Black Holes in NV = 4 Super-Yang-Mills

Francesco Benini

SISSA (Trieste)

APCTP Workshop on QFT and String Theory
Pohang (South Korea), 18-22 November 2019

in collaboration with Paolo Milan, arXiv: 1811.04107
arXiv: 1812.09613



Quantum gravity

* STRING THEORY: Perturbative definition (4 some non-pert. objects)



Quantum gravity

* STRING THEORY: Perturbative definition (4 some non-pert. objects)

* AdS/CFT: For gravity in = non-perturbative definition
asymptotically AdS space in terms of boundary
ordinary QFT
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Large AdSp compared with higher QFT is

strongly coupled
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E.g., in string theory: A—/d; ~ A PROBLEM!
@

derivative corrections to Einstein gravity =

(e.g., massive string or higher-spin modes)

| Take advantage of modern non-perturbative methods I



Black holes have an entropy

- Area
BH 4GNh/C3
Black hole  — Ensemble of stat-es
In quantum gravity
A
Smicro == 10g Nmicro = ﬁ + 10g Area —+ ...

4G N

[Bekenstein 72, 73, 74; Hawking 74, 75]

Ensemble of states
in boundary QFT

(pert. and non-pert.)



Black holes have an entropy

s Area - .
= T~ /3 nstein 72, 73, 74; Hawking 74, 75
BH 4GNh/03 [Bekenstein 7 a 75)
Black hole — Ensemble of states _ Ensemble of states
o in quantum gravity - in boundary QFT
Area
Shmicro = 10g Nmicro = —— + logArea + ... (pert. and non-pert.)
4G N

@ Can we reproduce the Bekenstein-Hawking entropy?
@ Can we go beyond and compute corrections?

o Can we determine the exact integer number Npmicro?



Black holes in flat space

* String theory reproduces the Bekenstein-Hawking entropy [Strominger, Vafa 96]
of BPS black holes in asymptotically flat spacetime

e With enough SUSY, corrections can be computed as well
[G. Compere, A. Dabholkar, F. Denef, R. Dijkgraaf, J. Gomes, J. A. Harvey, M. Henneaux, F. Larsen,
J. Maldacena, G. Moore, S. Murthy, B. Pioline, V. Reys, A. Sen, A. Strominger, E. Verlinde, H. Verlinde,
E. Witten, D. Zagier, ...]

(We still lack a non-perturbative definition)

e Computation done by exhibiting AdS3 near horizon
= BTZ black holes understood as well



Black holes in AdS

* Dual QFT reproduces the Bekenstein-Hawking entropy [FB, Hristov, Zaffaroni 15]
of magnetically-charged (dyonic) BPS black holes
in asymptotically AdS, space

e Corrections are difficult [Liu, Pando Zayas, Rathee, Zhao 17; Jeon, Lal 17]

e Generalized to magnetic black holes in other dimensions

[Azzurli, FB, Bobev, Cabo-Bizet, Crichigno, Hosseini, Hristov, Jain, Passias, Min, Nedelin, Pando Zayas,
Willett, Yaakov, Zaffaroni, ...]



Black holes in AdS

* Dual QFT reproduces the Bekenstein-Hawking entropy [FB, Hristov, Zaffaroni 15]
of magnetically-charged (dyonic) BPS black holes
in asymptotically AdS, space

e Corrections are difficult [Liu, Pando Zayas, Rathee, Zhao 17; Jeon, Lal 17]

e Generalized to magnetic black holes in other dimensions
[Azzurli, FB, Bobev, Cabo-Bizet, Crichigno, Hosseini, Hristov, Jain, Passias, Min, Nedelin, Pando Zayas,
Willett, Yaakov, Zaffaroni, ...]
* What about non-magnetic black holes in AdS?

The case of AdSs5 has remained a puzzle for a long time. ..
[Kinney, Maldacena, Minwalla, Raju 05]



BPS black holes in AdS5

Setup:

Type |IB string theory - 4d SU(N)
on AdS; x S° N = 4 Super-Yang-Mills



BPS black holes in AdS5

Setup:

Type |IB string theory - 4d SU(N)
on AdS; x S° N = 4 Super-Yang-Mills

Black hole solutions can be constructed in 5d gauged SUGRA in AdS;

E.g.: 5d N =1 gauged “STU model” (graviton mult. + 2 vector mult.)

* Does N'=4 SYM contain BPS states that reproduce the black hole entropy?



Rotating & electrically-charged %—BPS black holes in AdS5 [Gutokski, Reall 04]
[Chong, Cvetic, Lu, Pope 05; Kunduri, Lucietti, Reall 06]

ds? = —(HyHaHs) ™5 (dt + wydt) + wedg)? + (HiHz2Hs) s (f(r)dr® + r?dsks)
A = H7 M (dt + wydd + wedd) + Ubdp + Ubde
®' = (H,H,Hy)3 H'*

@ Two angular momenta: Ji, Jo

Three electric charges U(1)? C SO(6): Ry, R, R3

@ Extremal, 1 complex supercharge Q
BPS relation: 2M =2J1+2Jo+ R+ Ry + Rs3

Large smooth horizon: non-linear relation among 5 charges — 4 parameters

o Near horizon: fibration ~ AdSs — squashed S3

B-H entropy: SBH = 4Aé7e§ = W\/RlRQ + R1R3 + RoR3 — 2N2(J1 + Jz)

@ Angular momenta, charges and entropy scale ~ N2



SuperCOI’]fOFmal |ndeX [Romelsberger 05; Kinney, Maldacena, Minwalla, Raju 05]

% Counts (with sign) BPS states on S® = protected operators on flat space

Index of N/ =4 SYM:

1 _ 1 _
I(p, g, yo) = Tr (—1)F 7A@ plivhs o by p U TH) ) (=)

Write:  p = ™7 q = e>™° Yo = e2™1Ra F =R3=2J; =2J> mod 2

SUSY = at most 4 independent fugacities



Superconformal IndeX [Romelsberger 05; Kinney, Maldacena, Minwalla, Raju 05]

% Counts (with sign) BPS states on S® = protected operators on flat space

Index of N/ =4 SYM:

1 — 1 —
I(p,q,y1,92) = Tr (—1)F e QT plitdfs glatdfis pUin=iho) 3 0)

Write:  p = ™7 q= e Yo = 2R F=R3=2J; =2J5 mod 2

SUSY = at most 4 independent fugacities

* Exact integral formula:

% Tli(_i;) dz; a 1 Hpef)‘iadj F(p(u) +Au; 7, U)
=K
N Trk(G) 27”21

Haegf(a(u);r,cr)

with Al +As+A3—7—0c€Z, z=e2™" and

(5 2) %Y (g; )Y = o 1— pmtlgntt/,
e Wl Fumo) =11, o =5 g

1—pmqhz



The index encodes (weighted) degeneracies:

T=1+#y+#>+...+dQ)y° +...

To extract the degeneracies:

_ 1 dy _ log Z(A)—2miQA
AQ) = 5 f o T0) = faa ¢

Assuming large degeneracies, saddle-point approximation — Legendre transform

log d(Q) =~ logZ(A) — 2miQA ‘A

= extremum

e We are interested in Q ~ N2



Old attempt at |al’ge N ||m|t [Kinney, Maldacena, Minwalla, Raju 05]

Use plethystic representation of elliptic I' function:
[Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03]

N oo
N _HN]{H%U,Z X exp [—ZZVkCOSZWk(ui —uy)

i#j k=1

2miu

with  Vi(p,¢,91,92,y3) and y1y2y3 =pg and z=e



Old attempt at |al’ge N ||mit [Kinney, Maldacena, Minwalla, Raju 05]

Use plethystic representation of elliptic I' function:

[Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03]
N oo
In = anH 2mz X exp [— ZZVk cos 2mk(u; — uj)]
i) k=1

with Vi(p, ¢, y1,92,y3) and yiyoys =pg and z =™ .

e Saddle-point approximation, continuous distribution of eigenvalues u; — p(u):

Slpw)] = N* 3" Vilpil? P / du p(u) >

For real fugacities, all V;; > 0. Then minimum at p; =0
= homogeneous distribution of u; on the unit circle

e (1-p"H(1—g¢"
IN=oo = Hk:l (1—=y9) (A —y3)(1 —y5)

This result does not depend on N.



Old attempt at large N limit
Does the result describe black hole degeneracies?
* Simplified setup: p=q¢=1>, y1 =y =y3 =2

o (1 —t3)2
In=co H 1_t2k

One can show that  d(Q) ~ e#V? for Q — o



Old attempt at large N limit

Does the result describe black hole degeneracies?

* Simplified setup: p=q=13, y1 =yo =y3z =12

o (1 —t3)2
In=co H 1_t2k

One can show that  d(Q) ~ e#V? for Q — o
For charges Q ~ N2, we get entropy S ~ NN and not N? No black holes!

* Tn—oo matches the index of graviton-multiplet states in AdSs

This saddle-point captures a gas of gravitons in AdS;



Why the index does not capture BPS black holes?

@ Maybe for ---BPS states there are huge cancelations due to Tr (—1)" ...



Why the index does not capture BPS black holes?

@ Maybe for ---BPS states there are huge cancelations due to Tr (—1)" ...

@ ...but BPS black holes in AdS, x S” (dual to 3d N = 8 ABJM theory)
are also %—BPS, and in that case

the index does capture black hole degeneracies [FB, Hristov, Zaffaroni 15|



Log Index = Black hole Entropy

* Black hole solution is an holographic RG flow 4d — 1d

Near-horizon AdSs:

superconformal Quantum Mechanics

su(1,1)1) O sl(2,R) x u(1)g,

[FB, Hristov, Zaffaroni 16]

AdSy x S3

r

\

AdSs



Log Index = Black hole Entropy

[FB, Hristov, Zaffaroni 16]

* Black hole solution is an holographic RG flow 4d — 1d AdS, x 52 AdSs

Near-horizon AdSs: superconformal Quantum Mechanics

m
su(1,1]1) D sl(2,R) x u(1)g, !

Superconformal index — Witten index of QM, with respect to “trial” R-charge

I(A) = Tr (—1)Rea(Red) o—2rImA-Q —p {0,0"}

Hpear horizon

Rivial = R3+22R6A~Q



I_Og |ndeX = BlaCk hOle Entropy [FB, Hristov, Zaffaroni 16]

* Black hole solution is an holographic RG flow 4d — 1d AdS, x 52 AdSs

Near-horizon AdSs: superconformal Quantum Mechanics

o
su(1,11) > sl(2,R) x u(1)g, !
Superconformal index — Witten index of QM, with respect to “trial” R-charge

I(A) = Tr (71)Rt,i3|(]ReA) e 2rXImA-Q ,—B{Q Q")

Hpear horizon

Rivia = R + QZRQA -Q
Inputs from holography (large N):

o AdS;s = R, =0. At A all states contribute with + sign



I_Og |ndeX = BlaCk hOle Entropy [FB, Hristov, Zaffaroni 16]

* Black hole solution is an holographic RG flow 4d — 1d AdS, x 52 AdSs

Near-horizon AdSs: superconformal Quantum Mechanics

r

su(1,11) > sl(2,R) x u(1)g, !
Superconformal index — Witten index of QM, with respect to “trial” R-charge

I(A) = Tr (71)Rt,i3|(]ReA) e 2rXImA-Q ,—B{Q Q")

Hpear horizon
Rivia = R + QZREA -Q
Inputs from holography (large N):
o AdS;s = R, =0. At A all states contribute with + sign

@ Single-center black hole in microcanonical ensemble: all states have charge Q)

OlogT

A EZ@(Q) Sen = Re 10gI—27rzZAQ£

Assuming s.c. black hole dominates =- 7 captures the entropy  [similar to Sen 09]



Three recent approaches

@ Entropy from on-shell action [Cabo-Bizet, Cassani, Martelli, Murthy 18]
[Cassani, Papini 19]

o Cardy limit [Choi, J. Kim, S. Kim, Nahmgoong 18]
[M. Honda 19; Ardehali 19]
[4. Kim, S. Kim, Song 19; Cabo-Bizet, Cassani, Martelli, Murthy 19]

o Large N limit [FB, Milan 18]
[Cabo-Bizet, Murthy 19]
[Lanir, Nedelin, Sela 19]
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Bethe Ansatz formula for the superconformal index

For 7 = ¢ € Qy (ie, 7 = aw, 0 = bw) alternative formula:  [Closset, Kim, Willett 17]
[FB, Milan 18]

I = KN Z Ztot(ﬂ;£77-7 U) H(ﬂ7£7w)71

U € Mpae
Q Migar are solutions to “Bethe Ansatz Equations” for rk(G) complexified
holonomies [ii;] living on a complex torus T2 of modular parameter w
e—ﬂ'i%-‘rﬂ'iu

Oo(u;w)

Pa

Qi

11 P(Pa +wa(§)+ra7+”7w) Pujw) =

PaER
Meae = {[ai] e 12 ‘ Qi(w) =1, w-[a]#[a] Ywe WG}



Bethe Ansatz formula for the superconformal index

For 7 = ¢ € Qy (ie, 7 = aw, 0 = bw) alternative formula:  [Closset, Kim, Willett 17]
[FB, Milan 18]

I = KN Z Ztot(ﬂ;£77-7 U) H(ﬂ7£7w)71

U € Mpae
Q Migar are solutions to “Bethe Ansatz Equations” for rk(G) complexified
holonomies [ii;] living on a complex torus T2 of modular parameter w
e—ﬂ'i%-‘rﬂiu

Oo(u;w)

Pa

Qi

11 P(Pa +wa(§)+ra7+”7w) Pujw) =

pa€R

mBAE—{[ai]eTj‘Qi(u):L w - [a] # [4] VwEWG}

@ kn and Z are the same prefactor and integrand as in the integral formula,

ab
Ziot(u;...) = Z{m-}:l Z(u—mw;...)

© H is a Jacobian: H = d °t (0Q >
Ou;



Bethe Ansatz Equations for A = 4 SYM
Specialize to 4d SU(N) N =4 SYM, and 7 = o (i.e. J; = J5). BAEs:

N
Oo(wj; + A;7)
. 27i )\-&-32 w; 0\Ujq )
1=Q;=e z J H H QO(U"JFA'T)
J=1 Ace{A1,A2,—A1—-A2} 4 ’

Equations are defined on T and are invariant under SL(2,Z)



Bethe Ansatz Equations for N/ = 4 SYM
Specialize to 4d SU(N) N =4 SYM, and 7 =0 (i.e. J; = J3). BAEs:

N
Oo(wj; + A;7)
1= Qz eQm )\+32 Uij H H g ’
J=1 A€{A1,A5,—A1—As} Oo(wij + A;7)
Equations are defined on T and are invariant under SL(2,Z)

* Class of exact solutions at finite IV: [Hosseini, Nedelin, Zaffaroni 16; Hong, Liu 18]

@ BASIC SOLUTION:  u;; = +(j —1) E
TL(j—i)with0<r < N

@ Many other solutions — most related by SL(2,Z)

@ T-TRANSFORMED SOL's:  u;; = T~

(This class does not exhaust all solutions)



Contribution of BASIC SOLUTION at large N

-1
’

Define [A], = A+n st € STRIP

Contribution of the BASIC SOLUTION at large NN:

lim logZ| . = —itN?O(Ay, Ay, 7)
N—oo SOLUTION
(A1), [A2]T(2T—Tl—[A1]T—[A2]T) if [A1]; + [A3g]; € STRIP
@ =
(1a1),+1) (122)- +1) 22771—{A1]T7[A2]T) if [A1]; + [As]; + 1 € STRIP

T

This limit is a discontinuous analytic function: Stokes phenomenon



Black hole entropy

Extract entropy from logZ |BA§IC SOLUTION

e Caveat: the theory has 5 charges, but the index only 4 fugacities

3 _ Ba

/dr do Ay dAz T(r, 0,51, 82)p~ g7 2 T v - > AU R)

other charges
fixed

SUGRA: at most one s.c. black hole contributes to the sum



Black hole entropy

Extract entropy from logZ |BA§IC SOLUTION

e Caveat: the theory has 5 charges, but the index only 4 fugacities

3 _Rg

/dr do dAydAz I(r,0,A1,82)p~ "1™ ] wa = ZR3 d(J, R)

other charges
fixed

SUGRA: at most one s.c. black hole contributes to the sum

* Set X7 =[A1]; Xz =[Ag];. Obtain “entropy function":

inn? XXy

3
2 with Y Xo—2r+41=0
7

a=1

logZ =

Its (constrained) Legendre transform exactly gives the black hole entropy:

[Hosseini, Hristov, Zaffaroni 17]

Sen = log T — 2ri (Z X, B 4 2TJ)

constrained extremum

Extract X, 7 from R, J and check that satisfy strip inequality = self-consistency



What about other solutions? They play the role of multiple “saddle points”

All contributions are of order N2: the one with largest real part dominates 7

* T-TRANSFORMED SOL's ~ with — & <r <

NP4

lim logZ :rﬁ\z&<fi7r]\f2 @(A17A2a7+7"))
N—oc0

T-TRANSF rEZ

This ensures periodicity under 7 — 7+ 1



What about other solutions? They play the role of multiple “saddle points”

All contributions are of order N2: the one with largest real part dominates 7

* T-TRANSFORMED SOL's ~ with — & <r <

NP4

lim logZ :rﬁ\z&<fi7r]\f2 @(A17A2a7+7"))
N—oc0

T-TRANSF rEZ

This ensures periodicity under 7 — 7+ 1

* Stokes phenomenon

In the limit, multiple exponential contributions compete (as in phase transitions)

lim = em(ATN? | gaa(AN? |

— Different regions with different analytic limits,

separated by (real-codimension-1) “Stokes lines”



Comparison with old large N limit

* Stokes phenomenon can accommodate the old computation

of [Kinney, Maldacena, Minwalla, Raju 05]

@ The submanifold of real fugacities sits entirely within a Stokes line

@ More strongly, all contributions of order N? from T-TRANSFORMED SOL's
pair up into competing terms, and potentially cancel out.



Universal black holes

Special hi=h e 27 — 1
ecial case: YRS T —
P R1=R2:R3 A1:A2:A3£A:
Such black holes exist in 5d A/ = 1 minimal gauged SUGRA
Uplift to any AdSs x SEs dual to 4d N =1 SCFT




Universal black holes

Special J1=Jo T=0

ecial case: <

P R1=R2:R3 A1:A2:A3E
Such black holes exist in 5d A/ = 1 minimal gauged SUGRA
Uplift to any AdSs x SEs dual to 4d N =1 SCFT




Conclusions

Summary:

o Careful analysis of superconformal index of N' =4 SYM,
using an alternative Bethe Ansatz formulation.
At large N, each Bethe Ansatz solution plays the role of a saddle point.

@ One solution exactly reproduces the Bekenstein-Hawking entropy
of BPS black holes in AdSs.

@ Other solutions provide competing contributions, giving rise to
Stokes phenomena (phase transitions).



Conclusions

Summary:

o Careful analysis of superconformal index of N' =4 SYM,
using an alternative Bethe Ansatz formulation.
At large N, each Bethe Ansatz solution plays the role of a saddle point.

@ One solution exactly reproduces the Bekenstein-Hawking entropy
of BPS black holes in AdSs.

@ Other solutions provide competing contributions, giving rise to
Stokes phenomena (phase transitions).

Open questions:
@ What do the other solutions represent?
@ What is the nature of the phase transitions?
@ Can we compute corrections?

@ What signatures of quantum gravity emerge?



