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Statistical physics of 
“diverse” & “open” system



Statistics of open-evolving systems
3

• lifetime distribution of each element 
• extinction-size distribution 
• intermittency in time series 
• structure of the emergent system 
• ….

T. Shimada et al., Int. J. Mod. Phys. C, 9 1267 (2003)



• Review on theories for lifetime distributions 

• Population dynamics models 
• -> A skewed species lifetime distribution is robustly found. 

• propose a minimal model to understand the underlying 
mechanisms 

• comparison with empirical data

Outline of the Talk
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• Poisson process 
• age-independent mortality (constant failure rate) 
• a simple exponential function 
• known as “Red-Queen” hypothesis in ecology 

• age-dependent mortality 
• stretched exponential distribution (Weibull) 
• q-exponential distribution

Theories for lifetime distributions
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• return time distribution 
• 1-d random walk 
• critical branching process

t�3/2

t�2

Pigolotti et al. PNAS (2005)

What about the lifetime distribution of mutually interacting systems?
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• population dynamics models 
• Models with two time scales:

Population dynamics models
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ẋi = f({xj}, . . . )

population dynamics model 
(or individual based model)

addition of new species 
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various forms of population dynamics
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ẋi = �bixi +
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aij<0

aijx
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i x�

j

Y. Murase et al., J.Theor.Biol., 264, 663 (2010) 
Y.Murase et al.,Phys. Rev. E, 81, 041908 (2010)

�I(R, {nJ(t)}) =
�

J

MIJnJ(t)/Ntot(t) � Ntot(t)/N0

interaction with J’th species globally applied suppression

�I(R, {nJ(t)}) = �bI + �IR/Ntot(t) +
�

J

MIJnJ(t)/Ntot(t)
interaction with J’th speciescoupling to external resourcebirth cost

Scale-invariant model

Tangled-Nature model A

Tangled-Nature model B

Since we do not know an established model, 
we tried to find a universality shared for various models.
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Commonly observed pattern
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Lifetime distribution for population dynamics models
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Skewed profile is universal for various population dynamics models



Dynamical Graph Model
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• System is represented by a weighted and directed graph. 
• Interspecies interaction is denoted by aij. 
• If Σaij ≧ 0, species I can survive. (Σaij = fitness of i’th species: fi) 
• aij takes a random number drawn from a Gaussian distribution 

with probability c. (With 1-c, aij is zero.)

Y. Murase et al., New J. Phys., 12, 063021 (2010)



• neither simple exponential or simple power law

Lifetime Distribution of DG model
13
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• If we assume the mortality function t-1/2, we get a stretched 
exponential distribution.

What is the origin of the profile?
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Does long-living species have advantages to survive??
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Mortality is age-independent
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• fitness changes by immigration and extinction 
• changes in fi caused by immigrant is neutral 

• → this yields t-3/2 (does not have a time scale) 
• changes in fi caused by extinction is negative 

• this is because fi is positive by model definition 
• → negative drift is proportional to 1/k (~1/cN)

Origin of 1/N dependence of mortality
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• Assumption: random walk in N space + “Red-Queen” hypothesis

Modified Red-Queen Hypothesis
17

 0

 20

 40

 60

 80

 100

 120

 20000  25000  30000  35000  40000

N
um

be
r o

f s
pe

ci
es

Time

p(t) =
� ⇥

0

exp(�t/⇥ )
⇥

b exp(�b⇥ )d⇥

= 2bK0(2
⌅

bt)

⇥
⌅

�(bt)�1/4 exp (�2
⌅

bt) (t ⇤ 1)

p/100

p/20

mortality � 1/N

p(N) ⇥ exp (�bN)

� � N

e�t/�

Stretched exponential function with exponent 1/2 is obtained 
by modified Red-Queen hypothesis



Comparison with Empirical Data
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Ecosystem : lifetime of families

T. Shimada et al., Int. J. Mod. Phys. C, 9 1267 (2003)

lifetime distribution of families
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Product lifecycle of convenience stores
T. Mizuno et al., Progr. Theor. Phys. Suppl.(2009)
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lifetime distribution of bankrupted firms

Y. Fujiwara, 
Physica A (2004)

Ishikawa et al., 
Proc SMSEC(2015)

lifespan of firm-firm trades, firm-bank trades

Goto et al., 
Proc SMSEC(2015)

Maldaine et al., 
J. Roy. Soc. Interface(2015)
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Y. Murase, 
Proceedings of SMSEC (2015)
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Figure 11. The cumulative persistence probability of a movie remaining in a
theater for a period exceeding W weeks shown as a function of time (W , in
weeks) for movies released in the USA during 2000–2004. The broken line
shows a fit with the stretched exponential distribution (see text).

now consider an important quantifier not considered earlier: the persistence time of a movie,
⌧ , i.e. the duration for which it is shown at theaters. As seen from figure 11, only about half
of all of the movies considered survive for more than 14 weeks in theaters and only about
10% persist beyond 25 weeks. The cumulative distribution fits a stretched exponential form
(⇠ exp[�(t/a)b), indicating that the persistence time probability distribution can be described
by the Weibull distribution [46],

P(t) = b
a

✓
t
a

◆(b�1)

exp

"

�
✓

t
a

◆b
#

, (3)

where a, b > 0 are the shape and scale parameters of the distribution, respectively. The best fit
to the data shown in figure 11 is achieved for a = 16.485 ± 0.547 and b = 1.581 ± 0.060. The
Weibull distribution is well known in the study of failure processes and is often used to describe
extreme events or large deviations. In particular, it has been applied to describe the failure rate
of components, with the parameter b > 1 indicating that the rate increases with time because of
an aging process.

We can derive this empirical property of movie popularity from our earlier stated
observations, with only an added assumption: that a movie is withdrawn from circulation when
its gross income per theater falls below a critical value, gc. An interpretation of this number is
that it is related to the minimum number of tickets a theater has to sell per week in order to
make the exhibition of the movie an economically viable proposition. Once the popularity of
the movie has gone below this level, the theater is presumably no longer making a profit by
showing this film and is better off showing a different movie. Therefore, the probability that the
persistence time of a movie is ⌧ is essentially given by the probability that the gross income per
theater at time ⌧ falls below gc. To evaluate this probability, we use the observation that the gross

New Journal of Physics 12 (2010) 115004 (http://www.njp.org/)

R.K. Pan, 
New J. Phys. (2010)

We found a few example showing the “skewed” lifetime distribution 
although exponential distribution is also common.

MoviesComics



• Stretched exponential function with exponent 1/2 is 

universally observed for various multi-species models. 

• We proposed a new theory, modified Red-Queen 

hypothesis, to interpret the skewed lifetime distribution. 

• Age-independent mortality is not excluded if a lifetime 

distribution has a heavier tail than exponential.

Conclusions
22
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