Visualization of the inhomogeneous superfluid in an ironbased superconductor

Doohee Cho¹, Koen M Bastiaans², Damianos Chatzopoulos², Gen-Da Gu^{2,3}, Milan P Allan²

 ¹ Department of Physics, Yonsei University, Seoul, Republic of Korea
² Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
³ Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA email: dooheecho@yonsei.ac.kr

Cooper pairs can tunnel through the vacuum barrier between two superconducting electrodes, known as a Josephson junction. One can extract the superconducting order parameter from the current-voltage curves close to zero bias. We use atomic-resolution Josephson scanning tunneling microscopy (STM) to visualize the spatial variations of the superfluid in the iron-based superconductor FeTe_{0.55}Se_{0.45}. To measure Cooper-pair tunneling, a Pb-coated tip was employed and its superconductivity was thoroughly verified by measuring noise enhancement induced by Andreev-reflection on Pb(111) surface. By simultaneously acquiring the topographic and electronic properties, we find that this inhomogeneity in the superfluid is not caused by structural disorder or strong inter-pocket scattering, and does not correlate with variations in the energy of the Cooper pair-breaking gap. Instead, we see a clear spatial correlation between superfluid density and the quasiparticle strength, defined as the height of the coherence peak, on a local scale. Our results shed light on the interplay between superconductivity and quasiparticle character that has been observed by photoemission experiments across the critical temperature in the unconventional superconductors.