Perfect Andreev reflection due to Klein paradox in a topological superconducting state

Seunghun Lee,^{1,2} Valentin Stanev,^{1,2} Xiaohang Zhang,^{1,2} Joshua Higgins,^{1,3} Victor Yakovenko,^{3,4} Johnpierre Paglione,^{1,3} Richard L. Greene,^{1,3} Victor Galitski,^{3,4} and Ichiro Takeuchi^{1,2}

 ¹Maryland Quantum Materials Center, University of Maryland, College Park, MD, United States
²Department of Materials Science and Engineering, University of Maryland, College Park, MD, United States
³Department of Physics, University of Maryland, College Park, MD, United States
⁴Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland, College Park, MD, USA email: takeuchi@umd.edu

Klein tunneling, a relativistic phenomenon that enables particles to pass through a barrier perfectly, has been expected to be experimentally observable in Dirac materials, such as graphene and topological insulator. In this presentation, I will talk about the observation of perfect Andreev reflection as a manifestation of Klein tunneling at the interface between a normal metal and a topological superconducting state [1]. Proximity-coupled SmB₆ and YB₆ thin-film heterostructures (*i.e.*, topological insulator and superconductor, respectively) create the topological superconducting state in the SmB₆ layer. Conductance spectra of point contact junctions between a normal metal and the superconducting SmB₆ show exact conductance doubling (*i.e.*, perfect Andreev reflection) within the proximity-induced superconducting gap, which indicates the complete absence of electron backscattering despite the presence of a barrier at the interface. I will show the systematic experiments and the modified BTK theory to elucidate this phenomenon and discuss potential spintronic and superconducting applications.

[1] S. Lee *et al.*, Nature **570**, 344 (2019)