3 Lectures on "Vacua counting of 3d gauge theories"

AbSTRACT: This is a brief summary of 3 Lectures given in "Strings, Branes and Gauge Theories", APCTP (webpage : https://www.apctp.org/plan.php/sbg2019/2606)

Contents

1 Lecture 1/2: 3D topological quantum field theory 1
1.1 Axiomatic approach to 3d TQFT 1
1.2 Example: $u(1)_{k}$ pure CS theory 1
1.3 Example: $s u(2)_{k}$ pure CS theory 7
2 Lecture 3: Witten/Twisted index of 3d $\mathcal{N}=2$ abelian Chern-Simons Matter theories 7
2.1 Witten index $\mathcal{I}_{g=1}$ 8
2.2 Twisted index \mathcal{I}_{g} on general Σ_{g} 11

1 Lecture 1/2: 3D topological quantum field theory

In this section, we derive Verlinde formula (1.37) which counts ground states of a TQFT on general Riemann surface Σ_{g}. Refs : $[1,2]$

1.1 Axiomatic approach to 3d TQFT

Basic axioms of unitary quantum field theory:
Axiom I : an oriented closed Riemann surface $\Sigma_{g} \longrightarrow$ a Hilbert-space $\mathcal{H}\left(\Sigma_{g}\right)$.

Axiom II : homomorphism $\operatorname{MCG}\left(\Sigma_{g}\right) \rightarrow U\left(\mathcal{H}\left(\Sigma_{g}\right)\right): \varphi \longrightarrow \hat{\varphi}$

Axiom III : an oriented 3-manifold M with $\partial M=\Sigma_{g} \longrightarrow$ a partition vector $|M\rangle \in \mathcal{H}\left(\Sigma_{g}\right)$ an oriented 3-manifold M with $\partial M=\emptyset \longrightarrow$ a partition function $Z(M) \in \mathbb{C}$

Axiom IV : $Z\left(M=M_{1} \cup_{\varphi} M_{2}\right)=\left\langle M_{1}\right| \hat{\varphi}\left|M_{2}\right\rangle$

Axiom V : $Z\left(M=\Sigma_{g} \times{ }_{\varphi} S^{1}\right)=\operatorname{Tr}_{\mathcal{H}\left(\Sigma_{g}\right)} \hat{\varphi}$

1.2 Example: $u(1)_{k}$ pure CS theory

$u(1)_{k}$ Chern-Simons theory (A is purely imaginary 1-form field)

$$
\begin{equation*}
S=-\frac{i k}{4 \pi} \int A \wedge d A \tag{1.2}
\end{equation*}
$$

Phase-space on $\Sigma_{g=1}$ Classically, the phase space $\mathcal{P}\left(\Sigma_{g=1}\right)$ of the Chern-Simons theory on $\Sigma_{g=1}$ is given by

$$
\begin{align*}
\mathcal{P}\left(\Sigma_{g=1}\right) & =\left\{d A=0 \text { on } \Sigma_{g=1}\right\} /(\text { gauge quotient }) \\
& =\left\{(X, P): \frac{X}{i} \in \mathbb{R} /(2 \pi \mathbb{Z}), \frac{P}{i} \in \mathbb{R} /(2 \pi \mathbb{Z})\right\} \tag{1.3}\\
& =S^{1} \times S^{1}
\end{align*}
$$

More explicitly, the flat-connections can be written as

$$
\begin{equation*}
A_{\mathbb{T}^{2}}(X, P)=X d \theta_{1}+P d \theta_{2} \tag{1.4}
\end{equation*}
$$

Here θ_{1} and θ_{2} are two angular coordinates of the torus with periodicity 1 :

$$
\begin{equation*}
\theta_{1} \sim \theta_{1}+1, \quad \theta_{2} \sim \theta_{2}+1 \tag{1.5}
\end{equation*}
$$

Due to large gauge transformation $A \rightarrow A+\Lambda^{-1} d \Lambda$ with $\Lambda\left(\theta_{1}, \theta_{2}\right)=\exp \left(2 \pi i\left(a \theta_{1}+b \theta_{2}\right)\right)$, the (X, P) become periodic variables $(a, b \in \mathbb{Z})$,

$$
\begin{equation*}
\Lambda:(X, P) \rightarrow(X+2 \pi i a, P+2 \pi i b) \tag{1.6}
\end{equation*}
$$

1D quantum mechanical action for a particle moving around the phase space is

$$
\begin{align*}
& -\frac{i k}{4 \pi} \int d t d \theta_{1} d \theta_{2} A_{\mathbb{T}^{2}}(X(t), P(t)) \wedge d A_{\mathbb{T}^{2}}(X(t), P(t)) \\
& =-\frac{i k}{2 \pi} \int d t X(t) \frac{d P(t)}{d t} \tag{1.7}
\end{align*}
$$

From the action, we have following commutation relation

$$
\begin{equation*}
[\hat{X}, \hat{P}]=-\frac{2 \pi i}{k} \tag{1.8}
\end{equation*}
$$

Or equivalently, we have following symplectic form ω on the phase space $\mathcal{P}\left(\Sigma_{g=1}\right)$,

$$
\begin{equation*}
\omega=\frac{k}{2 \pi} d X \wedge d P \tag{1.9}
\end{equation*}
$$

Axiom I : $\mathcal{H}\left(\mathbb{T}^{2}\right)$ of $u(1)_{k}$ theory As a representation space of the commutation relation, we have following Hilbert-space ($=$ space of ground states, since every states have $E=0$ in a topological theory)

$$
\begin{equation*}
\mathcal{H}\left(\mathbb{T}^{2}\right)=\operatorname{Span}\left\{|X \in i \mathbb{R}\rangle: e^{2 \pi i \partial_{X}}|X\rangle=|X\rangle, e^{2 \pi i \partial_{P}}|X\rangle=|X\rangle\right\} \tag{1.10}
\end{equation*}
$$

In the above, we have take into account of the periodic property of X and P. Here $|X\rangle$ is the usual position-space basis,

$$
\begin{equation*}
\langle X| e^{\hat{X}}=\langle X| e^{X}, \quad\langle X| e^{\hat{P}}=\left\langle X-\frac{2 \pi i}{k}\right| \tag{1.11}
\end{equation*}
$$

Using the relation $\exp \left(2 \pi i \partial_{P}\right)=\exp (k \hat{X})$, we finally have

$$
\begin{align*}
\mathcal{H}\left(\mathbb{T}^{2}\right) & =\operatorname{Span}\left\{|X \in i \mathbb{R}\rangle:|X+2 \pi i\rangle=|X\rangle, e^{k X}|X\rangle=|X\rangle\right\}, \\
& =\operatorname{Span}\left\{|X\rangle: X \sim X+2 \pi i, X \in \frac{2 \pi i}{k} \mathbb{Z}\right\} \tag{1.12}
\end{align*}
$$

Set $X=\frac{2 \pi i n}{k}$,

$$
\begin{array}{ll}
\mathcal{H}\left(\mathbb{T}^{2}\right)=\operatorname{Span}\{|n\rangle: & n \in \mathbb{Z} /(k \mathbb{Z})\}, \\
\langle n| e^{\hat{X}}=\langle n| e^{\frac{2 \pi i n}{k}}, \quad\langle n| e^{\hat{P}}=\langle n-1| . \tag{1.13}
\end{array}
$$

Note that $\operatorname{dim} \mathcal{H}\left(\mathbb{T}^{2}\right)=|k|$. This is one way to see why the k should be an integer. The Hilbert-space is finite-dimensional since the phase space $\mathcal{H}\left(\mathbb{T}^{2}\right)$ is compact. In general, the dimension of a Hilbert-space obtained by quantizing a compact smooth phase space (\mathcal{P}, ω) of dimension $2 n$ is given by

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}=\left|\int_{\mathcal{P}}\left(\frac{\omega}{2 \pi}\right)^{n}\right| . \tag{1.14}
\end{equation*}
$$

One can easily check that

$$
\begin{equation*}
\left|\frac{1}{2 \pi} \int_{\mathcal{P}\left(\mathbb{T}^{2}\right)} \omega\right|=\left|\int \frac{k}{4 \pi^{2}} d X \wedge d P\right|=|k|=\operatorname{dim} \mathcal{H}\left(\mathbb{T}^{2}\right) . \tag{1.15}
\end{equation*}
$$

Let

$$
\begin{equation*}
W_{\theta_{1}}^{q}:=\exp \left(q \oint_{\theta_{1}} A\right)=e^{q X}, \quad W_{\theta_{2}}^{q}:=\exp \left(q \oint_{\theta_{2}} A\right)=e^{q P} . \tag{1.16}
\end{equation*}
$$

After quantization, the loop operators satisfy following commutation relation

$$
\begin{equation*}
\hat{W}_{\theta_{1}}^{q_{1}} \hat{W}_{\theta_{2}}^{q_{2}}=\exp \left(-\frac{2 \pi i q_{1} q_{2}}{k}\right) \hat{W}_{\theta_{2}}^{q_{2}} \hat{W}_{\theta_{1}}^{q_{1}} . \tag{1.17}
\end{equation*}
$$

The vacua are parametrized by vevs of the above non-local Wilson loop operators (there is no gauge-invariant local operators in the theory):

$$
\begin{equation*}
\langle n| \hat{W}_{\theta_{1}}^{q}|n\rangle=e^{\frac{2 \pi i q n}{k}} . \tag{1.18}
\end{equation*}
$$

From the matrix element computation $\langle n| \hat{W}^{q}|m\rangle$, we can check

$$
\begin{equation*}
\hat{W}_{\theta_{1}, \theta_{2}}^{q}=\hat{W}_{\theta_{1}, \theta_{2}}^{q+k} . \tag{1.19}
\end{equation*}
$$

Ex 1. Show that $\operatorname{dim} \mathcal{H}\left(\Sigma_{g}\right)=|k|^{g}$
Axiom II : $S L(2, \mathbb{Z})$ action on $\mathcal{H}\left(\mathbb{T}^{2}\right) \quad$ For $g=1$ case, the mapping class group is

$$
\begin{equation*}
M C G\left(\Sigma_{g=1}\right)=S L(2, \mathbb{Z})=\left\{S, T: S^{4}=1,(S T)^{3}=1\right\} \tag{1.20}
\end{equation*}
$$

Matrix elements of \hat{S} and \hat{T} are

$$
\begin{align*}
S_{n_{2}}^{n_{1}} & =\frac{1}{\sqrt{k}} e^{\frac{2 \pi i}{k} n_{1} n_{2}} \\
T_{n_{2}}^{n_{1}} & =\left\{\begin{array}{l}
\delta_{n_{2}}^{n_{1}} \exp \left(\frac{\pi i n^{2}}{k}-\frac{2 \pi i}{24}\right), \text { even } k \\
\delta_{n_{2}}^{n_{1}} \exp \left(\frac{\pi i\left(n^{2}-n\right)}{k}-\frac{2 \pi i}{24}\left(1-\frac{1}{k}\right)\right), \text { odd } k
\end{array}\right. \tag{1.21}
\end{align*}
$$

Ex 2. Show that

$$
\begin{align*}
& \hat{S}^{4}=1, \quad(\hat{S} \hat{T})^{3}=1 \\
& \hat{S}^{-1} e^{\hat{P}} \hat{S}=e^{\hat{X}}, \quad \hat{S}^{-1} e^{\hat{X}} \hat{S}=e^{-\hat{P}} \\
& \hat{T}^{-1} e^{\hat{X}} \hat{T}=e^{\hat{X}}, \quad \hat{T}^{-1} e^{\hat{P}} \hat{T}=\left\{\begin{array}{l}
e^{\hat{X}+\hat{P}}, \text { even } k \\
e^{\hat{X}} e^{\hat{P}}, \text { odd } k
\end{array}\right. \tag{1.22}
\end{align*}
$$

Axiom III : Chern-Simons Wave function $\left\langle n_{1}, \ldots, n_{h} \mid \Sigma_{0, h} \times S^{1}\right\rangle$ Let $\Sigma_{0, h}$ be a sphere with h holes. Then,

$$
\begin{equation*}
\partial\left(\Sigma_{0, h} \times S^{1}\right)=\left(\mathbb{T}^{2}\right)^{h} \Rightarrow \mathcal{H}\left(\partial\left(\Sigma_{0, h} \times S^{1}\right)\right)=\mathcal{H}\left(\mathbb{T}^{2}\right)^{\otimes h} \tag{1.23}
\end{equation*}
$$

According to Axiom III, we can consider a wave function $\left\langle n_{1}, \ldots, n_{h} \mid \Sigma_{0, h} \times S^{1}\right\rangle$. In pathintegral point of view, the wave-function can be interpreted as

$$
\begin{align*}
& \left\langle n_{1}, \ldots, n_{h} \mid \Sigma_{0, h} \times S^{1}\right\rangle=\left.\int \frac{D A}{(\text { gauge })}\right|_{b . c} e^{\frac{i k}{4 \pi} \int_{\Sigma_{0, h} \times S^{1}} A \wedge d A} \tag{1.24}\\
& \text { with boundary condition }: \exp \left(\oint_{\text {around } i \text {-th hole }} A\right)=e^{\frac{2 \pi n_{i}}{k}}
\end{align*}
$$

Or equivalently, the wave-function can be understood as ptn on $S^{2} \times S^{1}$ with insertion of h Wilson loop operators of charge $\left\{n_{i}\right\}$ along $\left\{(i\right.$-th hole $\left.) \times S^{1}\right\}$:

$$
\begin{equation*}
\left\langle n_{1}, \ldots, n_{h} \mid \Sigma_{0, h} \times S^{1}\right\rangle=\int \frac{D A}{\text { (gauge) }} e^{\frac{i k}{4 \pi} \int_{S^{2} \times S^{1}} A \wedge d A} \prod_{i=1}^{h} \exp \left(n_{i} \oint_{(i \text {-th hole }) \times S^{1}} A\right) \tag{1.25}
\end{equation*}
$$

Here we use the fact that

$$
(\text { Wilson loop of charge } n)=\left(\text { boundary condition fixing } \exp \left(\oint_{\text {around loop }} A\right)=e^{\frac{2 \pi n_{i}}{k}}\right)
$$

Ex 3. Check the above equivalence by solving the equation of motion with insertion of Wilson loop.

The wave-function, count the ground state of the Chern-Simons theory on S^{2} with external particles of charge $\left\{n_{i}\right\}$. Since the S^{2} is compact, the Hilbert-space is empty unless the total charge is zero. So, we expect that

$$
\begin{equation*}
\left\langle n_{1}, \ldots, n_{h} \mid \Sigma_{0, h}\right\rangle=\delta_{n_{1}+\ldots+n_{h}, 0} \tag{1.26}
\end{equation*}
$$

Axiom IV : $Z\left(S^{3}\right)=\left\langle\Sigma_{0,1}\right| \hat{S} \hat{T}^{L}\left|\Sigma_{0,1}\right\rangle \quad$ Topologically 3 -sphere S^{3} can be obtained by gluing two \mathbb{T}^{2}-boundaries of two solid tori $\left(\Sigma_{0,1} \times S^{1}\right)$ with a $S L(2, \mathbb{Z})$ twisted $S T^{L}$

$$
\begin{equation*}
S^{3}=\left(\Sigma_{0,1} \times S^{1}\right) \cup_{\varphi=S T^{L}}\left(\Sigma_{0,1} \times S^{1}\right) \tag{1.27}
\end{equation*}
$$

The resulting manifold is topologically always S^{3} regardless of the choice of L. Thus, according to the axiom IV (using Einstein's summation convention)

$$
\begin{align*}
& Z\left(S^{3}\right)=\left\langle\Sigma_{0,1}\right| \hat{S} \hat{T}^{L}\left|\Sigma_{0,1}\right\rangle=\left\langle\Sigma_{0,1} \mid n_{1}\right\rangle\left(S T^{L}\right)_{n_{2}}^{n_{1}}\left\langle n_{2} \mid \Sigma_{0,1}\right\rangle \\
& =\left(S T^{L}\right)_{n_{2}=0}^{n_{1}=0}=\left\{\begin{array}{l}
\frac{1}{\sqrt{k}} \exp \left(-\frac{2 \pi i}{24} L\right), \\
\frac{1}{\sqrt{k}} \exp \left(-\frac{2 \pi i}{24}\left(1-\frac{1}{k}\right) L\right) .
\end{array}\right. \tag{1.28}
\end{align*}
$$

The phase factor of the $Z\left(S^{3}\right)$ depends on the choice of L. In Witten's original paper, it is noticed that the $Z(M)$ generally have following phase ambiguity due to framing anomaly

$$
\begin{equation*}
\text { Framing ambiguity : } \exp \left(\left(\frac{2 \pi i d}{24}+o(1 / k)\right) \mathbb{Z}\right) \tag{1.29}
\end{equation*}
$$

Here d is the dimension of gauge group, $d=1$ for our case. One interesting physical quantity of a 3d topological theory is so called 'topological entanglement entropy', which is given as the free energy on S^{3}

$$
\begin{equation*}
\mathcal{S}_{T . E}=(\text { topological entanglement entropy })=-\log \left|Z\left(S^{3}\right)\right|=\frac{1}{2} \log k \tag{1.30}
\end{equation*}
$$

For $k>1$, the theory has non-trivial topological entanglement entropy.

Ex 4. Prove that for any unitary TQFT, $\mathcal{S}_{T . E} \geq 0$ (Hint: use the fact that $Z\left(S^{3}\right)=$ $\langle 0| \hat{S}|0\rangle$ and the unitarity of $\left.\hat{S}, \quad|0\rangle=\left|\Sigma_{0,1}\right\rangle \in \mathcal{H}\left(\mathbb{T}^{2}\right)\right)$

Axiom V : Verlinde formula Let

$$
\begin{aligned}
S^{3} \backslash\left(\bigcirc^{\otimes h}\right):= & (3 \text {-manifold obtained by } \\
& \text { removing tubular neighborhoods of } \left.h \text { unknotted trivial knots from } S^{3}\right) .
\end{aligned}
$$

The manifold has $(\mathbb{T})^{h}$ boundary and the its wave-function $\left\langle n_{1}, \ldots, n_{h} \mid S^{3} \backslash\left(\bigcirc^{\otimes h}\right)\right\rangle$ is the CS pth on S^{3} with insertions of h Wilson loops along trivial knot (\bigcirc) of charge $\left\{n_{i}\right\}$. There are two independent ways of computing the wave-function.

First method : Using the fact that $S^{3} \backslash\left(\bigcirc^{\otimes h}\right)=\left(\Sigma_{0,2} \times S^{1}\right) \times_{\varphi=S}\left(\Sigma_{0, h} \times S^{1}\right)$ (we are gluing a torus boundary of $\Sigma_{0,2} \times S^{1}$ to a torus boundary of $\Sigma_{0, h} \times S^{1}$ twisted by S),

$$
\begin{align*}
& \left\langle n_{1}, \ldots, n_{h} \mid S^{3} \backslash\left(\bigcirc^{\otimes h}\right)\right\rangle \\
& =\sum_{m_{1}, m_{2}}\left\langle\Sigma_{0,2} \mid n_{1}, m_{1}\right\rangle S_{m_{2}}^{m_{1}}\left\langle m_{2}, n_{2}, \ldots, n_{s} \mid \Sigma_{0, h} \times S^{1}\right\rangle \tag{1.31}\\
& =\sum_{m} S_{-m}^{n_{1}}\left\langle m, n_{2}, \ldots, n_{h} \mid \Sigma_{0, h} \times S^{1}\right\rangle
\end{align*}
$$

Second method : For simplicity, we focus on the case when $h=3$. From figure 1, we expect that

$$
\begin{align*}
& Z\left(S^{3} \backslash\left(\bigcirc_{1} \cup \bigcirc_{2}\right)\right) Z\left(S^{3} \backslash\left(\bigcirc_{2} \cup \bigcirc_{3}\right)\right) \\
& =Z\left(S^{3} \backslash\left(\bigcirc_{1} \cup \bigcirc_{2} \cup \bigcirc_{3}\right)\right) Z\left(S^{3} \backslash \bigcirc_{2}\right) \tag{1.32}
\end{align*}
$$

Z[inchac

Figure 1. Graphical understanding of $Z\left(S^{3} \backslash\left(\bigcirc_{1} \cup \bigcirc_{2}\right)\right) Z\left(S^{3} \backslash\left(\bigcirc_{2} \cup \bigcirc_{3}\right)\right)=Z\left(S^{3} \backslash\left(\bigcirc_{1} \cup \bigcirc_{2} \cup\right.\right.$ $\left.\left.\bigcirc_{3}\right)\right) Z\left(S^{3} \backslash \bigcirc_{2}\right)$

Thus (no summation on n_{2})

$$
\begin{align*}
& \left\langle n_{1}, n_{2}, n_{3} \mid S^{3} \backslash\left(\bigcirc_{1} \cup \bigcirc_{2} \cup \bigcirc_{3}\right)\right\rangle \\
& =\frac{\left\langle n_{1}, n_{2}, \mid S^{3} \backslash\left(\bigcirc_{1} \cup \bigcirc_{2}\right)\right\rangle\left\langle n_{2}, n_{3}, \mid S^{3} \backslash\left(\bigcirc_{2} \cup \bigcirc_{3}\right)\right\rangle}{\left\langle n_{2} \mid S^{3} \backslash \bigcirc_{2}\right\rangle} \tag{1.33}\\
& \left.=\frac{S_{n_{2}}^{n_{1}} S_{n_{3}}^{n_{2}}}{S_{0}^{n_{2}}} \text { (or its permutations on } n_{1}, n_{2}, n_{3}\right)
\end{align*}
$$

Comparing the two computation for $h=3$, we have (using the symmetric property of S-matrix)

$$
\begin{align*}
& \sum_{m} S^{n_{1}}{ }_{-m}\left\langle m, n_{2}, n_{3} \mid \Sigma_{0,3} \times S^{1}\right\rangle=\frac{S_{n_{1}}^{n_{2}} S_{n_{1}}^{n_{3}}}{S_{0}^{n_{1}}} \\
& \Rightarrow\left\langle n_{1}, n_{2}, n_{3} \mid \Sigma_{0,3} \times S^{1}\right\rangle=\sum_{s} \frac{S_{s}^{n_{1}} S_{s}^{n_{2}} S_{s}^{n_{3}}}{S_{0}^{s}} \text { (Verlinde formula) } \tag{1.34}
\end{align*}
$$

In the second line, we use

$$
\begin{equation*}
\sum_{n} S_{-m}^{n} S_{n}^{l}=\delta_{m}^{l} \tag{1.35}
\end{equation*}
$$

From the fact that $\Sigma_{g=2} \times S^{1}=\left(\Sigma_{0,3} \cup_{\varphi=I d} \Sigma_{0,3}\right)$, we have

$$
\begin{align*}
& Z\left(\Sigma_{g=2} \times S^{1}\right)=\left\langle\Sigma_{0,3} \mid \Sigma_{0,3}\right\rangle \\
& =\sum_{s, s^{\prime}, n_{1}, n_{2}, n_{3}} \frac{S_{s}^{n_{1}}\left(S_{s^{\prime}}^{n_{1}}\right)^{*} S_{s}^{n_{2}}\left(S_{s^{\prime}}^{n_{2}}\right)^{*} S_{s}^{n_{3}}\left(S_{s^{\prime}}^{n_{3}}\right)^{*} S_{s}^{n_{4}}\left(S_{s^{\prime}}^{n_{4}}\right)^{*}}{S_{0}^{s}\left(S_{0}^{s^{\prime}}\right)^{*}} \tag{1.36}\\
& =\sum_{s, s^{\prime}} \frac{\left(\delta_{s^{\prime}}^{s}\right)^{4}}{S_{0}^{s}\left(S_{0}^{s^{\prime}}\right)^{*}}=\sum_{s} \frac{1}{\left(S_{0}^{s}\right)^{2}} \cdot \quad \text { (Verlinde formula) }
\end{align*}
$$

Repeating the above computation for general g, we have following formula

$$
\begin{equation*}
Z\left(\Sigma_{g} \times S^{1}\right)=\sum_{s} \frac{1}{\left(S_{0}^{s}\right)^{2(g-1)}}=\sum_{s}\left(H_{s}\right)^{g-1} \tag{1.37}
\end{equation*}
$$

Here, we introduce 'handle gluing operator'

$$
\begin{equation*}
H_{s}:=\frac{1}{\left(S_{0}^{s}\right)^{2}} \tag{1.38}
\end{equation*}
$$

For our case,

$$
\begin{equation*}
H_{s}=k, \quad \Rightarrow Z\left(\Sigma_{g} \times S^{1}\right)=\sum_{s=0}^{k-1} k^{g-1}=k^{g} \tag{1.39}
\end{equation*}
$$

It is compatible with the fact that $\operatorname{dim} \mathcal{H}\left(\Sigma_{g}\right)=k^{g}$.

Ex 5. Show that $u(1)_{k_{1}} \times u(1)_{k_{2}}$ theory is different from $u(1)_{s=k_{1} k_{2}}$ theory. (Find a physical observable which distinguishes two topological theories.)

1.3 Example: $s u(2)_{k}$ pure CS theory

In the case

$$
\begin{equation*}
\mathcal{H}\left(\mathbb{T}^{2}\right)=\{|j\rangle: j=0, \ldots, k\} \tag{1.40}
\end{equation*}
$$

S, T matrices are

$$
\begin{align*}
& S^{j} \tag{1.41}\\
& j^{\prime}=\sqrt{\frac{2}{k+2}} \sin \frac{\pi(j+1)\left(j^{\prime}+1\right)}{k+2}, \tag{1.42}\\
& T_{j^{\prime}}^{j}=\delta^{j}{ }_{j^{\prime}}(\text { phase factor depending } j)
\end{align*}
$$

Verlinde Formula

$$
\begin{equation*}
\operatorname{dim}\left(\Sigma_{g}\right)=\left(\frac{k+2}{2}\right)^{g-1} \sum_{j}\left(\sin \frac{\pi(j+1)}{k+2}\right)^{2-2 g} \tag{1.43}
\end{equation*}
$$

Ex 6. Check that the $\operatorname{dim}\left(\Sigma_{g}\right)$ is always natural number

2 Lecture 3: Witten/Twisted index of 3d $\mathcal{N}=2$ abelian Chern-Simons Matter theories

Basic multiplets/interactions $(3 \mathrm{~d} \mathcal{N}=2$ multiplets $)=\left(S^{1}\right.$-reduction of $4 \mathrm{~d} \mathcal{N}=1$ multiplets)
Chiral multiplet $\Phi=\Phi+\theta \psi+F \theta^{2}, \quad$ Vector multiplet $V=2 i \sigma \theta \bar{\theta}+2 \theta \gamma^{\mu} \bar{\theta} A_{\mu}+\theta^{2} \bar{\theta}^{2} D$
Bosonic action : $\mathcal{L}=\mathcal{L}_{\text {maxwell }}+\mathcal{L}_{C S}+\mathcal{L}_{\Phi}$

$$
\begin{align*}
& \mathcal{L}_{\text {maxwell }}=-\frac{1}{e^{2}} F_{\mu \nu} F^{\mu \nu}+\frac{1}{e^{2}} D^{2}+(\text { fermions }) \\
& \mathcal{L}_{C S}=\frac{k}{4 \pi}(A \wedge d A+2 D \sigma)+\text { (fermions) } \tag{2.1}\\
& \mathcal{L}_{\Phi}=\int d^{2} \theta d^{2} \bar{\theta} \Phi^{\dagger} e^{-q V-V^{b \cdot g}} \Phi=-D_{\mu} \Phi D^{\mu} \Phi^{\dagger}-q^{2} \sigma^{2}|\Phi|^{2}-q D|\Phi|^{2}+\text { (fermions) }
\end{align*}
$$

Supersymmetric deformations
real mass m coupled to a flavor symmetry : $\left\langle V^{\text {b.g }}\right\rangle=2 i m \theta \bar{\theta}$
FI parameter ζ ($=$ real mass for $u(1)_{J}$ topological symmetry) : $\frac{1}{2 \pi} \zeta D$
Superpotential deformation : $\int d^{2} \theta \mathcal{W}+(c . c)$
(gauge invariant chiral primary multiplet \mathcal{W})
The superpotential deformations and real mass (or FI parameter) deformations are mutually exclusive if the superpotential deformation breaks flavor symmetries associated to the real masses.

2.1 Witten index $\mathcal{I}_{g=1}$

Witten index of $3 \mathrm{~d} \mathcal{N}=2$ theories The index is defined to be

$$
\begin{equation*}
\text { Witten index } \mathcal{I}_{g=1}=Z_{\Sigma_{g=1} \times S^{1}}=\operatorname{Tr}_{\mathcal{H}\left(\Sigma_{g=0} ; m, \zeta, \mathcal{W}\right)}(-1)^{F} e^{-\beta \hat{H}} \tag{2.3}
\end{equation*}
$$

In the path-integral on $\Sigma_{g=1} \times S^{1}$, periodic boundary conditions are imposed for boson/fermionic fields along the $3 S^{1}$-directions in $\Sigma_{g=1} \times S^{1}=\mathbb{T}^{3}$. The index gets contributions only from ground states $(\hat{H}|0\rangle=0)$ since there is cancellation between $([\hat{H}, Q]=0)$

$$
\begin{equation*}
|E\rangle \text { and } \hat{Q}|E\rangle, \quad \text { if } \hat{H}|E\rangle=\left(Q Q^{\dagger}+Q^{\dagger} Q\right)|E\rangle \neq 0 . \tag{2.4}
\end{equation*}
$$

So, the index is actually independent on β. The index is well-defined only when the Hilbertspace $\mathcal{H}\left(\Sigma_{g=0} ; m ; \zeta, \mathcal{W}\right)$ has a mass gap. Upon a generic choice of supersymmetric deformations (m, ζ, \mathcal{W}), 3d gauge theory has a mass gap. The index is invariant under continuous changes of (m, ζ, \mathcal{W}) unless the spectrum becomes gapless during the change. Since the real mass m is real and there could be massless fields when $m=0$, one may expect that there could be a wall crossing of the Witten index under the sign change of m. But actually it turns out that the $3 \mathrm{~d} \mathcal{N}=2$ Witten index does not experience wall-crossing. Upon a compactification along S^{1} of radius R, a real scalar σ in the vector multiplet becomes a complex scalar $\Sigma=R(\sigma+i a)$ combined with gauge holonomy $e^{i 2 \pi R a}=\exp \oint_{S^{1}} A$. So the real mass parameter m (vev of σ in a background vector multiplet coupled to a flavor symmetry) also becomes complex variable $m_{\mathbb{C}}$ upon S^{1}-compactification and one can continously connect $\operatorname{Re}\left[m_{\mathbb{C}}\right]>0$ to $\operatorname{Re}\left[m_{\mathbb{C}}\right]<0$ without crossing the singular point at $m_{\mathbb{C}}=0$.

Two methods of computing the Witten index, which always give the same answer.
Method I : method used in [3, 4] Basic strategy is

$$
\begin{align*}
& \text { (a } \left.3 d \mathcal{N}=2 \text { gauge theory) } \xrightarrow{\bigoplus_{i \in\{\text { Semiclassical SUSY vacua }\}} \text { SUSY deformations }(m, \zeta, \mathcal{W})} \text { (gapped theory described by a TQFT } \mathcal{T}_{i}\right)
\end{align*}
$$

then,

$$
\mathcal{I}_{g=1}(\mathrm{a} 3 d \mathcal{N}=2 \text { gauge theory })=\sum_{i} Z\left(\mathrm{TQFT} \mathcal{T}_{i} \text { on } \Sigma_{g=1} \times S^{1}\right) .
$$

Example: $U(1)_{k \in \mathbb{Z}+\frac{q^{2}}{2}}+(\Phi$ of charge $q \neq 0) \quad$ The only supersymmetric deformation of the theory is the FI parameter deformation. The only flavor symmetry is $u(1)$ topological symmetry, usually denoted as $u(1)_{J}$, associate to the dynamical $U(1)$ gauge field. The FI parameter can be considered as real mass for the $u(1)_{J}$ symmetry. There is no gaugeinvariant chiral primary operator in the theory. The semi-classical effective potential of the theory is

$$
\begin{equation*}
V_{e f f}=\frac{e_{e f f}^{2}}{32 \pi^{2}}\left(2 \pi q|\Phi|^{2}-\zeta-k_{e f f} \sigma\right)^{2}+q^{2} \sigma^{2}|\Phi|^{2} \tag{2.6}
\end{equation*}
$$

1-loop shift of Chern-Simons level from integrating out massive fermion ψ :

$$
\begin{equation*}
k_{e f f}=k+\frac{1}{2} q^{2} \frac{m_{\psi}}{\left|m_{\psi}\right|}=k+\frac{1}{2} q^{2} \frac{q \sigma}{|q \sigma|} . \tag{2.7}
\end{equation*}
$$

Quantization of k :

$$
\begin{equation*}
k_{e f f} \in \mathbb{Z}, \quad k \in \mathbb{Z}+\frac{1}{2} q^{2} \tag{2.8}
\end{equation*}
$$

Semiclassical vacua (we assume $k>\frac{1}{2} q^{2}$ and $q>0$):

$$
\begin{align*}
\text { when } \zeta>0, \quad\langle\sigma\rangle=-\frac{\zeta}{k_{e f f}}, \quad\langle\Phi\rangle=0 \Rightarrow \mathcal{T}_{1}^{\zeta>0}=\left(\text { pure } u(1)_{k_{e f f}=k-\frac{q^{2}}{2}} \text { theory }\right) \\
\langle\sigma\rangle=0, \quad|\langle\Phi\rangle|=\sqrt{\frac{\zeta}{2 \pi q}} \Rightarrow \mathcal{T}_{2}^{\zeta>0}=\text { (pure } \mathbb{Z}_{q} \text { gauge theory) } \tag{2.9}
\end{align*}
$$

$$
\text { when } \zeta<0, \quad\langle\sigma\rangle=-\frac{\zeta}{k_{\text {eff }}}, \quad\langle\Phi\rangle=0 \Rightarrow \mathcal{T}_{1}^{\zeta<0}=\left(\text { pure } u(1)_{k_{e f f}=k+\frac{q^{2}}{2}} \text { theory }\right)
$$

So, the Witten index is (when $k>\frac{1}{2} q^{2}$ and $q>0$)

$$
\begin{align*}
& \mathcal{I}_{g=1}^{\zeta>0}=Z\left(\mathcal{T}_{1}^{\zeta>0} \text { on } \Sigma_{g=1} \times S^{1}\right)+Z\left(\mathcal{T}_{2}^{\zeta>0} \text { on } \Sigma_{g=1} \times S^{1}\right)=\left(k-\frac{q^{2}}{2}\right)+q^{2}=k+\frac{q^{2}}{2}, \\
& \mathcal{I}_{g=1}^{\zeta<0}=Z\left(\mathcal{T}_{1}^{\zeta<0} \text { on } \Sigma_{g=1} \times S^{1}\right)=k+\frac{q^{2}}{2} . \tag{2.10}
\end{align*}
$$

Here we use the fact that

$$
\begin{align*}
& Z\left(\text { pure } G \text { (dicrete) gauge theory on } \Sigma_{g} \times S^{1}\right) \\
& =\operatorname{dim} \mathcal{H}_{\Sigma_{g}}(\text { pure } G \text { gauge theory) } \\
& =\sharp\left(\mathcal{P}\left(\Sigma_{g}\right) \text { of pure } G \text { gauge theory) } \quad \text { (a generalization of (1.14) when } \mathcal{P}\right. \text { is a finite set) } \\
& =\sharp\left(\text { flat } G \text { connections on } \Sigma_{g}\right) \\
& =\sharp\left(\operatorname{Hom}\left[\pi_{1}\left(\Sigma_{g}\right) \rightarrow G\right] /(\text { conj })\right) . \\
& \Rightarrow \\
& \left.Z \text { (pure } G=\mathbb{Z}_{q} \text { gauge theory on } \Sigma_{g} \times S^{1}\right) \\
& =\sharp\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g} \in \mathbb{Z}_{q}:\left[a_{1}, b_{1}\right] \ldots\left[a_{g}, b_{g}\right]=1\right\} \\
& =q^{2 g} . \tag{2.11}
\end{align*}
$$

In the same way, one can check that

$$
\mathcal{I}_{g=1}\left(u(1)_{k}+\Phi(\text { of charge } q)\right)=\left\{\begin{array}{ll}
|k|+\frac{q^{2}}{2}, & \text { for }|k|>\frac{q^{2}}{2} \tag{2.12}\\
q^{2}, & \text { for }|k| \leq \frac{q^{2}}{2}
\end{array} .\right.
$$

Method II : Extremizing twisted superpotential Upon a compactification along S^{1} of radius R,

$$
\begin{equation*}
3 \mathrm{~d} \mathcal{N}=2 \text { vector multiplet } V \longrightarrow 2 \mathrm{~d} \mathcal{N}=(2,2) \text { vector } V \tag{2.13}
\end{equation*}
$$

In $2 \mathrm{~d} \mathcal{N}=(2,2)$ theory, there is a following additional supersymmetric deformation term for vector multiplet:

$$
\begin{equation*}
\int d \theta_{1} d \bar{\theta}_{2} \widetilde{\mathcal{W}}(\Sigma)+(c . c) \ni\left(\frac{\partial \widetilde{\mathcal{W}}}{\partial \Sigma}+c . c\right) R D \tag{2.14}
\end{equation*}
$$

Here Σ is a twisted chiral multiplet constructed from V

$$
\begin{align*}
& \Sigma=R \bar{D}_{1} D_{2} V=\Sigma+\ldots+\theta_{1} \bar{\theta}_{2} R\left(D+i F_{t x}\right), \tag{2.15}\\
& \Sigma:=R(\sigma+i a), \quad \Sigma \sim \Sigma+i
\end{align*}
$$

$\widetilde{\mathcal{W}}$ is a holomorphic function called twisted superpotential. To compute the effective twisted superpotential, we need to compute the term which contain D.

- Classical Chern-Simons term : $\mathcal{L} \ni 2 \pi R \frac{k}{2 \pi} D \sigma=\frac{k}{2 \pi}(R D)(\Sigma+c . c)$

$$
\Rightarrow \partial_{\Sigma} \widetilde{\mathcal{W}}_{\text {tree }}=\frac{k}{2 R} \Sigma \quad \Rightarrow \quad \widetilde{\mathcal{W}}_{\text {tree }}=\frac{k}{4 R} \Sigma^{2}
$$

- 1-loop from Φ of charge $q: \mathcal{L} \ni-q D \sum_{n \in \mathbb{Z}} \int \frac{d^{2} k_{E}}{2 \pi} \frac{1}{k_{E}^{2}+R^{-2}(n+q R a)^{2}+q^{2} \sigma^{2}}$

$$
\begin{gather*}
=\frac{q D}{4 \pi} \log \left(2 \pi q \Sigma \prod_{n \neq 0}(1+i q \Sigma / n)\right)+(\Sigma \leftrightarrow \bar{\Sigma}) \tag{2.16}\\
=\frac{q D}{4 \pi} \log (2 \sinh q \pi \Sigma)+(\Sigma \leftrightarrow \bar{\Sigma}) \\
\Rightarrow \partial_{\Sigma} \widetilde{\mathcal{W}}_{\text {loop }}=\frac{q}{4 \pi R} \log (2 \sinh q \pi \Sigma) \quad \Rightarrow \quad \widetilde{\mathcal{W}}_{\text {loop }}=\frac{q^{2}}{8 R} \Sigma^{2}+\frac{1}{8 \pi^{2} R} \operatorname{Li}_{2}\left(e^{-2 \pi q \Sigma}\right)
\end{gather*}
$$

The 1-loop comes from a Feynman diagram in figure 2. After rescaling $Z:=2 \pi \Sigma(Z \sim$ $Z+2 \pi i)$ and $\widetilde{\mathcal{W}} \rightarrow 8 \pi^{2} R \widetilde{\mathcal{W}}$

$$
\begin{equation*}
\widetilde{\mathcal{W}}_{\text {tree }}=\frac{k}{2} Z^{2}, \quad \widetilde{\mathcal{W}}_{\text {loop }}=\operatorname{Li}_{2}\left(e^{-q Z}\right)+\frac{q^{2}}{4} Z^{2} \tag{2.17}
\end{equation*}
$$

Witten index can be computed by counting solutions extremizing the twisted superpotential w.r.t $Z=2 \pi \Sigma=2 \pi R(\sigma+i a)$ in a dynamical vector multiplet V :

$$
\begin{equation*}
(\text { Witten index })=\sharp\left\{z:\left.\exp \left(\frac{\partial \widetilde{\mathcal{W}}(Z)}{\partial Z}\right)\right|_{Z \rightarrow \log z}=1\right\} . \tag{2.18}
\end{equation*}
$$

Figure 2. 1-loop contributions to $\widetilde{\mathcal{W}}$ from infinitely many KK-modes $\left\{\Phi_{n}\right\}, \Phi(t, x, y)=$ $\frac{1}{\sqrt{2 \pi R}} \sum_{n} \Phi_{n}(t, x) e^{\frac{i n y}{R}}$, of mass $\left\{m_{n}^{2}=R^{-2}(n+q R a)^{2}+q^{2} \sigma^{2}\right\}$

Ex 7. We count solutions in terms of $z:=e^{Z}$ since Z is a $(2 \pi i)$-periodic variable due to a large gauge transformation along S_{R}^{1}. Then, why do we solve $\exp \left(\partial_{Z} \widetilde{\mathcal{W}}\right)=1$ instead of $\partial_{Z} \widetilde{\mathcal{W}}=0$? (Hint: consider a complexified FI parameter $U:=2 \pi \zeta_{\mathbb{C}}$ which is also a (2mi)periodic variable. As a side remark, we do not need to extremize the twisted superpotential w.r.t U since it is in a non-dynamical vector multiplet coupled to a flavor $u(1)_{J}$ symmetry.)

Example : $U(1)_{k}+(\Phi$ of charge $q)$ The twisted superpotential of the theory is

$$
\begin{align*}
& \widetilde{\mathcal{W}}=\operatorname{Li}_{2}\left(e^{-q Z}\right)+\frac{k+\frac{1}{2} q^{2}}{2} Z^{2} \\
& \left.\Rightarrow \exp \left(\frac{\partial \widetilde{\mathcal{W}}(Z)}{\partial Z}\right)\right|_{Z \rightarrow \log z}=\left(1-\frac{1}{z^{q}}\right)^{q} z^{k+\frac{1}{2} q^{2}} \tag{2.19}\\
& \Rightarrow(\text { Witten index })=\sharp\left\{z:\left(z^{q}-1\right)^{q} z^{k+\frac{1}{2} q^{2}}=z^{q^{2}}\right\}=\left\{\begin{array}{ll}
|k|+\frac{q^{2}}{2}, & \text { for }|k|>\frac{q^{2}}{2} \\
q^{2}, & \text { for }|k| \leq \frac{q^{2}}{2}
\end{array} .\right.
\end{align*}
$$

2.2 Twisted index \mathcal{I}_{g} on general Σ_{g}

Topological twisting on $\Sigma_{g} \quad 3 \mathrm{~d} \mathcal{N}=2$ theory has $U(1)$ R-symmetry under which supercharges have charge ± 1. The supercharge is also charged under local Lorentz transformation $U(1)_{\Sigma}=S O(2)_{\Sigma}$.

	$U(1)_{R}$	$U(1)_{\Sigma}$
$Q_{\epsilon_{1}, \epsilon_{2}}$	$\epsilon_{1} \in\{+1,-1\}$	$\epsilon_{2} \in\{+1,-1\}$

To preserve supersymmetry on Σ_{g}, we turn on background gauge field coupled to $U(1)_{R}$ symmetry

$$
\begin{equation*}
\text { topological twisting : } A_{U(1)_{R}}^{b . g}=\omega\left(\text { spin-connection on } \Sigma_{g}\right) \tag{2.20}
\end{equation*}
$$

For $g \neq 1$, the topological twisting preserves 2 supercharges $\left(Q_{+1,-1}\right.$ and $\left.Q_{-1,+1}\right)$ out of 4 $Q \mathrm{~s}$. Twisted index \mathcal{I}_{g} is defined as ${ }^{1}$

$$
\begin{equation*}
\text { Twisted index } \mathcal{I}_{g}=Z_{\Sigma_{g} \times S^{1}}=\operatorname{Tr}_{\mathcal{H}\left(\Sigma_{g}\right)}(-1)^{R} e^{-\beta \hat{H}} \tag{2.21}
\end{equation*}
$$

[^0]From a localization [5, 6], the twisted index can be expressed as

$$
\begin{equation*}
\mathcal{I}_{g}=\sum_{z:\left.\exp \left(\frac{\partial \widetilde{\mathcal{W}}(Z)}{\partial Z}\right)\right|_{z=\log z}=1}(H(z))^{g-1}, \tag{2.22}
\end{equation*}
$$

$$
H(z) \text { : Handle gluing operator }
$$

One way to obtain the handle gluing operator is considering $b^{2} \rightarrow 0$ limit of S_{b}^{3} partition function [7]. S_{b}^{3} partition function can be computed using following rule ($\hbar:=2 \pi i b^{2}$)

$$
\begin{align*}
& \text { a chiral } \Phi \text { of charge } q: \psi_{\hbar}(q Z) e^{\frac{q^{2} Z^{2}}{4 \hbar}} \\
& \text { Chern-Simons level } k: \exp \left(k \frac{Z^{2}}{2 \hbar}\right), \tag{2.23}\\
& U(1) \text { gauing }: \int \frac{d Z}{\sqrt{2 \pi \hbar}}
\end{align*}
$$

Here $\psi_{\hbar}(Z)$ is a special function called 'quantum dilogarithm' (QDL).

$$
\begin{align*}
& \psi_{\hbar=2 \pi i b^{2}}(Z):=\prod_{r=1}^{\infty} \frac{1-q^{r} e^{-Z}}{1-\tilde{q}^{-r+1} e^{-\tilde{Z}}} \tag{2.24}\\
& q:=e^{2 \pi i b^{2}}, \quad \tilde{q}:=e^{2 \pi i b^{-2}}, \quad \tilde{Z}=\frac{1}{b^{2}} Z .
\end{align*}
$$

In the limit $\hbar \rightarrow 0$, the QDL function asymptotically behaves as

$$
\begin{equation*}
\log \psi_{\hbar}(Z) \xrightarrow{\hbar \rightarrow 0} \sum_{n=0}^{\infty} \frac{B_{n} \hbar^{n-1}}{n!} \operatorname{Li}_{2-n}\left(e^{-Z}\right) . \tag{2.25}
\end{equation*}
$$

Here B_{n} is the n-th Bernoulli number with $B_{1}=1 / 2$. Using the localization rule, the S_{b}^{3} ptn of a $3 \mathrm{~d} \mathcal{N}=2 U(1)$ gauge theory can be written as

$$
\begin{align*}
& Z_{S_{b}^{3}}=\int \frac{d Z}{\sqrt{2 \pi \hbar}} \mathcal{I}(Z ; \hbar) \\
& \log \mathcal{I}(Z ; \hbar) \xrightarrow{\hbar \rightarrow 0} \frac{1}{\hbar} \mathcal{W}_{0}(Z)+\mathcal{W}_{1}(Z)+\ldots \hbar^{n-1} \mathcal{W}_{n}(Z)+\ldots \tag{2.26}
\end{align*}
$$

Then,

$$
\begin{align*}
& \widetilde{\mathcal{W}}(Z)=\mathcal{W}_{0}(Z) \\
& H(z)=\left.\frac{\partial^{2} \mathcal{W}_{0}(Z)}{\partial Z \partial Z} \exp \left(-2 \mathcal{W}_{1}(Z)\right)\right|_{Z=\log z} \tag{2.27}
\end{align*}
$$

Example: Pure $\mathcal{N}=2 u(1)_{k}$ theory In the case, the squashed 3-sphere ptn is

$$
\begin{align*}
& Z_{S_{b}^{3}}\left(\text { pure } u(1)_{k}\right)=\int \frac{d Z}{\sqrt{2 \pi \hbar}} e^{\frac{k Z^{2}}{2 \hbar}} \\
& \Rightarrow \mathcal{W}_{0}=\frac{k}{2} Z^{2}, \quad \mathcal{W}_{n \geq 1}=0 \Rightarrow H(z)=k . \tag{2.28}\\
& \Rightarrow \mathcal{I}_{g}=\sum_{z: z^{k}=1} k^{g-1}=k^{g}
\end{align*}
$$

The theory is actually equal to the pure bosonic $u(1)_{k}$ theory. The result is compatible with the result in (1.39). In the example, the $S_{b}^{3}-\mathrm{ptn}$ can be exactly computable

$$
\begin{equation*}
\mathcal{F}_{b}:=-\log \left|Z_{S_{b}^{3}}\right|=\frac{1}{2} \log |k| . \tag{2.29}
\end{equation*}
$$

Since the theory is a topological theory, the free-energy is b-independent and the free-energy is compatible with the result in (1.30).

Example : $u(1)_{k}+(\Phi$ of charge 1$)$ theory The S_{b}^{3}-ptn is given by

$$
\begin{equation*}
Z_{S_{b}^{3}}\left(u(1)_{k}+(\Phi \text { of charge } 1)\right)=\int \frac{d Z}{\sqrt{2 \pi \hbar}} e^{\frac{\left(k+\frac{1}{2}\right) Z^{2}-2 Z\left(U+\nu\left(i \pi+\frac{\hbar}{2}\right)\right)}{2 \hbar}} \psi_{\hbar}(Z) \tag{2.30}
\end{equation*}
$$

Here, we introduce a real mass parameter (i.e. FI parameter) U associated to the $U(1)_{J}$ topological symmetry. The FI-term can be thought as mixed CS term between $U(1)_{\text {gauge }}$ and $U(1)_{J}$. We also introduce a R-symmetry mixing parameter ν. To preserve some supersymmetry on S_{b}^{3} geometry, we need to turn on background gauge field coupled to a $U(1)_{R}$ symmetry. Choice of the $U(1)_{R}$-symmetry is not unique but can be mixed with flavor symmetry of the theory, $U(1)_{J}$ in this example:

$$
\begin{equation*}
u(1)_{R}^{\nu}=u(1)_{R}^{\nu=0}+\nu u(1)_{J} \tag{2.31}
\end{equation*}
$$

The $S_{b}^{3}-$ ptn depends on the mixing parameter ν.

$$
\begin{equation*}
\nu \in \mathbb{R}, \quad \text { in } S_{b}^{3} \mathrm{ptn} \text { computation } \tag{2.32}
\end{equation*}
$$

Similarly, the twisted index \mathcal{I}_{g} for $g \neq 1$ also depends on the mixing ν since we turn on a magnetic flux on Σ_{g} coupled to a $U(1)_{R}$ symmetry in (2.20). Unlike the S_{b}^{3} case, the mixing parameter ν in twisted index \mathcal{I}_{g} should be properly quantized to satisfy the Dirac quantization:

$$
\begin{align*}
& (g-1) \times\left(u(1)_{R}^{\nu} \text { charge of any states }|\psi\rangle \in \mathcal{H}\left(\Sigma_{g}\right)\right) \in \mathbb{Z} \tag{2.33}\\
& \Rightarrow(g-1) \nu \in \mathbb{Z}, \quad \text { in } \mathcal{I}_{g} \text { computation }
\end{align*}
$$

Then,

$$
\begin{align*}
& \mathcal{W}_{0}=\frac{k+\frac{1}{2}}{2} Z^{2}+\operatorname{Li}_{2}\left(e^{-Z}\right)-Z(U+i \pi \nu), \quad \mathcal{W}_{1}=\frac{1}{2} \operatorname{Li}_{1}\left(e^{-Z}\right)=-\frac{1}{2} \log \left(1-e^{-Z}\right)-\frac{\nu}{2} Z \\
& \Rightarrow H(z)=\frac{(2 k+1) z-2 k+1}{2 z^{1-\nu}} \\
& \Rightarrow \mathcal{I}_{g}(u ; \nu)=\sum_{z: z^{k+1 / 2}(1-1 / z)=u(-1)^{\nu}}\left(\frac{(2 k+1) z-2 k+1}{2 z^{1-\nu}}\right)^{g-1} \tag{2.34}
\end{align*}
$$

Here $u=e^{U}$ is the fugacity variable for $U(1)_{J}$ symmetry:
$\mathcal{I}_{g}(u ; \nu):=\operatorname{Tr}_{\mathcal{H}\left(\Sigma_{g} ; \nu\right)}(-1)^{R} e^{-\beta \hat{H}} u^{\hat{J}}, \quad$ where
$\mathcal{H}\left(\Sigma_{g} ; \nu\right):=$ Hilbert-space on Σ_{g} topologically twisted using $u(1)_{R}^{\nu}$ R-symmetry
\hat{J} : charge of $U(1)_{J}$ flavor symmetry .

For example,

$$
\begin{align*}
& \mathcal{I}_{g}^{u(1)_{k=1 / 2}+\Phi}(u ; \nu=0)=\mathcal{I}_{g}^{u(1)_{k=1 / 2}+\Phi}(u ; \nu=1)=1, \quad \text { for all } g . \\
& \mathcal{I}_{g=0}^{u(1)_{k=3 / 2}+\Phi}(u ; \nu=1)=\mathcal{I}_{g=0}^{u(1)_{k=-3 / 2}+\Phi}(u ; \nu=0)=0, \quad \text { for all even } g . \\
& \mathcal{I}_{g=3}^{u(1)_{k=3 / 2}+\Phi}(u ; \nu=1)=\mathcal{I}_{g=3}^{u(1)_{k=3 / 2}+\Phi}(u ; \nu=0)=2-8 u, \tag{2.36}\\
& \mathcal{I}_{g=5}^{u(1)_{k=3 / 2}+\Phi}(u ; \nu=1)=\mathcal{I}_{g=5}^{u(1)_{k=-3 / 2}+\Phi}(u ; \nu=0)=2-16 u+32 u^{2},
\end{align*}
$$

Ex 8. Check that the twisted index $\mathcal{I}_{g}(u ; \nu)$ in (2.34) acutally have index structure, i.e $\mathcal{I}_{g}(u ; \nu)=\sum_{a} a_{n}(-1)^{R_{n}} u^{n}$ with $a_{n} \in \mathbb{Z}, R_{n} \in \nu+\mathbb{Z}$

References

[1] E. Witten, "Quantum Field Theory and the Jones Polynomial," Commun. Math. Phys. 121 (1989) 351-399. [,233(1988)].
[2] S. Elitzur, G. W. Moore, A. Schwimmer, and N. Seiberg, "Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory," Nucl. Phys. B326 (1989) 108-134.
[3] H.-C. Kim and S. Kim, "Supersymmetric vacua of mass-deformed M2-brane theory," Nucl. Phys. B839 (2010) 96-111, arXiv:1001.3153 [hep-th].
[4] K. Intriligator and N. Seiberg, "Aspects of 3d N=2 Chern-Simons-Matter Theories," JHEP 07 (2013) 079, arXiv:1305.1633 [hep-th].
[5] F. Benini and A. Zaffaroni, "A topologically twisted index for three-dimensional supersymmetric theories," JHEP 07 (2015) 127, arXiv:1504. 03698 [hep-th].
[6] C. Closset and H. Kim, "Comments on twisted indices in 3d supersymmetric gauge theories," JHEP 08 (2016) 059, arXiv:1605.06531 [hep-th].
[7] N. Hama, K. Hosomichi, and S. Lee, "Notes on SUSY Gauge Theories on Three-Sphere," JHEP 03 (2011) 127, arXiv:1012. 3512 [hep-th].

[^0]: ${ }^{1}$ Here we insert $(-1)^{R}$ instead of $(-1)^{F}=(-1)^{2 j_{3}}$. Since Q has quantum number $(-1)^{R}=-1$, the quantity is also an index which is independent under continuous deformation. Localization computations are developed for both types $\left((-1)^{R}\right.$ or $\left.(-1)^{F}\right)$ of twisted index and they are almost same except some minor difference. Here, we only review the localization of twisted index with $(-1)^{R}$.

