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P1) Show the following: Consider a harmonic motion: md2xi
dt2

= −k
∑

j∈n.n. of i(xi − xj),

λxi =
∑

j Vi,jxj. Then the eigenvalue i) λ ∼ ω2, and ii) the spectral density is

ρs(λ) ∼ λ
d
2
−1.

⇒ i) We use the definition of a Laplacian operator V by∑
j

Vi,jxj = zxi −
∑

j∈n.n. of i

xj =
∑

j∈n.n. of i

(xi − xj) ,

where z is the coordination number of the lattice. Then the original equation can be written as

m
d2xi
dt2

= −k
∑
j

Vi,jxj .

When Vi,j is independent of time, this equation can be solved by the method of separation of

variables. Inserting the corresponding solution of the form x`(t) = ei(~q·
~̀−ωt)

∑
j

Vi,jxj =
mω2

k
xi .

The oscillation frequency is simply related to the eigenvalue λ = mω2

k
.

ii) The spectral dimension is defined as ρs(ω) ∼ ωds−1. Combining the relation ρs(ω)dω =
ρs(λ)dλ and the result from i), ρs(λ) ∼ λds/2−1.

P2) Show the following: P0(n) ∼ n−d/2 ⇒ P0(s) ∼ (1 − s)d/2−1 → singular when d < 2 as
s→ 1.

⇒ Let us consider the P0(n) of the spectral density we obtained in P1:

P0(n) =
Sd

(2π)d

∫ ∞
0

e−nwλλd/2−1dλ =
Sd

(2π)d

∫ ∞
0

e−x

nw
(
x

nw
)d/2−1dx

=
Sd

(2π)d
Γ(d/2)

(nw)d/2
∼ n−d/2 ,

where we have used the substitution x ≡ nwλ. Then the calculation of the generating function
becomes

P0(s) =
Sd

(2π)d

∫ ∞
0

dλ
λd/2−1

1− s+ λws
=

Sd
(2π)d(1− s)

∫ ∞
0

dλ
λd/2−1

1 + λws
1−s

=
Sd

(2π)d
(1− s)d/2−1

(ws)d/2

∫ ∞
0

dx
xd/2−1

1 + x

=
Sd

(2π)d
(1− s)d/2−1

(ws)d/2
π csc(

dπ

2
) , when d < 2 .

Thus P0(s) ∼ (1− s)d/2−1 and singular as s→ 1.
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P3) Show that i) F (t) ' 1√
π

1
t3/2

in 1d; ii) F (t) ' 4π
t(ln t)2

1
t3/2

in 2d; and iii) F (t) ' (1−R)2

8π3/2
1
t3/2

in

1d. Find R in 3d.

⇒ i) From the Lecture note, the Laplace transform of the occupation probability at the origin
is

P (s) '
∫ ∞
0

(4πt)−d/2e−stdt =
Γ(1− d/2)sd/2−1

(4π)d/2
, when d/2 < 1 . (1)

Thus, P (s) ' (4s)−1/2 in 1d. Then the Laplace transform of the first-passage probability to the
origin,

F (s) = 1− 1

P (s)
' 1−

√
4s , (2)

and the eventual return probability R = F (s = 0) = 1. Because F (s) does not diverge for
small s, it is not convenient to invert this Laplace transform directly. Instead, we consider the
derivative of F (s):

−F ′(s) = L(tF (t)) = s−1/2 ,

where L is a notation for the Laplace transform. We can then directly apply Eq. (1) to find
that tF (t) = (πt)−1/2 and thus F (t) ' 1√

π
1
t3/2

.

ii) Firstly, we must cut off the integral for t < 1 to eliminate the spurious singularity that arises
from using the long-time form of P (t) for short times. Then we have

P (s) '
∫ ∞
0

(4πt)−1e−stdt =
Γ(0, x)

4π

' − ln s

4π
, when s→ 0 .

Then the Laplace transform of the first-passage probability to the origin,

F (s) ' 1 +
4π

ln s
, when s→ 0 .

Again, the eventual return probability R = F (s = 0) = 1 and we consider the derivative of
F (s):

−F ′(s) = L(tF (t)) =
4π

s(ln s)2
, when s→ 0 .

Since the Laplace transform of a constant function equals 1/s, the function tF (t) must vary
weakly in time to give the extra factor of (ln s)−2 and thus F (t) ' 4π

t(ln t)2
.

iii) For d = 3,

P (s) '
∫ ∞
0

(4πt)−3/2e−stdt ,

and it is useful to differentiate to both sides of the above equation:

P ′(s) ' −1

(4π)3/2

∫ ∞
0

t−1/2e−stdt =
−1

8π
√
s
,

where we have used Eq. (1). Then P (s) = P (0)−
√
s

4π
and F (s) is given by

F (s) = 1− 1

P (s)
' 1− 1

P (0)−
√
s

4π

' 1− 1

P (0)

(
1 +

√
s

4πP (0)

)
= 1− 1

P (0)
−

√
s

4πP (0)2
.
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Using R = F (s = 0) = 1− P (0)−1, the above equation is rewritten as follows:

F (s) = R− (1−R)2
√
s

4π
.

Note that R = 1− P (0)−1 < 1 and the random walk is transient. By comparing with Eq. (2),
the asymptotic form of F (t) is given by

F (t) ' (1−R)2

8π3/2

1

t3/2
.

P4) Show that i) F (t) ∼ y0√
8πDt3

e−y
2
0/8Dt ∼ t−3/2 and ii) the survival probability S(t) =

1− 2√
π

∫∞
y0/
√
8Dt

e−u
2
du→ y0√

2πDt
.

⇒ i) The first-passage probability to the origin at time t is just the flux to this point with the

probability density c(y, t) = 1√
8πDt

[
e−(y−y0)

2/8Dt − e−(y+y0)2/8Dt
]
:

F (t) = 2D
∂c(y, t)

∂y

∣∣∣
y=0

=
y0e
−y20/8Dt

√
8πDt3/2

∼ t−3/2 , as t→∞ .

ii) The survival probability S(t) of the two particles may be found from S(t) = 1−
∫ t
0
F (0, t′)dt′.

Using the substitution x2 = y20/8Dt
′ leads to

S(t) = 1− 2√
π

∫ ∞
y0/
√
8Dt

e−x
2

dx = erf(y0/
√

8Dt)→ y0√
2πDt

, as t→∞ .

P5) Consider a Sierpinski gasket. i) Obtain the fractal dimension.
Consider random walks on an infinite Sierpinski gasket. ii) Obtain the spectral
dimension and random walk dimension.

1
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Figure 1: Compartment of a Sierpinski gasket.

⇒ i) Let us consider a Sierpinski gasket in Fig. 1. Observe that it is a triangle, and consists of
three smaller triangles with a triangular space between them. These three triangles are identical
copies of the entire fractal, so we decide that our value for n will be 3. Now what is the scaling
factor? Observation also easily tells us that the edge of the smaller triangles is half the edge of
the fractal itself. Thus our scaling factor r is 2. Applying these to formula, we get:

df =
lnn

ln r
' 1.585 < 2
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ii) In Fig. 1, some of the equations for the eigenvalue problem are given by

λx1 = 4x1 − x2 − x3 − x5 − x6 ,
λx2 = 4x2 − x1 − x3 − x4 − x5 ,
λx3 = 4x3 − x1 − x2 − x4 − x6 ,

or equivalently  λ− 4 1 1
1 λ− 4 1
1 1 λ− 4

 x1
x2
x3

 = −

 x5 + x6
x4 + x5
x4 + x6

 .

Solving the equation with respect to x1, x2, and x3 x1
x2
x3

 = − 1

(λ− 5)(λ− 2)

 λ− 3 −1 −1
−1 λ− 3 −1
−1 −1 λ− 3

 x5 + x6
x4 + x5
x4 + x6

 . (3)

Likewise, x7, x8, and x9 can be represented by x5, x10, and x11. The equation of x5 is given by

λx5 = 4x5 − x1 − x2 − x7 − x8 , (4)

and inserting the solutions x1, x2 in Eq. (3) and x7, x8 to the right hand side of Eq. (4)

(5λ− λ2)x5 = 4x5 − (x4 + x6 + x10 + x11) .

Note that the equation is represented by x4, x6, x10, and x11. Thus it reduces to the eigenvalue
problem with the edge length 2k−1a, where k is the iteration number and a is the unit length.
The renormalized eigenvalue λ′ is given by λ′ = 5λ − λ2. For λ → 0, λ′ = 5λ. If we introduce
an quantity Dk(Λ), the number of eigenvalues in the interval 0 < λ < Λ with the edge length
2ka, we obtain Dk(Λ) = Dk−1(5Λ) for Λ→ 0.

Then spectral density becomes

ρ(λ) =
d

dλ
lim
k→∞

1

n
Dk(λ) ,

and for λ→ 0

ρ(λ) =
5

3
ρ(5λ) . (5)

The spectral dimension ds is defined as ρ(bω) = bds−1ρ(ω). Moreover, the eigenvalue λ = ω2/ω2
0

gives the relation ρ(ω) = ωρ(ω2/ω2
0). Thus we obtained the relation ρ(bλ) = bds/2−1ρ(λ), which

gives the spectral dimension by Eq. (5): ds ' 1.365 and dw = 2df/ds ' 2.322.

P5’) Consider a Sierpinski gasket. i) Obtain the fractal dimension.
Consider random walks on an infinite Sierpinski gasket. ii) Obtain the spectral
dimension and self-avoiding walk dimension ν.

⇒ i) This is the same problem with the P5-i.

ii) In two dimensional Sierpinski gasket, the partition function is

Z = Tr
∏
〈i,j〉

[1 + vOij]

= Tr
∏

[1 + v(O12 +O23 +O31) + v2(O12O23 +O12O31 +O23O31) + v3O12O23O31] ,

where
∏

is the product of the unit triangles and 1, 2, and 3 indicate the vertices of the triangle.
Calculating the trace of a, b, c spins in Fig. 2(a), the equation is represented by 1, 2, 3 spins.
Then we generally set the factor of 4 as

T4 = 1 + x(O12 +O23 +O31) + y(O12O23 +O12O31 +O23O31) + zO12O23O31 + w(O2
12 +O2

23 +O2
31) ,
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Figure 2: Renormalization of a Sierpinski gasket.

where we set x, y, z, and w as the independent parameters. The renormalization transformation
can be obtained by performing the partial trace. Using the decimation procedure, an exact
real space renormalization group transformation for general n can be obtained in the four-
dimensional parameter space (x, y, z, w). In the limit n→ 0, the transformation reduces as

x′ = x2 + x3 + 2xy + y2 + 2x2y ,

y′ = x2y + 2xy2 ,

z′ = w′ = 0 . (6)

Eq. (6) has a fixed point at x∗ = (
√

5 − 1)/2, y∗ = z∗ = w∗ = 0, and the eigenvalue can be
found from the linearized transformation. Thus, λT = 21/ν = (7−

√
5)/2 or ν = 0.7986 · · · .

P6) Show i) and ii). quoted from the Reference below

⇒ i) We first consider the mean-field equation appropriate to describe the reaction A1 + A2 +
· · ·+ AN → φ

∂ρi(t)

∂t
= −kρ1(t)ρ2(t) · · · ρN(t) ,

where ρi(t) is the density of the ith species at time t and k is a rate constant. When the initial
densities of all reactants are equal, the asymptotic form of ρi(t) is

ρi(t) ∼ (kt)−1/(N−1) , for d > dc .

We now turn our attention for d < dc. For simplicity, we treat the three-body reaction, but
the generalization to the N -body case is immediate. In analogy with the two-body reaction, we
write a scaling form for ρi(t) by assuming that the decay will be a power-law behavior for t less
than the shortest time scale,

ρi(t) ' Cit
−αfi(x23, x13, x12) , (7)

where fi(x23, x13, x12) is a scaling function of the dimensionless variables xij = t/tij, and Ci is a
constant which depends on the initial conditions.

To determine α, it is useful to consider the particular initial condition ρ1(0) < ρ2(0) = ρ3(0), so
that t23 diverges, while t13 = t12 = τ . Eq. (7) can be written as

ρi(t) ' Cit
−αf̄i(t/τ) , (8)

where f̄(t/τ) = fi(0, t/t13, t/t12), and α is assumed to be independent of the initial conditions.

From the conservation of the particle density difference, ρ1(t)− ρ2(t) = ρ1(0)− ρ2(0), and from
Eq. (8), we have

(ρ1(0)− ρ2(0))tα = C1f̄1(t/τ)− C2f̄2(t/τ) ,

and ρ1(0)− ρ2(0) can be rewritten as (
√
ρ1(0) +

√
ρ2(0))τ−d/4, from which we can immediately

determine α and Ci to be

α = d/4 , C1 = C2 ' (
√
ρ1(0) +

√
ρ2(0)) .
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In the limit ρ1(0) → ρ2(0), the t−α decay law will be recovered in Eq. (8). Therefor, we find

ρi(t) '
√
ρi(0)t−d/4.

To generalize to the N -body decay for equal initial densities of the reactants, we choose the
initial condition ρ1(0) < ρ2(0) = ρ3(0) = · · · = ρN(0), and follow the same steps in 3-body

decay. This gives ρi(t) '
√
ρi(0)t−d/4 for d < dc = 4/(N − 1).

ii) We can apply scaling to the single-species NA → φ. The scaling form in Eq. (8) may be
written as

ρA(t) ' ρA(0)f(t/τ) ,

and we postulate that ρA(t) will be independent of the initial density as t→∞. This condition
immediately fixes the decay law to be ρA(t) ∼ t−d/2 for d < dc = 2/(N−1), while the mean-field
decay of t−1/(N−1) should hold for d > dc.

P7) Suppose that the cluster size dis. at t = 0 is given by ck(0) = bk−γ, where 2 < γ < 3.
Solve the generating function g(z, t) and ck(t).

⇒ In the limit z → 1, the generating function g(z, 0) is asymptotically related by

g(z, 0) =
∞∑
k=1

ck(0)zk =
∞∑
k=1

bk−γzk = 1 + bΓ(1− α)(1− z)α−1 . (9)

Using Eq. (9), taking the limits t → ∞ and z → 1, and keeping only the leading term, the
generating function becomes

g(z, t) = (1 + t)−2
g(z, 0)

1− [t/(1 + t)]g(z, 0)

' t−1

1 + Ct(1− z)α−1
,

with C = −bΓ(1 − α). From the grouping of variables in the denominator, we identify the
scaling variable as w = k/(Ct)1/(α−1), and

ck(t) ' t−1(Ct)−1/(α−1)fα(w) ,

as the scaling form of the mass distribution. Indeed,

g(z, t) =
∞∑
k=1

ck(t)z
k ' t−1

∫ ∞
0

dwfα(w)e−ws =
t−1

1 + sα−1
,

where s = (Ct)1/(α−1)(1− z). Hence the scaling function fα(w) is the inverse Laplace transform
of (1 + sα−1)−1.

P8)

M1(t)
t→∞−−−→


? for d = 1 ,

? for d = 2 ,

? for d = 3 .

⇒ The mass distribution is simply the superposition of Gaussian propagators due to all sources
from t = 0 until the present:

M1(r, t) = J

∫ ∞
0

dt′

(4πDt′)d/2
e−r

2/4Dt′ .
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Using the substitution x ≡ r2/(4Dt′),

M1(r, t) =
Jr2−d

4Dπd/2
Γ(
d

2
− 1,

r2

4Dt
) ,

where Γ is the incomplete gamma function. The solution in the limits r � Dt leads to

M1(t)
t→∞−−−→


√
πrΓ(−1

2
, r2

4Dt
) = 4

√
πDt for d = 1 ,

Γ(0, r2

4Dt
) = −γE − ln( r2

4Dt
) +O( r2

4Dt
) for d = 2 ,

r−1π−1/2Γ(1
2
, r2

4Dt
) = r−1 for d = 3 ,

where γE ' 0.577215 is Euler’s constant.
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