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Japan, March 11, 2011
How much can we spend for disasters with 

low probability but huge damage?



Extreme events occur!



Statistics of damage

Nishenko & Barton, USGS (1995)
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Statistics of damage
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Figure 4. Empirical damage distributions by tornadoes in the United States from
1970 to 2011 and estimated power-law exponents (a) for the numbers of death and
injured and (b) for property and crop damages estimated in US dollars.

configurations may enhance the variance of damage by introducing more fluctuations
in exposed values when the tail of value distribution is sufficiently fat (↵ < 2). On the
other hand, the randomness may reduce the variance of damage by mixing the values
when the tail of value distribution is sufficiently thin (↵ > 2). The former explains the
analytic expectation that the damage will have fatter tails for more correlated configu-
rations, while the latter does the numerical observations of the opposite tendency.

Empirical results. In order to support our results, we empirically study casualty and
property damage distributions by tornadoes in the United States from 1970 to 2011, for
which the data were retrieved on 24 June 2011 from the website of National Climatic
Data Center. By assuming a power-law form for those distributions, the power-law
exponents are estimated as � ⇡ 2 for the numbers of death and the injured, and � ⇡ 1.5

for property and crop damages, as shown in Fig. 4. The significantly different values
of power-law exponent, i.e., 1.5 and 2, could imply that they represent qualitatively
different underlying mechanisms or origins.

In order to account for these observations for tornadoes, our simple model can be
extended to take into account various factors like position-dependent vulnerability. For
example, let us consider that the vulnerability at a site scales with the value at that site
as A ⇠ v

⌘, where the scaling exponent ⌘ can be positive or negative depending on the
situation. Since the effective value, denoted by v

0 ⌘ Av, is proportional to v

1+⌘, the fat
tail of the PDF of effective value is characterized by the power-law exponent ↵0

=

↵+⌘

1+⌘

.
Note that ↵0 reduces to ↵ for ⌘ = 0 as in our simplest setup. More detailed analysis for
the effect of position-dependent vulnerability is left for future works.

CONCLUSION

We have developed a simple model to show that damages by natural disasters could
have large variances in terms of fat-tailed distributions of natural disaster and popu-
lation/property, as well as in terms of their spatial correlations. The damage has been
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Extreme events occur!

damage = natural disaster 
              × population/property 
              × vulnerability

Stromberg, J. Econ. Perspect. (2007)



Assumption 1a
• Population/property is power-law distributed.

158 M. Brzezinski / Physica A 406 (2014) 155–162

α
α

α
α

Fig. 1. Power-law exponents and goodness-of-fit tests for wealth data. Note: Vertical bars show 95% confidence intervals.

Fig. 2. The complementary cumulative distribution functions and their power-law fits.

this purpose. However, as stated by Ref. [32], there is no consensusmethodology to overcome this problem. Our conclusions
apply, therefore, only to the original data taken from the ‘rich lists’, which is, however, the most popular form of data used
in the relevant literature. It is worth noticing here also that the described data correlation does not occur in our data sets for
Russia, as no Russian billionaire gained his or her wealth due to inheritance. Still, the power-law hypothesis is inconsistent
with these data sets in all but one case.

Our results are inconsistent with those of Ref. [28], who found that the power-law behaviour of the wealth of the world’s
richest persons according to Forbes’ data in every year between 2000 and 2009 is ruled out by conventional goodness-of-fit
tests. On the contrary, we find that the wealth of the world’s billionaires is fitted well by a power-law model in 2000, 2001,
and 2003. This inconsistency can be explained by noticing that Ref. [28] has not estimated the lower bound on the power-
law behaviour, xmin, but has fitted power-lawmodels to the whole range of Forbes’ observations. However, fixing xmin at the
minimum wealth level in Forbes’ data seems to be statistically unjustified.

Brzezinski, Physica A (2007)



Assumption 1b
• Population/property is spatially correlated.



Assumption 2
• Natural disaster is power-law distributed.

Clauset et al., SIAM Rev. (2009)



Assumption 3
• Vulnerability is constant.



Question
• Population/property: power-law exponent α, spatial 

correlation c 

• Natural disaster: power-law with exponent β 

• Damage: power-law with exponent γ

�(↵,�, c)?



Model
• Each site on 2D lattice: a value v from P(v)~v-α 

• Spatial correlation c adjusted by simulated 
annealing: 0 ≤ c ≤ 1 

• A tornado at a random site moves in a random 
direction on a line with length l from P(l)~l-β 

• A damage is the sum of values on the line:

D(i0, j0, l) = A
i0+l�1X

i=i0

vi,j0



Random config.
• Totally uncorrelated case (c=0):

D =
lX

n=1

vn

The zero centrality, c = 0, corresponds to the random configuration, while the max-
imum centrality, c = 1, implies that the values are concentrated in the central area,
i.e., around the origin (0, 0). The configuration with intermediate c is formulated using
a simulated annealing algorithm. Starting from a random configuration, two randomly
selected sites swap their values only if the swapping increases the correlation. The
swapping is repeated until the correlation reaches the desired value of c. Figure 1 shows
exemplary configurations of value for random (c = 0), correlated (c ⇡ 0.85), and
concentrated (c = 1) cases.

For natural disasters, we focus on moving disasters like tornadoes that move along
a trajectory. We assume that a disaster initiated at a random site moves in a random
direction, i.e., one of ±x and ±y directions, over the trajectory with length l. The
length l is randomly drawn from a distribution P (l) ⇠ l

�� with exponent � > 1.
The vulnerability A

i,j

at site (i, j) is assumed to be constant for all sites in the system
such that A

i,j

= 1 for all (i, j) for convenience. Then, the damage D by the disaster
initiated at (i

0

, j

0

) and moving l sites, say in the direction of +x-axis, is given as the
sum of values over the trajectory:

D(i

0

, j

0

, l) =

i0+l�1X

i=i0

A

i,j0vi,j0 =

i0+l�1X

i=i0

v

i,j0 .

RESULT

It is expected that the damage D has a large variance by showing a fat-tailed distribu-
tion, P (D) ⇠ D

�� with exponent �. In general, the value of � depends on exponents
↵, �, and the centrality c.

Random configurations. The case of random configurations with zero centrality can
be analytically solved due to its uncorrelated nature (Jo et al., 2013). The damage D is
independent of the initiation position and moving direction of the disaster, hence it can
be written as a sum of l independent and identical random variables, vs:

D =

lX

n=1

v

n

.

For small l, as l is mostly 1, i.e., D = v

1

, we obtain D

�↵ for P (D). For sufficiently
large l, if the variance of {v

n

} is small, one can approximate as D ⇡ lhvi, where h·i
denotes an average, leading to D

�� for P (D). Finally, for sufficiently large l, if the
variance of {v

n

} is large, D is dominated by max{v
n

} that is proportional to l

1/(↵�1).
By means of the identity P (D)dD = P (l)dl, one gets D

�(↵�1)(��1)�1 for P (D). We
obtain apart from the coefficients

P (D) ⇠ D

�↵

+D

��

+D

�(↵�1)(��1)�1

⇠ D

��

,
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Figure 2. Phase diagrams summarizing analytic results (a) for random configura-
tions and (b) for concentrated configurations.

thus for large D,
� = min{(↵� 1)(� � 1) + 1,↵, �}, (1)

which is depicted in Fig. 2(a). This solution has been also obtained by rigorous calcu-
lations (Jo et al., 2013). In case with ↵ > 2 and ↵ > �, i.e., when the tail of value
distribution is sufficiently thin, one obtains � = �, implying that statistical properties
of damage are determined only by those of disaster. In case with � > 2 and � > ↵,
one gets � = ↵, implying the dominance of statistical properties of value in deciding
damage. Only when both value and disaster distributions have sufficiently fat tails, i.e.,
when ↵, � < 2, the fat tail of damage can be explained in terms of the interplay of both
value and disaster. We perform numerical simulations on the square lattice of linear size
L = 3 · 103 to confirm our analysis as shown in Fig. 3.

Concentrated configurations. Since a concentrated configuration with c = 1 has a
rotational symmetry around the origin (0, 0), it can be described simply by a function of
the distance r from the origin, i.e., v(r) ' v

0

r

�µ with µ =

2

↵�1

. The relation µ =

2

↵�1

has been obtained by the identity P (v)dv / 2⇡rdr. For convenience, we calculate D

in a continuum limit of lattice as

D(r

0

, ✓

0

, l,�) ' wv

0

Z
l

0

r(t)

�µ

dt,

r(t) =

p
(r

0

cos ✓

0

+ t cos�)

2

+ (r

0

sin ✓

0

+ t sin�)

2

,

where the polar coordinate (r

0

, ✓

0

) and the angle � are the initiation position and
moving direction of the disaster, and w denotes the transverse dimension or width
of the disaster. Since r(t) can be written in terms of r

x

⌘ r

0

cos(� � ✓

0

) and
r

y

⌘ r

0

sin(�� ✓

0

), we get

D ' wv

0

Z
l

0

[(t+ r

x

)

2

+ r

2

y

]

�µ/2

dt. (2)
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a location with more disasters if natural phenomena related to a certain disaster can
benefit people despite possible damage by such disaster. For example, coastal area is
more likely to be affected by tsunamis, while it provides ports for trade and fishing.

Thirdly, we consider the vulnerability as a fraction of the realized damage out of
each unit of population/property. It differs by variables such as wealth, building code,
and network structure of infrastructure. Since there are more hospitals and more labor
who are devoted to control disasters in cities, cities could have less vulnerability. On
the other hand, cities could be more vulnerable due to a cascading effect of damage.
In our model, since the property of vulnerability is hard to measure, we assume that
the vulnerability is constant through the trajectory of disaster. Our model with the
assumption of constant vulnerability can provide benchmark results for further realistic
refinements.

Finally, the total damage by a natural disaster is modeled to be as the sum of
population/property exposed to that disaster, multiplied by the vulnerability of those
population/property.

Model setting. We first generate landscapes or configurations of population/property
on a two-dimensional square lattice of size L⇥ L with a periodic boundary condition,
see Fig. 1. The population/property, or a value for convenience, at site (i, j) is denoted
by v

i,j

for i, j = �L

2

, · · · , L
2

� 1. The PDF of value is assumed to follow a power law,
P (v) ⇠ v

�↵ with exponent ↵ > 1. To parameterize the degree of spatial correlation of
value, we define a normalized centrality c as a function of value configuration {v}:

c({v}) = E

rand

� E({v})
E

rand

� E

conc

, E({v}) =
X

i,j

✓����ln
v

i,j

v

i+1,j

����+
����ln

v

i,j

v

i,j+1

����

◆
,

where E measures the total difference between values of neighboring sites. E
rand

and
E

conc

denote the values of E for random and concentrated configurations, respectively.

 0

 2

 4

 6

(a)

 0

 2

 4

 6

(b)

 0

 2

 4

 6

(c)

Figure 1. (a) Random, (b) correlated, and (c) concentrated configurations of val-
ues on a two-dimensional lattice of size 100 ⇥ 100, where the probability density
function of value v follows a power-law as P (v) ⇠ v

�↵ with ↵ = 2.5. The height at
each site represents a logarithm of the value.
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Jo et al., PRE (2013)P (v) ⇠ v�↵

P (l) ⇠ l��



collective real inter-event time
P (l) ⇠ l�↵

contextual real inter-event time

P (⌧) ⇠ ⌧�↵0

contextual ordinal inter-event time
P (n) ⇠ n��

⌧ =
nX

i=1

li ↵0 = min{(↵� 1)(� � 1) + 1,↵,�}

Cf. Contextual bursts



Topical Review R199

Particle:

Site:

u(1)
u(2)

u(3)

u(1)u(3) u(2)

1 2 3 4

1 2 3 4

5

5

(a)

(b)

Figure 1. Mapping between the zero-range process and the asymmetric exclusion process.

the ZRP with a corresponding configuration of particles in an exclusion model. (The mapping
is unique up to translations of the exclusion process lattice.) To do this, one thinks of particles
in the ZRP as vacancies in the exclusion process, and sites in the ZRP as occupied sites in the
exclusion process. Thus, in figure 1, site 1 in the ZRP becomes particle 1 in the exclusion
process. The next three vacancies in the exclusion process represent the particles at site 2
in the ZRP and then site 2 itself is represented by particle 2 in the exclusion process, and so
on. In this way, one obtains an exclusion model on a lattice containing L + N sites and L
particles.

The exclusion process dynamics are inferred from the way in which configurations evolve
when the corresponding ZRP configurations evolve under the ZRP dynamics: the hop rates
in the ZRP, which depend on the number of particles at the departure site, become hop rates
in the exclusion process which depend on the distance to the next particle in front. Thus,
depending on the form chosen for u(n), there may be a long-range interaction between the
particles in the exclusion process.

We remark that this mapping relies on the preservation of the order of particles under the
exclusion process dynamics, therefore it is only really useful in one dimension.

2.2. Solution of the steady state

One of the most important properties of the ZRP is that its steady state is given by a simple
factorized form. This means that the steady state probability P({nl}) of finding the system
in a configuration {nl} = n1, n2, . . . , nL is given by a product of (scalar) factors f (nl) (one
factor for each site of the system) i.e.,

P({nl}) = Z−1
L,N

L∏

l=1

f (nl), (2)

where ZL,N is a normalization which ensures that the sum of probabilities for all configurations
containing N particles is equal to 1, hence

ZL,N =
∑

{nl}

L∏

l=1

f (nl)δ

(
L∑

l=1

nl − N

)

. (3)

Here, the δ-function has been introduced to guarantee that we only include those configurations
containing N particles in the sum. Finally, the factors f (nl) are determined by the hop rates:

f (n) =
n∏

i=1

u(i)−1 for n > 0, f (0) = 1. (4)

We now turn to the proof of the steady state (2) to (4). The first step is to write the
steady state condition that is satisfied by the probabilities P({nl}). This condition balances

⌧ =
nX

i=1

li¿ =

nX

i=1

li P (¿) =

1X

n=1

P (n)Fn(¿)

Fn(¿) =
nY

i=1

Z 1

l0

dliP (li)±

Ã
¿ ¡

nX

i=1

li

!

→ “partition function” in mass transport models  
[Majumdar et al., PRL ’05] 

[Evans & Hanney, JPA ’05] 

¿li

n

Majumdar et al., PRL (2005)

Evans & Hanney, JPA (2005)

→ “partition function” of mass transport models

n = # sites (system size) 
li = # particles at site i 
τ = total # particles



Random config.

(a)

Figure 2. Phase diagrams summarizing analytic results (a) for random configura-
tions and (b) for concentrated configurations.

thus for large D,
� = min{(↵� 1)(� � 1) + 1,↵, �}, (1)

which is depicted in Fig. 2(a). This solution has been also obtained by rigorous calcu-
lations (Jo et al., 2013). In case with ↵ > 2 and ↵ > �, i.e., when the tail of value
distribution is sufficiently thin, one obtains � = �, implying that statistical properties
of damage are determined only by those of disaster. In case with � > 2 and � > ↵,
one gets � = ↵, implying the dominance of statistical properties of value in deciding
damage. Only when both value and disaster distributions have sufficiently fat tails, i.e.,
when ↵, � < 2, the fat tail of damage can be explained in terms of the interplay of both
value and disaster. We perform numerical simulations on the square lattice of linear size
L = 3 · 103 to confirm our analysis as shown in Fig. 3.

Concentrated configurations. Since a concentrated configuration with c = 1 has a
rotational symmetry around the origin (0, 0), it can be described simply by a function of
the distance r from the origin, i.e., v(r) ' v

0

r

�µ with µ =

2

↵�1

. The relation µ =

2

↵�1

has been obtained by the identity P (v)dv / 2⇡rdr. For convenience, we calculate D

in a continuum limit of lattice as

D(r

0

, ✓

0

, l,�) ' wv

0

Z
l

0

r(t)

�µ

dt,

r(t) =

p
(r

0

cos ✓

0

+ t cos�)

2

+ (r

0

sin ✓

0

+ t sin�)

2

,

where the polar coordinate (r

0

, ✓

0

) and the angle � are the initiation position and
moving direction of the disaster, and w denotes the transverse dimension or width
of the disaster. Since r(t) can be written in terms of r

x

⌘ r

0

cos(� � ✓

0

) and
r

y

⌘ r

0

sin(�� ✓

0

), we get

D ' wv

0

Z
l

0

[(t+ r

x

)

2

+ r

2

y

]

�µ/2

dt. (2)
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Figure 3. Numerical results of damage distributions and their power-law expo-
nents for ↵ = 1.8 (top) and for ↵ = 2.5 (bottom). In (c) and (f), t denotes the Monte
Carlo time in the simulated annealing to generate correlated configurations.

hence it is independent of the spatial correlation or centrality c. The second term D

��

is due to D =

P
l

n=1

v

n

/ l. That is, most disasters move along trajectories consisting
of small v

n

s when the tail of P (v) is sufficiently thin, i.e., when ↵ > 2. This leads
to the irrelevance of the spatial correlation. Thus, one can expect that � = min{↵, �}
holds for the entire range of c. This is confirmed by numerical simulations for the case
of ↵ = 2.5 in Fig. 3(f), with some deviations mainly due to logarithmic corrections to
scaling, like lnD, and finite size effects. It is observed that the estimated values of � are
systematically smaller for larger centrality, implying fatter tails of damage distributions.

For ↵ < 2 and � < 2, the difference in values of � for c = 0 and for c = 1 is
summarized as follows:

�� ⌘ �

c=1

� �

c=0

=

⇢
(2� ↵)(� � 1) if � < ↵,
(↵� 1)(2� �) if � > ↵.

This implies that the tail of damage distribution for the concentrated case is always
thinner than that for the random case. The maximum value of the difference �� is 1/4
when ↵ = � = 3/2. The numerical simulations for the case of ↵ = 1.8 in Fig. 3(c)
confirm the analytic solution, with deviations due to corrections to scaling and finite
size effects. While such deviations seem to be large, we systematically observe that in
the region of � < 2, the values of � for c = 1 are slightly larger than those for c = 0,
comparable to the analytic results.

It turns out that whether the spatial correlation of value enhances or reduces the
fat tail property of damage is not a simple issue as expected. The randomness in value
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Figure 2. Phase diagrams summarizing analytic results (a) for random configura-
tions and (b) for concentrated configurations.

thus for large D,
� = min{(↵� 1)(� � 1) + 1,↵, �}, (1)

which is depicted in Fig. 2(a). This solution has been also obtained by rigorous calcu-
lations (Jo et al., 2013). In case with ↵ > 2 and ↵ > �, i.e., when the tail of value
distribution is sufficiently thin, one obtains � = �, implying that statistical properties
of damage are determined only by those of disaster. In case with � > 2 and � > ↵,
one gets � = ↵, implying the dominance of statistical properties of value in deciding
damage. Only when both value and disaster distributions have sufficiently fat tails, i.e.,
when ↵, � < 2, the fat tail of damage can be explained in terms of the interplay of both
value and disaster. We perform numerical simulations on the square lattice of linear size
L = 3 · 103 to confirm our analysis as shown in Fig. 3.

Concentrated configurations. Since a concentrated configuration with c = 1 has a
rotational symmetry around the origin (0, 0), it can be described simply by a function of
the distance r from the origin, i.e., v(r) ' v

0

r

�µ with µ =

2

↵�1

. The relation µ =

2

↵�1

has been obtained by the identity P (v)dv / 2⇡rdr. For convenience, we calculate D

in a continuum limit of lattice as
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dt,

r(t) =
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+ t cos�)
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0

sin ✓
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+ t sin�)

2

,

where the polar coordinate (r

0

, ✓

0

) and the angle � are the initiation position and
moving direction of the disaster, and w denotes the transverse dimension or width
of the disaster. Since r(t) can be written in terms of r

x

⌘ r

0

cos(� � ✓

0

) and
r

y

⌘ r

0

sin(�� ✓

0

), we get
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0
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x
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2

y

]

�µ/2

dt. (2)
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Concentrated config.
• Totally correlated case (c=1):

Figure 2. Phase diagrams summarizing analytic results (a) for random configura-
tions and (b) for concentrated configurations.

thus for large D,
� = min{(↵� 1)(� � 1) + 1,↵, �}, (1)

which is depicted in Fig. 2(a). This solution has been also obtained by rigorous calcu-
lations (Jo et al., 2013). In case with ↵ > 2 and ↵ > �, i.e., when the tail of value
distribution is sufficiently thin, one obtains � = �, implying that statistical properties
of damage are determined only by those of disaster. In case with � > 2 and � > ↵,
one gets � = ↵, implying the dominance of statistical properties of value in deciding
damage. Only when both value and disaster distributions have sufficiently fat tails, i.e.,
when ↵, � < 2, the fat tail of damage can be explained in terms of the interplay of both
value and disaster. We perform numerical simulations on the square lattice of linear size
L = 3 · 103 to confirm our analysis as shown in Fig. 3.

Concentrated configurations. Since a concentrated configuration with c = 1 has a
rotational symmetry around the origin (0, 0), it can be described simply by a function of
the distance r from the origin, i.e., v(r) ' v
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�µ with µ =
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. The relation µ =
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) and the angle � are the initiation position and
moving direction of the disaster, and w denotes the transverse dimension or width
of the disaster. Since r(t) can be written in terms of r
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) and
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For small l, the integration is approximated up to the first order of l, leading to D /
v

0

r

�µ

0

l ' v(r

0

)l. Thus, we obtain D

�↵

+ D

�� for P (D) apart from the coefficients.
For large l, by substituting the variable of integration as t+ r

x

= r

y

tan ✓, one gets

D ' wv

0

r

1�µ

y

Z
tan

�1 l+r

x

r

y

tan

�1 r

x

r

y

cos

µ�2

✓d✓.

Note that tan�1

r

x

r

y

=

⇡

2

� (�� ✓

0

). The following formula can be used:

Z
cos

µ�2

✓d✓ =

sgn(sin ✓) cosµ�1

✓

2

F

1

(

1

2

,

µ�1

2

;

µ+1

2

; cos

2

✓)

1� µ

+ const.,

where sgn(x) gives the sign of x and
2

F

1

is the hypergeometric function. We consider
two cases according to the moving direction of the disaster. In case with |��✓

0

| < ⇡/2,
i.e., r

x

> 0, the disaster moves away from the central area. We get the result up to the
leading terms as

D ⇡ wv

0

l

1�µ � a

1

r

1�µ

0

1� µ

(3)

with a constant a
1

⌘
2

F

1

(

1

2

,

µ�1

2

;

µ+1

2

; sin

2

(� � ✓

0

)). If µ > 1 (↵ < 3), from D ⇠
r

1�µ

0

⇠ v

µ�1
µ , we have the term D

�↵+1
3�↵ for P (D). This is dominated by D

�↵ because
↵+1

3�↵

> ↵ for ↵ < 3. If µ < 1 (↵ > 3), D ⇠ l

1�µ leads to the term D

� (↵�1)(��1)
↵�3 �1 for

P (D), which is dominated by D

�� for � > 1. On the other hand, for |� � ✓

0

| > ⇡/2,
i.e., r

x

< 0, the disaster approaches the central area to some extent and eventually
moves away. The domain of integration in Eq. (2) can be divided into two at the closest
position of the disaster to the origin given by t⇥ ⌘ �r

x

:
Z

l

t⇥

dt 
Z

l

0

dt =

Z
t⇥

0

dt+

Z
l

t⇥

dt  2

Z
l

t⇥

dt.

Here the second inequality holds for sufficiently large l. Similarly to the case with
|� � ✓

0

| < ⇡/2, we get the same result up to the leading terms as Eq. (3) but with a

1

replaced by a

2

⌘ sin

1�µ

(��✓

0

)�(

µ+1

2

)�(

1

2

)/�(

µ

2

). Finally, since P (D) ⇠ D

�↵

+D

�� ,
we obtain the result for � as

� = min{↵, �}. (4)

This solution is depicted in Fig. 2(b), and confirmed by numerical simulations as shown
in Fig. 3.

Correlated configurations. Before investigating the effect of correlated configura-
tions with 0 < c < 1, we compare the results for random and concentrated cases,
Eqs. (1, 4). If ↵ > 2 or � > 2, we get � = min{↵, �} from P (D) ⇠ D

�↵

+D

�� for
both cases of c = 0 and c = 1. The first term D

�↵ is mainly due to D = v when l = 1,
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a location with more disasters if natural phenomena related to a certain disaster can
benefit people despite possible damage by such disaster. For example, coastal area is
more likely to be affected by tsunamis, while it provides ports for trade and fishing.

Thirdly, we consider the vulnerability as a fraction of the realized damage out of
each unit of population/property. It differs by variables such as wealth, building code,
and network structure of infrastructure. Since there are more hospitals and more labor
who are devoted to control disasters in cities, cities could have less vulnerability. On
the other hand, cities could be more vulnerable due to a cascading effect of damage.
In our model, since the property of vulnerability is hard to measure, we assume that
the vulnerability is constant through the trajectory of disaster. Our model with the
assumption of constant vulnerability can provide benchmark results for further realistic
refinements.

Finally, the total damage by a natural disaster is modeled to be as the sum of
population/property exposed to that disaster, multiplied by the vulnerability of those
population/property.

Model setting. We first generate landscapes or configurations of population/property
on a two-dimensional square lattice of size L⇥ L with a periodic boundary condition,
see Fig. 1. The population/property, or a value for convenience, at site (i, j) is denoted
by v

i,j

for i, j = �L

2

, · · · , L
2

� 1. The PDF of value is assumed to follow a power law,
P (v) ⇠ v

�↵ with exponent ↵ > 1. To parameterize the degree of spatial correlation of
value, we define a normalized centrality c as a function of value configuration {v}:

c({v}) = E

rand

� E({v})
E

rand

� E

conc

, E({v}) =
X

i,j

✓����ln
v

i,j

v

i+1,j

����+
����ln

v

i,j

v

i,j+1

����

◆
,

where E measures the total difference between values of neighboring sites. E
rand

and
E

conc

denote the values of E for random and concentrated configurations, respectively.

 0

 2

 4

 6

(a)

 0

 2

 4

 6

(b)

 0

 2

 4

 6

(c)

Figure 1. (a) Random, (b) correlated, and (c) concentrated configurations of val-
ues on a two-dimensional lattice of size 100 ⇥ 100, where the probability density
function of value v follows a power-law as P (v) ⇠ v

�↵ with ↵ = 2.5. The height at
each site represents a logarithm of the value.
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v(r) ' v0r
�µ, µ =

2

↵� 1



Concentrated config.
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Figure 3. Numerical results of damage distributions and their power-law expo-
nents for ↵ = 1.8 (top) and for ↵ = 2.5 (bottom). In (c) and (f), t denotes the Monte
Carlo time in the simulated annealing to generate correlated configurations.

hence it is independent of the spatial correlation or centrality c. The second term D

��

is due to D =

P
l

n=1

v

n

/ l. That is, most disasters move along trajectories consisting
of small v

n

s when the tail of P (v) is sufficiently thin, i.e., when ↵ > 2. This leads
to the irrelevance of the spatial correlation. Thus, one can expect that � = min{↵, �}
holds for the entire range of c. This is confirmed by numerical simulations for the case
of ↵ = 2.5 in Fig. 3(f), with some deviations mainly due to logarithmic corrections to
scaling, like lnD, and finite size effects. It is observed that the estimated values of � are
systematically smaller for larger centrality, implying fatter tails of damage distributions.

For ↵ < 2 and � < 2, the difference in values of � for c = 0 and for c = 1 is
summarized as follows:

�� ⌘ �

c=1

� �

c=0

=

⇢
(2� ↵)(� � 1) if � < ↵,
(↵� 1)(2� �) if � > ↵.

This implies that the tail of damage distribution for the concentrated case is always
thinner than that for the random case. The maximum value of the difference �� is 1/4
when ↵ = � = 3/2. The numerical simulations for the case of ↵ = 1.8 in Fig. 3(c)
confirm the analytic solution, with deviations due to corrections to scaling and finite
size effects. While such deviations seem to be large, we systematically observe that in
the region of � < 2, the values of � for c = 1 are slightly larger than those for c = 0,
comparable to the analytic results.

It turns out that whether the spatial correlation of value enhances or reduces the
fat tail property of damage is not a simple issue as expected. The randomness in value
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(b)

Figure 2. Phase diagrams summarizing analytic results (a) for random configura-
tions and (b) for concentrated configurations.

thus for large D,
� = min{(↵� 1)(� � 1) + 1,↵, �}, (1)

which is depicted in Fig. 2(a). This solution has been also obtained by rigorous calcu-
lations (Jo et al., 2013). In case with ↵ > 2 and ↵ > �, i.e., when the tail of value
distribution is sufficiently thin, one obtains � = �, implying that statistical properties
of damage are determined only by those of disaster. In case with � > 2 and � > ↵,
one gets � = ↵, implying the dominance of statistical properties of value in deciding
damage. Only when both value and disaster distributions have sufficiently fat tails, i.e.,
when ↵, � < 2, the fat tail of damage can be explained in terms of the interplay of both
value and disaster. We perform numerical simulations on the square lattice of linear size
L = 3 · 103 to confirm our analysis as shown in Fig. 3.

Concentrated configurations. Since a concentrated configuration with c = 1 has a
rotational symmetry around the origin (0, 0), it can be described simply by a function of
the distance r from the origin, i.e., v(r) ' v

0

r

�µ with µ =

2

↵�1

. The relation µ =

2

↵�1

has been obtained by the identity P (v)dv / 2⇡rdr. For convenience, we calculate D

in a continuum limit of lattice as

D(r

0

, ✓
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, l,�) ' wv

0

Z
l

0

r(t)
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dt,

r(t) =

p
(r

0

cos ✓

0

+ t cos�)

2

+ (r

0

sin ✓

0

+ t sin�)

2

,

where the polar coordinate (r

0

, ✓

0

) and the angle � are the initiation position and
moving direction of the disaster, and w denotes the transverse dimension or width
of the disaster. Since r(t) can be written in terms of r

x

⌘ r

0

cos(� � ✓

0

) and
r

y

⌘ r

0

sin(�� ✓

0

), we get

D ' wv

0

Z
l

0

[(t+ r

x

)
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]
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dt. (2)

2749Vulnerability, Uncertainty, and Risk ©ASCE 2014

 Vulnerability, Uncertainty, and Risk 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f L
iv

er
po

ol
 o

n 
07

/0
8/

14
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



Correlated config.
• Numerical simulations 

• For           , 

• For           , 

    numerical: 

�c=0 = �c=1↵ > 2

�c=0 < �c=1↵ < 2
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Figure 3. Numerical results of damage distributions and their power-law expo-
nents for ↵ = 1.8 (top) and for ↵ = 2.5 (bottom). In (c) and (f), t denotes the Monte
Carlo time in the simulated annealing to generate correlated configurations.

hence it is independent of the spatial correlation or centrality c. The second term D

��

is due to D =

P
l

n=1

v

n

/ l. That is, most disasters move along trajectories consisting
of small v

n

s when the tail of P (v) is sufficiently thin, i.e., when ↵ > 2. This leads
to the irrelevance of the spatial correlation. Thus, one can expect that � = min{↵, �}
holds for the entire range of c. This is confirmed by numerical simulations for the case
of ↵ = 2.5 in Fig. 3(f), with some deviations mainly due to logarithmic corrections to
scaling, like lnD, and finite size effects. It is observed that the estimated values of � are
systematically smaller for larger centrality, implying fatter tails of damage distributions.

For ↵ < 2 and � < 2, the difference in values of � for c = 0 and for c = 1 is
summarized as follows:

�� ⌘ �

c=1

� �

c=0

=

⇢
(2� ↵)(� � 1) if � < ↵,
(↵� 1)(2� �) if � > ↵.

This implies that the tail of damage distribution for the concentrated case is always
thinner than that for the random case. The maximum value of the difference �� is 1/4
when ↵ = � = 3/2. The numerical simulations for the case of ↵ = 1.8 in Fig. 3(c)
confirm the analytic solution, with deviations due to corrections to scaling and finite
size effects. While such deviations seem to be large, we systematically observe that in
the region of � < 2, the values of � for c = 1 are slightly larger than those for c = 0,
comparable to the analytic results.

It turns out that whether the spatial correlation of value enhances or reduces the
fat tail property of damage is not a simple issue as expected. The randomness in value
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�c=0 > �c=1

Case-by-case~



Vulnerability

• If                  , the effective v is 

• The positive η: cascading due to the concentration 

• The negative η: robust design of buildings etc.

A(v) / v⌘ v0 / v1+⌘

D(i0, j0, l) = A
i0+l�1X

i=i0

vi,j0



Remarks

• The risk analysis based on the thin-tailed 
distributions must be improved. 

• More realistic simulation and theory?




