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3 Lectures on "Vacua counting of 3d gauge
theories"

Abstract: This is a brief summary of 3 Lectures given in "Strings, Branes and Gauge
Theories", APCTP (webpage : https://www.apctp.org/plan.php/sbg2019/2606)
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1 Lecture 1/2: 3D topological quantum field theory

In this section, we derive Verlinde formula (1.37) which counts ground states of a TQFT
on general Riemann surface Σg. Refs : [1, 2]

1.1 Axiomatic approach to 3d TQFT

Basic axioms of unitary quantum field theory:

Axiom I : an oriented closed Riemann surface Σg −→ a Hilbert-space H(Σg).

Axiom II : homomorphism MCG(Σg)→ U (H(Σg)) : ϕ −→ ϕ̂

Axiom III : an oriented 3-manifold M with ∂M = Σg −→ a partition vector |M〉 ∈ H(Σg)

an oriented 3-manifold M with ∂M = ∅ −→ a partition function Z(M) ∈ C

Axiom IV : Z(M = M1 ∪ϕM2) = 〈M1|ϕ̂|M2〉

Axiom V : Z(M = Σg ×ϕ S1) = TrH(Σg)ϕ̂

(1.1)

1.2 Example: u(1)k pure CS theory

u(1)k Chern-Simons theory (A is purely imaginary 1-form field)

S = − ik
4π

∫
A ∧ dA . (1.2)
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Phase-space on Σg=1 Classically, the phase space P(Σg=1) of the Chern-Simons theory
on Σg=1 is given by

P(Σg=1) = {dA = 0 on Σg=1}/(gauge quotient)

= {(X,P ) :
X

i
∈ R/(2πZ) ,

P

i
∈ R/(2πZ)}

= S1 × S1 .

(1.3)

More explicitly, the flat-connections can be written as

AT2(X,P ) = Xdθ1 + Pdθ2 . (1.4)

Here θ1 and θ2 are two angular coordinates of the torus with periodicity 1:

θ1 ∼ θ1 + 1 , θ2 ∼ θ2 + 1 . (1.5)

Due to large gauge transformation A→ A+ Λ−1dΛ with Λ(θ1, θ2) = exp
(
2πi(aθ1 + bθ2)

)
,

the (X,P ) become periodic variables (a, b ∈ Z),

Λ : (X,P )→ (X + 2πia, P + 2πib) (1.6)

1D quantum mechanical action for a particle moving around the phase space is

− ik

4π

∫
dtdθ1dθ2AT2 (X(t), P (t)) ∧ dAT2 (X(t), P (t)) ,

= − ik
2π

∫
dtX(t)

dP (t)

dt
.

(1.7)

From the action, we have following commutation relation

[X̂, P̂ ] = −2πi

k
. (1.8)

Or equivalently, we have following symplectic form ω on the phase space P(Σg=1),

ω =
k

2π
dX ∧ dP (1.9)

Axiom I : H(T2) of u(1)k theory As a representation space of the commutation relation,
we have following Hilbert-space (= space of ground states, since every states have E = 0

in a topological theory)

H(T2) = Span{|X ∈ iR〉 : e2πi∂X |X〉 = |X〉 , e2πi∂P |X〉 = |X〉} (1.10)

In the above, we have take into account of the periodic property of X and P . Here |X〉 is
the usual position-space basis,

〈X|eX̂ = 〈X|eX , 〈X|eP̂ = 〈X − 2πi

k
| . (1.11)
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Using the relation exp(2πi∂P ) = exp(kX̂), we finally have

H(T2) = Span{|X ∈ iR〉 : |X + 2πi〉 = |X〉 , ekX |X〉 = |X〉} ,

= Span{|X〉 : X ∼ X + 2πi, X ∈ 2πi

k
Z}

(1.12)

Set X = 2πin
k ,

H(T2) = Span{|n〉 : n ∈ Z/(kZ)} ,

〈n|eX̂ = 〈n|e
2πin
k , 〈n|eP̂ = 〈n− 1| .

(1.13)

Note that dimH(T2) = |k|. This is one way to see why the k should be an integer. The
Hilbert-space is finite-dimensional since the phase space H(T2) is compact. In general, the
dimension of a Hilbert-space obtained by quantizing a compact smooth phase space (P, ω)

of dimension 2n is given by

dimH =

∣∣∣∣ ∫
P

(
ω

2π
)n
∣∣∣∣ . (1.14)

One can easily check that∣∣∣∣ 1

2π

∫
P(T2)

ω

∣∣∣∣ =

∣∣∣∣ ∫ k

4π2
dX ∧ dP

∣∣∣∣ = |k| = dimH(T2) . (1.15)

Let

W q
θ1

:= exp(q

∮
θ1

A) = eqX , W q
θ2

:= exp(q

∮
θ2

A) = eqP . (1.16)

After quantization, the loop operators satisfy following commutation relation

Ŵ q1
θ1
Ŵ q2
θ2

= exp(−2πiq1q2

k
)Ŵ q2

θ2
Ŵ q1
θ1
. (1.17)

The vacua are parametrized by vevs of the above non-local Wilson loop operators (there is
no gauge-invariant local operators in the theory):

〈n|Ŵ q
θ1
|n〉 = e

2πiqn
k . (1.18)

From the matrix element computation 〈n|Ŵ q|m〉 , we can check

Ŵ q
θ1,θ2

= Ŵ q+k
θ1,θ2

. (1.19)

Ex 1. Show that dim H(Σg) = |k|g

Axiom II : SL(2,Z) action on H(T2) For g = 1 case, the mapping class group is

MCG(Σg=1) = SL(2,Z) = {S, T : S4 = 1, (ST )3 = 1} . (1.20)

Matrix elements of Ŝ and T̂ are

Sn1
n2

=
1√
k
e

2πi
k
n1n2

Tn1
n2

=

δ
n1
n2

exp
(
πin2

k −
2πi
24

)
, even k

δn1
n2

exp
(
πi(n2−n)

k − 2πi
24 (1− 1

k )
)
, odd k

(1.21)
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Ex 2. Show that

Ŝ4 = 1 , (ŜT̂ )3 = 1 ,

Ŝ−1eP̂ Ŝ = eX̂ , Ŝ−1eX̂ Ŝ = e−P̂ ,

T̂−1eX̂ T̂ = eX̂ , T̂−1eP̂ T̂ =

{
eX̂+P̂ , even k

eX̂eP̂ , odd k

(1.22)

Axiom III : Chern-Simons Wave function 〈n1, . . . , nh|Σ0,h×S1〉 Let Σ0,h be a sphere
with h holes. Then,

∂(Σ0,h × S1) = (T2)h ⇒ H(∂(Σ0,h × S1)) = H(T2)⊗h (1.23)

According to Axiom III, we can consider a wave function 〈n1, . . . , nh|Σ0,h × S1〉. In path-
integral point of view, the wave-function can be interpreted as

〈n1, . . . , nh|Σ0,h × S1〉 =

∫
DA

(gauge)

∣∣∣∣
b.c

e
ik
4π

∫
Σ0,h×S1 A∧dA

,

with boundary condition : exp

(∮
around i-th hole

A

)
= e

2πni
k

(1.24)

Or equivalently, the wave-function can be understood as ptn on S2 × S1 with insertion of
h Wilson loop operators of charge {ni} along {(i-th hole)×S1}:

〈n1, . . . , nh|Σ0,h × S1〉 =

∫
DA

(gauge)
e
ik
4π

∫
S2×S1 A∧dA

h∏
i=1

exp

(
ni

∮
(i-th hole) ×S1

A

)
. (1.25)

Here we use the fact that

(Wilson loop of charge n) = (boundary condition fixing exp

(∮
around loop

A

)
= e

2πni
k )

Ex 3. Check the above equivalence by solving the equation of motion with
insertion of Wilson loop .

The wave-function, count the ground state of the Chern-Simons theory on S2 with ex-
ternal particles of charge {ni}. Since the S2 is compact, the Hilbert-space is empty unless
the total charge is zero. So, we expect that

〈n1, . . . , nh|Σ0,h〉 = δn1+...+nh,0 . (1.26)

Axiom IV : Z(S3) = 〈Σ0,1|ŜT̂L|Σ0,1〉 Topologically 3-sphere S3 can be obtained by
gluing two T2-boundaries of two solid tori (Σ0,1 × S1) with a SL(2,Z) twisted STL

S3 = (Σ0,1 × S1) ∪ϕ=STL (Σ0,1 × S1) . (1.27)
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The resulting manifold is topologically always S3 regardless of the choice of L. Thus,
according to the axiom IV (using Einstein’s summation convention)

Z(S3) = 〈Σ0,1|ŜT̂L|Σ0,1〉 = 〈Σ0,1|n1〉(STL)n1
n2
〈n2|Σ0,1〉

= (STL)n1=0
n2=0 =


1√
k

exp(−2πi
24 L),

1√
k

exp(−2πi
24 (1− 1

k )L) .

(1.28)

The phase factor of the Z(S3) depends on the choice of L. In Witten’s original paper, it is
noticed that the Z(M) generally have following phase ambiguity due to framing anomaly

Framing ambiguity : exp
(
(
2πid

24
+ o(1/k))Z

)
. (1.29)

Here d is the dimension of gauge group, d = 1 for our case. One interesting physical quantity
of a 3d topological theory is so called ‘topological entanglement entropy’, which is given as
the free energy on S3

ST.E = (topological entanglement entropy) = − log |Z(S3)| = 1

2
log k . (1.30)

For k > 1, the theory has non-trivial topological entanglement entropy.

Ex 4. Prove that for any unitary TQFT, ST.E ≥ 0 (Hint: use the fact that Z(S3) =

〈0|Ŝ|0〉 and the unitarity of Ŝ, |0〉 = |Σ0,1〉 ∈ H(T2))

Axiom V : Verlinde formula Let

S3\(©⊗h) := (3-manifold obtained by

removing tubular neighborhoods of h unknotted trivial knots from S3) .

The manifold has (T)h boundary and the its wave-function 〈n1, . . . , nh|S3\(©⊗h)〉 is the
CS pth on S3 with insertions of hWilson loops along trivial knot (©) of charge {ni}. There
are two independent ways of computing the wave-function.

First method : Using the fact that S3\(©⊗h) = (Σ0,2 × S1)×ϕ=S (Σ0,h × S1) (we are
gluing a torus boundary of Σ0,2 × S1 to a torus boundary of Σ0,h × S1 twisted by S),

〈n1, . . . , nh|S3\(©⊗h)〉

=
∑
m1,m2

〈Σ0,2|n1,m1〉Sm1
m2
〈m2, n2, . . . , ns|Σ0,h × S1〉

=
∑
m

Sn1
−m〈m,n2, . . . , nh|Σ0,h × S1〉 .

(1.31)

Second method : For simplicity, we focus on the case when h = 3. From figure 1, we
expect that

Z
(
S3\(©1 ∪©2)

)
Z(S3\(©2 ∪©3)

)
= Z

(
S3\(©1 ∪©2 ∪©3)

)
Z
(
S3\©2

) (1.32)
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=Z[ [n1 n2 n3

Z[ [Z[ [n1 n2 n3 n2

Figure 1. Graphical understanding of Z
(
S3\(©1 ∪©2)

)
Z(S3\(©2 ∪©3)

)
= Z

(
S3\(©1 ∪©2 ∪

©3)
)
Z
(
S3\©2

)
Thus (no summation on n2)

〈n1, n2, n3|S3\(©1 ∪©2 ∪©3)〉

=
〈n1, n2, |S3\(©1 ∪©2)〉〈n2, n3, |S3\(©2 ∪©3)〉

〈n2|S3\©2〉

=
Sn1

n2
Sn2

n3

Sn2
0

(or its permutations on n1, n2, n3)

(1.33)

Comparing the two computation for h = 3, we have (using the symmetric property of
S-matrix)

∑
m

Sn1
−m〈m,n2, n3|Σ0,3 × S1〉 =

Sn2
n1
Sn3

n1

Sn1
0

.

⇒ 〈n1, n2, n3|Σ0,3 × S1〉 =
∑
s

Sn1
sS

n2
sS

n3
s

Ss0
(Verlinde formula)

(1.34)

In the second line, we use ∑
n

Sn−mS
l
n = δlm . (1.35)

From the fact that Σg=2 × S1 = (Σ0,3 ∪ϕ=Id Σ0,3), we have

Z(Σg=2 × S1) = 〈Σ0,3|Σ0,3〉

=
∑

s,s′,n1,n2,n3

Sn1
s (Sn1

s′ )∗Sn2
s (Sn2

s′ )∗Sn3
s (Sn3

s′ )∗Sn4
s (Sn4

s′ )∗

Ss0(Ss
′

0 )∗

=
∑
s,s′

(δss′)
4

Ss0(Ss
′

0 )∗
=
∑
s

1

(Ss0)2
. (Verlinde formula)

(1.36)
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Repeating the above computation for general g, we have following formula

Z(Σg × S1) =
∑
s

1

(Ss0)2(g−1)
=
∑
s

(Hs)
g−1 . (1.37)

Here, we introduce ‘handle gluing operator’

Hs :=
1

(Ss0)2
. (1.38)

For our case,

Hs = k , ⇒ Z(Σg × S1) =
k−1∑
s=0

kg−1 = kg . (1.39)

It is compatible with the fact that dimH(Σg) = kg .

Ex 5. Show that u(1)k1 ×u(1)k2 theory is different from u(1)s=k1k2 theory. (Find
a physical observable which distinguishes two topological theories.)

1.3 Example: su(2)k pure CS theory

In the case

H(T2) = {|j〉 : j = 0, . . . , k} . (1.40)

S, T matrices are

Sjj′ =

√
2

k + 2
sin

π(j + 1)(j′ + 1)

k + 2
, (1.41)

T jj′ = δjj′(phase factor depending j) (1.42)

Verlinde Formula

dim(Σg) = (
k + 2

2
)g−1

∑
j

(sin
π(j + 1)

k + 2
)2−2g (1.43)

Ex 6. Check that the dim(Σg) is always natural number

2 Lecture 3: Witten/Twisted index of 3d N = 2 abelian Chern-Simons
Matter theories

Basic multiplets/interactions (3d N = 2 multiplets) = (S1-reduction of 4d N = 1

multiplets)
Chiral multiplet Φ = Φ + θψ + Fθ2 , Vector multiplet V = 2iσθθ̄ + 2θγµθ̄Aµ + θ2θ̄2D

Bosonic action : L = Lmaxwell + LCS + LΦ

Lmaxwell = − 1

e2
FµνF

µν +
1

e2
D2 + (fermions)

LCS =
k

4π
(A ∧ dA+ 2Dσ) + (fermions)

LΦ =

∫
d2θd2θ̄Φ†e−qV−V

b.g
Φ = −DµΦDµΦ† − q2σ2|Φ|2 − qD|Φ|2 + (fermions) .

(2.1)
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Supersymmetric deformations

real mass m coupled to a flavor symmetry : 〈V b.g〉 = 2imθθ̄

FI parameter ζ (= real mass for u(1)J topological symmetry) :
1

2π
ζD

Superpotential deformation :
∫
d2θ W + (c.c)

(gauge invariant chiral primary multiplet W)

(2.2)

The superpotential deformations and real mass (or FI parameter) deformations are mutually
exclusive if the superpotential deformation breaks flavor symmetries associated to the real
masses.

2.1 Witten index Ig=1

Witten index of 3d N = 2 theories The index is defined to be

Witten index Ig=1 = ZΣg=1×S1 = TrH(Σg=0;m,ζ,W)(−1)F e−βĤ (2.3)

In the path-integral on Σg=1 × S1, periodic boundary conditions are imposed for bo-
son/fermionic fields along the 3 S1-directions in Σg=1×S1 = T3. The index gets contribu-
tions only from ground states (Ĥ|0〉 = 0) since there is cancellation between ([Ĥ,Q] = 0)

|E〉 and Q̂|E〉 , if Ĥ|E〉 = (QQ† +Q†Q)|E〉 6= 0. (2.4)

So, the index is actually independent on β. The index is well-defined only when the Hilbert-
space H(Σg=0;m; ζ,W) has a mass gap. Upon a generic choice of supersymmetric deforma-
tions (m, ζ,W), 3d gauge theory has a mass gap. The index is invariant under continuous
changes of (m, ζ,W) unless the spectrum becomes gapless during the change. Since the real
mass m is real and there could be massless fields when m = 0, one may expect that there
could be a wall crossing of the Witten index under the sign change of m. But actually it
turns out that the 3d N = 2 Witten index does not experience wall-crossing. Upon a com-
pactification along S1 of radius R, a real scalar σ in the vector multiplet becomes a complex
scalar Σ = R(σ + ia) combined with gauge holonomy ei2πRa = exp

∮
S1 A. So the real mass

parameter m (vev of σ in a background vector multiplet coupled to a flavor symmetry) also
becomes complex variable mC upon S1-compactification and one can continously connect
Re[mC] > 0 to Re[mC] < 0 without crossing the singular point at mC = 0.

Two methods of computing the Witten index, which always give the same answer.

Method I : method used in [3, 4] Basic strategy is

(a 3d N = 2 gauge theory)
SUSY deformations (m, ζ,W)−−−−−−−−−−−−−−−−−−−−−−→⊕

i∈{Semiclassical SUSY vacua}

(gapped theory described by a TQFT Ti)

then,

Ig=1(a 3d N = 2 gauge theory) =
∑
i

Z(TQFT Ti on Σg=1 × S1) .

(2.5)
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Example : U(1)
k∈Z+ q2

2

+ (Φ of charge q 6= 0) The only supersymmetric deformation

of the theory is the FI parameter deformation. The only flavor symmetry is u(1) topological
symmetry, usually denoted as u(1)J , associate to the dynamical U(1) gauge field. The FI
parameter can be considered as real mass for the u(1)J symmetry. There is no gauge-
invariant chiral primary operator in the theory. The semi-classical effective potential of the
theory is

Veff =
e2
eff

32π2

(
2πq|Φ|2 − ζ − keffσ

)2
+ q2σ2|Φ|2 . (2.6)

1-loop shift of Chern-Simons level from integrating out massive fermion ψ:

keff = k +
1

2
q2 mψ

|mψ|
= k +

1

2
q2 qσ

|qσ|
. (2.7)

Quantization of k:

keff ∈ Z , k ∈ Z +
1

2
q2 . (2.8)

Semiclassical vacua (we assume k > 1
2q

2 and q > 0) :

when ζ > 0 , 〈σ〉 = − ζ

keff
, 〈Φ〉 = 0 ⇒ T ζ>0

1 = (pure u(1)
keff=k− q2

2

theory)

〈σ〉 = 0, |〈Φ〉| =

√
ζ

2πq
⇒ T ζ>0

2 = (pure Zq gauge theory)

when ζ < 0 , 〈σ〉 = − ζ

keff
, 〈Φ〉 = 0 ⇒ T ζ<0

1 = (pure u(1)
keff=k+ q2

2

theory)

(2.9)

So, the Witten index is (when k > 1
2q

2 and q > 0)

Iζ>0
g=1 = Z(T ζ>0

1 on Σg=1 × S1) + Z(T ζ>0
2 on Σg=1 × S1) =

(
k − q2

2

)
+ q2 = k +

q2

2
,

Iζ<0
g=1 = Z(T ζ<0

1 on Σg=1 × S1) = k +
q2

2
.

(2.10)

Here we use the fact that

Z(pure G (dicrete) gauge theory on Σg × S1)

= dim HΣg(pure G gauge theory)

= ](P(Σg) of pure G gauge theory) (a generalization of (1.14) when P is a finite set)

= ](flat G connections on Σg)

= ](Hom[π1(Σg)→ G]/(conj)) .

⇒
Z(pure G = Zq gauge theory on Σg × S1)

= ]{a1, b1, . . . , ag, bg ∈ Zq : [a1, b1] . . . [ag, bg] = 1}
= q2g .

(2.11)
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In the same way, one can check that

Ig=1

(
u(1)k + Φ(of charge q)

)
=

{
|k|+ q2

2 , for |k| > q2

2

q2, for |k| ≤ q2

2

. (2.12)

Method II : Extremizing twisted superpotential Upon a compactification along S1

of radius R,

3d N = 2 vector multiplet V −−−−−−−→ 2d N = (2, 2) vector V (2.13)

In 2d N = (2, 2) theory, there is a following additional supersymmetric deformation term
for vector multiplet: ∫

dθ1dθ̄2W̃(Σ) + (c.c) 3

(
∂W̃
∂Σ

+ c.c

)
RD (2.14)

Here Σ is a twisted chiral multiplet constructed from V

Σ = RD̄1D2V = Σ + . . .+ θ1θ̄2R(D + iFtx) ,

Σ := R(σ + ia) , Σ ∼ Σ + i
(2.15)

W̃ is a holomorphic function called twisted superpotential. To compute the effective twisted
superpotential, we need to compute the term which contain D.

• Classical Chern-Simons term : L 3 2πR
k

2π
Dσ =

k

2π
(RD)(Σ + c.c)

⇒ ∂ΣW̃tree =
k

2R
Σ ⇒ W̃tree =

k

4R
Σ2 .

• 1-loop from Φ of charge q : L 3 −qD
∑
n∈Z

∫
d2kE
2π

1

k2
E +R−2(n+ qRa)2 + q2σ2

=
qD

4π
log

2πqΣ
∏
n6=0

(1 + iqΣ/n)

+ (Σ↔ Σ̄)

=
qD

4π
log(2 sinh qπΣ) + (Σ↔ Σ̄)

⇒ ∂ΣW̃loop =
q

4πR
log(2 sinh qπΣ) ⇒ W̃loop =

q2

8R
Σ2 +

1

8π2R
Li2(e−2πqΣ) .

(2.16)

The 1-loop comes from a Feynman diagram in figure 2. After rescaling Z := 2πΣ (Z ∼
Z + 2πi) and W̃ → 8π2RW̃

W̃tree =
k

2
Z2 , W̃loop = Li2(e−qZ) +

q2

4
Z2 . (2.17)

Witten index can be computed by counting solutions extremizing the twisted superpotential
w.r.t Z = 2πΣ = 2πR(σ + ia) in a dynamical vector multiplet V :

(Witten index) = ]

{
z : exp

(
∂W̃(Z)

∂Z

)∣∣∣∣
Z→log z

= 1

}
. (2.18)
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D

Φn

Figure 2. 1-loop contributions to W̃ from infinitely many KK-modes {Φn}, Φ(t, x, y) =
1√
2πR

∑
n Φn(t, x)e

iny
R , of mass {m2

n = R−2(n+ qRa)2 + q2σ2}

Ex 7. We count solutions in terms of z := eZ since Z is a (2πi)-periodic variable due to
a large gauge transformation along S1

R. Then, why do we solve exp(∂ZW̃) = 1 instead of
∂ZW̃ = 0? (Hint: consider a complexified FI parameter U := 2πζC which is also a (2πi)-
periodic variable. As a side remark, we do not need to extremize the twisted superpotential
w.r.t U since it is in a non-dynamical vector multiplet coupled to a flavor u(1)J symmetry.)

Example : U(1)k + (Φ of charge q) The twisted superpotential of the theory is

W̃ = Li2(e−qZ) +
k + 1

2q
2

2
Z2

⇒ exp

(
∂W̃(Z)

∂Z

)∣∣∣∣
Z→log z

= (1− 1

zq
)qzk+ 1

2
q2

⇒ (Witten index) = ]

{
z : (zq − 1)qzk+ 1

2
q2

= zq
2

}
=

{
|k|+ q2

2 , for |k| > q2

2

q2, for |k| ≤ q2

2

.

(2.19)

2.2 Twisted index Ig on general Σg

Topological twisting on Σg 3d N = 2 theory has U(1) R-symmetry under which super-
charges have charge ±1. The supercharge is also charged under local Lorentz transformation
U(1)Σ = SO(2)Σ.

U(1)R U(1)Σ

Qε1,ε2 ε1 ∈ {+1,−1} ε2 ∈ {+1,−1}

To preserve supersymmetry on Σg, we turn on background gauge field coupled to U(1)R
symmetry

topological twisting : Ab.gU(1)R
= ω (spin-connection on Σg) . (2.20)

For g 6= 1, the topological twisting preserves 2 supercharges (Q+1,−1 and Q−1,+1) out of 4
Qs. Twisted index Ig is defined as1

Twisted index Ig = ZΣg×S1 = TrH(Σg)(−1)Re−βĤ (2.21)

1Here we insert (−1)R instead of (−1)F = (−1)2j3 . Since Q has quantum number (−1)R = −1, the
quantity is also an index which is independent under continuous deformation. Localization computations
are developed for both types ((−1)R or (−1)F ) of twisted index and they are almost same except some
minor difference. Here, we only review the localization of twisted index with (−1)R.
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From a localization [5, 6], the twisted index can be expressed as

Ig =
∑

z:exp
(
∂W̃(Z)
∂Z

)∣∣
Z=log z

=1

(
H(z)

)g−1
,

H(z) : Handle gluing operator

(2.22)

One way to obtain the handle gluing operator is considering b2 → 0 limit of S3
b partition

function [7]. S3
b partition function can be computed using following rule (~ := 2πib2)

a chiral Φ of charge q : ψ~(qZ)e
q2Z2

4~ ,

Chern-Simons level k : exp

(
k
Z2

2~

)
,

U(1) gauing :

∫
dZ√
2π~

(2.23)

Here ψ~(Z) is a special function called ‘quantum dilogarithm’ (QDL).

ψ~=2πib2(Z) :=

∞∏
r=1

1− qre−Z

1− q̃−r+1e−Z̃

q := e2πib2 , q̃ := e2πib−2
, Z̃ =

1

b2
Z .

(2.24)

In the limit ~→ 0, the QDL function asymptotically behaves as

logψ~(Z)
~→0−−−−−−→

∞∑
n=0

Bn~n−1

n!
Li2−n(e−Z) . (2.25)

Here Bn is the n-th Bernoulli number with B1 = 1/2. Using the localization rule, the S3
b

ptn of a 3d N = 2 U(1) gauge theory can be written as

ZS3
b

=

∫
dZ√
2π~
I(Z; ~) ,

log I(Z; ~)
~→0−−−−−−→ 1

~
W0(Z) +W1(Z) + . . . ~n−1Wn(Z) + . . .

(2.26)

Then,

W̃(Z) =W0(Z) ,

H(z) =
∂2W0(Z)

∂Z∂Z
exp

(
− 2W1(Z)

)∣∣∣∣
Z=log z

(2.27)

Example : Pure N = 2 u(1)k theory In the case, the squashed 3-sphere ptn is

ZS3
b
(pure u(1)k) =

∫
dZ√
2π~

e
kZ2

2~

⇒W0 =
k

2
Z2 , Wn≥1 = 0 ⇒ H(z) = k .

⇒ Ig =
∑
z:zk=1

kg−1 = kg

(2.28)
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The theory is actually equal to the pure bosonic u(1)k theory. The result is compatible
with the result in (1.39). In the example, the S3

b -ptn can be exactly computable

Fb := − log |ZS3
b
| = 1

2
log |k| . (2.29)

Since the theory is a topological theory, the free-energy is b-independent and the free-energy
is compatible with the result in (1.30).

Example : u(1)k + (Φ of charge 1) theory The S3
b -ptn is given by

ZS3
b

(
u(1)k + (Φ of charge 1)

)
=

∫
dZ√
2π~

e
(k+ 1

2 )Z2−2Z

(
U+ν(iπ+ ~

2 )

)
2~ ψ~(Z) . (2.30)

Here, we introduce a real mass parameter (i.e. FI parameter) U associated to the U(1)J
topological symmetry. The FI-term can be thought as mixed CS term between U(1)gauge

and U(1)J . We also introduce a R-symmetry mixing parameter ν. To preserve some
supersymmetry on S3

b geometry, we need to turn on background gauge field coupled to a
U(1)R symmetry. Choice of the U(1)R-symmetry is not unique but can be mixed with
flavor symmetry of the theory, U(1)J in this example:

u(1)νR = u(1)ν=0
R + νu(1)J . (2.31)

The S3
b -ptn depends on the mixing parameter ν.

ν ∈ R , in S3
b ptn computation (2.32)

Similarly, the twisted index Ig for g 6= 1 also depends on the mixing ν since we turn on
a magnetic flux on Σg coupled to a U(1)R symmetry in (2.20). Unlike the S3

b case, the
mixing parameter ν in twisted index Ig should be properly quantized to satisfy the Dirac
quantization:

(g − 1)×
(
u(1)νR charge of any states |ψ〉 ∈ H(Σg)

)
∈ Z .

⇒ (g − 1)ν ∈ Z , in Ig computation
(2.33)

Then,

W0 =
k + 1

2

2
Z2 + Li2(e−Z)− Z(U + iπν) , W1 =

1

2
Li1(e−Z) = −1

2
log(1− e−Z)− ν

2
Z .

⇒ H(z) =
(2k + 1)z − 2k + 1

2z1−ν

⇒ Ig(u; ν) =
∑

z:zk+1/2(1−1/z)=u(−1)ν

(
(2k + 1)z − 2k + 1

2z1−ν

)g−1

(2.34)

Here u = eU is the fugacity variable for U(1)J symmetry:

Ig(u; ν) := TrH(Σg ;ν)(−1)Re−βĤuĴ , where

H(Σg; ν) := Hilbert-space on Σg topologically twisted using u(1)νR R-symmetry

Ĵ : charge of U(1)J flavor symmetry .

(2.35)
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For example,

Iu(1)k=1/2+Φ
g (u; ν = 0) = Iu(1)k=1/2+Φ

g (u; ν = 1) = 1 , for all g.

Iu(1)k=3/2+Φ

g=0 (u; ν = 1) = Iu(1)k=−3/2+Φ

g=0 (u; ν = 0) = 0 , for all even g.

Iu(1)k=3/2+Φ

g=3 (u; ν = 1) = Iu(1)k=−3/2+Φ

g=3 (u; ν = 0) = 2− 8u ,

Iu(1)k=3/2+Φ

g=5 (u; ν = 1) = Iu(1)k=−3/2+Φ

g=5 (u; ν = 0) = 2− 16u+ 32u2 ,

(2.36)

Ex 8. Check that the twisted index Ig(u; ν) in (2.34) acutally have index
structure, i.e Ig(u; ν) =

∑
a an(−1)Rnun with an ∈ Z, Rn ∈ ν + Z
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