝀 (𝑥1, … , 𝑥𝑛) in terms of power sums

𝑝𝝂(𝑥1, … , 𝑥𝑁) = 𝑝𝜈1
(𝑥1, … , 𝑥𝑁)𝑝𝜈2

(𝑥1, … , 𝑥𝑁) ⋅ … ⋅ 𝑝𝜈𝑁
(𝑥1, … , 𝑥𝑁) ,

where 𝑝𝑘(𝑥1, … , 𝑥𝑁) = 𝑥𝑘
1 + … + 𝑥𝑘

𝑁 .

Power sums are easy to manipulate
𝑝𝑘(𝑥1, … , 𝑥𝑁) = 𝑝𝑘(𝑥1, … , 𝑥𝑁 , 𝑦1, … , 𝑦𝑀) − 𝑝𝑘(𝑦1, … , 𝑦𝑀) .

Every power sum can be expressed in terms of characters.
All in all we have

𝜒U(𝑁)
𝝀 (𝑥𝑙1

, … , 𝑥𝑙𝑁
) = ∑

𝝁
𝑐𝝁(𝑥1, … , 𝑥𝑁f

)𝜒U(𝑁f−𝑁)
𝝁 (𝑥𝑙D

1
, … , 𝑥𝑙D

𝑁f−𝑁
)

= ∑
𝝁

𝑐−𝝁(𝑥D
1 , … , 𝑥D

𝑁f
)𝜒U(𝑁f−𝑁)

−𝝁 (𝑥D
𝑙D
1

, … , 𝑥D
𝑙D
𝑁f−𝑁

) ,

where 𝑐−𝝁 are characters of U(𝑁f) (and of SU(𝑁f) once ∏𝑓 𝑥𝑓 = 1).
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) = ∑
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𝑐𝝁(𝑥1, … , 𝑥𝑁f
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𝝁 (𝑥𝑙D

1
, … , 𝑥𝑙D

𝑁f−𝑁
)
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𝝁

𝑐−𝝁(𝑥D
1 , … , 𝑥D

𝑁f
)𝜒U(𝑁f−𝑁)

−𝝁 (𝑥D
𝑙D
1

, … , 𝑥D
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where 𝑐−𝝁 are characters of U(𝑁f) (and of SU(𝑁f) once ∏𝑓 𝑥𝑓 = 1).
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Dictionary

𝐿U(𝑁)
(0,…,0) ↦ 𝐿U(𝑁f−𝑁)

(0,…,0) ,
𝐿U(𝑁)

(1,0,…,0) ↦ 𝜒U(𝑁f)
(0,…,0,−1) − 𝐿U(𝑁f−𝑁)

(0,…,0,−1) ,
𝐿U(𝑁)

(2,0,…,0) ↦ 𝜒U(𝑁f)
(0,…,0,−2) − 𝜒U(𝑁f)

(0,…,0,−1)𝐿
U(𝑁f−𝑁)
(0,…,0,−1) + 𝐿U(𝑁f−𝑁)

(0,…,0,−1,−1) ,
𝐿U(𝑁)

(1,1,0,…,0) ↦ 𝜒U(𝑁f)
(0,…,0,−1,−1) − 𝜒U(𝑁f)

(0,…,0,−1)𝐿
U(𝑁f−𝑁)
(0,…,0,−1) + 𝐿U(𝑁f−𝑁)

(0,…,0,−2) .

The duality is an involution;
More direct duality if we insert matter field in the connection.
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Dictionary
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(0,…,0,−1) ,
𝐿U(𝑁)

(2,0,…,0) ↦ 𝜒U(𝑁f)
(0,…,0,−2) − 𝜒U(𝑁f)

(0,…,0,−1)𝐿
U(𝑁f−𝑁)
(0,…,0,−1) + 𝐿U(𝑁f−𝑁)

(0,…,0,−1,−1) ,
𝐿U(𝑁)

(1,1,0,…,0) ↦ 𝜒U(𝑁f)
(0,…,0,−1,−1) − 𝜒U(𝑁f)

(0,…,0,−1)𝐿
U(𝑁f−𝑁)
(0,…,0,−1) + 𝐿U(𝑁f−𝑁)

(0,…,0,−2) .

The duality is an involution;

More direct duality if we insert matter field in the connection.
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Conclusion and outlook

What we did
proposed a family of Wilson Loop in 2d;

studied their invariance under homotopy;
localized these WLs on 𝑆2;
checked Seiberg-like duality.

Outlook
Nontrivial WLs on 𝑇 2;
IR properties;
Wedges, intersection WLs;
More general background: 𝑆2

Ω;
Uplift in 3d.
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Thank you for your attention!
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