Universality in Open-Evolving Systems

Yohsuke Murase
RIKEN, Advanced Institute of Computational Science

In collaboration with T. Shimada, N. Ito and P.A. Rikvold

Statistics of open-evolving systems

- lifetime distribution of each element
- extinction-size distribution
- intermittency in time series
- structure of the emergent system
-

Outline of the Talk

- Review on theories for lifetime distributions
- Population dynamics models
- -> A skewed species lifetime distribution is robustly found.
- propose a minimal model to understand the underlying mechanisms
- comparison with empirical data

Theories for lifetime distributions

- Poisson process
- age-independent mortality (constant failure rate) $\exp (-t / \tau)$
- a simple exponential function
- known as "Red-Queen" hypothesis in ecology
- age-dependent mortality
- stretched exponential distribution (Weibull)

$$
t^{\beta-1} \exp \left[-(t / \tau)^{\beta}\right]
$$

- q-exponential distribution

$$
[1-(1-q)(t / \tau)]^{1 /(1-q)}
$$

$$
m(t)=\frac{p(t)}{1-\int_{0}^{t} p(t) d t}
$$

- return time distribution

Pigolotti et al. PNAS (2005)

- 1-d random walk $t^{-3 / 2}$
- 1-d random walk $t^{-3 / 2}$
- critical branching process t^{-2}

What about the lifetime distribution of mutually interacting systems?

Population dynamics models

- population dynamics models
- Models with two time scales:

population dynamics model

(or individual based model)
addition of new species extinction of species

$$
\dot{x_{i}}=f\left(\left\{x_{j}\right\}, \ldots\right)
$$

various forms of population dynamics

Since we do not know an established model, we tried to find a universality shared for various models.
Y. Murase et al., J.Theor.Biol., 264, 663 (2010) Y.Murase et al.,Phys. Rev. E, 81, 041908 (2010)

Scale-invariant model

$$
\dot{x}_{i}=-b_{i} x_{i}+\sum_{a_{i j}<0} a_{i j} x_{i}^{\lambda} x_{j}^{(1-\lambda)}+\sum_{a_{i j}>0} a_{i j} x_{i}^{(1-\lambda)} x_{j}^{\lambda}
$$

Tangled-Nature model A

$$
\Delta_{I}\left(R,\left\{n_{J}(t)\right\}\right)=\sum_{J_{\text {interaction with J'th species }}}^{M_{I J} n_{J}(t) / N_{t o t}(t)}-\underbrace{N_{t o t}(t) / N_{0}}_{\text {globally applied suppression }}
$$

Tangled-Nature model B

$$
\Delta_{I}\left(R,\left\{n_{J}(t)\right\}\right)=-b_{I}+\eta_{\text {birth costcoupling to external resource }}^{\eta_{I} R / N_{t o t}(t)}+\sum_{\text {interaction with J'th species }}
$$

Commonly observed pattern

- For all models
- 1/f² fluctuations of N
- Skewed species-lifetime distribution
- exponential extinction-size distribution
- log-normal like population distribution

Lifetime distribution for population dynamics models

Skewed profile is universal for various population dynamics models

Dynamical Graph Model

- System is represented by a weighted and directed graph.
- Interspecies interaction is denoted by a_{ij}.
- If $\sum a_{i j} \geqq 0$, species / can survive. ($\sum a_{i j}=$ fitness of $i^{\prime \prime}$ th species: f_{i})
- $a_{i j}$ takes a random number drawn from a Gaussian distribution with probability c. (With $1-\mathrm{c}, \mathrm{a}_{\mathrm{ij}}$ is zero.)

(iii)

Y. Murase et al., New J. Phys., 12, 063021 (2010)

Lifetime Distribution of DG model

- neither simple exponential or simple power law

$$
\begin{aligned}
& P(t) \propto \exp \left(-(t / \tau)^{\beta}\right) \\
& \beta=0.54
\end{aligned}
$$

well fitted by a stretched exponential function with exponent $1 / 2$

What is the origin of the profile?

- If we assume the mortality function $t^{-1 / 2}$, we get a stretched exponential distribution.

$$
m(t)=\frac{p(t)}{1-\int_{0}^{t} p(t) d t}
$$

Does long-living species have advantages to survive??

Mortality is age-independent

Mortality is not dependent on age, but N .

Origin of $1 / \mathrm{N}$ dependence of mortality

- fitness changes by immigration and extinction
- changes in f_{i} caused by immigrant is neutral
- \rightarrow this yields $t^{-3 / 2}$ (does not have a time scale)
- changes in f_{i} caused by extinction is negative
- this is because f_{i} is positive by model definition
- \rightarrow negative drift is proportional to $1 / \mathrm{k}(\sim 1 / \mathrm{cN})$

Modified Red-Queen Hypothesis

- Assumption: random walk in N space + "Red-Queen" hypothesis

$$
\begin{aligned}
& p(N) \propto \exp (-b N) \\
& e^{-t / \tau} \\
& \text { mortality } \propto 1 / N \quad \tau \propto N \\
& \begin{aligned}
p(t) & =\int_{0}^{\infty} \frac{\exp (-t / \tau)}{\tau} b \exp (-b \tau) d \tau \\
& =2 b K_{0}(2 \sqrt{b t}) \\
& \approx \sqrt{\pi}(b t)^{-1 / 4} \exp (-2 \sqrt{b t}) \quad(t \gg 1)
\end{aligned}
\end{aligned}
$$

Stretched exponential function with exponent $1 / 2$ is obtained by modified Red-Queen hypothesis

Comparison with Empirical Data

Ecosystem : lifetime of families

Product lifecycle of convenience stores

lifetime distribution of bankrupted firms

Fig. 17.1 Cumulative age distribution $N_{>}(T)$ of firms in Japan included in database ORBIS. Horizontal axis is firm age T, and vertical axis is number of firms whose age exceeds T

J. Roy. Soc. Interface(2015)

We found a few example showing the "skewed" lifetime distribution although exponential distribution is also common.

Conclusions

- Stretched exponential function with exponent $1 / 2$ is universally observed for various multi-species models.
- We proposed a new theory, modified Red-Queen hypothesis, to interpret the skewed lifetime distribution.
- Age-independent mortality is not excluded if a lifetime distribution has a heavier tail than exponential.

Peferences

Y. Murase et al., J. Theor. Biol., 264, 663 (2010)

Random walk in genome space: A key ingredient of intermittent dynamics of community assembly on evolutionary time scales
Yohsuke Murase ${ }^{2, *}$, Takashi Shimada ${ }^{\text {a }}$, Nobuyasu Ito ${ }^{\text {a }}$, Per Arne Rikvold ${ }^{\text {b }}$ ${ }^{-}$Department of Applied Physics, School of Engineering The University of Tolyo, 7.3-1 Hongo, Bunkyo-ka, Tokyo 113-8656, Japan "Center for Materials Research and Technology and Department of Physics, Forida Stote Universig. Tallahassee, F 32306 -4350, USA
https://github.com/yohm/dynamical_graph_model

Simulation code of the dynamical graph model proposed in the paper Y. Murase et al., New J. Phys. (2010), - Edit

