Black Holes in $\mathcal{N}=4$ Super-Yang-Mills

Francesco Benini

SISSA (Trieste)
APCTP Workshop on QFT and String Theory
Pohang (South Korea), 18-22 November 2019

in collaboration with Paolo Milan, arXiv: 1811.04107
arXiv: 1812.09613

Quantum gravity

* String Theory: Perturbative definition (+ some non-pert. objects)

Quantum gravity

* String Theory: Perturbative definition (+ some non-pert. objects)
* AdS/CFT: For gravity in asymptotically AdS space
$\Rightarrow \quad$ non-perturbative definition in terms of boundary ordinary QFT

Parameter map

Large AdS_{D} compared with Planck scale

$$
\begin{array}{ll}
\Rightarrow & \text { QFT with large } \\
\text { "central charge" (large } N \text {) }
\end{array}
$$

$$
\frac{\ell_{\mathrm{AdS}}^{D-2}}{G_{N}} \sim \text { "с.c." }
$$

Parameter map

Large AdS_{D} compared with Planck scale

$$
\begin{array}{ll}
\Rightarrow & \text { QFT with large } \\
\text { "central charge" (large } N)
\end{array}
$$

$$
\frac{\ell_{\mathrm{AdS}}^{D-2}}{G_{N}} \sim \text { "с.c." }
$$

Large AdS_{D} compared with higher

- derivative corrections to Einstein gravity (e.g., massive string or higher-spin modes)

$$
\text { E.g., in string theory: } \quad \frac{\ell_{\mathrm{AdS}}^{4}}{\alpha^{\prime 2}} \sim \lambda
$$

\Rightarrow| QFT is
 strongly coupled |
| :---: |
| \uparrow |
| PROBLEM! |

Parameter map

Large AdS_{D} compared
with Planck scale

$$
\begin{array}{ll}
\Rightarrow & \text { QFT with large } \\
\text { "central charge" (large } N \text {) }
\end{array}
$$

$$
\frac{\ell_{\mathrm{AdS}^{2}}^{D-2}}{G_{N}} \sim \text { "c.c." }
$$

Large AdS_{D} compared with higher

- derivative corrections to Einstein gravity (e.g., massive string or higher-spin modes)

$$
\text { E.g., in string theory: } \quad \frac{\ell_{\mathrm{AdS}}^{4}}{\alpha^{\prime 2}} \sim \lambda
$$

\Rightarrow| QFT is
 strongly coupled |
| ---: |
| \uparrow |
| PROBLEM! |

! Take advantage of modern non-perturbative methods!

Black holes have an entropy

$$
S_{\mathrm{BH}}=\frac{\text { Area }}{4 G_{N} \hbar / c^{3}}
$$

[Bekenstein 72, 73, 74; Hawking 74, 75]

$$
\begin{aligned}
& \text { Black hole }=\begin{array}{l}
\text { Ensemble of states } \\
\text { in quantum gravity }
\end{array}=\begin{array}{l}
\text { Ensemble of states } \\
\text { in boundary QFT }
\end{array} \\
& S_{\text {micro }}=\log N_{\text {micro }}=\frac{\text { Area }}{4 G_{N}}+\log \text { Area }+\ldots \quad \text { (pert. and non-pert.) }
\end{aligned}
$$

Black holes have an entropy

$$
S_{\mathrm{BH}}=\frac{\text { Area }}{4 G_{N} \hbar / c^{3}}
$$

[Bekenstein 72, 73, 74; Hawking 74, 75]

$$
\begin{aligned}
& \text { Black hole }=\begin{array}{l}
\text { Ensemble of states } \\
\text { in quantum gravity }
\end{array}=\begin{array}{l}
\text { Ensemble of states } \\
\text { in boundary QFT }
\end{array} \\
& S_{\text {micro }}=\log N_{\text {micro }}=\frac{\text { Area }}{4 G_{N}}+\log \text { Area }+\ldots \quad \text { (pert. and non-pert.) }
\end{aligned}
$$

- Can we reproduce the Bekenstein-Hawking entropy?
- Can we go beyond and compute corrections?
- Can we determine the exact integer number $N_{\text {micro }}$?

Black holes in flat space

* String theory reproduces the Bekenstein-Hawking entropy of BPS black holes in asymptotically flat spacetime
- With enough SUSY, corrections can be computed as well
[G. Compere, A. Dabholkar, F. Denef, R. Dijkgraaf, J. Gomes, J. A. Harvey, M. Henneaux, F. Larsen,
J. Maldacena, G. Moore, S. Murthy, B. Pioline, V. Reys, A. Sen, A. Strominger, E. Verlinde, H. Verlinde,
E. Witten, D. Zagier, ...]
(We still lack a non-perturbative definition)
- Computation done by exhibiting AdS_{3} near horizon
$\Rightarrow B T Z$ black holes understood as well

Black holes in AdS

* Dual QFT reproduces the Bekenstein-Hawking entropy
[FB, Hristov, Zaffaroni 15] of magnetically-charged (dyonic) BPS black holes in asymptotically AdS_{4} space
- Corrections are difficult
- Generalized to magnetic black holes in other dimensions
[Azzurli, FB, Bobev, Cabo-Bizet, Crichigno, Hosseini, Hristov, Jain, Passias, Min, Nedelin, Pando Zayas,
Willett, Yaakov, Zaffaroni, ...]

Black holes in AdS

* Dual QFT reproduces the Bekenstein-Hawking entropy
[FB, Hristov, Zaffaroni 15] of magnetically-charged (dyonic) BPS black holes in asymptotically AdS_{4} space
- Corrections are difficult
- Generalized to magnetic black holes in other dimensions
[Azzurli, FB, Bobev, Cabo-Bizet, Crichigno, Hosseini, Hristov, Jain, Passias, Min, Nedelin, Pando Zayas,
Willett, Yaakov, Zaffaroni, ...]
* What about non-magnetic black holes in AdS?

The case of AdS_{5} has remained a puzzle for a long time...

BPS black holes in AdS_{5}
$\underline{\text { Setup: }}$

Type IIB string theory on $\mathrm{AdS}_{5} \times S^{5}$

$$
\begin{gathered}
\text { 4d } S U(N) \\
\mathcal{N}=4 \text { Super-Yang-Mills }
\end{gathered}
$$

BPS black holes in AdS_{5}

Setup:
Type IIB string theory on $\mathrm{AdS}_{5} \times S^{5}$

> 4d $S U(N)$
> $\mathcal{N}=4$ Super-Yang-Mills

Black hole solutions can be constructed in 5d gauged SUGRA in AdS_{5}
E.g.: $5 \mathrm{~d} \mathcal{N}=1$ gauged "STU model" (graviton mult. +2 vector mult.)

* Does $\mathcal{N}=4$ SYM contain BPS states that reproduce the black hole entropy?

Rotating \& electrically-charged $\frac{\mathbf{1}}{16}$-BPS black holes in AdS_{5} [Gutokski, Reall 04]
[Chong, Cvetic, Lu, Pope 05; Kunduri, Lucietti, Reall 06]

$$
\begin{aligned}
d s^{2} & =-\left(H_{1} H_{2} H_{3}\right)^{-\frac{2}{3}}\left(d t+\omega_{\psi} d \psi+\omega_{\phi} d \phi\right)^{2}+\left(H_{1} H_{2} H_{3}\right)^{\frac{1}{3}}\left(f(r) d r^{2}+r^{2} d s_{S^{3}}^{2}\right) \\
A^{I} & =H_{I}^{-1}\left(d t+\omega_{\psi} d \psi+\omega_{\phi} d \phi\right)+U_{\psi}^{I} d \psi+U_{\phi}^{I} d \phi \\
\Phi^{I} & =\left(H_{1} H_{2} H_{3}\right)^{\frac{1}{3}} H_{I}^{-1}
\end{aligned}
$$

- Two angular momenta:

$$
J_{1}, J_{2}
$$

Three electric charges $U(1)^{3} \subset S O(6): \quad R_{1}, R_{2}, R_{3}$

- Extremal, 1 complex supercharge \mathcal{Q}

BPS relation: $\quad 2 M=2 J_{1}+2 J_{2}+R_{1}+R_{2}+R_{3}$
Large smooth horizon: non-linear relation among 5 charges $\rightarrow 4$ parameters

- Near horizon: fibration $\mathrm{AdS}_{2} \rightarrow$ squashed S^{3}

B-H entropy: $\quad S_{\mathrm{BH}}=\frac{\text { Area }}{4 G_{N}}=\pi \sqrt{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}-2 N^{2}\left(J_{1}+J_{2}\right)}$

- Angular momenta, charges and entropy scale $\sim N^{2}$

Superconformal index

* Counts (with sign) BPS states on $S^{3}=$ protected operators on flat space Index of $\mathcal{N}=4 \mathrm{SYM}$:

$$
\mathcal{I}\left(p, q, y_{1}, y_{2}\right)=\operatorname{Tr}(-1)^{F} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}} p^{J_{1}+\frac{1}{2} R_{3}} q^{J_{2}+\frac{1}{2} R_{3}} y_{1}^{\frac{1}{2}\left(R_{1}-R_{3}\right)} y_{2}^{\frac{1}{2}\left(R_{2}-R_{3}\right)}
$$

Write: $\quad p=e^{2 \pi i \tau} \quad q=e^{2 \pi i \sigma} \quad y_{a}=e^{2 \pi i \Delta_{a}} \quad F=R_{3}=2 J_{1}=2 J_{2} \bmod 2$
SUSY \Rightarrow at most 4 independent fugacities

Superconformal index

* Counts (with sign) BPS states on $S^{3}=$ protected operators on flat space Index of $\mathcal{N}=4 \mathrm{SYM}$:

$$
\mathcal{I}\left(p, q, y_{1}, y_{2}\right)=\operatorname{Tr}(-1)^{F} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}} p^{J_{1}+\frac{1}{2} R_{3}} q^{J_{2}+\frac{1}{2} R_{3}} y_{1}^{\frac{1}{2}\left(R_{1}-R_{3}\right)} y_{2}^{\frac{1}{2}\left(R_{2}-R_{3}\right)}
$$

Write: $\quad p=e^{2 \pi i \tau} \quad q=e^{2 \pi i \sigma} \quad y_{a}=e^{2 \pi i \Delta_{a}} \quad F=R_{3}=2 J_{1}=2 J_{2} \bmod 2$
SUSY \Rightarrow at most 4 independent fugacities

* Exact integral formula:

$$
\mathcal{I}=\kappa_{N} \oint_{\mathbb{T}^{\mathrm{rk}(G)}} \prod_{i=1}^{\mathrm{rk}(G)} \frac{d z_{i}}{2 \pi i z_{i}} \times \frac{\prod_{a=1}^{3} \prod_{\rho \in \mathfrak{R}_{\mathrm{adj}}} \widetilde{\Gamma}\left(\rho(u)+\Delta_{a} ; \tau, \sigma\right)}{\prod_{\alpha \in \mathfrak{g}} \widetilde{\Gamma}(\alpha(u) ; \tau, \sigma)}
$$

with

$$
\begin{array}{lr}
\Delta_{1}+\Delta_{2}+\Delta_{3}-\tau-\sigma \in \mathbb{Z}, \quad z=e^{2 \pi i u} \quad \text { and } \\
\kappa_{N}=\frac{(p ; p)_{\infty}^{\mathrm{rk}(G)}(q ; q)_{\infty}^{\mathrm{rk}(G)}}{\left|\mathcal{W}_{G}\right|} & \widetilde{\Gamma}(u ; \tau, \sigma)=\prod_{m, n=0}^{\infty} \frac{1-p^{m+1} q^{n+1} / z}{1-p^{m} q^{n} z}
\end{array}
$$

The index encodes (weighted) degeneracies:

$$
\mathcal{I}=1+\# y+\# y^{2}+\ldots+d(Q) y^{Q}+\ldots
$$

To extract the degeneracies:

$$
d(Q)=\frac{1}{2 \pi i} \oint \frac{d y}{y^{Q+1}} \mathcal{I}(y)=\oint d \Delta e^{\log \mathcal{I}(\Delta)-2 \pi i Q \Delta}
$$

Assuming large degeneracies, saddle-point approximation \rightarrow Legendre transform

$$
\log d(Q) \simeq \log \mathcal{I}(\Delta)-\left.2 \pi i Q \Delta\right|_{\Delta=\text { extremum }}
$$

- We are interested in $Q \sim N^{2}$

Old attempt at large N limit

Use plethystic representation of elliptic Γ function:
[Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03]

$$
\mathcal{I}_{N}=\kappa_{N} \oint \prod_{i=1}^{N} \frac{d z_{i}}{2 \pi i z_{i}} \times \exp \left[-\sum_{i \neq j}^{N} \sum_{k=1}^{\infty} V_{k} \cos 2 \pi k\left(u_{i}-u_{j}\right)\right]
$$

with $\quad V_{k}\left(p, q, y_{1}, y_{2}, y_{3}\right) \quad$ and $\quad y_{1} y_{2} y_{3}=p q \quad$ and $\quad z=e^{2 \pi i u}$.

Old attempt at large N limit

Use plethystic representation of elliptic Γ function:
[Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03]

$$
\mathcal{I}_{N}=\kappa_{N} \oint \prod_{i=1}^{N} \frac{d z_{i}}{2 \pi i z_{i}} \times \exp \left[-\sum_{i \neq j}^{N} \sum_{k=1}^{\infty} V_{k} \cos 2 \pi k\left(u_{i}-u_{j}\right)\right]
$$

with $V_{k}\left(p, q, y_{1}, y_{2}, y_{3}\right)$ and $y_{1} y_{2} y_{3}=p q$ and $z=e^{2 \pi i u}$.

- Saddle-point approximation, continuous distribution of eigenvalues $u_{i} \rightarrow \rho(u)$:

$$
S[\rho(u)]=N^{2} \sum_{k=1}^{\infty} V_{k}\left|\rho_{k}\right|^{2} \quad \quad \rho_{k}=\int d u \rho(u) e^{2 \pi i u}
$$

For real fugacities, all $V_{k}>0$. Then minimum at $\rho_{k}=0$
\Rightarrow homogeneous distribution of u_{i} on the unit circle

$$
\mathcal{I}_{N=\infty}=\prod_{k=1}^{\infty} \frac{\left(1-p^{k}\right)\left(1-q^{k}\right)}{\left(1-y_{1}^{k}\right)\left(1-y_{2}^{k}\right)\left(1-y_{3}^{k}\right)}
$$

This result does not depend on N.

Old attempt at large N limit

Does the result describe black hole degeneracies?
\star Simplified setup: $\quad p=q=t^{3}, \quad y_{1}=y_{2}=y_{3}=t^{2}$

$$
\mathcal{I}_{N=\infty} \rightarrow \prod_{k=1}^{\infty} \frac{\left(1-t^{3 k}\right)^{2}}{\left(1-t^{2 k}\right)^{3}}
$$

One can show that $\quad d(Q) \sim e^{\# \sqrt{Q}}$ for $\quad Q \rightarrow \infty$

Old attempt at large N limit

Does the result describe black hole degeneracies?

夫 Simplified setup: $\quad p=q=t^{3}, \quad y_{1}=y_{2}=y_{3}=t^{2}$

$$
\mathcal{I}_{N=\infty} \rightarrow \prod_{k=1}^{\infty} \frac{\left(1-t^{3 k}\right)^{2}}{\left(1-t^{2 k}\right)^{3}}
$$

One can show that $\quad d(Q) \sim e^{\# \sqrt{Q}} \quad$ for $\quad Q \rightarrow \infty$
For charges $Q \sim N^{2}$, we get entropy $S \sim N$ and not N^{2}
No black holes!

* $\mathcal{I}_{N=\infty}$ matches the index of graviton-multiplet states in AdS_{5}

This saddle-point captures a gas of gravitons in AdS_{5}

Why the index does not capture BPS black holes?

- Maybe for $\frac{1}{16}$-BPS states there are huge cancelations due to $\operatorname{Tr}(-1)^{F} \ldots$

Why the index does not capture BPS black holes?

- Maybe for $\frac{1}{16}$-BPS states there are huge cancelations due to $\operatorname{Tr}(-1)^{F} \ldots$
- ... but BPS black holes in $\mathrm{AdS}_{4} \times S^{7} \quad$ (dual to $3 \mathrm{~d} \mathcal{N}=8 \mathrm{ABJM}$ theory) are also $\frac{1}{16}$-BPS, and in that case the index does capture black hole degeneracies

Log Index = Black hole Entropy

* Black hole solution is an holographic RG flow 4d \rightarrow 1d Near-horizon AdS_{2} : superconformal Quantum Mechanics

$$
\mathfrak{s u}(1,1 \mid 1) \supset \mathfrak{s l}(2, \mathbb{R}) \times \mathfrak{u}(1)_{R_{s c}}
$$

Log Index = Black hole Entropy

* Black hole solution is an holographic RG flow 4d \rightarrow 1d Near-horizon AdS_{2} : superconformal Quantum Mechanics

$$
\mathfrak{s u}(1,1 \mid 1) \supset \mathfrak{s l}(2, \mathbb{R}) \times \mathfrak{u}(1)_{R_{s c}}
$$

Superconformal index \rightarrow Witten index of QM, with respect to "trial" R-charge

$$
\begin{aligned}
\mathcal{I}(\Delta) & =\operatorname{Tr}(-1)^{R_{\text {trial }}(\mathbb{R e} \Delta)} e^{-2 \pi \sum \mathbb{I m} \Delta \cdot Q} e^{-\beta}{\underset{H}{\text { near hoorion }}}_{\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}} \\
R_{\text {trial }} & =R_{3}+2 \sum \mathbb{R e} \Delta \cdot Q
\end{aligned}
$$

Log Index = Black hole Entropy

* Black hole solution is an holographic RG flow 4d \rightarrow 1d Near-horizon AdS_{2} : superconformal Quantum Mechanics

$$
\mathfrak{s u}(1,1 \mid 1) \supset \mathfrak{s l}(2, \mathbb{R}) \times \mathfrak{u}(1)_{R_{s c}}
$$

Superconformal index \rightarrow Witten index of QM, with respect to "trial" R-charge

$$
\begin{aligned}
\mathcal{I}(\Delta) & =\operatorname{Tr}(-1)^{R_{\text {trial }}(\mathbb{R e} \Delta)} e^{-2 \pi \sum \mathbb{I m} \Delta \cdot Q} e^{-\beta \underset{H_{\text {near }} \text { horizon }}{\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}}} \\
R_{\text {trial }} & =R_{3}+2 \sum \mathbb{R e} \Delta \cdot Q
\end{aligned}
$$

Inputs from holography (large N):

- $\mathrm{AdS}_{2} \Rightarrow R_{\mathrm{sc}}=0 . \quad$ At $\widehat{\Delta}$ all states contribute with + sign

Log Index = Black hole Entropy

* Black hole solution is an holographic RG flow 4d \rightarrow 1d Near-horizon AdS_{2} : superconformal Quantum Mechanics

$$
\mathfrak{s u}(1,1 \mid 1) \supset \mathfrak{s l}(2, \mathbb{R}) \times \mathfrak{u}(1)_{R_{s c}}
$$

Superconformal index \rightarrow Witten index of QM, with respect to "trial" R-charge

$$
\begin{aligned}
\mathcal{I}(\Delta) & =\operatorname{Tr}(-1)^{R_{\text {trial }}(\mathbb{R e} \Delta)} e^{-2 \pi \sum \mathbb{I m} \Delta \cdot Q} e^{-\beta} \underbrace{\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}}_{H_{\text {near }} \text { horizon }} \\
R_{\text {trial }} & =R_{3}+2 \sum \mathbb{R e} \Delta \cdot Q
\end{aligned}
$$

Inputs from holography (large N):

- $\mathrm{AdS}_{2} \Rightarrow R_{\mathrm{sc}}=0 . \quad$ At $\widehat{\Delta}$ all states contribute with + sign
- Single-center black hole in microcanonical ensemble: all states have charge Q

$$
\left.\frac{\partial \log \mathcal{I}}{\partial \Delta}\right|_{\widehat{\Delta}}=i\langle Q\rangle \quad S_{\mathrm{BH}}=\mathbb{R e}\left[\log \mathcal{I}-2 \pi i \sum \Delta Q\right]_{\widehat{\Delta}}
$$

Assuming s.c. black hole dominates $\Rightarrow \mathcal{I}$ captures the entropy $\quad[$ similar to Sen 09]

Three recent approaches

- Entropy from on-shell action
[Cabo-Bizet, Cassani, Martelli, Murthy 18] [Cassani, Papini 19]
- Cardy limit
[Choi, J. Kim, S. Kim, Nahmgoong 18] [M. Honda 19; Ardehali 19]
[J. Kim, S. Kim, Song 19; Cabo-Bizet, Cassani, Martelli, Murthy 19]
- Large N limit

Three recent approaches

- Entropy from on-shell action
[Cabo-Bizet, Cassani, Martelli, Murthy 18] [Cassani, Papini 19]
- Cardy limit
[Choi, J. Kim, S. Kim, Nahmgoong 18] [M. Honda 19; Ardehali 19]
[J. Kim, S. Kim, Song 19; Cabo-Bizet, Cassani, Martelli, Murthy 19]
- Large N limit
[FB, Milan 18]
[Cabo-Bizet, Murthy 19]
[Lanir, Nedelin, Sela 19]

Bethe Ansatz formula for the superconformal index

For $\frac{\tau}{\sigma}=\frac{a}{b} \in \mathbb{Q}_{+}$(i.e., $\tau=a \omega, \sigma=b \omega$) alternative formula: [Closset, Kim, Willett 17]
[FB, Milan 18]

$$
\mathcal{I}=\kappa_{N} \sum_{\hat{u} \in \mathfrak{M}_{\mathrm{BAE}}} \mathcal{Z}_{\mathrm{tot}}(\hat{u} ; \xi, \tau, \sigma) H(\hat{u} ; \xi, \omega)^{-1}
$$

(1) $\mathfrak{M}_{\text {BAE }}$ are solutions to "Bethe Ansatz Equations" for $\mathrm{rk}(G)$ complexified holonomies $\left[\hat{u}_{i}\right]$ living on a complex torus T_{ω}^{2} of modular parameter ω :

$$
\begin{aligned}
Q_{i} & =\prod_{\rho_{a} \in \mathfrak{R}} P\left(\rho_{a}(u)+\omega_{a}(\xi)+r_{a} \frac{\tau+\sigma}{2} ; \omega\right)^{\rho_{a}^{i}}
\end{aligned} \quad P(u ; \omega)=\frac{e^{-\pi i \frac{u^{2}}{\omega}+\pi i u}}{\theta_{0}(u ; \omega)}, ~ \mathfrak{M}_{\mathrm{BAE}}=\left\{\left[\hat{u}_{i}\right] \in T_{\omega}^{2} \mid Q_{i}(u)=1, \quad w \cdot[\hat{u}] \neq[\hat{u}] \quad \forall w \in \mathcal{W}_{G}\right\}
$$

Bethe Ansatz formula for the superconformal index

For $\frac{\tau}{\sigma}=\frac{a}{b} \in \mathbb{Q}_{+}$(i.e., $\tau=a \omega, \sigma=b \omega$) alternative formula: [Closset, Kim, Willett 17]
[FB, Milan 18]

$$
\mathcal{I}=\kappa_{N} \sum_{\hat{u} \in \mathfrak{M}_{\mathrm{BAE}}} \mathcal{Z}_{\mathrm{tot}}(\hat{u} ; \xi, \tau, \sigma) H(\hat{u} ; \xi, \omega)^{-1}
$$

(1) $\mathfrak{M}_{\text {BAE }}$ are solutions to "Bethe Ansatz Equations" for $\mathrm{rk}(G)$ complexified holonomies $\left[\hat{u}_{i}\right]$ living on a complex torus T_{ω}^{2} of modular parameter ω :

$$
\begin{aligned}
Q_{i} & =\prod_{\rho_{a} \in \mathfrak{R}} P\left(\rho_{a}(u)+\omega_{a}(\xi)+r_{a} \frac{\tau+\sigma}{2} ; \omega\right)^{\rho_{a}^{i}}
\end{aligned} \quad P(u ; \omega)=\frac{e^{-\pi i \frac{u^{2}}{\omega}+\pi i u}}{\theta_{0}(u ; \omega)}
$$

(2) κ_{N} and \mathcal{Z} are the same prefactor and integrand as in the integral formula,

$$
\mathcal{Z}_{\text {tot }}(u ; \ldots)=\sum_{\left\{m_{i}\right\}=1}^{a b} \mathcal{Z}(u-m \omega ; \ldots)
$$

(3) H is a Jacobian:

$$
H=\operatorname{det}_{i j}\left(\frac{\partial Q_{i}}{\partial u_{j}}\right)
$$

Bethe Ansatz Equations for $\mathcal{N}=4$ SYM

Specialize to $4 \mathrm{~d} S U(N) \mathcal{N}=4 \mathrm{SYM}$, and $\tau=\sigma$ (i.e. $\left.J_{1}=J_{2}\right)$. BAEs:

$$
1=Q_{i}=e^{2 \pi i\left(\lambda+3 \sum_{j} u_{i j}\right)} \prod_{j=1}^{N} \prod_{\Delta \in\left\{\Delta_{1}, \Delta_{2},-\Delta_{1}-\Delta_{2}\right\}} \frac{\theta_{0}\left(u_{j i}+\Delta ; \tau\right)}{\theta_{0}\left(u_{i j}+\Delta ; \tau\right)}
$$

Equations are defined on T_{τ}^{2} and are invariant under $S L(2, \mathbb{Z})$

Bethe Ansatz Equations for $\mathcal{N}=4$ SYM

Specialize to $4 \mathrm{~d} S U(N) \mathcal{N}=4 \mathrm{SYM}$, and $\tau=\sigma$ (i.e. $\left.J_{1}=J_{2}\right)$. BAEs:

$$
1=Q_{i}=e^{2 \pi i\left(\lambda+3 \sum_{j} u_{i j}\right)} \prod_{j=1}^{N} \prod_{\Delta \in\left\{\Delta_{1}, \Delta_{2},-\Delta_{1}-\Delta_{2}\right\}} \frac{\theta_{0}\left(u_{j i}+\Delta ; \tau\right)}{\theta_{0}\left(u_{i j}+\Delta ; \tau\right)}
$$

Equations are defined on T_{τ}^{2} and are invariant under $S L(2, \mathbb{Z})$

* Class of exact solutions at finite N :
[Hosseini, Nedelin, Zaffaroni 16; Hong, Liu 18]
- BASIC SOLUTION: $u_{i j}=\frac{\tau}{N}(j-i)$

- T-TRANSFORMED SOL's: $\quad u_{i j}=\frac{\tau+r}{N}(j-i)$ with $0 \leq r<N$

- Many other solutions - most related by $S L(2, \mathbb{Z})$
(This class does not exhaust all solutions)

Contribution of basic solution at large N

Define $\quad[\Delta]_{\tau} \equiv \Delta+n \quad$ s.t. \in STRIP

Contribution of the BASIC SOLUTION at large N :

$$
\begin{aligned}
& \left.\lim _{N \rightarrow \infty} \log \mathcal{I}\right|_{\substack{\text { BASIC } \\
\text { SOLUTION }}}=-i \pi N^{2} \Theta\left(\Delta_{1}, \Delta_{2}, \tau\right) \\
& \Theta= \begin{cases}\frac{\left[\Delta_{1}\right]_{\tau}\left[\Delta_{2}\right]_{\tau}\left(2 \tau-1-\left[\Delta_{1}\right]_{\tau}-\left[\Delta_{2}\right]_{\tau}\right)}{\tau^{2}} & \text { if }\left[\Delta_{1}\right]_{\tau}+\left[\Delta_{2}\right]_{\tau} \in \text { STRIP } \\
\frac{\left(\left[\Delta_{1}\right]_{\tau}+1\right)\left(\left[\Delta_{2}\right]_{\tau}+1\right)\left(2 \tau-1-\left[\Delta_{1}\right]_{\tau}-\left[\Delta_{2}\right]_{\tau}\right)}{\tau^{2}} & \text { if }\left[\Delta_{1}\right]_{\tau}+\left[\Delta_{2}\right]_{\tau}+1 \in \text { STRIP }\end{cases}
\end{aligned}
$$

This limit is a discontinuous analytic function: Stokes phenomenon

Black hole entropy

Extract entropy from $\left.\log \mathcal{I}\right|_{\text {basic solution }}$

- Caveat: the theory has 5 charges, but the index only 4 fugacities

$$
\int d \tau d \sigma d \Delta_{1} d \Delta_{2} \mathcal{I}\left(\tau, \sigma, \Delta_{1}, \Delta_{2}\right) p^{-J_{1}} q^{-J_{2}} \prod_{a=1}^{3} y_{a}^{-\frac{R_{a}}{2}}=\left.\sum_{R_{3}} d(J, R)\right|_{\substack{\text { other charges } \\ \text { fixed }}}
$$

SUGRA: at most one s.c. black hole contributes to the sum

Black hole entropy

Extract entropy from $\left.\log \mathcal{I}\right|_{\text {basic solution }}$

- Caveat: the theory has 5 charges, but the index only 4 fugacities

$$
\int d \tau d \sigma d \Delta_{1} d \Delta_{2} \mathcal{I}\left(\tau, \sigma, \Delta_{1}, \Delta_{2}\right) p^{-J_{1}} q^{-J_{2}} \prod_{a=1}^{3} y_{a}^{-\frac{R_{a}}{2}}=\left.\sum_{R_{3}} d(J, R)\right|_{\substack{\text { other charges } \\ \text { fixed }}}
$$

SUGRA: at most one s.c. black hole contributes to the sum
\star Set $X_{1}=\left[\Delta_{1}\right]_{\tau} \quad X_{2}=\left[\Delta_{2}\right]_{\tau}$. Obtain "entropy function":

$$
\log \mathcal{I}=-i \pi N^{2} \frac{X_{1} X_{2} X_{3}}{\tau^{2}} \quad \text { with } \quad \sum_{a=1}^{3} X_{a}-2 \tau+1=0
$$

Its (constrained) Legendre transform exactly gives the black hole entropy:

$$
S_{\mathrm{BH}}=\log \mathcal{I}-\left.2 \pi i\left(\sum X_{a} \frac{R_{a}}{2}+2 \tau J\right)\right|_{\text {constrained extremum }}
$$

Extract X, τ from R, J and check that satisfy strip inequality \Rightarrow self-consistency

What about other solutions? They play the role of multiple "saddle points"

* T-TRANSFORMED SOL's with $\quad-\frac{N}{2} \lesssim r \lesssim \frac{N}{2}$

All contributions are of order N^{2} : the one with largest real part dominates \mathcal{I}

$$
\left.\lim _{N \rightarrow \infty} \log \mathcal{I}\right|_{\text {T-TRANSF }}=\widetilde{\max _{r \in \mathbb{Z}}}\left(-i \pi N^{2} \Theta\left(\Delta_{1}, \Delta_{2}, \tau+r\right)\right)
$$

This ensures periodicity under $\tau \rightarrow \tau+1$

What about other solutions? They play the role of multiple "saddle points"

* T-TRANSFORMED SOL's with $\quad-\frac{N}{2} \lesssim r \lesssim \frac{N}{2}$

All contributions are of order N^{2} : the one with largest real part dominates \mathcal{I}

$$
\left.\lim _{N \rightarrow \infty} \log \mathcal{I}\right|_{\text {T-TRANSF }}=\widetilde{\max _{r \in \mathbb{Z}}}\left(-i \pi N^{2} \Theta\left(\Delta_{1}, \Delta_{2}, \tau+r\right)\right)
$$

This ensures periodicity under $\tau \rightarrow \tau+1$

* Stokes phenomenon

In the limit, multiple exponential contributions compete (as in phase transitions)

$$
\lim =e^{a_{1}(\Delta, \tau) N^{2}}+e^{a_{2}(\Delta, \tau) N^{2}}+\ldots
$$

\rightarrow Different regions with different analytic limits, separated by (real-codimension-1) "Stokes lines"

Comparison with old large N limit

* Stokes phenomenon can accommodate the old computation of [Kinney, Maldacena, Minwalla, Raju 05]
- The submanifold of real fugacities sits entirely within a Stokes line
- More strongly, all contributions of order N^{2} from T-transformed sol's pair up into competing terms, and potentially cancel out.

Universal black holes

Special case: $\quad \begin{aligned} J_{1} & =J_{2} \\ R_{1} & =R_{2}=R_{3}\end{aligned} \quad \leftrightarrow \quad \begin{aligned} \tau & =\sigma \\ \Delta_{1} & =\Delta_{2}=\Delta_{3} \equiv \Delta=\frac{2 \tau-1}{3}\end{aligned}$
Such black holes exist in $5 \mathrm{~d} \mathcal{N}=1$ minimal gauged SUGRA
Uplift to any $\mathrm{AdS}_{5} \times \mathrm{SE}_{5}$ dual to $4 \mathrm{~d} \mathcal{N}=1 \mathrm{SCFT}$

Universal black holes

Special case: \quad\begin{tabular}{rlrl}
J_{1} \& $=J_{2}$

R_{1} \& $=R_{2}=R_{3}$

$\quad \leftrightarrow \quad$

τ \& $=\sigma$

Δ_{1} \& $=\Delta_{2}=\Delta_{3} \equiv \Delta=\frac{2 \tau-1}{3}$
\end{tabular}

Such black holes exist in 5d $\mathcal{N}=1$ minimal gauged SUGRA Uplift to any $\mathrm{AdS}_{5} \times \mathrm{SE}_{5}$ dual to $4 \mathrm{~d} \mathcal{N}=1 \mathrm{SCFT}$

Conclusions

Summary:

- Careful analysis of superconformal index of $\mathcal{N}=4 \mathrm{SYM}$, using an alternative Bethe Ansatz formulation.
At large N, each Bethe Ansatz solution plays the role of a saddle point.
- One solution exactly reproduces the Bekenstein-Hawking entropy of BPS black holes in AdS_{5}.
- Other solutions provide competing contributions, giving rise to Stokes phenomena (phase transitions).

Conclusions

Summary:

- Careful analysis of superconformal index of $\mathcal{N}=4 \mathrm{SYM}$, using an alternative Bethe Ansatz formulation.
At large N, each Bethe Ansatz solution plays the role of a saddle point.
- One solution exactly reproduces the Bekenstein-Hawking entropy of BPS black holes in AdS_{5}.
- Other solutions provide competing contributions, giving rise to Stokes phenomena (phase transitions).

Open questions:

- What do the other solutions represent?
- What is the nature of the phase transitions?
- Can we compute corrections?
- What signatures of quantum gravity emerge?

