Two science cases with the CMB Bmode polarization: Hubble tension and LQC prediction

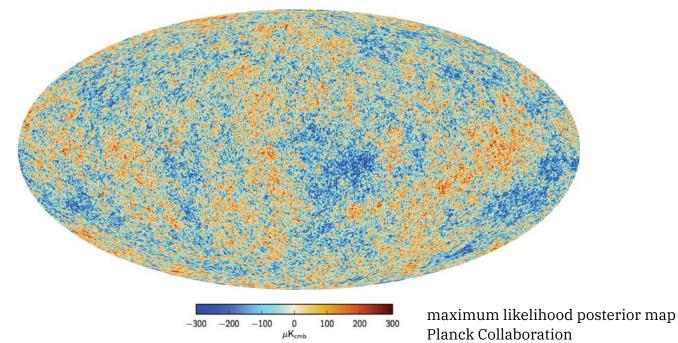
Donghui Jeong, and Marc Kamionkowski *Gravitational waves, CMB polarization, and the Hubble tension* 2020, PRL 124, 041301 [arXiv:1908.06100] Abhay Ashtekar, Brajesh Gupt, **Donghui Jeong**, and V. Sreenath *Alleviating the tension in CMB using Planck-scale Physics* 2020, PRL 125, 051302 [arXiv:2001.11689]

Donghui Jeong

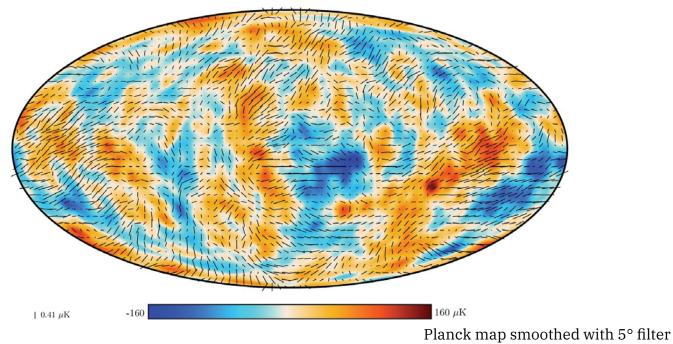
Department of Astronomy and Astrophysics The Pennsylvania State University

SGC2020 workshop, 20 November 2020

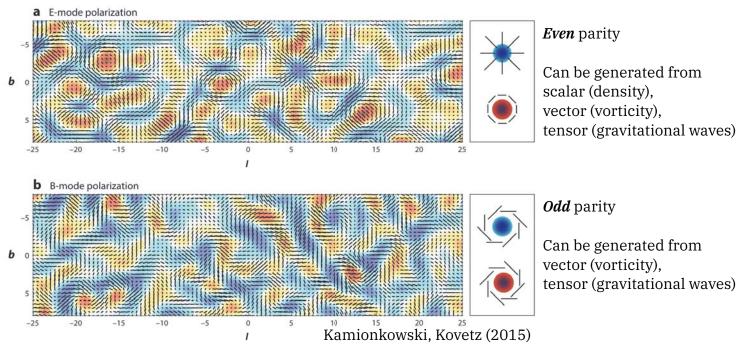
Temperature map of the CMB

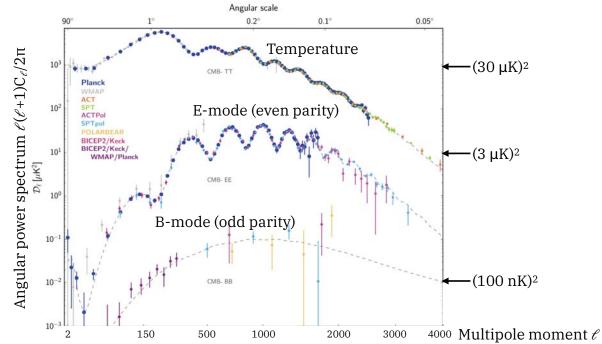


Polarization map of the CMB



E-mode and B-mode





Three puzzles in the CMB

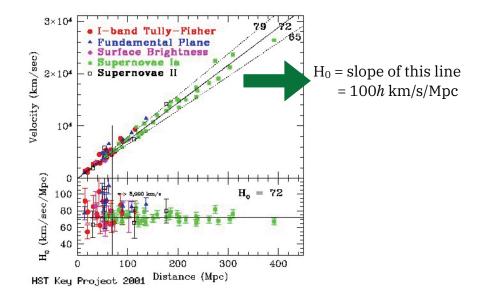
- Hubble tension
- Lack of CMB clustering on large angular scales
- "Crisis for cosmology": AL (lensing amplitude) anomaly

Three puzzles in the CMB

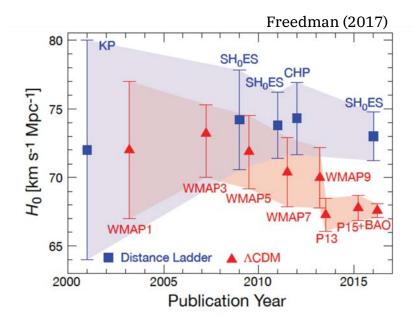
Hubble tension

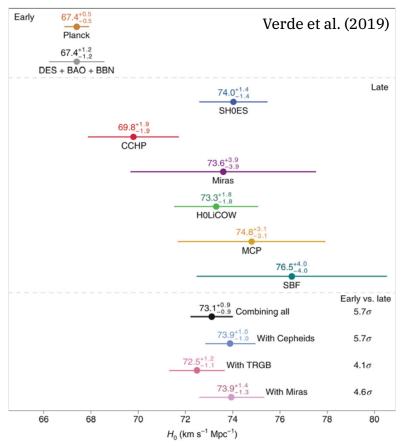
- Lack of CMB clustering on large angular scales
- "Crisis for cosmology": A_L (lensing amplitude) anomaly

H₀ from the HST Key Project



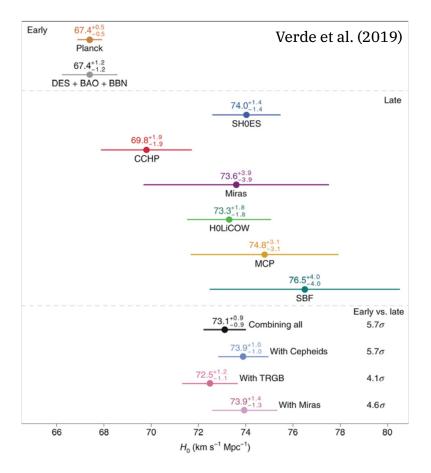
H₀ since HST Key Project





H₀ tension now

- Planck (CMB)
- DES + BAO + BBN
- Variable stars + SN: SH0ES (Cepheid), Miras (Mira)
- TRGB + SN (CCHP)
- Strong lensing (H0LiCOW)
- Megamaser (MCP)
- Surface-brightness fluc. (SBF)

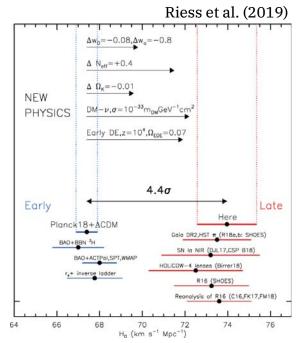


"Sound Discordant"

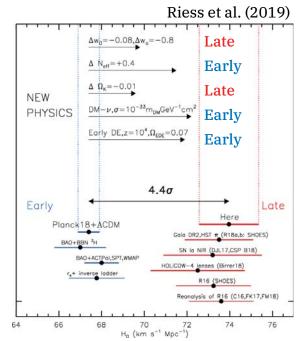
- It is the discrepancy between
 - Late: Standard distance ladder
 - Early:

Cosmological sound horizon (at photon/baryon decoupling) in ΛCDM model

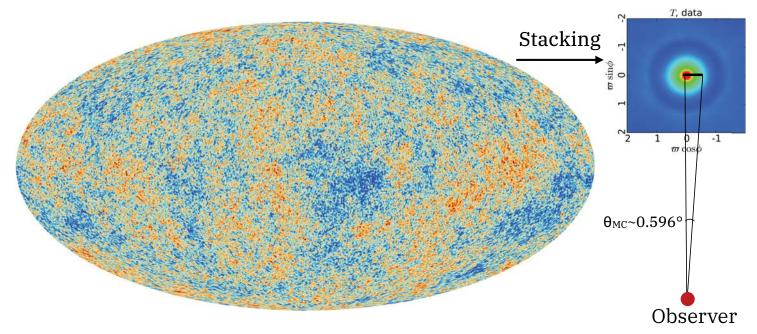
Possible solutions



Possible solutions



Acoustic scale at $\theta \sim 0.6^{\circ}$



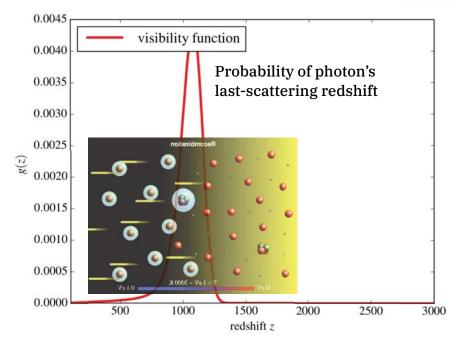
Physics of acoustic scale

- *Acoustic oscillation*: Tightly coupled baryon-photon plasma evolves as the pressure wave in the external gravitational field provided by dark matter
- The comoving sound horizon scale is given as

$$r_{s} = \int_{0}^{t_{\text{dec}}} c_{s}(t) \frac{dt}{a(t)} = \int_{0}^{a_{\text{dec}}} c_{s}(a) \frac{da}{a^{2}H(a)} \qquad c_{s} = \frac{c}{\sqrt{3(1+3\bar{\rho}_{\text{b}}/4\bar{\rho}_{\gamma})}}$$
$$3H^{2} = 8\pi G \left(\bar{\rho}_{\text{r}} + \bar{\rho}_{\text{m}}\right)$$

C

Decoupling epoch



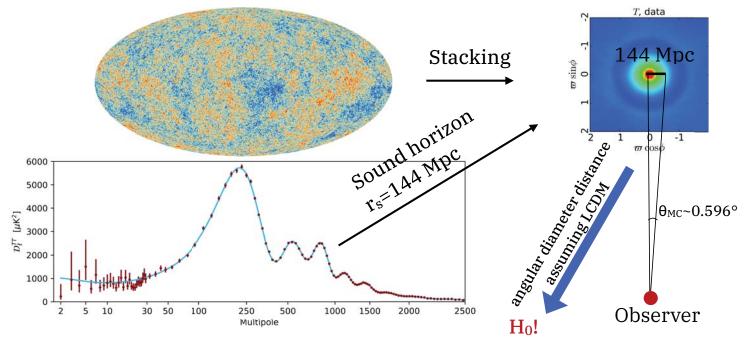
- The decoupling epoch (*a*_{dec}) also depends on
 - **baryon density**: how many hydrogen to break
 - matter density: how fast the photons loose energy

Calculating acoustic scale

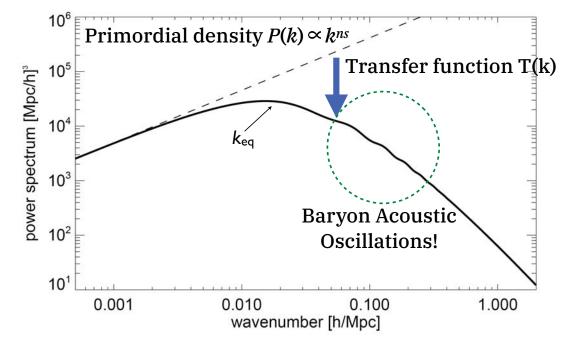
- Given ρ_m , ρ_b , ρ_γ , ρ_v , we can determine the acoustic scale!
 - ρ_m , ρ_b : from the relative heights of CMB power spectrum
 - ρ_{γ} : from T_{cmb} (CMB is very good black body)
 - ρ_v : from N_{eff} (T_v = 0.714 T_{cmb}, and neutrinos are fermions)

• Note:
$$r_s$$
 is independent from $H_0!$
 $r_s = \int_0^{t_{dec}} c_s(t) \frac{dt}{a(t)} = \int_0^{a_{dec}} c_s(a) \frac{da}{a^2 H(a)}$
 $c_s = \frac{c}{\sqrt{3(1+3\bar{\rho}_{b}/4\bar{\rho}_{\gamma})}}$
 $3H^2 = 8\pi G \left(\bar{\rho}_{r} + \bar{\rho}_{m}\right)$

CMB power spectrum



The BAO in the galaxy *P*(*k*)

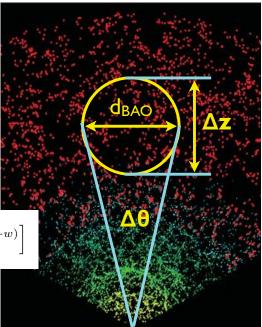


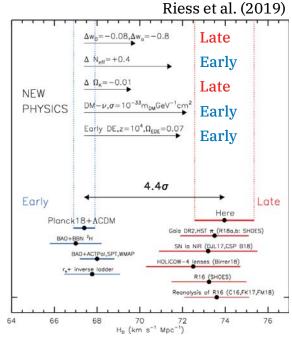
Dark energy with BAO

- d_{BAO} is given by CMB, slightly larger than *r*_s.
- We can measure the angular diameter distance, d_A(z) and Hubble parameter, H(z):

$$d_{\rm BAO} = d_A(z)\Delta\theta = c\Delta z/H(z)$$

• $d_A(z), H(z)$ depend on H_0 (assuming Λ CDM)! $H^2(z) = H_0^2 \Big[\Omega_m (1+z)^3 + \Omega_K (1+z)^2 + \Omega_{DE} (1+z)^{3(1+w)} \Big]$ $d_A(z) = \frac{\chi(z)}{1+z} \Big[1 - \frac{k}{6} \frac{\chi^2(z)}{R^2} \Big] \quad \chi(z) = c \int \frac{dz}{H(z)}$





- Direct observable = $\theta \sim 0.6^\circ = r_s/d_A(a_{dec}) \sim H_0 r_s$.
- If somehow we over-estimate for r_s by 9%, CMB measurement of H₀ would be lower than the true value by 9%.
- How? Faster expansion at early time:
 - Increase N_{eff}
 - Add exotica (early DE) for that job
- But, CMB does not allow full 9%!

Can we confirm/rule out?

- Yes, if we have another distance in the early universe!
- Where do we have that distance? In the *B-mode polarization from primordial gravitational waves!*

$$r_{s} = \int_{0}^{t_{\text{dec}}} c_{s}(t) \frac{dt}{a(t)} = \int_{0}^{a_{\text{dec}}} c_{s}(a) \frac{da}{a^{2}H(a)} \qquad c_{s} = \frac{c}{\sqrt{3(1+3\bar{\rho}_{\text{b}}/4\bar{\rho}_{\gamma})}}$$
$$r_{t} = \int_{0}^{t_{\text{dec}}} c \frac{dt}{a(t)} = \int_{0}^{a_{\text{dec}}} c \frac{da}{a^{2}H(a)} \qquad 3H^{2} = 8\pi G \left(\bar{\rho}_{\text{r}} + \bar{\rho}_{\text{m}}\right)$$

Gravitational Waves (GW)

• are the traceless and transverse (tensor) components of the metric perturbations: [with Einstein convention, Greeks=0-4, Latin=1-3]

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + \left\{ \delta_{ij} + \frac{h_{ij}(\eta, \boldsymbol{x})}{h_{ij}(\eta, \boldsymbol{x})} \right\} dx^{i} dx^{j} \right]$$

Traceless : $Tr[h_{ij}] = h_i^i = g^{ij}h_{ij} = 0$ Transverse : $\nabla_i h_{ij} = 0$

•

There are 6 (symmetric 3-by-3 matrix) - 3 (transverse) - 1 (traceless) = 2 degrees of freedom (h_{\times}, h_{+})

Primordial GW (PGW)

- de Sitter spacetime generates stochastic gravitational waves with amplitude of (here, $m_{pl} = \sqrt{G_N}$):

$$\Delta_h^2(k) = \frac{k^3 P_T(k)}{2\pi^2} = \frac{64\pi}{m_{\rm pl}^2} \left(\frac{H}{2\pi}\right)^2 \Big|_{k=aH}$$

+ Friedmann equation: $3H^2 \sim 8\pi G\rho$

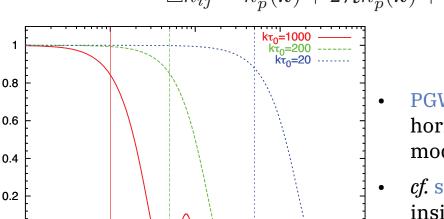
- **PGW = energy scale** of inflation: $E \sim (r/0.01)^{1/4} 10^{16} \text{GeV}!$
- **PGW = expansion rate** during inflation: <u>can prove inflation</u>!

Evolution of GW

Evolution of GW amplitudes (h_×, h₊) is governed by Klein-Gordon equation sourced by anisotropic stress Π_p
 (𝒴=a'/a and ' = d/dη):

$$\begin{split} -h_{ij;\nu}^{\quad ;\nu} &= h_p^{\prime\prime}(\boldsymbol{k}) + 2\mathcal{H}h_p^\prime(\boldsymbol{k}) + k^2h_p(\boldsymbol{k}) = 16\pi Ga^2\Pi_p(\boldsymbol{k}) \\ & \text{Hubble damping} \end{split}$$

Evolution of PGW w/o sources



0.01

 τ/τ_0

0.1

Watanabe & Komatsu (2006)

h/h^{prim}

0

-0.2 _____ 0.0001

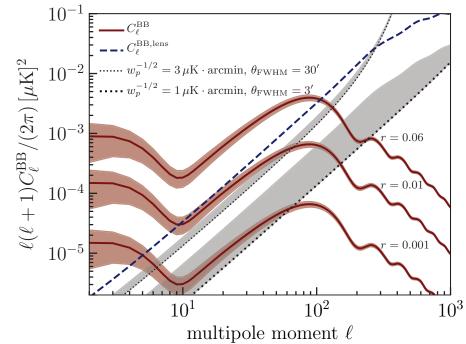
0.001

 $-\Box h_{ij} = h_p''(\boldsymbol{k}) + 2\mathcal{H}h_p'(\boldsymbol{k}) + k^2h_p(\boldsymbol{k}) = 0$

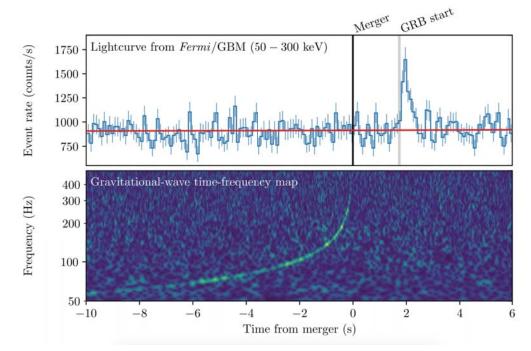
- PGW stays constant outside of horizon, but decays once the mode enters the horizon.
- *cf.* scalar perturbations grow inside of horizon.

Jeong & Kamionkowski (2019)

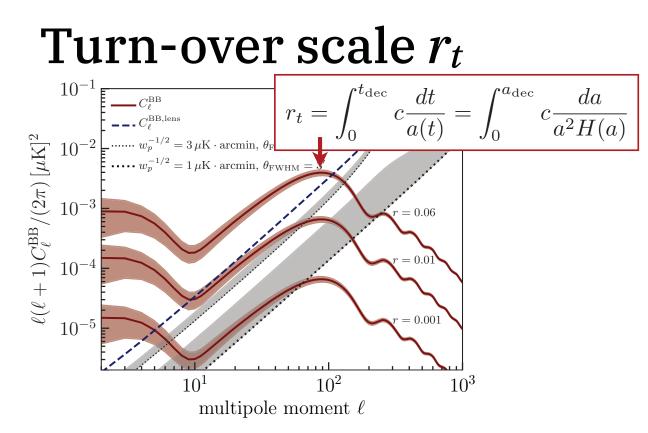
B-mode power spectrum



GW170817 and GRB 170817A

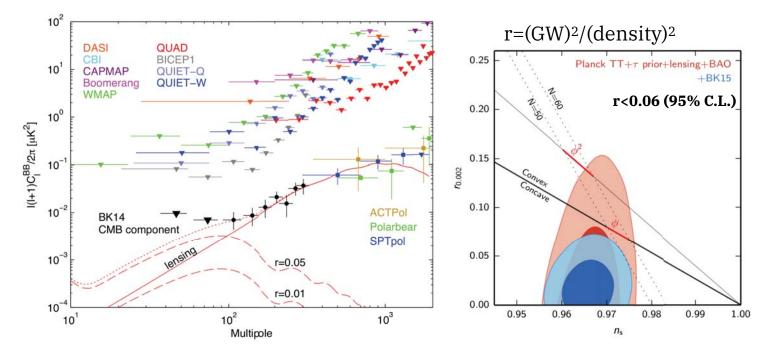


Jeong & Kamionkowski (2019)



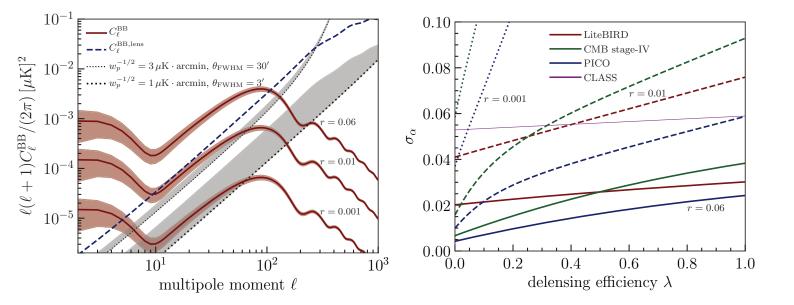
BICEP/Keck Collaboration (2016, 2018)

B-mode polarization, status



Jeong & Kamionkowski (2019)

We can measure r_t , if r>0.001!

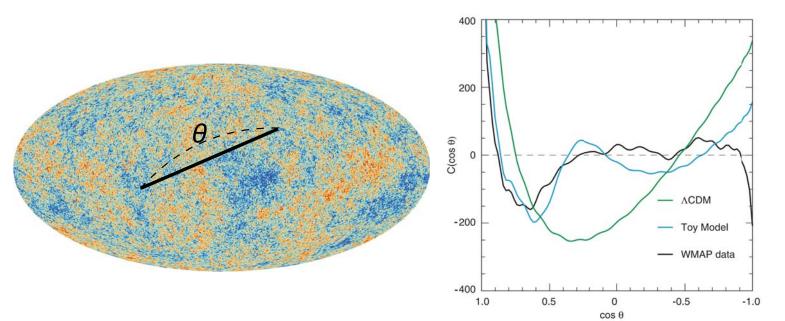


Three puzzles in the CMB

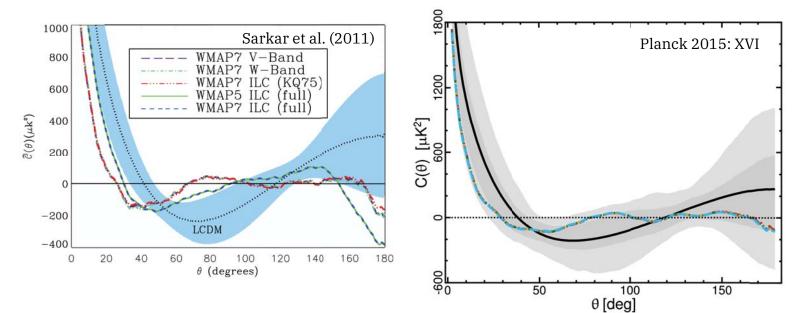
- Hubble tension
- Lack of CMB clustering on large angular scales
- "Crisis for cosmology": A_L (lensing amplitude) anomaly

WMAP1, Spergel et al. (2003)

"Intriguing discrepancy"



C(θ) after WMAP1



The S_{1/2} parameter

$$S_{1/2} \equiv \int_{-1}^{1/2} \mathrm{d}(\cos\theta) \left[C(\theta)\right]^2$$

Table 11. Values for the $S_{1/2}^{XY} \equiv S^{XY}(60^\circ, 180^\circ)$ statistic (in units of μK^4) for the *Planck* 2018 data with resolution parameter $N_{side} = 64$.

Statistic	$S_{1/2}^{XY}$ [μ K ⁴]					
	Comm.	NILC	SEVEM	SMICA		
ΤΤ	1209.2	1156.6	1146.2	1142.4		
$Q_{\rm r}Q_{\rm r}$	8.3×10^{-5}	8.6×10^{-5}	0.00019	4.9×10^{-5}		
$U_{\rm r}U_{\rm r}$	3.9×10^{-5}	4.8×10^{-5}	5.9×10^{-5}	1.6×10^{-5}		
$TQ_{\rm r}$	0.26	0.13	0.45	0.13		
$TU_{\rm r}$	0.065	0.044	0.2	0.081		
$Q_{\rm r}U_{\rm r}$	6.4×10^{-6}	3.6×10^{-5}	7.1×10^{-6}	2.1×10^{-6}		

Planck 2018 VII. Isotropy and statistics of the CMB

Table 12. Probabilities of obtaining values for the $S_{1/2}^{XY}$ statistic for the *Planck* fiducial Λ CDM model at least as large as the observed values of the statistic for the *Planck* 2018 CMB maps with resolution parameter $N_{\text{side}} = 64$, estimated using the Commander, NILC, SEVEM, and SMICA maps.

	Probability [%]				
Statistic	Comm.	NILC	SEVEM	SMICA	
<i>TT</i>	>99.9	>99.9	>99.9	>99.9	
TT (no quadr.)	96.0	96.1	96.1	96.2	
$Q_{\rm r}Q_{\rm r}$	42.8	50.5	30.3	57.0	
$U_{\rm r}U_{\rm r}$	74.5	71.7	68.9	89.0	
TQ_r	83.5	94.0	74.6	94.8	
$T\widetilde{U}_{r}$	94.5	97.8	79.1	88.6	
$Q_{\rm r}U_{\rm r}$	88.8	59.7	94.4	97.7	

Notes. The second row shows results for each temperature map after removing the corresponding best-fit quadrupole. In this table high probabilities would correspond to anomalously low $S_{1/2}^{XY}$ values.

Three puzzles in the CMB

- Hubble tension
- Lack of CMB clustering on large angular scales
- "Crisis for cosmology": AL (lensing amplitude) anomaly

Di Valentino, Melchiorri, Silk "Planck evidence for a closed Universe and a possible crisis for cosmology" Nature Astronomy (2019), arXiv:1911.02087

Planck 2018 VI. Cosmological parameters

$A_L = (lensing amplitude)/(best-fitting \land CDM)$

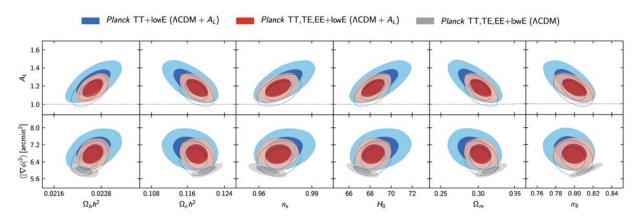
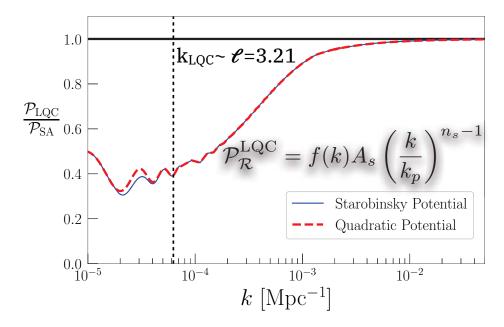


Fig. 25. Marginalized 68 % and 95 % parameter constraint contours when adding A_L as a single-parameter extension to the base- Λ CDM model, with (red) and without (blue) small-scale polarization, compared to the constraints in the base- Λ CDM model (grey). The dashed contours show equivalent results for *Planck* TT,TE,EE+lowE when using the CamSpec likelihood, which gives results with A_L nearer unity and with slightly larger errors. The second row of subplots show, on the left axis, the predicted lensing deflection angle variance (from lensing multipoles $2 \le L \le 2000$), which is a measure of the amount of actual lensing: the TT,TE,EE+lowE likelihood prefers about 10 % more actual lensing power (associated with lensing smoothing), but in the (unphysical) varying- A_L case this can be achieved using cosmological parameters that predict less lensing than in Λ CDM but substantially larger A_L , giving a preference for $A_L \approx 1.2$.

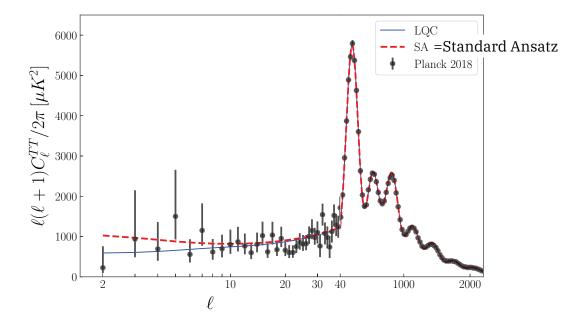
Initial P(k) from LQC

- Loop-Quantum Cosmology provides an initial condition of inflation
- Quantum correction yields the "bounce" at which $R_{max} \sim 62$ (Planck unit).
- The "LQC scale" is given by $k_{LQC} = (R_{max}/6)^{1/2} \sim 3.21$ (Planck unit).
- Fourier modes $k < k_{LQC}$ are <u>not</u> in the Bunch-Davies vacuum; that leads to the large-scale suppression.
- Equating the CMB horizon size with the "unit spacetime quanta" at the bounce, we can equate k_{LQC} ^(co-moving) ~ 3.6 x 10⁻⁴ Mpc⁻¹.

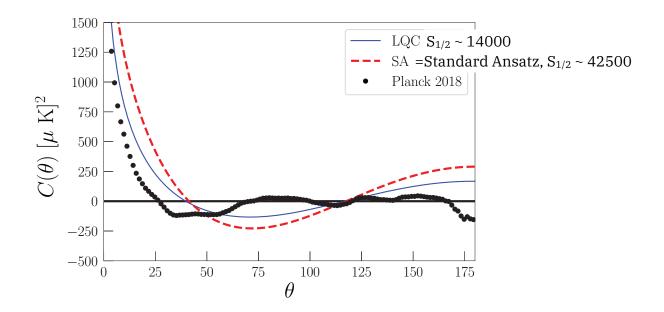
Initial P(k) from LQC

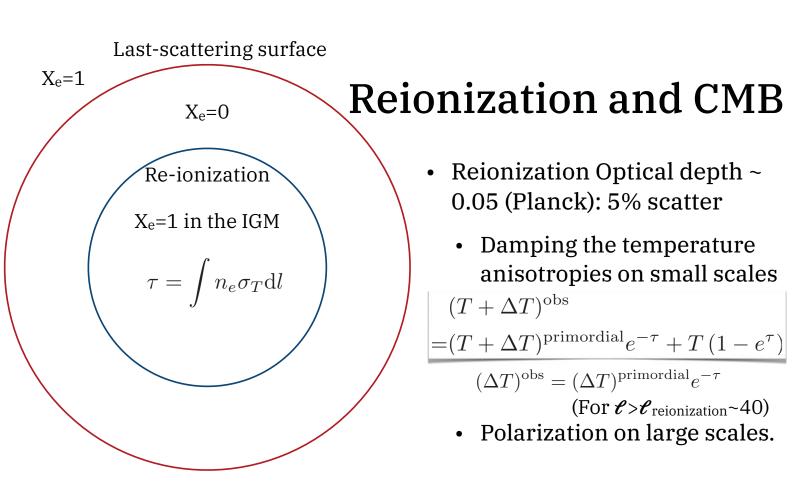


CMB power spectrum with LQC

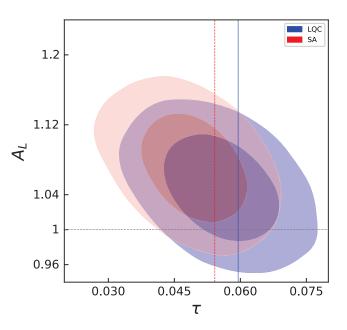


$C(\theta)$ with LQC



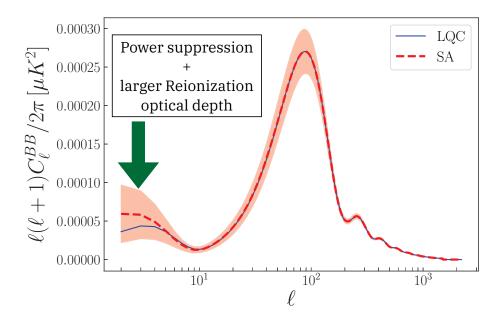


LQC and A_L



- Interplay between large and small scales
- Small scale anisotropy measures = $A_s e^{-2\tau}$
- By increasing the optical depth, we increases the density fluctuation amplitude A_s in the CMB
- The ratio A_L = (lensing amplitude)/A_s drops!
- All of them without screwing the largescale C_e thanks to the power suppression!

LQC prediction for C_{ℓ}^{BB}



Conclusion

- C_{ℓ}^{BB} can test the early-type resolution of the Hubble tension hypothesizing that Universe expanded with a faster rate prior to the decoupling time.
- C_{ℓ}^{BB} can test the LQC prediction that primordial power spectrum is suppressed on large-scales ($k < 0.002 \text{ Mpc}^{-1}$).
- Resolving the Hubble tension may require first-principle measurements at low redshifts, such as standard siren from Gravitational Waves.
- Large-scale power suppression can also be probe with full-sky galaxy/ 21cm surveys in the future.