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Double copy

® Double copy structure states that the scattering amplitudes of the Yang-Mills
theory and gravity are related by exchanging the color and kinematic factors
[Bern, Carrasco Johansson 2008,2010]

Ci ‘:ni

color factor ¢; : a polynomial of structure constants £,
kinematic factor n; : a polynomial of Lorentz-invariant contractions of

polarization vectors ¢; and momenta p;.

e Gravity amplitudes can be obtained by just replacing the color factor to the

kinematic factor without any knowledge of the gravity action or Feynman rules.



® Spectrum

graviton 2 (p;) = gluon = (p;) ® gluon = (p;)
dilaton
= gluon ** (p;) ® gluon F* (p;)
axion

® The double copy has the potential to provide a new way of quantum gravity

(perturbative) gravity = (Yang-Mills)*



String theory origin

e For tree level amplitude, it is equivalent to the field theory limit, o’ — 0, of the
KLT relation in closed string theory.
® Tree level closed string and open string scattering amplitudes are related via the
KLT relation [Kawai, Lewellen, Tye 1986]
M”zree — A:‘eeK:nA:Lree

where IC,, is the KLT kernel.

e KLT relation provides the string theory origin of double copy structure.
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Implications

® Tree level scattering amplitude — on-shell, no quantum effects.
It is possible to deduce its extension to the level of the classical equations of
motion.

e Q: Can solutions of the Einstein field equations be represented by solutions of

the Yang-Mills equations beyond perturbative level?

Solution of GR <= Solution of YM
Y

e Graviton h,, is given by the linearized perturbation of the metric

Guv = Nuv +

Recall the spectrum relation. Is it possible to represent hy,, ~ A, A,?



Kerr-Scild ansatz in GR

One way is the so called classical double copy based on Kerr-Schild formalism
in GR [Monteiro, O’Connell, White, 2014]

The Kerr-Schild ansatz is an extension of linear perturbation around a
background metric g.

Einstein equation is nonlinear PDE —- Hard to solve
What is the condition
Einstein equation becomes linear?

Kerr and Schild proposed a metric ansatz which makes Einstein equation a
linear equation [Kerr 1963], [Kerr, Schild 1965] .

Meyers-Perry BH, (A)dS Kerr, (A)dS Kerr-Newman, Black string, branes, Waves

in flat and (A)dS spaces (PP-wave, Kundt wave, Shock wave ) etc.



e Kerr-Schild ansatz

Guv = guu + ’i@gugu

Juv : @ background metric satisfying Einstein equation
£, : null vector
Zug'uuél, = Kug‘“'&, = 0

* The main advantage of the Kerr-Schild ansatz is that it preserves some features

of the linearized perturbation
g = g"" — kpt't”, det(g) = det(g)

® Suppose a vacuum Einstein equation, R, = 0. We get a consistency condition

by contracting the null vectors ¢* with R,,,,
RO = —kpg”? (E”@ME,,) ((”@p&,) =0,

where V,, is the covariant derivative with respect to the background metric g.



® Choosing affine parameter, ¢* is null and geodesic
07,0, =0.
® The vacuum Einstein equation reduces to
Ry, = kRW , + k20, 0° RV ,, =0,
where R is the linear terms with respect to «,
RO,y = 19, (70,0l ) — 577 (o))

and the Einstein equation is the same as R" ., = 0.



Examples

e Schwarzschild BH in Eddington-Finkelstein coordinate

2GM
Guw = Nuv + ——luly

where

e Kerr BH in KS coordinate

ds® = —dt* + dz® + dy® + dz*

2mr?

2
T [dt +2det s 3o (e + ydy) (edy — yd)|

a
2 + a2
and the null vector is given by

2MGr3 B (1 re+ay ry—ax z)
22 ]

r4 +a222 ’

r24+a2’ r2+a2’r



Classical double copy in GR

® Consider KS ansatz on a flat background, g =

Guv = Muv + 0Ll

¢ |dentify the null vector ¢ and ¢ with gauge field and the biadjoint scala field
[Monteiro, O’Connell, White, 2014]

Ap =ty

® Assume that spacetime is stationary (no time dependence) and choose ¢ as
=1
Roo = 192
00 — 2 2
1, 1.,
Roi = 507 (9i(ty) = 9i(pli)) = =50 Fy5
where Fij = (9114] — 83‘142'



Questions

How can we include Kalb-Ramond field B,,,, and dilaton ¢ in Kerr-Schild
formalism?

Oe=[eHe-
Curved background generalization - It is not clear how to define scattering

amplitude in curved background in general. (time-dependent backgrounds,

nonasymptotic flat spaces)
Classical double copy for non Kerr-Schild type geometries?

non-abelian structure?



What we will discuss today

® Generalized Kerr-Schild method in DFT
= Linearization of the equations of motion for supergravities
(string NSNS sector).

= Arbitrary on-shell background — More general spacetime
¢ Classical double copy for entire massless NSNS sector

¢ Classical double copy in Killing spinor equation
= From the Killing spinor equation for gravitino, Yang-Mills BPS equation

can be derived



Why DFT?

DFT is the best framework for describing the double copy structure.
Double copy <= Left-right decomposition of closed string theory
Generalized metric is represented by the coset

0(d, d)
O(d—1,1) x O(1,1 —d)

H—

and this implies there are two local Lorentz groups = {e,™,e,™}

These are related with local Lorentz groups for left-right sectors of closed string
theory. [Arkani-Hamed,Kaplan, 2008], [Hohm, 2011]

nyu + h,uu — hmﬁ

Cheung and Remmen derived perturbative DFT action (without dilaton and
B,..,) around an arbitrary curved background from Einstein-Hilbert action by

assuming the two local Lorentz groups. [Cheung, Remmen, 2016]



Generalized Kerr-Schild ansatz



O(d, d) T-duality

Double Field Theory: String low energy effective field theory which is manifest

under O(d, d) T-duality. = Doubling the dimension

Long History:
- Sigma model side [Duff, 1990], [Tseytlin, 1990,1991], [Hull, 2004]
- Low energy effective field theory side [Siegel, 1993], [Hull, Zwiebach, 2009]

Geometrization of all the form fields in supergravities.

Recall the Maxwell equation:

OuF" =4,  dF =0



Field contents
® Manifest under T-duality — O(d, d) tensors
® generalized metric Harn: rank 2 tensor wrt O(d, d), which is an O(d, d) element

HMNJNPHPQ =JmQ

where Jun is the O(d, d) metric parametrized

0
Jun =
0. 0
® Parametrization in terms of supergravity fields {g, B, ¢}
py —g""B,,
Hurn = g ) g pg
Bupg”® Guv — Bupg” Bow
e DFT scalar d : scalar wrt O(d, d)

672d — \/7_9672¢



Linear perturbation

First, we analyze the properties of linear perturbations of generalized metric
around an on-shell background generalized metric H, satisfying

HOMNJNPHOPQ =JmQ
Split H into the background part and perturbation parts
Hun = HomnN + KYuN

where 4 describes perturbation and « is a small expansion parameter.

From O(d, d) constraint for H,, (7—[0)2 = 1, one can define a background

chirality and the corresponding projection operators

(7 — o),

N =

1 —
Pozi(j-ﬁ-?'lo), Py =
One can show that 4 has mixed chirality

’3/ = P()ﬁ/po + P()’?Po s Po’ﬂ/P() = P()’?po =0



generalized Kerr-Schild ansatz

Following the conventional Kerr-Schild ansatz, we now assume that 4 is a finite
perturbation and « is a formal finite parameter. The chirality condition is no

longer a linearized approximation, but an exact relation.

We introduce an ansatz for the generalized metric
Hun = Houn + o(KnKn + KuKn),
where K and K are null vectors
KuKY =0, KuKY =0,
and satisfy the chirality conditions as
PounKY = K, PounKYN = Ky, KuKM =0,

We refer this form as generalized Kerr-Schild ansatz. This ansatz satisfies the

0O(d, d) constraint automatically without any approximation or truncation.



Chirality condition = the Ks and K, are parametrized in terms of the
d-dimensional vectors {* and I*

K 1 " i 1 "
M = ——= - 3 M = —F—= -~ _
V2 \(G+B)ul” V2 \(~g+B).l"

Null condition = I and [ are null vectors
"gul0 =1",=0, Mg, 00 =1",=0, 1-1#0
More than one pair of null vectors?

It is strictly forbidden in the Lorentzian signature metric! (Theory of quadratic

form)



® Using the parametrization of generalized metric, we have

(7" =G )" + kel

~ K =

v = v — —=1 ll/ 9
Iu m 1+ %Htp(l'l) (ntv)

Buw = B;w + Ll[ul}] )

14 Lrp(l-1)
- 1 =\ 2
det g = (det g) (1 + iﬁw(l . l))
® Though H is linear in x, g and B are nonlinear.
e |f we identify i and I* and ignore the B field, then it reduces to the

conventional Kerr-Schild ansatz,

g = g"" + kel"l” Guv = Guv — kpluly .



Field equations and linear structure



Field equations in GR

* |In GR, equations of motion is written in terms of curvature tensor

1
Ruy — EQMVR =0

® |In Riemannian geometry, Riemann tensor is given by commutator of covariant
derivative
[vm VV]Vp - Ruupo'va

e DFT covariant derivative and curvature?



Field equations in DFT

® Generalized Lie derivative: Recast the diffeomorphism and one-form gauge

transform of B, in an O(D, D) covariant way.

® “Semi” covariant derivative with respect to the gen. diffeomorphism
[Jeon,KL,Park, 2011]

VuVn =0V +TunpV?’
® Generalized curvature tensor and scalar
Sun = Pu"PyOP™ Sppsq,  S:=2P"Y P Sypng

where
1 R
SvunpPQ = i(RMNPQ‘FRPQMN_F MNFRPQ)

Runpg = O0ul'npg — ONTMmpPo + FJ\/IPRFNRQ - FNPRFMRQ



DFT field equation in terms of supergravity fields

® Action
1
Set = / dz®\/=ge ?? (R + 40,,00" p — EHM“,HA‘“’>

e EOM 1
guv =R+ QV(Ha,,)(b — ZHupaHupo =0,

1
By = —EV’DHPW +0°¢Hpu = 0.



Set up

¢ For simplicity consider a flat background,
0
Homn = , do = const.
0 Nuv
e Generalized Kerr-Schild ansatz
Hun = Homun + /itp(KMI_(N + I_(MKN)
d=doy+ Kuf .
® An on-shell condition from the DFT equations of motion, Sk, = 0,
_ _ 1 _ _
K® K" S = 2K" K 000 f — S0 (K" 0 Kur) (K 0L K™)
1 _ _
+ 5go(KKaKKM) (K*o,K™) =0.

Recall that in GR, R, 0*¢" = —kpg"? (¢#V,6,) (0°Vpls) = 0.



On-shell Condition

® We shall impose stronger conditions
KMouKp=0, KYouKp=0, K"9pf=0, K"0pf=0.
® DFT connection satisfies
KTpunKEY =0, KEfTpunKY =0, I pu KM =TPpy KM =0
and this implies

KMV uKy = KMouKnw, KMV Ky = KMoy Ky



e Using the parametrization of K and K on a flat background,

Ky = = v Ky = = "
YAV V2 \ -,
The on-shell constraint on [ and [ is written as
"9,l, =0, Mo, =0,
"o,f=0, Mo.f=0,

¢ |nterestingly, these can be interpreted as the parallel transport equations along

the [ and [ with the torsionful connections.
i, =0, 1"v,l, =0,

where vi =v,+ 1H, and H,., = 39, B, .
w w Lo nvp [nPvp]



Equations of motion

® Substituting the KS ansatz into the equations of motion in the flat backgrounds
—2k0k O (0K K") + 4k HE P O 0 f—4r*HE O fOLf = 0.
and 1
o[- 5 Ho N OnOn (pK (K Ly) + 0m0n (9K Kxe) Pory™
— OMON (@K(KRN)JBOL)M + 4P0(KMP0L)N(9M@NJ"]
+ hﬁZHé\INawf&w (L,:‘[{(KKL)) =0.
¢ Unlike the conventional KS formalism in GR, the equations are quadratic in x

due to the presence of f. If we set f = 0, field equations reduce to linear

equations

* |f we consider the power series expansion of f, then the linear terms are

enough to determine ¢, and [ or g, and B,, completely.



In terms of d-dimensional vector indices, the field equations reduces to
D(gplul]) — 8”8M(<plpl_y) — apay(gplul_p) + 9,0, (cpl . D +0,0,H=0.

Note that R . is not symmetric tensor:

- symmetric part — eom of g

- antisymmetric part — eom of B
It is interesting that the generalized KS ansatz for g,.., and B, is not linear in x,
I* and I*, but the field equations are linear in these fields.

Curved background generalization is straightforward.



Comments on dilaton

¢ So far we have considered a flat background with the Cartesian coordinates
only. In a coordinate independent form in terms of the covariant derivative

R = /s[ TouTou (@I"T) — ATED, f ] FAR2OMFOLf =0,

[ 90576 (1l = 6 T0u (wlols) = 76T00 (Pluls) + 470,60, f |

where Vo, is a covariant derivative for a flat background in an arbitrary
coordinate system.

* Note that the DFT dilaton is not a scalar field, but a density that transform under
a coordinate transform z* — z'*(x) as

—2d —2d’ ox' —2d
e —e = |= }e .
ox



We can find a new coordinate z'* that makes the new DFT dilaton d’ vanish by
requiring that the Jacobian is <.

/
ox o eQd
Or ’

Thus, for a given d, we can make the DFT dilaton vanishes.

As discussed, all the higher order terms in « in the field equations include f.
Using this fact, if we perform a coordinate transformation, the equations of

motion reduces to linear

where Vo, is a covariant derivative for a flat space with the particular coordinate
where f' = 0.

However, it is not practical in solving eom, but useful for classical double copy



Killing Spinor equation

® The Killing spinor equation reduce the supergravity field equations to first order
in derivatives. Combined with the generalized KS ansatz, it will lead to linear

equations.

® The SUSY variation of fermions provides the Killing spinor equations, which are
1 1 m n
6p = —~A"Dpe = —"V,M e — ZVM,,CDan'ypm”s - 5VM P prrmny"e =0,
(/ (/ 15 mn
0y = VMI*,'DME = VMf,aM&‘ + ZVMIE(I)an'V e=0,

® For simplicity, let us choose ¢ as a Killing spinor for the background geometry

satisfying

where ¢ is the background Killing spinor.



Then the Killing spinor equations are greatly simplified as
1~ + 1y v i
(0w + 5D (#11") ) 720 = 0,
and
™ 7 1 - j0 v
(Du@tuls) = 5o (9117) )7 20 = 0.
where ¥ = =27/ o/ = 72"/, and ¢, is the background Killing spinor.

For the flat background case
(auxp n ay(go’zul’v))wgo —0,
where ¢ is a constant spinor.

These equations are remarkably simple, and much easier to solve than the full

Killing spinor equations.



Cassical double copy



Classical double copy in KS DFT

® The KLT and BCJ relations indicate that not only the pure Einstein equation, but
also the field equations of entire massless NS-NS sector should be related to
the gauge theory.

e Suppose that the full geometry admits at least one Killing vector £*.

® We can locally choose a coordinate system z* = {z*,y} such that the Killing
vector is a constant, £# = 9z /0y = ¢!/. The Killing vector ensures the following

identities from the torsion free condition

Vv = Vb = ) = 0.



® Consider the Lie derivative of an arbitrary rank-n tensor F},, ., ....,, With respect

to a constant Killing vector ¢

n
_¢P E : P
LeFyupgnn =8 0pFuypnpm + 0§ Fuyopi_ippizrnn

i=1
n
= fpvﬂqum-un + Z vlLipr‘lll“'l"i—IPMiﬁ»l“'l"n =0,
i=1
® Since we are assuming that the Killing vector is covariantly constant, this shows
that
Y

® We also normalize I, and [,, as



Single Copy

Classical double copy is achieved by contracting the constant Killing vector ¢*

with the generalized Ricci tensor in the specific coordinate
. KT . . - .~ - . -
Ruv = 1 [ Vo V5 (@lulv) = V6 Vou(¢loly) = V6 Vou (#lpl) } =0
Since R .. is not symmetric tensor, we get three independent equations as
follows:
VS K[~ p= - =
f R;uf = Z |: vOPVOp ((Plu) - vOPVOM (QOZ/J) ] )
€ Ry = 5 [ 907 T00(0l1) = 96700 (1) |
we identify oI, and ¢l,, with gauge fields
Ap =@l Ap =l
Then "R, and £#R .. reduce to a pair of Maxwell equations
o"F, =0, 0"F,, =0,
where F,, and F,,, are the field strength of the Maxwell fields of 4, and 4,

respectively,



Zeroth copy

e Contracting £* with all the free indices of Rf},}, we make a scalar equation
R =0p =0,

® Monteiro, O’Connell and White identified ¢ as the biadjoint scalar field
[Cachazo,He,Yuan 2013]

’ /
—a

@(la — (pcac
where c* and ¢* are color index vectors for Lie group G1 and Gs.

* It can be understood as a linearized equation of motion for ®**'

aQ(I)aa’ o gfabCfalb’c’(bbb,q)cc, =0



® This shows that the generalized KS type solution can be written in terms of the
solutions of the two independent Maxwell equation and free scalar field

equations



Supersymmetric double copy

* On a flat background, Killing spinor equation for gravitino is given by

Ha[m (gf)ln]lu)’ymn&‘ =0
e contraction with a Killing vector ¢*
F.y"e=0.

® This is the typical BPS equation of N = 1 SYM. This shows the classical double

copy is still valid for supersymmetric backgrounds



Curved Background generalization

Recently Adamo, Casali, Mason, Nekova showed that BCJ color-kinematic

duality can be extended pp-wave background.

The classical double copy is well studied in a flat background, but curved
background generalization was not obvious. (only for some simple cases, (A)dS
background etc [Gonalez, Penco, Trodden, 2017], [Bahjat-Abbas, Luna, White,
2017])

The KLT relation in a curved background - It is not clear how to define scattering
amplitude in curved background in general. (time-dependent backgrounds,

nonasymptotic flat spaces)

Classical double copy in general background may give a clue, however, curved

background generalization is an open problem.



Generalization to heterotic supergravity

® Heterotic supergravity: relaxed null condition

Hyrx = Homw + o0 (Ky Ky + KgKy),

In terms of the heterotic supergravity fields

g =g + mpl(ul’lf) 7

- K@ 1 K@ 2 - =
=G — ——F D+ (—2 ) (1 Dl
G = G = gy ! )+4(1+—W(z-1)) (-

B”V:BH”+1+WZl(l[uvl_fA[ual )

Pe 1 K@
Apa = Apa —— o,
] \/_1+,mp(l l) H]

where [ is a null vector, but [ is not.

® |t is possible to couple U(1) gauge fields.



Examples



Chiral null model

A class of string backgrounds which have one conserved chiral null current on

the world sheet. [Horowitz, Tseytlin, 1994]

It is a generalization of the gravitational wave and fundamental string

background and is exact in the o expansion.

In the target space they have a null Killing vector and unbroken

supersymmetries.
Special cases are the Taub-NUT geometry and rotating black holes.
The explicit geometry is given by
ds? = F(z')du (dv + K(u,z)du + 2Vi(u, mi)dmi) +dz'da’
Buw = F(z'),  Bui = 2F(z")Vi(u,z'),

6= 6(u) + 5 log F(x')



¢ This fits into the generalized Kerr-Schild ansatz in a flat background.
ds? = dudd + de*dz’ + (F — 1)du (df; —ViVidu + mx") :

where 1
T/}:Y~/i+§8¢X, v="0—X(z,u),
Xau) = [ (K + g V) @

® The associated ¢ and null vectors I and [ can be easily read off

mp:F_l—l,

=1,

. 2F \2- -, - -~ 2F
L==(Fog) W b1 b=

and one can easily show that [ and [ are orthogonal with respect to the flat
background metric.



e | and [ satisfy the generalized geodesic constraint
0,1, =0, "0ul, =0
e Equations of motion imply, xf = ¢(u)
20 F ' =0,
—0'0; K +20'0,Vi +4F 1929 =0,
—487 Fji + 40,08, F ' = 0.
where fij = BJ/J — QJVZ

® This is the same exactly with the equation derived by Callan, Maldacena and
Peet.



F1-NS5 system

* To examine our formalism in the case of a curved background, let us consider
superposition of a number @ of fundamental strings and Qs of NS5 brane

system.
® Wrap a number Qs of NS5-branes on T° along z, - - - 29. The fundamental
strings wrap one of the directions of the torus along z® direction.
ds® = Fy ' (= dt® + da?) + Fs(da? + - + dad) + dzg + - - dad

e =g F;!

Hij, = eijmd'Fs, 0,5,k 1=1,2,3,4
where ¢;;1; is the flat space epsilon tensor and

167*a3Q,

Fr=1
1 + Va2

here V; is the volume of the 7.



e The NS5-brane background is treated as a background

d§® = —dt® + F5(da? + - +dad) + dad + - - dad
e_gé = gsF;1
Hijr = eijmd'Fs, 0,5,k 1=1,2,3,4
where we put tilde for all the background quantities.

® We can read off the corresponding generalized KS ansatz
p=F—-1, [=dt +das, l=—dt+dxs.
Note that I, and I,, are orthogonal to the background 3-form flux, H,,.,
W Hyup =1"Hyp =0,

and ¢ = L of
f=0.



Charged Black String

Internal momenta and axion charges are interchangeable via T-duality [Horne,
Horowitz, Steif, 1991]
Consider a 5-dimensional uncharged black string, Schwarzschild x S* .
1. Boost along the circle direction, y = Generates Off diagonal terms in metric
2. Take a T-duality along the y direction
The explicit geometry is given by
2\ -1 -1
ds® = (1+ 2";5 ) [— (1 - 27”7’)(1152 +dy2] + (1 - 277”) dr® + r2dQ,

C _ 2mS?
Byt:§(1+ e =1+ —

where C = cosha and S = sinh «, and « is a boost parameter.

2mS2>*1 7



® Uncharged black string solution:
-1
ds® = 7(1 - %)d? + (1 - %) dr? +72d0% + dy°.
T T

¢ Using the conventional Kerr-Schild ansatz for Schwarzschild BH in

Eddington-Finkelstein coordinate, we have

ds® = —di* + dr? + 72dQ® + dy® — ke (Al + dr)*, ke = -

where t =+ (r. —r) and r. is the tortoise coordinate defined

, dr*:dr(l—g)il.

mzr—i—ZMlog‘ﬁ—l

e Applying a boost along the y-direction, £ — ¢ cosh a + y sinh a,

y — tsinh a + y cosh o, we get
ds® = —df® + dr® + r?dQ® + dy® — Kp (Cdf + Sdy + dr)2 ,

and the null vectors are identical, [ = [ = Cdf + Sdy + dr.



® | et us take a T-duality along the y-direction. According to the Buscher’s rule for

the null vectors, the null vectors split into

=1 =Cdi + Sdy +dr, [ =1 =Cdi — Sdy + dr,

and [ -1 = —282. The corresponding metric and Kalb-Ramond field are

ds' = (1 + ZMSQ)H[ (1 - %)dt + 4]‘dede+ (1 + 2MC2)dr2 +dy2] |
B = (— % 4 2Mes (1+ 2]{52)71)&/\@— %(IJr 2]\152)71d7‘/\dy-

* Finally, we make a further coordinate transform ¢ = t + C(r. — r)

ds? = —di* + dr? + r*dQ” + dy* +W(Cdi+5dy+dr)(0df—de+dr)
2M . )
B = s (Cdi 4 Sdy + dr) A (Cdf — Sdy +dr).

¢ In this example, the DFT dilaton vanishes, thus the generalized KS field

equations become linear.



Conclusion

A novel solution generating technique in supergravities via generalized
Kerr-Schild method in DFT

Classical double copy including B,.,, and dilaton
Classical double copy in Killing spinor equation

Including RR sector, Introducing U(1) gauge fields using Kaluza-Klein reduction,

Gauged supergravity extension via Scherk-Schwarz reduction.
M-theory extension: Exceptional field theories (SL(5), SO(5,5), Es, E7 and Eg)

Finding the most general solutions in a flat or curved backgrounds and their
physical interpretations. Applications to AdS/CFT?

Scattering amplitude computation in the DFT language. Extension double copy
structure to curved backgrounds.



Thank you



