Geometric secret sharing in a model of Hawking radiation

Gabor Sarosi (CERN)

Based on 2003.05448 with V. Balasubramanian, A. Kar, O. Parrikar, T. Ugajin

Plan

1. Quantum extremal surfaces and the Page curve (review)

2. A simple geometric model for black holes entangled with radiation

3. Shared secrets as subregions in the interior

Simplified context: Black hole entangled with radiation

BH information problem:

Radiation is kept being produced in the state

Naively, it seems to understand the saturation/turnaround, one needs to understand black hole microstates.

However, recent work suggests it is enough to use Ryu-Takayanagi on steroids.

[Penington,Almheiri-**Engelhardt-Marolf-**Maxfield, Almheiri-Mahajan-Maldacena-Zhao. etcl

Ryu-Takayanagi:

$$S(\rho_A) = \min \, \mathbf{ext} \left[\frac{\mathscr{A}(\gamma)}{4G_N} \right]$$

Faulkner-Lewkowycz-Maldacena:

$$S(\rho_A) = \min \text{ ext} \left[\frac{\mathscr{A}(\gamma)}{4G_N} \right] + S(\rho_a^{\text{bulk}})$$

Engelhardt-Wall:

$$S(
ho_A) = \min \, \operatorname{ext} \left[rac{\mathscr{A}(\gamma)}{4G_N} + S(
ho_a^{\mathrm{bulk}})
ight]$$
 What saves the day are surfaces that are not extremal, but this combination is extremal: Quantum extremal surfaces

[Lewkowycz-Maldacena;Faulkner-Lewkowycz-Maldacena;Dong-Lewkowycz]

Replica trick:

$$S(\rho) = -\operatorname{Tr}\rho\log\rho = \lim_{n\to 1}\partial_n\frac{\log[\operatorname{Tr}R^n]}{n}$$
 for any R such that $\rho = \frac{R}{\operatorname{Tr}R}$

1) Create a CFT state by Euclidean path integral with sources:

[Lewkowycz-Maldacena; Faulkner-Lewkowycz-Maldacena; Dong-Lewkowycz]

Replica trick:

$$S(\rho) = -\operatorname{Tr}\rho\log\rho = \lim_{n\to 1}\partial_n\frac{\log[\operatorname{Tr}R^n]}{n}$$
 for any R such that $\rho = \frac{R}{\operatorname{Tr}R}$

2) Calculate Renyi entropy as a partition function

[Lewkowycz-Maldacena; Faulkner-Lewkowycz-Maldacena; Dong-Lewkowycz]

Replica trick:

$$S(\rho) = -\operatorname{Tr}\rho\log\rho = \lim_{n\to 1}\partial_n\frac{\log[\operatorname{Tr}R^n]}{n}$$
 for any R such that $\rho = \frac{R}{\operatorname{Tr}R}$

3) Fill in the bulk

[Lewkowycz-Maldacena;Faulkner-Lewkowycz-Maldacena;Dong-Lewkowycz]

Replica trick:

$$S(\rho) = -\operatorname{Tr}\rho\log\rho = \lim_{n\to 1}\partial_n\frac{\log[\operatorname{Tr}R^n]}{n}$$
 for any R such that $\rho = \frac{R}{\operatorname{Tr}R}$

3) Fill in the bulk

$$\log \operatorname{Tr} \rho^n \sim -I_{\operatorname{grav}}(\tilde{\mathcal{M}}_n) + \log Z_{\operatorname{matter}}(\tilde{\mathcal{M}}_n)$$

[Lewkowycz-Maldacena; Faulkner-Lewkowycz-Maldacena; Dong-Lewkowycz]

Replica trick:

$$S(\rho) = -\operatorname{Tr}\rho\log\rho = \lim_{n\to 1}\partial_n\frac{\log[\operatorname{Tr}R^n]}{n}$$
 for any R such that $\rho = \frac{R}{\operatorname{Tr}R}$

3) Orbifold the bulk

$$M_n = \frac{M_n}{Z_n}$$

conical exam removed
from budy
conical deficit
introduced at

$$f'xzd$$
 f',t . of Zn

$$\Delta \phi = 2\pi (1 - \frac{1}{n})$$

$$I_{\text{grav}}(\tilde{\mathcal{M}}_n) = nI_{\text{grav}}^{\text{sing.omitted}}(\mathcal{M}_n)$$

$$= nI_{\text{grav}}^{\text{full}}(\mathcal{M}_n) + \frac{1}{4G_N}(n-1) \int_{\text{sing}} \sqrt{h}$$

[Lewkowycz-Maldacena;Faulkner-Lewkowycz-Maldacena;Dong-Lewkowycz]

Replica trick:

$$S(\rho) = -\operatorname{Tr}\rho\log\rho = \lim_{n\to 1}\partial_n\frac{\log[\operatorname{Tr}R^n]}{n}$$
 for any R such that $\rho = \frac{R}{\operatorname{Tr}R}$

4) Analyse around n=1

$$\frac{1}{n}\log \operatorname{Tr} \rho^n \big|_{n\approx 1} \sim -I_{\operatorname{grav}}(\mathcal{M}_1) - \delta_n I_{\operatorname{grav}}(\mathcal{M}_1) - \frac{1}{4G_N}(n-1) \int_{\operatorname{sing}} \sqrt{h}(\mathcal{M}_1) + (1-n) S_{\operatorname{matter}}$$

- Off shell metric variations of order (n-1) automatically pushed to higher order
- Position of brane is dynamical!
 Above is extremized over it

$$S(\rho) = -\operatorname{Tr}\rho\log\rho = \operatorname{ext}\left(\frac{\mathscr{A}}{4G_N} + S_{\mathrm{matter}}\right)$$

Entanglement wedge reconstruction

(Subregion-subregion duality)

The geometry and the bulk quantum state on a is reconstructible from the boundary state on A where γ is the quantum extremal surface

Quantum extremal surfaces and the Page curve

Sketch of the argument: [Penington]

Quantum extremal surfaces and the Page curve

Sketch of the argument: [Penington]

Somehow (upgraded) RT formula knows when too many microstates would become entangled with the radiation

Various other works with more precise setups involving JT gravity, replica derivation, e.t.c

[Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini;Penington-Shenker-Stanford-Yang]

Today: simple toy model in 3d showing how the RT formula knows that in

$$\sum_{i=1}^{k} |i\rangle_{R} |\psi_{i}\rangle_{A}$$

the states $|\psi_i\rangle_A$ cannot be all orthogonal once $k>e^{S_{BH}}$

A model of microstates

Put an EOW behind the horizon [Maldacena-Kourkoulou;...]

Label *i* runs over the states of the theory on the brane

Take this brane theory to be holographic and fill in the brane with the dual (results in a fuzzball-like geometry)

Entangled microstates

now there is a black hole inside the inception geometry

Entangled microstates

$$\sum_{i=1}^{k} |i\rangle_{R} |\psi_{i}\rangle_{A}$$

A possible choice of purification:

Take R to be the UV CFT of the brane theory and $|i\rangle_R$ to be from a microcanonical window of eigenstates

Quantum extremal surfaces

$$= \min \, \operatorname{ext} \left[\frac{\mathscr{A}}{4G_N} + \frac{\mathscr{A}'}{4G_N'} \right]$$

Page transition

$$S(A) = S(R) = \min\{\log k, S_{BH}\}\$$

Entanglement wedge of the radiation

So far we talked about states dual to geometries on a Cauchy slice

To motivate the RT rule, one also needs a Euclidean preparation

There is no top-down way of doing this, but also the details don't seem to matter as long as there is a long wormhole with two extremal surfaces

The way we think about the glued geometry motivates the junction conditions:

$$h_{ab} = h'_{ab}$$

$$\frac{1}{G_N} K_{ab} = \frac{1}{G'_N} K'_{ab}$$
Newmann b.c.: "Sbrane I make it entirely holographic holographic

$$h_{ab} = h'_{ab} \qquad \frac{1}{G_N} K_{ab} = \frac{1}{G'_N} K'_{ab}$$

- K_{ab} jumps when $G_N \neq G_N'$
- We choose to glue convex to convex, to obtain long wormholes

With BTZ metric on both sides

$$ds^2 = f(r)d\tau^2 + \frac{dr^2}{f(r)} + r^2d\varphi$$

$$f(r) = \frac{r^2 - r_h^2}{\ell^2}, \qquad \beta = \frac{2\pi\ell^2}{r_h},$$

The solution is

$$\tau(r) = \ell^2 \sqrt{\frac{r_t^2 - r_h^2}{r_h^2 - r_b^2}} \int_{r_t}^r d\tilde{r} \frac{\sqrt{\tilde{r}^2 - r_b^2}}{(\tilde{r}^2 - r_h^2)\sqrt{\tilde{r}^2 - r_t^2}} \qquad \tau'(r) = \ell'^2 \sqrt{\frac{r_t^2 - r_h'^2}{r_h'^2 - r_b^2}} \int_{r_t}^r d\tilde{r} \frac{\sqrt{\tilde{r}^2 - r_b^2}}{(\tilde{r}^2 - r_h'^2)\sqrt{\tilde{r}^2 - r_t^2}}$$

$$\tau'(r) = \ell'^2 \sqrt{\frac{r_t^2 - r_h'^2}{r_h'^2 - r_b^2}} \int_{r_t}^r d\tilde{r} \frac{\sqrt{\tilde{r}^2 - r_b^2}}{(\tilde{r}^2 - r_h'^2)\sqrt{\tilde{r}^2 - r_t^2}}$$

$$r_{t} = \sqrt{\frac{\ell^{2} G_{N}^{2} r_{h}^{'2} - \ell^{'2} G_{N}^{'2} r_{h}^{2}}{\ell^{2} G_{N}^{2} - \ell^{'2} G_{N}^{'2}}}, \qquad r_{b} = \sqrt{\frac{\ell^{2} r_{h}^{'2} - \ell^{'2} r_{h}^{2}}{\ell^{2} - \ell^{'2}}}$$

Real, timelike trajectory requires $r_h, r_h' > r_b$ and $r_h, r_h' < r_t$

The solution exists, the upshot of the constraints is that we need $G'_N < G_N$ in order to see a Page transition

Intuitively, we therefore need more degrees of freedom in the brane CFT than the original

This is natural, since we want to entangle more than $e^{S_{BH}}$ qubits with the black hole

The Page transition in the RT surface tells us that we cannot do this, without invoking a microscopic theory for the black hole

Replica saddles

The Page transition between the two horizons may be understood now using the replica trick, along the lines of

[Almheiri-...,Penington,...]

Replica saddles

Glue cyclically to form Rényi entropies

Fill in the boundary with a replica symmetric bulk saddle

$$\operatorname{Tr}
ho_R^3 \sim$$

Replica saddles

There are two ways to fill it in in a replica symmetric way

Hawking phase: Fixed point in inception side

Page phase: Fixed point on real BH side

In a nutshell

Toy model: microstates modelled by EOWs, with their own holographic dual

Semi-classical calculation knows when we would want to entangle too many reservoir qubits with the black hole and prevents it by a "Page transition"

The transition maybe understood in terms of the replica trick, via a phase transition in the dominant saddle

[Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini;Penington-Shenker-Stanford-Yang]

After the transition, the interior is reconstructible from the radiation reservoir.

In more realistic models, this is only true for part of the interior, which has been called an island

[Penington, Almheiri-Mahajan-Maldacena-Zhao]

Partial islands

Divide radiation into two (or more) parts

$$\sum_{ii_1i_2} \left[c_{i_1i_2}^i | i_1 \rangle_{R_1} \otimes | i_2 \rangle_{R_2} \right] \otimes | \psi_i \rangle_B$$

Depending on $c^i_{i_1i_2}$ we may represent the state as gluing multiboundary wormholes

Partial islands

New extremal surfaces

There is such an extremal surface, dominates over the causal horizon a bit after the Page transition

"Eyeland"

The new RT surface in covering space

Summary

- Simple geometric model for QES for black holes entangled with reference system
- Captures Page behaviour, and the replica saddle exchange mechanism
- Purifying with multi boundary wormholes gives interesting phenomena like partial islands and subregions that are shared secrets (similar to usual holographic error correction story [Almheiri-Dong-Harlow])
- Horizon is always part of the secret