
Kerr-Schild DFT and Classical Double Copy

Kanghoon Lee

IBS-CFGS

25 July 2019

KL : arXiv:1807.08443

Cho, KL : arXiv:1904.11650

APCTP

Strings, Branes and Gauge Theories



Double copy

• Double copy structure states that the scattering amplitudes of the Yang-Mills

theory and gravity are related by exchanging the color and kinematic factors

[Bern, Carrasco Johansson 2008,2010]

ci ⇆ ni

color factor ci : a polynomial of structure constants fabc,

kinematic factor ni : a polynomial of Lorentz-invariant contractions of

polarization vectors 󰂃i and momenta pi.

• Gravity amplitudes can be obtained by just replacing the color factor to the

kinematic factor without any knowledge of the gravity action or Feynman rules.



• Spectrum

graviton ±2 (pi) = gluon ±1 (pi)⊗ gluon ±1 (pi)

dilaton

axion

󰀼
󰁀

󰀾 = gluon ±1 (pi)⊗ gluon ∓1 (pi)

• The double copy has the potential to provide a new way of quantum gravity

(perturbative) gravity = (Yang-Mills)2



String theory origin

• For tree level amplitude, it is equivalent to the field theory limit, α′ → 0 , of the

KLT relation in closed string theory.

• Tree level closed string and open string scattering amplitudes are related via the

KLT relation [Kawai, Lewellen, Tye 1986]

M tree
n = Atree

n KnÃ
tree
n

where Kn is the KLT kernel.

• KLT relation provides the string theory origin of double copy structure.



Implications

• Tree level scattering amplitude −→ on-shell, no quantum effects.

It is possible to deduce its extension to the level of the classical equations of

motion.

• Q: Can solutions of the Einstein field equations be represented by solutions of

the Yang-Mills equations beyond perturbative level?

Solution of GR ⇐⇒󰁿 󰁾󰁽 󰂀
?

Solution of YM

• Graviton hµν is given by the linearized perturbation of the metric

gµν = ηµν + hµν

Recall the spectrum relation. Is it possible to represent hµν ∼ AµÃν?



Kerr-Scild ansatz in GR

• One way is the so called classical double copy based on Kerr-Schild formalism

in GR [Monteiro, O’Connell, White, 2014]

• The Kerr-Schild ansatz is an extension of linear perturbation around a

background metric g̃.

• Einstein equation is nonlinear PDE =⇒ Hard to solve

• What is the condition

Einstein equation becomes linear?

• Kerr and Schild proposed a metric ansatz which makes Einstein equation a

linear equation [Kerr 1963], [Kerr, Schild 1965] .

• Meyers-Perry BH, (A)dS Kerr, (A)dS Kerr-Newman, Black string, branes, Waves

in flat and (A)dS spaces (PP-wave, Kundt wave, Shock wave ) etc.



• Kerr-Schild ansatz

gµν = g̃µν + κϕℓµℓν

g̃µν : a background metric satisfying Einstein equation

ℓµ : null vector

ℓµg̃
µνℓν = ℓµg

µνℓν = 0

• The main advantage of the Kerr-Schild ansatz is that it preserves some features

of the linearized perturbation

gµν = g̃µν − κϕℓµℓν , det(g) = det(g̃)

• Suppose a vacuum Einstein equation, Rµν = 0. We get a consistency condition

by contracting the null vectors ℓµ with Rµν

Rµνℓ
µℓν = −κϕgνσ

󰀃
ℓµ▽̃µℓν

󰀄󰀃
ℓρ▽̃ρℓσ

󰀄
= 0 ,

where ▽̃µ is the covariant derivative with respect to the background metric g̃.



• Choosing affine parameter, ℓµ is null and geodesic

ℓµ▽̃µℓν = 0 .

• The vacuum Einstein equation reduces to

Rµν = κR(1)
µν + κ2ϕℓµℓ

ρR(1)
ρν = 0 ,

where R(1) is the linear terms with respect to κ,

R(1)
µν = κ▽̃ρ

󰀓
▽̃(µ

󰀃
ϕℓν)ℓ

ρ󰀄− 1

2
▽̃ρ󰀃ϕℓµℓν

󰀄󰀔
,

and the Einstein equation is the same as R(1)
µν = 0.



Examples

• Schwarzschild BH in Eddington-Finkelstein coordinate

gµν = ηµν +
2GM

r
ℓµℓν

where

ℓµ =

󰀕
1,

xi

r

󰀖
, r2 = xixi, i = 1 . . . 3

• Kerr BH in KS coordinate

ds2 = −dt2 + dx2 + dy2 + dz2

+
2mr3

r4 + a2z2

󰁫
dt+

z

r
dz+

r

r2 + a2
(xdx+ ydy)− a

r2 + a2
(xdy − ydx)

󰁬2

and the null vector is given by

ϕ =
2MGr3

r4 + a2z2
, ℓµ =

󰀕
1,

rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

󰀖



Classical double copy in GR

• Consider KS ansatz on a flat background, g̃ = η

gµν = ηµν + ϕℓµℓν

• Identify the null vector ℓ and ϕ with gauge field and the biadjoint scala field

[Monteiro, O’Connell, White, 2014]

Aµ = ϕℓµ

• Assume that spacetime is stationary (no time dependence) and choose ℓµ as

ℓ0 = 1

R00 =
1

2
▽2ϕ

R0i =
1

2
∂j󰀃∂i(ϕℓj)− ∂j(ϕℓi)

󰀄
= −1

2
∂jFij

where Fij = ∂iAj − ∂jAi



Questions

• How can we include Kalb-Ramond field Bµν and dilaton φ in Kerr-Schild

formalism?

⊗ = ⊕ ⊕ •

• Curved background generalization - It is not clear how to define scattering

amplitude in curved background in general. (time-dependent backgrounds,

nonasymptotic flat spaces)

• Classical double copy for non Kerr-Schild type geometries?

• non-abelian structure?



What we will discuss today

• Generalized Kerr-Schild method in DFT

=⇒ Linearization of the equations of motion for supergravities

(string NSNS sector).

=⇒ Arbitrary on-shell background → More general spacetime

• Classical double copy for entire massless NSNS sector

• Classical double copy in Killing spinor equation

=⇒ From the Killing spinor equation for gravitino, Yang-Mills BPS equation

can be derived



Why DFT?

• DFT is the best framework for describing the double copy structure.

• Double copy ⇐⇒ Left-right decomposition of closed string theory

• Generalized metric is represented by the coset

H → O(d, d)

O(d− 1, 1)×O(1, 1− d)

and this implies there are two local Lorentz groups =⇒ {eµm , ēµ
m̄}

• These are related with local Lorentz groups for left-right sectors of closed string

theory. [Arkani-Hamed,Kaplan, 2008], [Hohm, 2011]

ηµν + hµν → hmn̄

• Cheung and Remmen derived perturbative DFT action (without dilaton and

Bµν ) around an arbitrary curved background from Einstein-Hilbert action by

assuming the two local Lorentz groups. [Cheung, Remmen, 2016]



Generalized Kerr-Schild ansatz



O(d, d) T-duality

• Double Field Theory: String low energy effective field theory which is manifest

under O(d, d) T-duality. =⇒ Doubling the dimension

• Long History:

- Sigma model side [Duff, 1990], [Tseytlin, 1990,1991], [Hull, 2004]

- Low energy effective field theory side [Siegel, 1993], [Hull, Zwiebach, 2009]

• Geometrization of all the form fields in supergravities.

• Recall the Maxwell equation:

∂µF
µν = jν , dF = 0



Field contents

• Manifest under T-duality → O(d, d) tensors

• generalized metric HMN : rank 2 tensor wrt O(d, d), which is an O(d, d) element

HMNJNPHPQ = JMQ

where JMN is the O(d, d) metric parametrized

JMN =

󰀳

󰁃 0 δµν

δµ
ν 0

󰀴

󰁄

• Parametrization in terms of supergravity fields {g,B,φ}

HMN =

󰀳

󰁃 gµν −gµρBρν

Bµρg
ρν gµν −Bµρg

ρσBσν

󰀴

󰁄

• DFT scalar d : scalar wrt O(d, d)

e−2d =
√
−ge−2φ



Linear perturbation

• First, we analyze the properties of linear perturbations of generalized metric

around an on-shell background generalized metric H0 satisfying

H0MNJNPH0PQ = JMQ

• Split H into the background part and perturbation parts

HMN = H0MN + κγ̂MN ,

where γ̂ describes perturbation and κ is a small expansion parameter.

• From O(d, d) constraint for H0,
󰀃
H0

󰀄2
= 1, one can define a background

chirality and the corresponding projection operators

P0 =
1

2

󰀃
J +H0

󰀄
, P̄0 =

1

2

󰀃
J −H0

󰀄
,

• One can show that γ̂ has mixed chirality

γ̂ = P0γ̂P̄0 + P̄0γ̂P0 , P0γ̂P0 = P̄0γ̂P̄0 = 0



generalized Kerr-Schild ansatz

• Following the conventional Kerr-Schild ansatz, we now assume that γ̂ is a finite

perturbation and κ is a formal finite parameter. The chirality condition is no

longer a linearized approximation, but an exact relation.

• We introduce an ansatz for the generalized metric

HMN = H0MN + κϕ
󰀃
KMK̄N + K̄MKN

󰀄
,

where K and K̄ are null vectors

KMKM = 0 , K̄MK̄M = 0 ,

and satisfy the chirality conditions as

P0MNKN = KM , P̄0MNK̄N = K̄M , KMK̄M = 0 ,

• We refer this form as generalized Kerr-Schild ansatz. This ansatz satisfies the

O(d, d) constraint automatically without any approximation or truncation.



• Chirality condition =⇒ the KM and K̄M are parametrized in terms of the

d-dimensional vectors lµ and l̄µ

KM =
1√
2

󰀳

󰁃 lµ

(g̃ + B̃)µν l
ν

󰀴

󰁄 , K̄M =
1√
2

󰀳

󰁃 l̄µ

(−g̃ + B̃)µν l̄
ν

󰀴

󰁄 .

• Null condition =⇒ l and l̄ are null vectors

lµg̃µν l
ν = lµlµ = 0 , l̄µg̃µν l̄

ν = l̄µ l̄µ = 0 , l · l̄ ∕= 0

• More than one pair of null vectors?

• It is strictly forbidden in the Lorentzian signature metric! (Theory of quadratic

form)



• Using the parametrization of generalized metric, we have

(g−1)µν = (g̃−1)µν + κϕl(µ l̄ν) ,

gµν = g̃µν − κϕ

1 + 1
2
κϕ(l · l̄)

l(µ l̄ν) ,

Bµν = B̃µν +
κϕ

1 + 1
2
κϕ(l · l̄)

l[µ l̄ν] ,

det g = (det g̃)
󰀓
1 +

1

2
κϕ(l · l̄)

󰀔−2

• Though H is linear in κ, g and B are nonlinear.

• If we identify lµ and l̄µ and ignore the B field, then it reduces to the

conventional Kerr-Schild ansatz,

gµν = g̃µν + κϕlµlν , gµν = g̃µν − κϕlµlν .



Field equations and linear structure



Field equations in GR

• In GR, equations of motion is written in terms of curvature tensor

Rµν − 1

2
gµνR = 0

• In Riemannian geometry, Riemann tensor is given by commutator of covariant

derivative

[▽µ,▽ν ]Vρ = RµνρσV
σ

• DFT covariant derivative and curvature?



Field equations in DFT

• Generalized Lie derivative: Recast the diffeomorphism and one-form gauge

transform of Bµν in an O(D,D) covariant way.

• “Semi” covariant derivative with respect to the gen. diffeomorphism

[Jeon,KL,Park, 2011]

∇MVN = ∂MVN + ΓMNPV
P

• Generalized curvature tensor and scalar

SMN = PM
P P̄N

QPRSSRPSQ, S := 2PMNPPQSMPNQ

where

SMNPQ =
1

2

󰀃
RMNPQ +RPQMN − ΓR

MNΓRPQ

󰀄

RMNPQ = ∂MΓNPQ − ∂NΓMPQ + ΓMP
RΓNRQ − ΓNP

RΓMRQ



DFT field equation in terms of supergravity fields

• Action

Seff. =

󰁝
dxD√

−ge−2φ

󰀕
R+ 4∂µφ∂

µφ− 1

12
HλµνH

λµν

󰀖

• EOM
Gµν = Rµν + 2∇(µ∂ν)φ− 1

4
Hµ

ρσHνρσ = 0 ,

Bµν = −1

2
∇ρHρµν + ∂ρφHρµν = 0 .



Set up

• For simplicity consider a flat background,

H0MN =

󰀳

󰁃ηµν 0

0 ηµν

󰀴

󰁄 , d0 = const.

• Generalized Kerr-Schild ansatz

HMN = H0MN + κϕ
󰀃
KMK̄N + K̄MKN

󰀄

d = d0 + κf .

• An on-shell condition from the DFT equations of motion, SKL = 0,

KKK̄LSKL = 2KKK̄L∂K∂Lf − 1

2
ϕ
󰀃
KK∂KK̄M

󰀄󰀃
KL∂LK̄

M󰀄

+
1

2
ϕ
󰀃
K̄K∂KKM

󰀄󰀃
K̄L∂LK

M󰀄
= 0 .

Recall that in GR, Rµνℓ
µℓν = −κϕgνσ

󰀃
ℓµ▽̃µℓν

󰀄󰀃
ℓρ▽̃ρℓσ

󰀄
= 0 .



On-shell Condition

• We shall impose stronger conditions

K̄M∂MKP = 0 , KM∂MK̄P = 0 , KP ∂P f = 0 , K̄P ∂P f = 0 .

• DFT connection satisfies

KPΓPMNK̄N = 0 , K̄PΓPMNKN = 0 , ΓP
PMKM = ΓP

PMK̄M = 0

and this implies

KM∇MK̄N = KM∂MK̄N , K̄M∇MKN = K̄M∂MKN



• Using the parametrization of K and K̄ on a flat background,

KM =
1√
2

󰀳

󰁃lµ

lµ

󰀴

󰁄 , K̄M =
1√
2

󰀳

󰁃 l̄µ

−l̄µ

󰀴

󰁄

The on-shell constraint on l and l̄ is written as

lµ∂µ l̄ν = 0 , l̄µ∂µlν = 0 ,

lµ∂µf = 0 , l̄µ∂µf = 0 ,

• Interestingly, these can be interpreted as the parallel transport equations along

the l and l̄ with the torsionful connections.

l̄µ▽+
µ lν = 0 , lµ▽−

µ l̄ν = 0 ,

where ▽±
µ = ▽µ ± 1

2
Hµ and Hµνρ = 3∂[µBνρ].



Equations of motion

• Substituting the KS ansatz into the equations of motion in the flat backgrounds

−2κ∂K∂L(ϕK
KK̄L) + 4κHKL

0 ∂K∂Lf−4κ2HKL
0 ∂Kf∂Lf = 0 .

and
κ
󰁫
− 1

2
HMN

0 ∂M∂N

󰀃
ϕK(KK̄L)

󰀄
+ ∂M∂N

󰀃
ϕKNK̄(K

󰀄
P0L)

M

− ∂M∂N

󰀃
ϕK(KK̄N󰀄

P̄0L)
M + 4P0(K

M P̄0L)
N∂M∂Nf

󰁬

+ κ2HMN
0 ∂Mf∂N

󰀃
ϕK(KK̄L)

󰀄
= 0 .

• Unlike the conventional KS formalism in GR, the equations are quadratic in κ

due to the presence of f . If we set f = 0, field equations reduce to linear

equations

• If we consider the power series expansion of f , then the linear terms are

enough to determine ϕ, l and l̄ or gµν and Bµν completely.



• In terms of d-dimensional vector indices, the field equations reduces to

□
󰀃
ϕlµ l̄ν

󰀄
− ∂ρ∂µ

󰀃
ϕlρ l̄ν

󰀄
− ∂ρ∂ν

󰀃
ϕlµ l̄ρ

󰀄
+ ∂µ∂ν

󰀃
ϕl · l̄

󰀄
+ ∂µ∂νH = 0 .

• Note that Rµν is not symmetric tensor:

- symmetric part → eom of g

- antisymmetric part → eom of B

• It is interesting that the generalized KS ansatz for gµν and Bµν is not linear in κ,

lµ and l̄µ, but the field equations are linear in these fields.

• Curved background generalization is straightforward.



Comments on dilaton

• So far we have considered a flat background with the Cartesian coordinates

only. In a coordinate independent form in terms of the covariant derivative

R = κ
󰁫
▽̃0µ▽̃0ν

󰀃
ϕlµ l̄ν

󰀄
− 4▽̃µ

0∂µf
󰁬
+ 4κ2∂µf∂µf = 0 ,

Rµν =
κ

4

󰁫
▽̃0ρ▽̃ρ

0

󰀃
ϕlµ l̄ν

󰀄
− ▽̃ρ

0▽̃0µ

󰀃
ϕlρ l̄ν

󰀄
− ▽̃ρ

0▽̃0ν

󰀃
ϕlµ l̄ρ

󰀄
+ 4▽̃0µ∂νf

󰁬

− κ2

2
∂ρf ▽̃ρ

󰀃
ϕlµ l̄ν

󰀄
.

where ▽̃0µ is a covariant derivative for a flat background in an arbitrary

coordinate system.

• Note that the DFT dilaton is not a scalar field, but a density that transform under

a coordinate transform xµ → x′µ(x) as

e−2d → e−2d′ =
󰀏󰀏󰀏
∂x′

∂x

󰀏󰀏󰀏e−2d .



• We can find a new coordinate x′µ that makes the new DFT dilaton d′ vanish by

requiring that the Jacobian is e2d.
󰀏󰀏󰀏
∂x′

∂x

󰀏󰀏󰀏 = e2d .

Thus, for a given d, we can make the DFT dilaton vanishes.

• As discussed, all the higher order terms in κ in the field equations include f .

Using this fact, if we perform a coordinate transformation, the equations of

motion reduces to linear

Ř = κ▽̌0µ▽̌0ν

󰀃
ϕlµ l̄ν

󰀄
= 0 ,

Řµν =
κ

4

󰁫
▽̌0ρ▽̌ρ

0

󰀃
ϕlµ l̄ν

󰀄
− ▽̌ρ

0▽̌0µ

󰀃
ϕlρ l̄ν

󰀄
− ▽̌ρ

0▽̌0ν

󰀃
ϕlµ l̄ρ

󰀄 󰁬
,

where ▽̌0µ is a covariant derivative for a flat space with the particular coordinate

where f ′ = 0.

• However, it is not practical in solving eom, but useful for classical double copy



Killing Spinor equation

• The Killing spinor equation reduce the supergravity field equations to first order

in derivatives. Combined with the generalized KS ansatz, it will lead to linear

equations.

• The SUSY variation of fermions provides the Killing spinor equations, which are

δρ = −γpDpε = −γpVp
M∂Mε− 1

4
V M

pΦMmnγ
pmnε− 1

2
V MmΦMmnγ

nε = 0 ,

δψp̄ = V̄ M
p̄DMε = V̄ M

p̄∂Mε+
1

4
V̄ M

p̄ΦMmnγ
mnε = 0 ,

• For simplicity, let us choose ε as a Killing spinor for the background geometry

satisfying

∂pφγ
pε0 +

1

12
H̃mnpγ

mnpε0 = 0 ,

D̃+
p̄ ε0 = 0 ,

where ε0 is the background Killing spinor.



• Then the Killing spinor equations are greatly simplified as
󰀓
∂µΨ+

1

2
D̃+

ν

󰀃
ϕ′lµ l̄

ν󰀄󰀔γµε0 = 0 ,

and 󰀓
D̃µ

󰀃
ϕlν l̄ρ

󰀄
− 1

2
H̃µρσ

󰀃
ϕlν l̄

σ󰀄󰀔γµνε0 = 0 .

where Ψ = e−2κf , ϕ′ = e−2κfϕ and ε0 is the background Killing spinor.

• For the flat background case
󰀓
∂µΨ+

1

2
∂ν

󰀃
ϕ′lµ l̄ν

󰀄󰀔
γµε0 = 0 ,

∂µ

󰀃
ϕlν l̄ρ

󰀄
γµνε0 = 0 ,

where ε0 is a constant spinor.

• These equations are remarkably simple, and much easier to solve than the full

Killing spinor equations.



Cassical double copy



Classical double copy in KS DFT

• The KLT and BCJ relations indicate that not only the pure Einstein equation, but

also the field equations of entire massless NS-NS sector should be related to

the gauge theory.

• Suppose that the full geometry admits at least one Killing vector ξµ.

• We can locally choose a coordinate system xµ = {xi, y} such that the Killing

vector is a constant, ξµ = ∂xµ/∂y = δµy . The Killing vector ensures the following

identities from the torsion free condition

▽̃µξν = ▽̃[µξν] = ∂[µξν] = 0 .



• Consider the Lie derivative of an arbitrary rank-n tensor Fµ1µ2···µn with respect

to a constant Killing vector ξµ

LξFµ1µ2···µn = ξρ∂ρFµ1µ2···µn +
n󰁛

i=1

∂µiξ
ρFµ1···µi−1ρµi+1···µn

= ξρ▽̃ρFµ1µ2···µn +

n󰁛

i=1

▽̃µiξ
ρFµ1···µi−1ρµi+1···µn = 0 ,

• Since we are assuming that the Killing vector is covariantly constant, this shows

that

ξρ▽̃ρFµ1µ2···µn = 0 .

• We also normalize lµ and l̄µ as

ξ · l = ξ · l̄ = 1



Single Copy

• Classical double copy is achieved by contracting the constant Killing vector ξµ

with the generalized Ricci tensor in the specific coordinate

Řµν =
κ

4

󰁫
▽̌0ρ▽̌ρ

0

󰀃
ϕlµ l̄ν

󰀄
− ▽̌ρ

0▽̌0µ

󰀃
ϕlρ l̄ν

󰀄
− ▽̌ρ

0▽̌0ν

󰀃
ϕlµ l̄ρ

󰀄 󰁬
= 0

• Since Rµν is not symmetric tensor, we get three independent equations as

follows:
ξνŘµν =

κ

4

󰁫
▽̃0

ρ▽̃0ρ

󰀃
ϕlµ

󰀄
− ▽̃0

ρ▽̃0µ

󰀃
ϕlρ

󰀄 󰁬
,

ξµŘµν =
κ

4

󰁫
▽̃0

ρ▽̃0ρ

󰀃
ϕl̄ν

󰀄
− ▽̃ρ

0▽̃0ν

󰀃
ϕl̄ρ

󰀄 󰁬
,

• we identify ϕlµ and ϕl̄µ with gauge fields

Aµ = ϕlµ , Āµ = ϕl̄µ

• Then ξνRµν and ξµRµν reduce to a pair of Maxwell equations

∂µFµν = 0 , ∂µF̄µν = 0 ,

where Fµν and F̄µν are the field strength of the Maxwell fields of Aµ and Āµ

respectively,



Zeroth copy

• Contracting ξµ with all the free indices of R(1)
µν , we make a scalar equation

ξµξνŘµν = □ϕ = 0 ,

• Monteiro, O’Connell and White identified ϕ as the biadjoint scalar field

[Cachazo,He,Yuan 2013]

Φaa′
= ϕcac̄a

′

where ca and c̄ā are color index vectors for Lie group G1 and G2.

• It can be understood as a linearized equation of motion for Φaa′

∂2Φaa′
− gfabcfa′b′c′Φbb′Φcc′ = 0



• This shows that the generalized KS type solution can be written in terms of the

solutions of the two independent Maxwell equation and free scalar field

equations



Supersymmetric double copy

• On a flat background, Killing spinor equation for gravitino is given by

κ∂[m

󰀃
φln] l̄µ

󰀄
γmnε = 0

• contraction with a Killing vector ξµ

Fµνγ
µνε = 0 .

• This is the typical BPS equation of N = 1 SYM. This shows the classical double

copy is still valid for supersymmetric backgrounds



Curved Background generalization

• Recently Adamo, Casali, Mason, Nekova showed that BCJ color-kinematic

duality can be extended pp-wave background.

• The classical double copy is well studied in a flat background, but curved

background generalization was not obvious. (only for some simple cases, (A)dS

background etc [Gonalez, Penco, Trodden, 2017], [Bahjat-Abbas, Luna, White,

2017] )

• The KLT relation in a curved background - It is not clear how to define scattering

amplitude in curved background in general. (time-dependent backgrounds,

nonasymptotic flat spaces)

• Classical double copy in general background may give a clue, however, curved

background generalization is an open problem.



Generalization to heterotic supergravity

• Heterotic supergravity: relaxed null condition

HM̂N̂ = H0M̂N̂ + κϕ
󰀃
KM̂K̄N̂ +KN̂K̄M̂

󰀄
,

In terms of the heterotic supergravity fields

gµν = g̃µν + κϕl(µ l̄ν) ,

gµν = g̃µν − κϕ

1 + κϕ
2
(l · l̄)

l(µ l̄ν) +
1

4

󰀓 κϕ

1 + κϕ
2
(l · l̄)

󰀔2

(l̄ · l̄)lµlν ,

Bµν = B̃µν +
κϕ

1 + κϕ
2
(l · l̄)

󰀓
l[µ l̄ν] −

󰁴
α′

2
Ã[µ

αlν]jα
󰀔
,

Aµα = Ãµα +
1√
2α′

κϕ

1 + κϕ
2
(l · l̄)

lµjα ,

where l is a null vector, but l̄ is not.

• It is possible to couple U(1) gauge fields.



Examples



Chiral null model

• A class of string backgrounds which have one conserved chiral null current on

the world sheet. [Horowitz, Tseytlin, 1994]

• It is a generalization of the gravitational wave and fundamental string

background and is exact in the α′ expansion.

• In the target space they have a null Killing vector and unbroken

supersymmetries.

• Special cases are the Taub-NUT geometry and rotating black holes.

• The explicit geometry is given by

ds2 = F (xi)du
󰀓
dv +K(u, xi)du+ 2Vi(u, x

i)dxi
󰀔
+ dxidxi ,

Buv = F (xi) , Bui = 2F (xi)Vi(u, x
i) ,

φ = φ(u) +
1

2
logF (xi) ,



• This fits into the generalized Kerr-Schild ansatz in a flat background.

ds2 = dudṽ + dxidxi + (F − 1)du
󰀓
dṽ − ṼiṼ

idu+ Ṽidx
i
󰀔
,

where
Vi = Ṽi +

1

2
∂iX , v = ṽ −X(x, u) ,

X(x, u) =

󰁝 u 󰀓
K +

4F

(F − 1)
ṼiṼ

i
󰀔
(󰂓x, u′)du′ ,

• The associated ϕ and null vectors l and l̄ can be easily read off

κϕ = F−1 − 1 ,

lu = 1 ,

l̄u = −
󰀓 2F

F − 1

󰀔2

ṼiṼ
i , l̄ṽ = 1 , l̄i =

2F

F − 1
Ṽi ,

and one can easily show that l and l̄ are orthogonal with respect to the flat

background metric.



• l and l̄ satisfy the generalized geodesic constraint

lµ∂µ l̄ν = 0 , l̄µ∂µlν = 0

• Equations of motion imply, κf = φ(u)

∂i∂
iF−1 = 0 ,

−∂i∂iK + 2∂i∂uVi + 4F−1∂2
uφ = 0 ,

−4∂jFji + 4∂uφ∂iF
−1 = 0 .

where Fij = ∂iVj − ∂jVi.

• This is the same exactly with the equation derived by Callan, Maldacena and

Peet.



F1-NS5 system

• To examine our formalism in the case of a curved background, let us consider

superposition of a number Q1 of fundamental strings and Q5 of NS5 brane

system.

• Wrap a number Q5 of NS5-branes on T 5 along x5, · · ·x9. The fundamental

strings wrap one of the directions of the torus along x5 direction.

ds2 = F−1
1

󰀃
− dt2 + dx2

5

󰀄
+ F5

󰀃
dx2

1 + · · ·+ dx2
4

󰀄
+ dx2

6 + · · · dx2
9

e−2φ = gsF1F
−1
5

B05 = F−1
1 − 1 ,

Hijk = 󰂃ijkl∂
lF5 , i, j, k, l = 1, 2, 3, 4

where 󰂃ijkl is the flat space epsilon tensor and

F1 = 1 +
16π4α′3Q1

g2sV4r2
, F5 = 1 +

α′Q5

r2
,

here V4 is the volume of the T 4.



• The NS5-brane background is treated as a background

ds̃2 = −dt2 + F5

󰀃
dx2

1 + · · ·+ dx2
4

󰀄
+ dx2

5 + · · · dx2
9

e−2φ̃ = gsF
−1
5

H̃ijk = 󰂃ijkl∂
lF5 , i, j, k, l = 1, 2, 3, 4

where we put tilde for all the background quantities.

• We can read off the corresponding generalized KS ansatz

ϕ = F1 − 1 , l = dt+ dx5 , l̄ = −dt+ dx5 .

Note that lµ and l̄µ are orthogonal to the background 3-form flux, H̃µνρ

lµH̃µνρ = l̄µH̃µνρ = 0 ,

and φ = 1√
−g

of

f = 0 .



Charged Black String

• Internal momenta and axion charges are interchangeable via T-duality [Horne,

Horowitz, Steif, 1991]

• Consider a 5-dimensional uncharged black string, Schwarzschild × S1 .

• 1. Boost along the circle direction, y =⇒ Generates Off diagonal terms in metric

2. Take a T -duality along the y direction

• The explicit geometry is given by

ds2 =
󰀓
1 +

2mS2

r

󰀔−1󰁫
−

󰀓
1− 2m

r

󰀔
dt2 + dy2

󰁬
+

󰀓
1− 2m

r

󰀔−1

dr2 + r2dΩ ,

Byt =
C

S

󰀓
1 +

2mS2

r

󰀔−1

, e−2φ = 1 +
2mS2

r
,

where C = coshα and S = sinhα, and α is a boost parameter.



• Uncharged black string solution:

ds2 = −
󰀓
1− 2M

r

󰀔
dt̃2 +

󰀓
1− 2M

r

󰀔−1

dr2 + r2dΩ2 + dy2 . (1)

• Using the conventional Kerr-Schild ansatz for Schwarzschild BH in

Eddington-Finkelstein coordinate, we have

ds2 = −dt̂2 + dr2 + r2dΩ2 + dy2 − κϕ
󰀃
dt̂+ dr

󰀄2
, κϕ = −2M

r
, (2)

where t̂ = t̃+
󰀃
r∗ − r

󰀄
and r∗ is the tortoise coordinate defined

r∗ = r + 2M log
󰀏󰀏󰀏

r

2M
− 1

󰀏󰀏󰀏 , dr∗ = dr
󰀓
1− 2M

r

󰀔−1

. (3)

• Applying a boost along the y-direction, t̂ → t̂ coshα+ y sinhα,

y → t̂ sinhα+ y coshα, we get

ds2 = −dt̂2 + dr2 + r2dΩ2 + dy2 − κϕ
󰀃
Cdt̂+ Sdy + dr

󰀄2
, (4)

and the null vectors are identical, l = l̄ = Cdt̂+ Sdy + dr.



• Let us take a T-duality along the y-direction. According to the Buscher’s rule for

the null vectors, the null vectors split into

l → l′ = Cdt̂+ Sdy + dr , l̄ → l̄′ = Cdt̂− Sdy + dr ,

and l · l̄ = −2S2. The corresponding metric and Kalb-Ramond field are

ds′2 =
󰀓
1 +

2MS2

r

󰀔−1󰁫
−

󰀓
1− 2M

r

󰀔
dt̂2 +

4MC

r
dt̂dr +

󰀓
1 +

2MC2

r

󰀔
dr2 + dy2

󰁬
+ r2dΩ2

B′ =
󰀓
− C

S
+

2MCS

r

󰀓
1 +

2MS2

r

󰀔−1󰀔
dt̂ ∧ dy − 2MS

r

󰀓
1 +

2MS2

r

󰀔−1

dr ∧ dy .

• Finally, we make a further coordinate transform t̂ = t+ C
󰀃
r∗ − r

󰀄

ds2 = −dt̂2 + dr2 + r2dΩ2 + dy2 +
2M

r + 2MS2

󰀃
Cdt̂+ Sdy + dr

󰀄󰀃
Cdt̂− Sdy + dr

󰀄
,

B =
2M

r + 2MS2

󰀃
Cdt̂+ Sdy + dr

󰀄
∧
󰀃
Cdt̂− Sdy + dr

󰀄
.

• In this example, the DFT dilaton vanishes, thus the generalized KS field

equations become linear.



Conclusion

• A novel solution generating technique in supergravities via generalized

Kerr-Schild method in DFT

• Classical double copy including Bµν and dilaton

• Classical double copy in Killing spinor equation

• Including RR sector, Introducing U(1) gauge fields using Kaluza-Klein reduction,

Gauged supergravity extension via Scherk-Schwarz reduction.

• M-theory extension: Exceptional field theories (SL(5), SO(5, 5), E6, E7 and E8)

• Finding the most general solutions in a flat or curved backgrounds and their

physical interpretations. Applications to AdS/CFT?

• Scattering amplitude computation in the DFT language. Extension double copy

structure to curved backgrounds.



Thank you


