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• “Statistics are no substitute for judgment” 
• Henry Clay
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What is Probability?
• In 1812 Laplace published Analytic 

Theory of Probabilities

• He suggested the computation of 
"the probability of causes and future 
events, derived from past events”

• “Every event being determined by 
the general laws of the universe, 
there is only probability relative to 
us.”

• “Probability is relative, in part to [our] 
ignorance, in part to our knowledge.”

• So to Laplace, probability theory is 
applied to our level of knowledge Pierre-Simon Laplace



Comparing datasets
• As there is only one Universe (setting 

aside the Multiverse), we make 
observations of un-repeatable 
‘experiments’  

• Therefore we have to proceed by 
inference 

• Furthermore we cannot check or 
probe for biases by repeating the 
experiment - we cannot ‘restart the 
Universe’ (however much we may 
want to) 

• If there is a tension (i.e. if two data 
sets don’t agree), can’t take the data 
again. Need to instead make 
inferences with the data we have now Freedman 2017



Types of questions
• There are three types of questions we can 

use statistics to answer 
1. The probability of data, given some 

causes. 
2. The probability of parameter values, given 

some model, which can be updated 
through observations. 

3. The probability of the model, which can 
also be updated by observation.



Rules of Probability
• We define Probability to have 

numerical value 
• We define the lower bound, of 

logical absurdities, to be zero, 
P(∅)=0 

• We normalize it so the sum of the 
probabilities over all options is 
unity, ∑P(Ai)≡1

A

B

Sum Rule: P(A∪B)=P(A)+P(B)-P(A∩B) 
Product Rule: P(A∩B)=P(A)P(B|A)=P(B)P(A|B)
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Model Selection
• If we marginalize over the parameter uncertainties, 
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Tensions
• Tensions occur when two 

datasets have different 
preferred values (posterior 
distributions) for some 
common parameters 

• This can arise due to 

• random chance 

• systematic errors 

• undiscovered physics 

• Need to evaluate 
probability of data



Forward modelling
• The goal of the game is to 

"extract" the plastic teeth from a 
crocodile toy's mouth by 
pushing them down into the 
gum. If the "sore tooth" is 
pushed, the mouth will snap shut 
on the player’s finger  

• Bayes theorem allows for 
forward modelling of the data 

• Based on our previous 
experience (how many teeth 
have been pushed down), and 
model (how many teeth remain), 
we update our probability of a 
new outcome



Data validation
• How can we use Bayesian 

statistics to make 
inferences about the data 
itself? 

• Prior predictive distribution 

• Posterior predictive 
distribution 

• We can compare predictive 
data to actual repetitions or 
further observations to 
validate data

P ({D̃}|M) =

Z
P ({D̃}|✓,M)P (✓|M)d✓

P ({D̃2}|D1,M) =

Z
P ({D̃2}|✓,M)P (✓|D1,M)d✓



Planck measurement
• Planck ‘measurement’ 

is just posterior 
predictive distribution 

• And will change, 
depending on 
assumptions 

• (Right:) Black is 
LCDM, Blue is most 
general, orange is 
Cepheid 
measurement

Feeney et al 2018



Posterior predictive p-
value

• Consider some test statistic T(D), which we use 
for checking for discrepancy 

• For the next observation or repetition, the 
posterior predictive distribution for T(D2) is given 
by 

• The posterior predictive p-value is the cumulative 
probability for which the predicted value of the 
test statistic exceeds the actual measured value 
(using the new data) 

P
⇣
T (D̃2|D1)

⌘
=

Z
P
⇣
T (D̃2|✓)

⌘
P (✓|D1)d✓

p = P
⇣
T (D̃2) > T (D2)

���D1, ✓
⌘



Procedure
1.Make predictions for data using prior, and current data 
2.Take new data 
3.Validate data against prior 

a.If bad match, either check analysis pipeline, or 
reconsider prior (and return to step 1) 

4.Validate data against previous data 
a.If tension exists, either check analysis pipeline for 
both datasets or reconsider prior (and return to step 1) 

5.If current and new data are in good agreement, then 
make posterior inferences and model selection



Diagnostic statistics
• Simple test 𝜒2 per degree of freedom 

• Equivalent to frequentist p-value test on data, but 
weighted by posterior predictions 

• Raveri (2015): the evidence ratio 

• Posterior predicted p-value of the normalised likelihood 
of the second dataset D2, tested with respect to D1.

C(D1, D2,M) =
P (D1 [D2|M)

P (D1|M)P (D2|M)



Information Criteria
• Instead of using the Evidence (which is difficult 

to calculate accurately) we can approximate it 
using an Information Criteria statistic 

• Ability to fit the data (chi-squared) penalised 
by (lack of) predictivity 

• Smaller the value of the IC, the better the 
model 

• Joudaki et al (2016): change in DIC

G(D1, D2) = DIC(D1 [D2)�DIC(D1)�DIC(D2)



Complexity
• The DIC penalises models based 

on the Bayesian complexity, the 
number of well-measured 
parameters 

• This can be computed through 
the information gain (KL 
divergence) between the prior 
and posterior, minus a point 
estimate 

• For the simple gaussian 
likelihood, this is given by 

• Average is over posterior

Cb = �2
⇣
DKL [P (✓|D,M)P (✓|M)]� dDKL

⌘

Cb = �2(✓)� �2(✓̄)



Diagnostics II: The 
Surprise

• Seehars et al (2016): the ‘Surprise’ statistic, 
based on cross entropy of two distributions 

• Cross entropy given by KL divergence 

• Surprise is difference of observed KL 
divergence relative to expected 
• where expected assumes consistency 

• Not a posterior prediction test - average is over  
new posterior

S ⌘ DKL (P (✓|D2)||P (✓|D1))� hDi

DKL (P (✓|D2)||P (✓|D1)) =

Z
P (✓|D2) log


P (✓|D2)

P (✓|D1)

�



Pros and Cons
Approach Like ratio Evidence DIC Surprise

Average over 
parameters (Yes) Yes Yes Yes

From MCMC 
chain Yes No Yes Yes

Probabalistic Yes Yes Yes No

Symmetric Yes Yes Yes No



H0 data
• SHOES does not 

measure H0, it 
measures a luminosity 
and angular diameter 
distances of some 
objects 

• Even at very low 
redshift, the 
measurement is not 
completely independent 
of the other parameters



Tension: Planck vs SHOES
• We found a change in DIC 

of 7.4, mainly driven by a 
change in average 𝝌2 

• Corresponding posterior 
predictive p-value ~ 
0.0025

Dataset best-fit 𝝌2 average 𝝌2 Complexity DIC

Planck-2015 11261.9 11281.9 20 11301.9

Reiss 2016 H0 0 1 1 2

Planck + H0 11269.9 11290.5 20.7 11311.3



Summary
• We can estimate the probability of a (new) dataset given the 

prior predictive distribution, or posterior predictive distribution 
from a previous dataset 

• The posterior predictive p-value gives us the probability of some 
discrepancy statistic evaluated relative to some prior or 
posterior prediction 

• A number of tension statistics exist, including the simple 
likelihood, surprise, and DIC 

• The tension statistic is different to model selection, as it can be 
applied to a single physical model 

• Using the DIC as a tension statistic, we find that the posterior 
predictive probability of the H0 measurement, assuming Planck 
and a LambdaCDM cosmology, to be roughly 0.0025, or roughly 
400:1 against


