
Stochastic Processes in Biophysics (2017 Stat. Phys. Winter School)

• Langevin eqn (low vs high friction) 

• Langevin simulations (particles, polymer)

• Non-Markovian Langevin eqn. and FDT

• Fokker Planck eqn.

• First passage time problem (Survival prob. FPT distribution, MFPT) 

• Kramers’ rate (Escape rate from metastable state)

• Diffusion in a rough potential

• Dynamical processes in the presence of sink (Wilemski-Fixman formalism) 

• Effect of dynamic disorder on rate processes. 

• Theory for force spectroscopy (Bell, Evan Evans, Dudko, … Hyeon) 

• Detecting dynamic disorder using force spectroscopy (dynamic disorder revisited)

Nonequilibrium Statistical Mechanics, 
Robert Zwanzig (2001) Oxford Univ. Press
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Langevin Simulation (at low friction,               : MD)
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Ḟi(t) =
1

h
(Fi(t+ h)� Fi(t))

=
1

h
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main(){
   initialize();
   step=0;
   while(step<stepsim){  
      iteration();
      step++;  
   }
}

Code for low-friction LD

#include “header.h”                                   
#define halfh   h/2.0                                 
#define vfact   h*(1.0-zeta*halfh)                    
#define ffact   h*halfh                               
#define aux1    halfh*(1.0-h*zeta/2.0)                
#define aux2    (1.0-h*zeta/2+(h*zeta)*(h*zeta)/4.0)/h
extern void rforce(), force(), update();              
void iteration(){                                     
  int i;                                              
  for(i=1;i<=L;i++){                                  
    C[i].Dx=vfact*C[i].vx+ffact*C[i].fx;              
    C[i].Dy=vfact*C[i].vy+ffact*C[i].fy;              
    C[i].Dz=vfact*C[i].vz+ffact*C[i].fz;             
    C[i].x=C[i].x+C[i].Dx;                           
    C[i].y=C[i].y+C[i].Dy;                           
    C[i].z=C[i].z+C[i].Dz;                            
  }                                                   
  rforce();                                          
  force();                                            
  for(i=1;i<=L;i++){                                  
    C[i].vx=aux2*C[i].Dx+aux1*C[i].fx;                
    C[i].vy=aux2*C[i].Dy+aux1*C[i].fy;                
    C[i].vz=aux2*C[i].Dz+aux1*C[i].fz;                
  }                                                   
  record_something();                                 
}                                                    
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void rforce(){                  
  double var;                   
  var=sqrt(2.0*temp*zeta/h);    
  for(i=1;i<=L;i++){            
    C[i].fx=var*gasdev(&mseed);
    C[i].fy=var*gasdev(&mseed);
    C[i].fz=var*gasdev(&mseed);
  }                                                            
}                                                                                                 
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main(){
   initialize();
   step=0;
   while(step<stepsim){  
      iteration();
      step++;  
   }
}

Code for low-friction LD



Langevin Simulation (at high friction,               : BD simulation)
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main(){
   initialize();
   step=0;
   while(step<stepsim){  
      iteration();
      step++;  
   }
}

Code for high friction LD 
(BD)

void iteration(){                 
  for(i=1;i<=L;i++){              
    C[i].x=C[i].x+C[i].fx*h/zeta;
    C[i].y=C[i].y+C[i].fy*h/zeta;
    C[i].z=C[i].z+C[i].fz*h/zeta;
  }                               
  rforce();                      
  force();                       
  record_something();             
}                                 

void rforce(){                  
  double var;                   
  var=sqrt(2.0*temp*zeta/h);    
  for(i=1;i<=L;i++){            
    C[i].fx=var*gasdev(&mseed);
    C[i].fy=var*gasdev(&mseed);
    C[i].fz=var*gasdev(&mseed);
  }                                                            
}                                                                                                 
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Single particle
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behavior. In essence, to a good approximation the phase
behavior of the binary or polydisperse system can be
mapped onto that of a single component system. In a sense,
this binary hard-sphere fluid is analogous to a colloidal
fluid of hard spheres with a polydispersity of 5%. Experi-
ments on colloidal systems have shown that a modest de-
gree of polydispersity causes a significant delay in crystal-
lization without having a significant effect on dynamical
properties such as the time correlation functions [19].

The data presented here was computed from simulations
consisting of N ! 10 976 particles. To check for finite size
effects we repeated the calculations of the VAF at the
highest ! ! 0:58 and lowest ! ! 0:15 volume fractions
with N ! 5" 105 particles. There was no discernible sys-
tematic difference in the results for the two system sizes.
We also calculated the speed of sound from the equation of
state [20], which showed that finite size effects should be
most important for the lowest volume fraction studied. For
the larger N ! 5" 105 system it was found that a low fre-
quency disturbance could not cross the periodic cell length
on the longest time scale in our VAF calculations, regard-
less of volume fraction. Thus there can be little doubt that
the results presented here are accurately representative of
what would be obtained in the thermodynamic limit.

The VAFs were computed from 50 independent simula-
tions, with a standard error in the region of the long-time
tails of 4"10#5, except those at the volume fractions
shown in Fig. 4, which were computed from ensembles
of 500 independent simulations, with a standard error of
1:5" 10#5.

Figure 1 shows the VAF versus log" for the one compo-
nent fluid at several volume fractions in thermodynamic
equilibrium (!<!f), at the freezing volume fraction
(!!!f) and at a volume fraction for a marginally under-
cooled fluid (!>!f). The units used are such that the
mean-squared thermal velocity, Z$0% ! kBT=m ! 1 and
the time unit is #

!!!!!!!!!!!!!!!
m=kBT

p
where T is the absolute tem-

perature, # is the atomic diameter, m is the atomic mass,
and kB is Boltzmann’s constant. From this plot it can be
seen that the VAF becomes negative for ! & 0:45.

In order to examine the long-time behavior, the data is
replotted in Fig. 2 as a double logarithmic plot of jZ$"%j
versus ". From this figure it is clear that Z$"% decays from
the mean-squared thermal velocity, a condition imposed by
definition, to an algebraic form consistent with "#3=2, for
all volume fractions below the freezing point, ! ! 0:494.
Thus, time coarse graining exposes a continuous and
smooth crossover from ballistic motion to fully developed,
viscous flow. The dip that becomes apparent for !> 0:3
manifests velocity reversal incurred by damped compres-
sion modes, i.e., a transient visco-elastic response [8]. This
transient response increases in strength with volume frac-
tion and, for ! ! 0:45, it causes Z$"% to become negative,
i.e., the velocities become anticorrelated at intermediate
times. But even then Z$"% crosses the abscissa again and
decays to zero from above in a manner consistent with the

power law, "#3=2. Thus, for the fluid in thermodynamic
equilibrium the data indicates that the fluid’s delayed
inelastic, viscous response to a thermally activated distur-
bance ultimately dominates, whatever the strength of its
transient elastic response. This provides confirmation of
what had previously only been conjectured [8,21].

The data in Fig. 2 suggests that there is a qualitative
change in behavior as the freezing point is approached, and

FIG. 1 (color online). A plot of the velocity autocorrelation
function Z$"% versus log" (symbols are defined in the legend),
calculated from one component hard-sphere molecular dynamics
simulations of fluids at various volume fractions ! ! (volume
of all the spheres divided by the total system volume). For ! &
0:45 the VAF becomes negative, so in order to expose the long-
time behavior, double logarithmic plots of jZ$"%j are needed (see
Fig. 2).

1×10-3

1×10-4

1×10-5

FIG. 2 (color online). A double logarithmic plot of jZ$"%j for
the data shown in Fig. 1. For all curves below !f ! 0:494 a
long-time 3=2 power law (indicated by the dashed line) is clearly
observed. As the volume fraction increases a nonmonotonic
decay emerges as may be seen distinctly from the curve. We
interpret this as indicative of the fluids strengthening visco-
elastic behavior. For ! & 0:45, the points where Z$"% cross
zero may be seen as a sharp minimum in this graph. For ! !
0:45 and ! ! 0:48 a second sharp minimum is observed [Z$"%
has crossed zero again and now becomes positive], followed by a
long-time 3=2 tail. Upon increasing the volume fraction to ! !
0:494 and ! ! 0:505 this reentrant positive behavior is no
longer observed.

PRL 96, 087801 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006

087801-2
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Trimer →bond stretching, bending
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N=4
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Polymer (N>>1)
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main(){
   initialize();
   step=0;
   while(step<stepsim){  
      calc_force();
      calc_random_force();
      position_update();  
      step++;  
   }
}

Code for simulation

calc_force(){
   bond();
   angle();
   torsion();
     :
     :
   LJ();
   electrostatic();
}
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θ
A<<R A≈R A>>R



ΔF = ΔE − TΔS

Flexible polymer at θ-condition

 
Uint ({

!ri}) =
kr
2
(ri,i+1 − a)

2

i=1

N

∑

Gaussian Phantom chain
...

=0 >0

p
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E
bond

N = 300

Req ⇠ N1/2 ⇡ 17
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3kBT
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=
1
N

!xi
2 + !yi

2 + !zi
2( )
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∑



Flexible polymer in good solvent (SAW)

 
Uint ({

!ri}) =
kr
2
(ri,i+1 − a)

2

i=1

N

∑ + εl
σ
ri, j

⎛

⎝⎜
⎞

⎠⎟

12

j= i+1

N

∑
i=1

N −1

∑
Monomers are mutually repulsive.

kT

p
R2

t

E
bond

ELJ

t

N = 300

Req ⇠ N3/5 ⇡ 31
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Collapse of flexible polymer in poor solvent 

 

Uint ({
!ri}) =

kr
2
(ri,i+1 − a)

2

i=1

N

∑ + εh
σ
ri, j

⎛

⎝⎜
⎞

⎠⎟
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− 2 σ
ri, j

⎛

⎝⎜
⎞

⎠⎟
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⎣
⎢
⎢

⎤

⎦
⎥
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∑
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N −1

∑
Monomers are mutually attractive.

E
bond

ELJ

kT

p
R2

N = 300

Req ⇠ N1/3 ⇡ 6.7



Uint({~ri})=
PN

i=1 �1

kr
2
(ri,i+1 � a)2 �

N�2X

i=1

k✓ r̂i,i+1 · r̂i+1,i+2 +
N�3X

i=1

NX

j=i+3

✏h
⇥
(�/ri,j)

12 � 2(�/ri,j)
6
⇤

Collapse of semiflexible polymer in poor solvent 

ELJ

Ebend

kr = 80kBT/a
2

k✓ = 40kBT

✏h = 1.5kBT
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Utot = Kr r − ro( )2
bond
∑ + Kθ θ −θo( )2

angle
∑ + Kφ 1+ cos nφ − δ( )( )

torsion
∑

+ Kϕ ϕ −ϕo( )2
improper
∑ + KUB r1,3 − r1,3o( )2

Urey−Bradley
∑ + Kφ 1+ cos nφ − δ( )( )

torsion
∑

+
qiqj
4πεrij

+ εij
σ
rij

⎛

⎝⎜
⎞

⎠⎟

12

− 2 σ
rij

⎛

⎝⎜
⎞

⎠⎟
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⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪nonbonded
∑ +

σ
ri, j

⎛

⎝⎜
⎞
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12

j= i+1

N

∑
i=1

N −1

∑

?

“Design” biopolymers, ...a protein
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Project 1

Q: Scaling relation of the mean looping time with the 
length of polymer? (Theory & Simulation ?)

⌧ ⇠ N↵

29



Non-Markovian Langevin eq. - Memory effect

�⇣v(t) ! �
Z t

�1
d⌧K(t� ⌧)v(⌧) = �

Z 1

0
d⌧K(⌧)v(t� ⌧)

ẋ(t) = �
Z t

�1
d⌧e

�(⇣/m)(t�⌧)
!

2
x(⌧) +

Z t

�1
d⌧e

�(⇣/m)(t�⌧)
Fp(⌧)/m

p(t) =

Z t

�1
d⌧e

�(⇣/m)(t�⌧)(�m!

2
x(⌧) + Fp(⌧))

K(t� ⌧)
F
x

(t)

ẋ(t) = �
Z 1

0
d⌧K(⌧)x(t� ⌧) + F

x

(t)

mv̇ = �⇣v � U

0(x) + ⇠(t)

ẋ = p/m

ṗ = �m!

2
x� ⇣(p/m) + Fp(t) p(�1) = 0

hx2ieq =
kBT

m!

2 hFp(t)Fp(t
0)i = 2⇣kBT �(t� t0)

U(x) = (1/2)m!

2
x

2

Show !!hF
x

(t)F
x

(t0)i = k

B

T

m

e

�⇣|t�t

0|/m = hx2i
eq

K(|t� t

0|)



hF
x

(t)F
x

(t0)i = 1

m2

Z
t

�1

Z
t

0

�1
d⌧1d⌧2e

�(⇣/m)(t�⌧1)e�(⇣/m)(t0�⌧2)hF
p

(⌧1)Fp
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=
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B
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Z
t

�1

Z
t

0

�1
d⌧1d⌧2e

�(⇣/m)(t+t

0�⌧1�⌧2)�(⌧1 � ⌧2)

=
2⇣k

B

T

m2

Z min (t,t0)

�1
d⌧e�(⇣/m)(t+t

0�2⌧)

=
2⇣k

B

T

m2

m

2⇣
e�(⇣/m)(t+t

0�2min (t,t0)) =
k
B

T

m
e�⇣|t�t

0|/m

hF
x

(t)F
x

(t0)i = hx2i
eq

K(|t� t

0|)
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hFp(t)Fp(t
0)i = 2⇣kBT �(t� t0)

ẋ = p/m

ṗ = �m!

2
x� ⇣(p/m) + Fp(t)

Markovian system of equations

Fluctuation-Dissipation theorem (FDT)

hF
x

(t)F
x

(t0)i = hx2i
eq

K(|t� t

0|)

ẋ(t) = �
Z 1

0
d⌧K(⌧)x(t� ⌧) + F

x

(t)

non-Markovian

removal of fast variable, reduction of dimension  
(or projection)

kBT

m
e�⇣|t�t0|/m

!2e�⇣⌧/m

m!2

⇣
�(⌧)

⇣⌧/m � 1

2kBT

⇣
�(t� t0)

⇣|t� t0|/m � 1

ẋ(t) = �m!

2
x(t)/⇣ +

p
2D⌘(t) Markovian



@a(t)

@t
= L · a(t)

L = PL+ (1�P)L

etL = et(1�P)L +

Z t

0
dse(t�s)LPLet(1�P)L

@A(t)

@t
= i⌦A(t)�

Z t

0
dsK(s) ·A(t� s) + F (t)

hF (t)F ⇤(t0)i = K(t� t0) · hAA⇤ieq

Method of projection 
operator (Mori-Zwanzig  

formalism)
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etL = et(1�P)L +

Z t

0
dse(t�s)LPLet(1�P)L

[z � (A+B)]�1 = {(z �A)[1� (z �A)�1B]}�1

= [1� (z �A)�1B]�1(z �A)�1

= [1 + (z �A)�1B + (z �A)�1B(z �A)�1B + · · · ](z �A)�1

= (z �A)�1 + (z �A)�1B(z �A)�1 + (z �A)�1B(z �A)�1B(z �A)�1 + · · ·

= (z �A)�1 + {(z �A)�1 + (z �A)�1B(z �A)�1 + · · · }B(z �A)�1

= (z �A)�1 + [z � (A+B)]�1B(z �A)�1

et(A+B) = etA +

Z t

0
dse(t�s)(A+B)BetA
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Fokker-Planck equation

35



@f

@t
+

@

@�
(�̇f) = 0

@f

@t
+ �̇

@f

@�
+ f

@�̇

@�
= 0

� ⌘ (~q1, ~q2, . . . , ~qN , ~p1, ~p2, . . . , ~pN )

f = f(�, t)

0 for Hamiltonian system

X

i

✓
@q̇i
@qi

+
@ṗi
@pi

◆
=

X

i

✓
@2H

@qi@pi
� @2H

@pi@qi

◆
= 0

Continuity equation in phase space

df({q}, {p}, t)
dt

=
@f

@t
+

X

i

@f

@qi

dqi
dt

+
X

i

@f

@pi

dpi
dt

= 0

Liouville equation

Liouville theorem

t

({q}, {p})[= (~q1, ~q2, . . . , ~qN , ~p1, ~p2, . . . , ~pN )]

df

dt
=

@f

@t
+ �̇ · @f

@�
= 0

Phase space density is constant along  
the dynamic trajectory in phase space

@t⇢(x, t) +r
x

· (ẋ⇢(x, t)) = 0

@tf = �Lf
f(�, t) = e�Ltf(�, 0)

Z
f(�, t)d� = 1

~r · ~V = 0



Fokker-Planck equation

@ta(t) = v(a) + F(t)

a(t) ⇢(a, t)

hF(t)F(t0)i = 2B�(t� t0)

@t⇢(a, t) + L⇢(a, t) =
Z t

0
d⌧e�L(t�⌧)@a · F(t)F(⌧) · @a(⇢(a)) = @a ·B · @a⇢(a, t)

@t⇢(a, t) + @a · (ȧ⇢(a, t)) = 0 : continuity equation

⇢(a, t) = e�Lt⇢(a, 0)�
Z t

0
d⌧e�L(t�⌧)@a · (F(⌧)⇢(a, ⌧))

stochastic 
variable

prob. density

@t⇢(a, t) + @a · (v(a)⇢(a, t) + F(t)⇢(a, t)) = 0

@t⇢(a, t) + L⇢(a, t) = �@a · (F(t)⇢(a, t))

hF(t)i = 0

@t⇢(a, t) =
@

@a
·B · @

@a
⇢(a, t)� @

@a
· (v(a, t)⇢(a, t))
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Fokker Planck equation

mẍ = �⇣ẋ� dU(x)

dx

+ ⇠(t)
ẋ = p/m

ṗ = �⇣(p/m)� dU(x)/dx+ ⇠(t)
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Klein-Kramers eqn.38

(x, p)
⇢(x, p, t)



ẋ = �1

⇣

dU(x)

dx

+
⇠(t)

⇣

@

t

⇢+ @
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(ẋ⇢) = 0

Fokker-Planck equation
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⇣

@
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: continuity equation
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⇢
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Smoluchowski equation
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⇢
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Klein-Kramers eqn.

@t⇢ = D

@

2
⇢

@x

2
+

@

@x

✓
U

0(x)

⇣

⇢

◆
Smoluchowski equation

ẋ = �1

⇣

dU(x)

dx

+
⇠(t)

⇣

mẍ = �⇣ẋ� dU(x)

dx

+ ⇠(t)

SUMMARY of Fokker-Planck eqn.

�! ⇢(x, t)

�! ⇢(x, p, t)
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Survival Probability, 

First Passage time distribution, 
Mean first passage time, 

Kramers Escape Rate Theory

S(t)

PFPT(t)

⌧ =

Z 1

0
tPFPT(t)dt
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PFPT(t) = �dS(t)

dt
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0
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0
tPFPT(t)dt =

Z 1

0
S(t)dt



P (a,1) ! 0
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⇣
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@tP (a, t;a0) = LFPP (a, t;a0)

S(t;a0) =

Z

V
daP (a, t;a0)

(absorbing 
boundary)
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�U‡(� kBT )

Kramers Rate

mẍ = �⇣ẋ� dU(x)

dx

+ ⇠(t)

kTST =
kBT

h
e���U‡

k = Ae��U‡/kBT



Kramers equation (high friction)

j = �D(@
x

+ �U

0(x))⇢ = �De

��U(x)
@

x

e
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k! = e���G‡
!

k = e���G‡
 

Keq =
k!
k 

= e���G
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Kramers Escape Rate Theory
(noise-induced transition)

Intermediate-to-high damping (IHD)

kKR =

�U‡/kBT � 1Separation of time scale (or thermal equil. at A) should be ensured

Kramers, Physica (1940) 7, 284
Grote & Hynes, J. Chem. Phys. (1980) 73, 2715
Hanggi, Talkner, Borkovec, RMB (1990)
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no coupling to bath

very low damping (VLD)
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Klein-Kramers eqn.
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⇢
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! 3!

unfolding or bond rupture) is coupled to an auxiliary variable y. The following free 

energy surface (Fig.1) is considered:  

F(x, y) = −F‡ 2 x
x‡

⎛
⎝⎜

⎞
⎠⎟
3

+ 3 x
x‡

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−κ x

x‡
⎛
⎝⎜

⎞
⎠⎟
− b⎡

⎣⎢
⎤
⎦⎥
y2 − fx‡

x
x‡

⎛
⎝⎜

⎞
⎠⎟

.  (1) 

When y=0, F(x,y) is reduced to the cubic potential that is popularly employed as a 

microscopic model potential by several group [8, 9, 10]. In F(x,y), a harmonic potential is 

coupled in the orthogonal direction (y). Force along the x-direction, tilts the potential 
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Introduction

Since the birth of chemical dynamics,
1,2

 broad classes of

simple reactions have been described using a physically

suitable one dimensional reaction coordinate.
3-5

 It is, how-

ever, well appreciated that such a description often fails to

capture the dynamics of complex systems such as the

folding of proteins or RNA.
6,7

 Interestingly, the response of

biological molecules to mechanical force ( f ) is often

described using a one dimensional (1D) free energy profile

(F(R)) with, R, the molecular extension that is conjugate to f

being the natural reaction coordinate.
8

 Use of R as the

reaction coordinate is appropriate if the relaxation dynamics

associated with all other degrees of freedom are much faster

than the dynamics associated with R. The celebrated

phenomenological Bell model
9

 and related microscopic

models,
10-13

 which assume that bond rupture dynamics or

forced unfolding of proteins and RNA can be described

using F(R), have apparently been adequate in interpreting a

number of single molecule experiments. When subject to a

tension the transverse fluctuations of the molecule are

suppressed, which makes it plausible that the dynamics

(forced-unfolding or bond rupture) occurs along an effective

1D free energy profile. A broader validity of the adequacy of

F(R) was established in the context of a RNA hairpin

dynamics subject to f.
14

 By using the calculated free energy

profile at f = fm, the force at which the probabilities of being

in the folded and unfolded states are equal, it was shown that

a Bell-type model can be used to quantitatively predict the

dynamics at other f values.
14

 It is important to decipher

whether energy landscape description based on R alone

suffices to describe the force dynamics of biomolecules that,

in principle, takes place in a multidimensional surface.

Here, we studied the f -dependent unbinding rates, k2D( f ),

over a barrier on a two dimensional free energy surface

F(x, y) in which the reaction coordinate x (describing

unfolding or bond rupture) is coupled to an auxiliary

variable y. The following free energy surface (Fig. 1) is

considered: 

.(1)

When y = 0, F(x,y) is reduced to the cubic potential that is

popularly employed as a microscopic model potential by

several group.
10-12

 In F(x,y), a harmonic potential is coupled

in the orthogonal direction (y). Force along the x-direction,

tilts the potential surface by −f · x. In Eq. (1) the x-coordinate

corresponds to the dynamics of R and the internal degrees of

freedom is represented by motions along the y variable. (i) In

the absence of tension ( f = 0), F(x,y) has a local minimum at

x = −x
‡

 and barrier top at x = 0 along the y = 0 axis. The

height of potential barrier for the escape dynamics of a

quasi-particle, which describes the rupture process, is F
‡

.

The parameter b determines the 2D geometry of the transi-

tion barrier as well as of the local minimum at (−x
‡

,0). The

transition barrier and local minimum become broad when b

is small (see Fig. 1). However, the condition b > 0 should be

retained for F(x,y) to have a single saddle point. For −1 < b

≤ 0, E(x,y) forms two saddle points, and for b ≤ −1 the local

minimum at x = −x
‡

 is not stable. (ii) When f ≠ 0, F(x,0) has

F x,y( )=−F
‡
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Figure 1. A two-dimensional energy surface using Eq. (1) with

f = 0, κ = 1 and βF
‡

= 1 and varying b > 0 values. x and y

coordinates are scaled by x
‡

. The energy scale is color-coded in kBT

unit. 
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a tension-dependent local minimum at x0/x
‡

= (−1−εf)/2 and

a barrier at xb/x
‡

= (−1+εf)/2 where  with fc =

3F
‡

/2x
‡

. The barrier height at f is F
‡

( f )=F(xb,0) − F(x0, 0) =

F
‡

, which vanishes at f = fc.

To calculate the f -dependent escape rate of the quasi-

particle from the local minimum of F(x,y) in the intermedi-

ate-to-high damping limit, we follow Langer’s procedure,
15,16

which extended the Kramers’ theory to multidimension. The

unfolding (or rupture) rate is

 (2)

where total energy F is linearized at the saddle (S) and the

potential minimum (A) using

.  (3)

In the 2D problem associated with Eq. (1) the phase space
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pression from the steady state solution of a multidimensional

Fokker-Planck equation. The λ+ value corresponds to the

deterministic growth rate at the saddle point from which the

trajectory diverges exponentially along the reaction path. To

calculate λ+, we use the Hamilton’s equations of motion for

each variable,
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and linearize the first derivative of E at S using,
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where  with ηk= x, y, px, py. Thus, {η} satisfies

the first order matrix equation 
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Among the four eigenvalues of Eq. (6), the expression for

the physically relevant one λ+ is 
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the 2D model potential can be written as 
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only a single saddle point. The parameter κ in Eq. (1), which
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Another important condition for Kramers’ theory

“The saddle point” should be well defined. 

Hyeon, BKCS (2012) 33, 897
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Introduction

Since the birth of chemical dynamics,
1,2

 broad classes of

simple reactions have been described using a physically

suitable one dimensional reaction coordinate.
3-5

 It is, how-

ever, well appreciated that such a description often fails to

capture the dynamics of complex systems such as the

folding of proteins or RNA.
6,7

 Interestingly, the response of

biological molecules to mechanical force ( f ) is often

described using a one dimensional (1D) free energy profile

(F(R)) with, R, the molecular extension that is conjugate to f

being the natural reaction coordinate.
8

 Use of R as the

reaction coordinate is appropriate if the relaxation dynamics

associated with all other degrees of freedom are much faster

than the dynamics associated with R. The celebrated

phenomenological Bell model
9

 and related microscopic

models,
10-13

 which assume that bond rupture dynamics or

forced unfolding of proteins and RNA can be described

using F(R), have apparently been adequate in interpreting a

number of single molecule experiments. When subject to a

tension the transverse fluctuations of the molecule are

suppressed, which makes it plausible that the dynamics

(forced-unfolding or bond rupture) occurs along an effective

1D free energy profile. A broader validity of the adequacy of

F(R) was established in the context of a RNA hairpin

dynamics subject to f.
14

 By using the calculated free energy

profile at f = fm, the force at which the probabilities of being

in the folded and unfolded states are equal, it was shown that

a Bell-type model can be used to quantitatively predict the

dynamics at other f values.
14

 It is important to decipher

whether energy landscape description based on R alone

suffices to describe the force dynamics of biomolecules that,

in principle, takes place in a multidimensional surface.

Here, we studied the f -dependent unbinding rates, k2D( f ),

over a barrier on a two dimensional free energy surface

F(x, y) in which the reaction coordinate x (describing

unfolding or bond rupture) is coupled to an auxiliary

variable y. The following free energy surface (Fig. 1) is

considered: 

.(1)

When y = 0, F(x,y) is reduced to the cubic potential that is

popularly employed as a microscopic model potential by

several group.
10-12

 In F(x,y), a harmonic potential is coupled

in the orthogonal direction (y). Force along the x-direction,

tilts the potential surface by −f · x. In Eq. (1) the x-coordinate

corresponds to the dynamics of R and the internal degrees of

freedom is represented by motions along the y variable. (i) In

the absence of tension ( f = 0), F(x,y) has a local minimum at

x = −x
‡

 and barrier top at x = 0 along the y = 0 axis. The

height of potential barrier for the escape dynamics of a

quasi-particle, which describes the rupture process, is F
‡

.

The parameter b determines the 2D geometry of the transi-

tion barrier as well as of the local minimum at (−x
‡

,0). The

transition barrier and local minimum become broad when b

is small (see Fig. 1). However, the condition b > 0 should be

retained for F(x,y) to have a single saddle point. For −1 < b

≤ 0, E(x,y) forms two saddle points, and for b ≤ −1 the local

minimum at x = −x
‡

 is not stable. (ii) When f ≠ 0, F(x,0) has

F x,y( )=−F
‡
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Figure 1. A two-dimensional energy surface using Eq. (1) with

f = 0, κ = 1 and βF
‡

= 1 and varying b > 0 values. x and y

coordinates are scaled by x
‡

. The energy scale is color-coded in kBT

unit. 
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ABSTRACT Diffusion in a spatially rough one-dimension-
al potential is treated by analysis of the mean first passage
time. A general expression is found for the effective diffusion
coefficient, which can become very small at low temperatures.

This paper deals with diffusion in a rough potential. The
work was motivated in part by ideas of Frauenfelder and co-
workers concerning the dynamical behavior of proteins (for
a good summary with figures, see ref. 1). They suggest that
the potential surface of a protein might have a hierarchical
structure, with potential minima within potential minima,
etc. That is, the potential surface might be rough.
The treatment reported here of diffusion in a rough poten-

tial is restricted to one-dimensional systems and may not
have any immediate relevance to multidimensional protein
dynamics. However, the one-dimensional results seem inter-
esting in themselves. In particular, the roughness of a poten-
tial gives rise to a dramatic slowing down of diffusion at low
temperatures, especially when fluctuations in the potential
have a Gaussian distribution.
An example of what is meant by "rough" is shown in Fig.

1. This particular one-dimensional potential was constructed
from the arbitrarily chosen function

U(x) = x2 + 0.02(cos 167x + sin 73x).

x

FIG. 1. An example of a rough potential is shown. The potential
is given in Eq. 1 of the text.

tion determines the time (t) dependence of the probability
distribution p(x,t). It has the form

ap/at = -al/ax,

J = -De-U(x)a/axegu(x)p[1]

The general parabolic shape of the first term is clearly visi-
ble, but superimposed on it are many small potential barriers
distributed in a more or less random way. The amplitude E =
0.02 of the second term is a measure of the "roughness" of
the potential, a term which will be used here generally to
denote the characteristic energy scale E of the potential bar-
riers.
One expects that at very high temperatures, compared

with E, diffusion is essentially unaffected by the many small
barriers. But at temperatures that are small compared with E,
diffusion will be seriously hampered by having to cross over
the barriers. This is an important point made by Frauen-
felder and co-workers.
A rough potential U(x) has in general a smooth back-

ground U0(x) on which a rapidly, and perhaps randomly, os-
cillating perturbation Uj(x) is superimposed. The perturba-
tion has a typical amplitude E and a typical length scale Ax.
When U(x) is spatially averaged over Ax, the perturbation is
eliminated and only the smooth background remains. In the
given example, the length scale Ax is of the order of 0.1.
We are concerned only with diffusion on a much larger

length scale than Ax. This separation of the length scale of
roughness and the length scale of observed motion is essen-
tial to the following discussion. The results make sense only
if many fluctuations in roughness take place in the distance
of interest.
Brownian motion or diffusion of a system in a potential

U(x) is described by the Smoluchowski equation. This equa-

[2]

[3]

in which J is a current density, D is a diffusion coefficient,
and /3 = 1/kBT, where T is the temperature.
When the potential U is smooth, solution of the Smolu-

chowski equation is straightforward (although numerical
methods may be required). But when the potential is rough,
standard procedures are not so useful. This paper presents
an approximate treatment of diffusion in a rough one-dimen-
sional potential. The approach taken is an extension of some
old work of Lifson and Jackson (2). It makes use of an ana-
lytic expression for the mean first passage time (mfpt) to
move from one position to another. The main result is that
the original diffusion coefficient D is replaced by an effec-
tive diffusion coefficient D*, and the original potential U(x)
is replaced by an effective smooth potential U*(x). D* and
U* may depend very strongly on temperature, and D* may
be very much smaller than D. Illustrations will be given lat-
er.
We start with a familiar expression (2, 3) for the mean time

required for a system starting out at x0 to reach x for the first
time. This is the mfpt and is denoted by (t,x). For technical
reasons that are not relevant to the present discussion, we
assume that there is a reflecting barrier at some location x =
a. For convenience we consider only a <xO < x. The argu-
ment that follows does not depend critically on the values xo,
x, and a as long as all distances involved are large compared
with the length scale of the roughness. The mfpt is found by
solving the differential equation

e1u(x)a/axDe-&1u(x)a/ax(tx) = -1

Abbreviation: mfpt, mean first passage time.
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The general parabolic shape of the first term is clearly visi-
ble, but superimposed on it are many small potential barriers
distributed in a more or less random way. The amplitude E =
0.02 of the second term is a measure of the "roughness" of
the potential, a term which will be used here generally to
denote the characteristic energy scale E of the potential bar-
riers.
One expects that at very high temperatures, compared

with E, diffusion is essentially unaffected by the many small
barriers. But at temperatures that are small compared with E,
diffusion will be seriously hampered by having to cross over
the barriers. This is an important point made by Frauen-
felder and co-workers.
A rough potential U(x) has in general a smooth back-

ground U0(x) on which a rapidly, and perhaps randomly, os-
cillating perturbation Uj(x) is superimposed. The perturba-
tion has a typical amplitude E and a typical length scale Ax.
When U(x) is spatially averaged over Ax, the perturbation is
eliminated and only the smooth background remains. In the
given example, the length scale Ax is of the order of 0.1.
We are concerned only with diffusion on a much larger

length scale than Ax. This separation of the length scale of
roughness and the length scale of observed motion is essen-
tial to the following discussion. The results make sense only
if many fluctuations in roughness take place in the distance
of interest.
Brownian motion or diffusion of a system in a potential

U(x) is described by the Smoluchowski equation. This equa-

[2]

[3]

in which J is a current density, D is a diffusion coefficient,
and /3 = 1/kBT, where T is the temperature.
When the potential U is smooth, solution of the Smolu-

chowski equation is straightforward (although numerical
methods may be required). But when the potential is rough,
standard procedures are not so useful. This paper presents
an approximate treatment of diffusion in a rough one-dimen-
sional potential. The approach taken is an extension of some
old work of Lifson and Jackson (2). It makes use of an ana-
lytic expression for the mean first passage time (mfpt) to
move from one position to another. The main result is that
the original diffusion coefficient D is replaced by an effec-
tive diffusion coefficient D*, and the original potential U(x)
is replaced by an effective smooth potential U*(x). D* and
U* may depend very strongly on temperature, and D* may
be very much smaller than D. Illustrations will be given lat-
er.
We start with a familiar expression (2, 3) for the mean time

required for a system starting out at x0 to reach x for the first
time. This is the mfpt and is denoted by (t,x). For technical
reasons that are not relevant to the present discussion, we
assume that there is a reflecting barrier at some location x =
a. For convenience we consider only a <xO < x. The argu-
ment that follows does not depend critically on the values xo,
x, and a as long as all distances involved are large compared
with the length scale of the roughness. The mfpt is found by
solving the differential equation

e1u(x)a/axDe-&1u(x)a/ax(tx) = -1

Abbreviation: mfpt, mean first passage time.
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Figure 1. Caricature of the rough energy landscape of proteins and RNA that fold in an apparent
‘two state’ manner using extension x , the coordinate that is conjugate to force f . Under force f ,
the zero force free energy profile (F0(x)) is tilted by f × x and gives rise to the free energy profile,
F(x). In order to clarify the derivation of equation (8) we have explicitly indicated the average
location of the relevant parameters.

Following footnote 45 in [8] the overall transit time from the unfolded basin may be written as

τU→F ≈ τ (β)

∫ ∞

kBT
dϵ eβϵe−ϵ2/2ϵ2 ≈ τ (β)eβ2ϵ2/2 (1)

where ϵ is the average value of ruggedness, and β = 1
kB T . The second part of the equation holds

good at low temperatures. The additional slowing down in the folding time τU→F , arising from
the second term in equation (1), was derived in an elegant paper by Zwanzig [9] and was also
obtained in [10] by analysing the dynamics of Derrida’s random energy model [11]. If βϵ is
small then τU→F ≈ τ0eβ$F‡

where $F‡ is the overall folding free energy barrier.
If folding takes place by a diffusive process in a rough energy landscape, such as shown

in figure 1, then the characteristic scale dependent time for formation of local (secondary
structures) and global (tertiary structure) formation may be estimated as

τ (l) ≈
{

τSS ≈ (10–100) ns l ≈ (1–2) nm

τU→F l ≈ L
(2)

where L is the effective contour length of the biomolecule. We have assumed that structures
on l ≈ (1–2) nm (length scale in which roughness is most prevalent as in figure 1) form in
τSS ≈ l2/D where the diffusion constant is on the order of (10−6–10−7) cm2 s−1. The estimate
of τSS is not inconsistent with the time needed to form α-helices or β-hairpin especially given
the crude physical picture.

With the possibility of manipulating biological molecules (figure 2), one molecule at a
time, using force it is becoming possible to probe the features of their energy landscape (such
as roughness and the transition state location) that are not easily measured using conventional
experiments. Such experiments, performed using laser optical tweezers (LOTs) [12, 13]
or atomic force microscopy (AFM) [14], have made it possible to mechanically unfold
proteins [15–21], RNA [22–28], and their complexes [29–34], or initiate refolding of
proteins [35] and RNA [26, 27]. These remarkable experiments show how the initial conditions
affect refolding and also enable us to examine the response of biological molecules over a range
of forces and loading rates. In addition, fundamental aspects of statistical mechanics, including
non-equilibrium work theorems [36, 37], can also be rigorously tested using the single molecule
experiments [38, 39]. Here, we are concerned with using the data and theoretical models

3

k =
D⇤m!ts!b

2⇡kBT
e��F ‡/kBT

=
Dm!ts!b

2⇡kBT
e��F ‡/kBT e�"2/(kBT )2
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Wilemski-Fixman formalism

Let us call the distribution function of polymer configuration {r
i

} at time t as  ({r
i

}, t).

In the presence of the intramolecular reaction whose configuration-dependent reaction sink is

given by S({r
i

}) with a reactivity k. The evolution of polymer configuration  ({r
i

}, t) obeys

the following equation.
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Returning to the time domain, we obtain
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So far, the resulting equation is formally exact. In order to proceed further, Wilemski and

Fixman considered the following closure approximation, which amounts to approximating the

general distribution function of polymer configuration {r
i

} at time t into the one at equilibrium

multiplied by a numerical factor.
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where we defined the sink-sink correlation function C(t, ⌧) = C(t� ⌧).
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The knowledge of sink-sink correlation function enables us to evaluate the reaction time (loop-

ing time) for the polymer. For the purpose of solving interior looping problem, we design

the sink function as delta-sink for the two arbitrary loci along the chain, i.e., S({r
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where P
loop

(�) is the loop formation probability at the contact radius r = �. G(�, t|�, 0) is the

returning probability to r = � after time t starting from r = �.
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A model is proposed for a rate process that is controlled by passage through a fluctuating 
bottleneck. The rate of passage is proportional to the cross-sectional area of the 
bottleneck. The radius of the bottleneck fluctuates in time according to a Langevin equation 
with a decay constant A. Two consequences of the model are (1) decay is not 
exponential at short times, but changes to exponential at long times. (2) In the limit of small 
A, the resulting effective rate constant at long times is proportional to A 112. Predictions 
of the model are qualitatively consistent with experimental observations on the viscosity 
dependence of ligand motion in myoglobin. 

I. INTRODUCTION 

This paper presents a model of dynamical disorder in 
which a rate process is controlled by passage through a 
fluctuating bottleneck. Because its construction was moti-
vated in the first place by experimental studies of the ki-
netics of ligand binding in myoglobin, it will be presented 
in that context. However, the model is quite general and 
may have a number of applications. 

Kinetic studies of ligand binding to myoglobin show 
that solvent viscosity affects the movement of ligands in-
side the protein. I The effects of viscosity on rate processes 
often can be understood by means of Kramers' theory of 
diffusion over a high potential barrier. However, ligand 
motion in myoglobin may occur far from the protein-
solvent interface. It is not obvious how the viscosity of the 
solvent outside the protein can directly affect the motion of 
a ligand over a barrier inside the protein. Further, Kram-
ers' theory predicts that rate constants are inversely pro-
portional to viscosity, while the data in Ref. 1 suggest a 
fractional power law dependence on viscosity. 

In Ref. 1, Beece et al. suggest an alternative dynamical 
model in which ligand motion involves potential barriers 
which are somehow tied to the shape of the protein. Then 
changes in shape can open and close an essential gate in the 
binding pathway, and these changes in shape can be influ-
enced by the exterior viscosity. 

This model presented here resembles, but is somewhat 
different from, the one proposed by Beece et al. The pri-
mary process is assumed to be passage through a bottle-
neck. However, the bottleneck is geometrical, and does not 
involve a potential barrier. If classical transition state the-
ory applies, as in an earlier study2 of rate processes with 
entropy barriers, the escape rate is the equilibrium flux 
through the bottleneck. The eqUilibrium flux is the product 
of a thermal mean velocity and the probability of being at 
the bottleneck; the latter probability is proportional to the 
cross-sectional area of the bottleneck. If the area changes 
because of fluctuations in the protein's shape, then the sol-
vent viscosity must be involved. In this model, the fluctu-
ations are described by a Brownian motion picture in 
which the radius of the bottleneck satisfies a Langevin 
equation. The radius relaxes with a rate A which is ex-

pected to be inversely proportional to the solvent viscosity 
'TJ. 

Notable consequences of this model are (1) the decay 
curves are not exponential at short times, but change to 
exponential at long times; and (2) the long time decay rate 
is proportional to AI12, or inversely to the square root of 
the solvent viscosity, 1I'TJ112• Although the model describes 
only a part of the complex process of ligand binding in 
proteins, these consequences appear to be qualitatively 
consistent with the observations in Ref. 1. 

II. MATHEMATICAL FORMULATION OF THE MODEL 

As in many previous examples of dynamical disorder, 3 

two kinds of processes are coupled. In the first, the ligand 
concentration C decays according to a simple rate equation 

dC 
dt =-K(r)C. (1) 

In the terminology of Ref. 3, K(r) is a decay rate that 
depends on a "control parameter" r, taken here as the 
radius of the bottleneck. In this model K(r) is proportional 
to the area of the bottleneck, 

K(r)=kr2, (2) 

in which k is a numerical constant. 
The radius can fluctuate because of thermal noise, and 

the fluctuations can decay in time. This suggests that the 
time dependence of r should be given by the Langevin 
equation 

dr 
dt= -Ar+F(t) (3) 

in which A is the rate of decay of a fluctuation in r, and 
F(t) is thermal (Gaussian white) noise. A hard reflecting 
barrier is imposed at r=O so that only positive radii are 
involved. 

As is customary when dealing with Langevin equa-
tions, the noise is related to A by a fluctuation-ciissipation 
theorem which contains the equilibrium second moment of 
r, 

(4) 
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Kinetics from disordered systems: 
Binding kinetics of CO to myoglobin in 80s by Frauenfelder & colleagues …. 

Non-exponential (power-law) binding kinetics, Σ(t)

k ⇠ ⌘�  = 0.4� 0.8 ?(solvent viscosity)
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barriers, or annealed disorder (k/� ⌧ 1), unbinding
via a single path over a rapidly averaging barrier. If
k/� ⇠ O(1), the gating produces a fluctuating envi-
ronment along the dynamic pathway of the ligand and
a↵ects the unbinding process in a non-trivial fashion.
This regime is often termed dynamic disorder [18, 19].
The gating mechanism has been extensively studied in
both experiments and theories in the context of oxy-
gen binding to myoglobin [18, 20, 21]. The presence
of dynamical disorder in the oxygen-myoglobin system
results in a power law decay of unreacted oxygen and
a fractional order dependence of binding rate constant
on solvent viscosity [20]. To account for the origin of
this phenomenon, Zwanzig proposed a fluctuating bot-
tleneck (FB) model [18], which considers a rate pro-
cess controlled by passage through a bottleneck whose
cross-sectional area, responsible for the reactivity, un-
dergoes stochastic fluctuations.

While the frequency � governing the internal dy-
namics, which is intrinsic to a molecule, can in prin-
ciple be varied to a certain extent by changing vis-
cosity [20], the unbinding rate k can be more easily
altered in single-molecule pulling experiments, thus
providing a way to infer dynamic disorder. Here,
we adopt Zwanzig’s FB concept as a general mech-
anism for probing the internal disorder in biological
molecules, with explicit experimental consequences.
By fitting our analytical expressions to single-molecule
force data, we extract a measure of dynamic disoder
in proteins and DNA.

To model the e↵ect of mechanical force on the dy-
namics of crossing a free energy barrier in the pres-
ence of molecular gating, we modified Zwanzig’s FB
model [18] using an e↵ective potential Ue↵(x; r) =
U(x; r) � fx that depends parametrically on r, the
auxiliary variable characterizing the internal dynam-
ics, and explicitly on the molecular extension x con-
jugate to the applied force, f [22]. The FB model is
governed by two Langevin equations of motion:

⇣@

t

x = �@

x

Ue↵(x; r) + F

x

(t)
@

t

r = ��r + F

r

(t) (1)

where ⇣ is the friction coe�cient along x. The pre-
cise functional form of U(x; r) is arbitrary except it
should have a local minimum corresponding to a bound
(folded) state at x = xb, separated by a free energy
barrier at x = xts > xb from the unbound (unfolded)
ensemble at large x. Both the noise-related random
force F

x

(t) along x and F

r

(t), the stochastic fluctua-
tion of the dimensionless bottleneck radius r, satisfy
the fluctuation-dissipation theorem: hF

x

(t)F
x

(t0)i =
2⇣k

B

T �(t � t

0) and hF
r

(t)F
r

(t0)i = 2�✓�(t � t

0), with
k

B

T being the thermal energy, and hr2i ⌘ ✓. Forced-
unbinding occurs on first passage from xb to xts, with

a rate K(f, r) that in general varies with both f and
r. In traditional models of barrier crossing, there is
no coupling between reaction dynamics in x and other
degrees of freedom, so K only depends on f . For ex-
ample, in the Bell approximation K(f) / e

f�x

‡
/kBT ,

where �x

‡ = xts � xb. In the FB model, the cou-
pling to r is incorporated by making the reaction sink
proportional to the area of the bottleneck, K(f, r) ⌘
k(f)r2. The form of K(f, r) is physical for the appli-
cations here because the rate of unfolding of proteins
or unzipping of DNA should increase as the solvent
accessible area (/ r

2) increases. For simplicity, we as-
sume the force-dependence is described by the Bell ap-
proximation, k(f) = k0e

f�x

‡
/kBT , though the calcu-

lations below can be generalized to more complicated
models where k(f) reflects movement of the transition
state under force [22, 23]. The Langevin equations
in Eq.1 can be translated into the following Smolu-
chowski equation (see Supporting Information (SI) for
details):

@
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r

(r)� k(f)r2
⇤
C(r, t) (2)

where C(r, t) is the mean probability of finding the sys-
tem still bound (x < xts) with bottleneck value r at
time t, and L

r

(r) = �✓@

r

(@
r

+ r/✓) [18, 22]. Depend-
ing on whether f is constant or is a linearly varying
quantity with time, i.e., f(t) = �t, our problem is clas-
sified into unbinding under force-clamp or force-ramp
conditions, respectively.

Force-clamp: For a constant f , Eq. 2 for C(r, t)
is solved analytically with a reflecting boundary con-
dition at r = 0, and an initial condition C(r, 0) =q

2
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e
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/2✓. The resulting survival probability
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and E ⌘ e

�2�St. In

two asymptotic limits of �, the expression for ⌃f

�

(t)
becomes simple. (i) For 4k(f)✓/� ⌧ 1, we have
S ⇡ 1 and the survival probability decays exponen-
tially, ⌃f

�

(t) = exp (�k(f)✓t), with k(f)✓ acting as an
e↵ective rate constant. (ii) For 4k(f)✓/� � 1, we get
S � 1 and the survival probability exhibits a power-
law decay, ⌃f

�

(t) = (1 + 2k(f)✓t)�1/2 at short times
t ⌧ (k(f)✓�)�1/2, changing over into an exponential
decay with rate k(f)✓ at long times t � (k(f)✓�)�1/2.
In the limit of quenched disorder, as � ! 0, the power-
law decay extends to all times.

Using the Bell force dependence for k(f) in Eq. 3, we
find S =

�
1 + e

⇤(f)
�1/2

, where ⇤(f) = �x

‡

kBT
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in Eq.1 can be translated into the following Smolu-
chowski equation (see Supporting Information (SI) for
details):
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barriers, or annealed disorder (k/� ⌧ 1), unbinding
via a single path over a rapidly averaging barrier. If
k/� ⇠ O(1), the gating produces a fluctuating envi-
ronment along the dynamic pathway of the ligand and
a↵ects the unbinding process in a non-trivial fashion.
This regime is often termed dynamic disorder [18, 19].
The gating mechanism has been extensively studied in
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gen binding to myoglobin [18, 20, 21]. The presence
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a fractional order dependence of binding rate constant
on solvent viscosity [20]. To account for the origin of
this phenomenon, Zwanzig proposed a fluctuating bot-
tleneck (FB) model [18], which considers a rate pro-
cess controlled by passage through a bottleneck whose
cross-sectional area, responsible for the reactivity, un-
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While the frequency � governing the internal dy-
namics, which is intrinsic to a molecule, can in prin-
ciple be varied to a certain extent by changing vis-
cosity [20], the unbinding rate k can be more easily
altered in single-molecule pulling experiments, thus
providing a way to infer dynamic disorder. Here,
we adopt Zwanzig’s FB concept as a general mech-
anism for probing the internal disorder in biological
molecules, with explicit experimental consequences.
By fitting our analytical expressions to single-molecule
force data, we extract a measure of dynamic disoder
in proteins and DNA.

To model the e↵ect of mechanical force on the dy-
namics of crossing a free energy barrier in the pres-
ence of molecular gating, we modified Zwanzig’s FB
model [18] using an e↵ective potential Ue↵(x; r) =
U(x; r) � fx that depends parametrically on r, the
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jugate to the applied force, f [22]. The FB model is
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/kBT , though the calcu-

lations below can be generalized to more complicated
models where k(f) reflects movement of the transition
state under force [22, 23]. The Langevin equations
in Eq.1 can be translated into the following Smolu-
chowski equation (see Supporting Information (SI) for
details):
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is driven by force. First, consider the Zwanzig model with r f = 0. The equations of motion
for x and r are, respectively,

m
d2x
dt2

= −ζ
dx
dt

− dU(x)

dx
+ Fx (t)

dr
dt

= −γ r + Fr (t).
(25)

The Liouville theorem ( dρ
dt = 0) describes the time evolution of probability density, ρ(x, r, t),

as
dρ

dt
= ∂ρ

∂ t
+ ∂

∂x

(
dx
dt

ρ

)
+ ∂

∂r

(
dr
dt

ρ

)
= 0. (26)

By inserting of equations (25)–(26) and neglecting the inertial term, (m d2 x
dt2 ), and averaging

over the white-noise spectrum, and the fluctuation-dissipation theorem (⟨Fx (t)Fx(t ′)⟩ =
2ζ kBT δ(t − t ′), ⟨Fr (t)Fr (t ′)⟩ = 2λθδ(t − t ′) where ⟨r 2⟩ ≡ θ ) leads to a Smoluchowski
equation for ρ(x, r, t) in the presence of a reaction sink.

∂ρ

∂ t
= Lxρ + Lrρ − krr 2δ(x − xts)ρ (27)

where Lx ≡ D ∂
∂x

(
∂
∂x + 1

kB T
dU(x)

dx

)
and Lr ≡ λθ ∂

∂r

(
∂
∂r + r

θ

)
. Integrating both sides of

equation (27) using
∫

dx ρ(x, r, t) ≡ C(r, t) leads to

∂C
∂ t

= Lr C(r, t) − krr 2ρ(xts, r, t). (28)

By writing ρ(xts, r, t) = φx(xts)C(r, t) where φ(xts) should be constant as φ(xts) =
e−U(xts )/kBT /

∫
dxe−U(x)/kB T ≈

√
U ′′(xb)
2πkBT e−(U(xts)−U(xb))/kBT , equation (28) becomes

∂C
∂ t

= Lr C(r, t) − kr 2C(r, t) (29)

where k ≡ kr

√
U ′′(xb)
2πkBT e−(U(xts)−U(xb))/kB T . In all likelihood kr reflects the dynamics near the

barrier, so we can write k = κ ωtsωb
2πγ

e−,U/kB T where κ describes the geometrical information of
the cross section of bottleneck. Now we have retrieved the equation in Zwanzig’s seminal paper
where the survival probability (-(t) =

∫ ∞
0 drC(r, t)) is given under a reflecting boundary

condition at r = 0 and Gaussian initial condition C(r, t = 0) ∼ e−r2/2θ . By setting
C(r, t) = exp (ν(t) − µ(t)r 2), equation (29) can be solved exactly, leading to

ν ′(t) = −2λθµ(t) + λ

µ′(t) = −4λθµ2(t) + 2λµ(t) + k.
(30)

The solution for µ(t) is obtained by solving 4θ
λ

∫ µ(t)−1/4θ

1/4θ
dα

S2−16θ 2α2 = t , and this leads to

µ(t)
µ(0)

= 1
2

{
1 + S

(S + 1) − (S − 1)E
(S + 1) + (S − 1)E

}

ν(t) = −λt
2

(S − 1) + log
(

(S + 1) + (S − 1)E
2S

)−1/2 (31)

with µ(0) = 1/2θ . The survival probability, which was derived by Zwanzig, is

-(t) = exp
(

−λ

2
(S − 1)t

)(
(S + 1)2 − (S − 1)2 E

4S

)−1/2

(32)

where S =
(
1 + 4kθ

λ

)1/2 and E = e−2λSt .
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e−,U/kB T where κ describes the geometrical information of
the cross section of bottleneck. Now we have retrieved the equation in Zwanzig’s seminal paper
where the survival probability (-(t) =

∫ ∞
0 drC(r, t)) is given under a reflecting boundary

condition at r = 0 and Gaussian initial condition C(r, t = 0) ∼ e−r2/2θ . By setting
C(r, t) = exp (ν(t) − µ(t)r 2), equation (29) can be solved exactly, leading to
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µ′(t) = −4λθµ2(t) + 2λµ(t) + k.
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The solution for µ(t) is obtained by solving 4θ
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dα

S2−16θ 2α2 = t , and this leads to
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1 + S

(S + 1) − (S − 1)E
(S + 1) + (S − 1)E
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ν(t) = −λt
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(

(S + 1) + (S − 1)E
2S
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with µ(0) = 1/2θ . The survival probability, which was derived by Zwanzig, is

-(t) = exp
(

−λ

2
(S − 1)t

)(
(S + 1)2 − (S − 1)2 E

4S

)−1/2

(32)

where S =
(
1 + 4kθ

λ

)1/2 and E = e−2λSt .
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By writing ρ(xts, r, t) = φx(xts)C(r, t) where φ(xts) should be constant as φ(xts) =
e−U(xts )/kBT /

∫
dxe−U(x)/kB T ≈
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U ′′(xb)
2πkBT e−(U(xts)−U(xb))/kBT , equation (28) becomes
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2πkBT e−(U(xts)−U(xb))/kB T . In all likelihood kr reflects the dynamics near the

barrier, so we can write k = κ ωtsωb
2πγ

e−,U/kB T where κ describes the geometrical information of
the cross section of bottleneck. Now we have retrieved the equation in Zwanzig’s seminal paper
where the survival probability (-(t) =

∫ ∞
0 drC(r, t)) is given under a reflecting boundary

condition at r = 0 and Gaussian initial condition C(r, t = 0) ∼ e−r2/2θ . By setting
C(r, t) = exp (ν(t) − µ(t)r 2), equation (29) can be solved exactly, leading to
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By inserting of equations (25)–(26) and neglecting the inertial term, (m d2 x
dt2 ), and averaging

over the white-noise spectrum, and the fluctuation-dissipation theorem (⟨Fx (t)Fx(t ′)⟩ =
2ζ kBT δ(t − t ′), ⟨Fr (t)Fr (t ′)⟩ = 2λθδ(t − t ′) where ⟨r 2⟩ ≡ θ ) leads to a Smoluchowski
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2πkBT e−(U(xts)−U(xb))/kB T . In all likelihood kr reflects the dynamics near the

barrier, so we can write k = κ ωtsωb
2πγ

e−,U/kB T where κ describes the geometrical information of
the cross section of bottleneck. Now we have retrieved the equation in Zwanzig’s seminal paper
where the survival probability (-(t) =

∫ ∞
0 drC(r, t)) is given under a reflecting boundary

condition at r = 0 and Gaussian initial condition C(r, t = 0) ∼ e−r2/2θ . By setting
C(r, t) = exp (ν(t) − µ(t)r 2), equation (29) can be solved exactly, leading to
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FIG. 1. LogIO (CU» as a function of t, for A=O.OOI, 0.01, 0.1, and 1.0. Note the change of time scales. All plots become linear at large t, with the slope 
flo given by Eq. (l2). 

Then the fluctuation-dissipation theorem is 

(F(t)F(t') )eq=Ue5(t-t'). (5) 

The assumed quadratic dependence of the decay rate 
K(r) on the radius is physically reasonable. The assump-
tion that the radius of the bottleneck obeys a simple Lange-
vin equation is more doubtful; there seems to be no obvious 
physical justification. However, the assumption is easy to 
implement, and its consequences appear to be interesting. 

The goal is to find the noise-averaged concentration 
(C(t». A general scheme for treating such problems was 
reviewed in_Ref. 3. First one defines a noise-averaged con-
centration C(r,t) for a given bottleneck radius r, so that 

(6) 

Then one finds that C(r,t) satisfies a Smoluchowski equa-
tion with a quadratic sink, 

-C=-k?-c+}.e- -+-C . a - - a (ac r-) 
at ar ar e (7) 

A reflecting boundary co!!,.dition is imposed at r=O. The 
initial condition is that C has its equilibrium Gaussian 
form in the absence of the reaction sink. 

Equation (7) is actually quite easy to solve. One pro-
cedure is to write C(r,t) as exp[v(t) - fL(t)?-]; then the 
time-dependent coefficients v(t) and fL(t) satisfy ordinary 
differential equations in time, and their solution is elemen-
tary. In a different context, Weiss4 used an eigenfunction 
expansion to solve Eq. (7). [A factor of 2 is missing in his 
Eq. (5.25).] 

III. RESULTS 
The result, in the present notation, is 

(c(t»=exp ( (S-I)t) 

( 
(S+ 1)2- (S -1 )2E (t») -1/2 

X 4S ' (8) 

where the two auxiliary quantities Sand E(t) are 

( 
4ke) 1/2 

S= 1+-}.' (9) 

E(t) =exp( -USt). ( to) 

Two limiting cases of the general result are important. 
When}. is very large, so that the distribution of r remains 
close to Gaussian at all times, the above result becomes 

(C(t» -+exp( -ket)o (11 ) 

This is what one gets from Eq. (1) by averaging K(r) over 
the equilibrium distribution of r. On the other hand, in the 
static disorder limit }. -+ 0, the concentration decays by a 
power law, 

(C(t» -+ (l +2ket) -1/2 (12) 

which is what one gets by averaging exp[ -K(r)t] over the 
initial Gaussian distribution of r. The different behavior in 
these two limits is typical of problems of dynamical disor-
der. 

The behavior for other values of }. is shown in Fig. 1. 
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is driven by force. First, consider the Zwanzig model with r f = 0. The equations of motion
for x and r are, respectively,

m
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dt2

= −ζ
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− dU(x)

dx
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dr
dt

= −γ r + Fr (t).
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The Liouville theorem ( dρ
dt = 0) describes the time evolution of probability density, ρ(x, r, t),

as
dρ

dt
= ∂ρ
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(
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By inserting of equations (25)–(26) and neglecting the inertial term, (m d2 x
dt2 ), and averaging

over the white-noise spectrum, and the fluctuation-dissipation theorem (⟨Fx (t)Fx(t ′)⟩ =
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e−,U/kB T where κ describes the geometrical information of
the cross section of bottleneck. Now we have retrieved the equation in Zwanzig’s seminal paper
where the survival probability (-(t) =

∫ ∞
0 drC(r, t)) is given under a reflecting boundary

condition at r = 0 and Gaussian initial condition C(r, t = 0) ∼ e−r2/2θ . By setting
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where S =
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)1/2 and E = e−2λSt .
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Figure 3. Dynamic force spectroscopy measurements of single imp-β-RanGppNHp pairs at
different temperatures. A. Distributions of measured unbinding forces using AFM for the lower
strength conformation of the complex at different loading rates at 7 and 32 ◦C. Roughness acts to
increase the separation between the distributions recorded at different temperatures. The histograms
are fitted using Gaussian distributions. The width of the bins represents the thermal noise of the
cantilever. (B) Force spectra used in the analysis. The most probable unbinding forces f ∗ are plotted
as a function of log(r f ). The maximal error is ±10% because of uncertainties in determining the
spring constant of the cantilevers. Statistical significance of the differences between the slopes of the
spectra was confirmed using covariance test. (Images courtesy of Reinat Nevo and Ziv Reich [42]).
(C) Ran-importinβ complex crystal structures (PDB id: 1IBR [86]) in surface (left) and ribbon
(right) representations. In AFM experiments, Ran (yellow) protein complexed to importin β (red)
is pulled until the dissociation of the complex takes place.

is loaded with non-hydrolysable GTP analogue (figure 3(C)). The Ran-imp-β complex was
immobilized on a mica surface and the unbinding forces of complex were measured by pulling
Ran attached to the tip of AFM at three values of r f that varied by nearly three orders of
magnitude. At high values of r f the values of f ∗ increases as T increases. At lower loading
rates (r f ! 2 × 103 pN s−1), however, f ∗ decreases as T increases (see figure 3-B). The data
over distinct temperatures were used to extract, for the first time, an estimate of ϵ. The values
of f ∗ at three temperatures (7, 20, 32 ◦C) and equation (17) were used to obtain ϵ ≈ 5–6kBT .
Nevo et al explicitly showed that the values of ϵ were nearly the same from the nine pairs of
data extracted from the f ∗ versus log r f curves. Interestingly, the estimated value of ϵ is about
0.2#F‡

0 where #F‡
0 is the major barrier for unbinding of the complex. This shows that, for

this complex, the free energy in terms of a one dimensional coordinate resembles the profile
shown in figure 1. It is worth remarking that the location of the transition state decreases from

11

f

Force spectroscopy

69



Force spectroscopy

he��W i = e���F

along the unfolding path while (absolute) values smaller than DG
occur more often along the refolding path. As can be seen from
equation (1), the CFT states that although PU(W), PR(2W) depend
on the pulling protocol, their ratio depends only on the value of DG.
Thus the value of DG can be determined once the two distributions
are known. In particular, the two distributions cross at W ¼ DG:

PUðWÞ ¼ PRð2WÞ)W ¼ DG ð3Þ
regardless of the pulling speed. Although the simple identity (3)
already gives an estimate of DG, it is not necessarily very precise
because it uses only the local behaviour of the distribution around
W ¼ DG. Using the whole work distribution increases the precision
of the free-energy estimate19. In particular, as we show below, when
the overlapping region of work values between the unfolding and
refolding work distributions is too narrow (as may happen for large
values of the average dissipated work, defined as kWdisl ¼ kWl 2
DG), the use of Bennett’s acceptance ratio method20 makes it possible
to extract accurate estimates of DG using the CFT (see the Sup-
plementary Information).
We first experimentally test the validity of the CFT for a molecular

transition occurring near equilibrium. For this, we use a short
interfering (si)RNA hairpin that targets the messenger RNA of the
CD4 receptor of the human immunodeficiency virus (HIV)11 and
that unfolds irreversibly but not too far from equilibrium at acces-
sible experimental pulling speeds (dissipated work values less than
6kBT). Under these conditions, the unfolding and refolding work
distributions overlap over a sufficiently large range of work values to
justify the use of the direct method to experimentally test equation
(1). The work done on the molecules during either pulling or
relaxation is given by the areas below the corresponding force–
extension curves (Fig. 1).
Unfolding and refolding work distributions at three different

pulling speeds are shown in Fig. 2. Irreversibility increases with the
pulling speed and unfolding–refolding work distributions become
progressively more separated. Note, however, that the unfolding and
the refolding distributions cross at a value of the work DG¼
110:3^ 0:5kBT that does not depend on the pulling speed, as
predicted by equation (3). Moreover, the work distributions also

satisfy the CFT, that is, equation (1) (see the Supplementary
Information). We also notice that work distributions are compatible
with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due
to the stretching of the molecular handles attached on both sides of
the hairpin (DGhandles ¼ 23.8 kBT) and of the extended single-
stranded (ss)RNA ðDGssRNA ¼ 23:7^ 1kBTÞ from the total work,
DGexp ¼ 110:3^ 0:5kBT, we obtain for the free energy of unfolding
at zero forceDGexp

0 ¼ 62:8^ 1:5kBT ¼ 37:2^ 1kcalmol21 (at 258C,
in 100mM Tris-HCl, pH 8.1, 1mM EDTA), in excellent agreement
with the result obtained using the Visual OMP from DNA software21

DGmfold
0 ¼ 38kcalmol21 (at 258C, in 100mM NaCl).
To extend the experimental test of the validity of the CFT to the

very-far-from-equilibrium regime where the work distributions are
no longer gaussian, we apply the CFT to determine: (1) the difference
in folding free energy between an RNA molecule and a mutant that
differs only by one base-pair, and (2) the thermodynamic stabilizing
effect of Mg2þ ions on the RNA structure. The RNAwe consider is a
three-helix junction of the 16S ribosomal RNA of Escherichia coli12

that binds the S15 protein. The secondary structure of this RNA is a
common feature in RNA structures22–24 that plays, in this case, a
crucial role in the folding of the central domain of the 30S ribosomal
subunit. For comparison, and to verify the accuracy of the method,
we have pulled the wild type and a CzG to GzC mutant (C754G to
G587C) of the three-helix junction.
Figure 3 depicts the unfolding and refolding work distributions for

the wild-type and mutant molecules (work values were binned into
about 10–20 equally spaced intervals). For both molecules, the
distributions display a very narrow overlapping region. In contrast
with the hairpin distribution, the average dissipated work for the
unfolding pathway is now much larger—in the range 20–40kBT —
and the unfolding work distribution shows a large tail and strong
deviations from gaussian behaviour. Thus, these molecules are ideal
to test the validity of equation (1) in the far-from-equilibrium
regime. As shown in the inset of Fig. 3, the plot of the log ratio of
the unfolding to the refolding probabilities versus total work done on
the molecule can be fitted to a straight line with a slope of 1.06, thus
establishing the validity of the CFT (see equation (1)) under far-
from-equilibrium conditions. Ourmeasurements reveal the presence
of long tails in the work distribution PU(W) along the unfolding path

Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(2W), for refolding. Statistics: 130 pulls and three
molecules (r ¼ 1:5pNs21), 380 pulls and four molecules (r ¼ 7:5pNs21),
700 pulls and three molecules (r ¼ 20:0pNs21), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. S2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around DG¼ 110:3kBT.

Figure 1 | Force–extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s21).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.
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Figure 4. Dynamic force spectroscopy analysis using a model free energy profile F0(x) =
−V0|(x + 1)2 − ξ2| with V0 = 20 pN nm−1, ξ = 4 nm, and x ! 0. The lack of change in
xts as f changes shows a hard response under tension. (A) Effective free energy profile (F(x)) at
various values of f . (B) Distributions of unbinding forces at different loading rates. (C) Plot of the
most probable unbinding force ( f ∗) versus log r f .

plot is almost linear. The slight deviation from linearity is due to the force dependent curvature
near the bound state (ωb( f )). From the slope we find that #x ≈ 1 nm which is expected from
equation (22). In addition, we obtained from the intercept in figure 4(C) that κ = 1.58 s−1.
The value of κ[≡ k( f = 0)] directly computed using equation (10) is κ = 1.49 s−1. The two
values agree quite well. Thus, for brittle response the Bell model is expected to be accurate.

Soft response: If the position of the TS sensitively moves with force the biomolecule or
the complex is soft or plastic. To illustrate the behaviour of soft molecules we model the free
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biotin from a nest of hydrogen bonds, water bridges and nonpolar
interactions deep in the binding pocket. Next, forces reached
maximal values followed by sudden displacements of biotin at a
distance of ,0.5 nm in the biotin±streptavidin simulation (attrib-
uted to rupture in a transient network of water bridges and
hydrogen bonds) and at ,0.4 nm in the biotin±avidin simulation
(attributed both to polar and to nonpolar interactions). Finally, as
biotin left the pocket, a prominent jump occurred with lower forces
at ,1 nm in both simulations (attributed to hydrogen bonds) and
biotin was observed still to cling to peripheral polar groups at
,1.4 nm in avidin simulations. To show this behaviour clearly, we
have plotted a record of the instantaneous interaction energies
between biotin and avidin calculated over a half-nanosecond time
course of extraction in the simulations of Israilev et al.10 (Fig. 4b).

Transition states are readily identiÆed by regions with a paucity of
states where biotin passes quickly. Marked in Fig. 4b, the activation
barriers derived from the high and intermediate strength regimes in
Fig. 3b correlate with regions of rariÆed statistics and the qualitative
appearance of the energy landscape. The interpretation is that the
transition states implied by these features persist on long timescales
and that the molecular reaction coordinate perhaps deviates by
,40±458 from the direction of force local to the second transition
state. But surprisingly, the outer barrier indicated by the low-
strength regime in Fig. 3b is 2±3-fold more distant than the last
transition state seen in the MD simulation.
Guided by the MD simulation, we expect the outer barrier to

emanate from molecular interactions with the Øexible `3±4' loop,
which closes behind biotin in crystallographic images14±16 of the
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Figure 3 Biotin±streptavidin bond strengths. a, Force histograms from tests of

single biotin±streptavidin bonds demonstrate shift in peak location and increase

in width with increase in loading rate. Gaussian Æts used to determine the most

frequent rupture force or bond strength are shown. Governed ideally by the

thermal force fb, standard deviations jf of the distributions also reØected

uncertainties in position Dx and video sampling time Dtv, that is,

jf,âf2b á ÖkfDxÜ2 á ÖrfDtvÜ
2ä1=2. As jf increased from 61 pN at the slowest rate to

6 60 pN at the fastest rate, the standard error in mean force (the statistical
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biotin from a nest of hydrogen bonds, water bridges and nonpolar
interactions deep in the binding pocket. Next, forces reached
maximal values followed by sudden displacements of biotin at a
distance of ,0.5 nm in the biotin±streptavidin simulation (attrib-
uted to rupture in a transient network of water bridges and
hydrogen bonds) and at ,0.4 nm in the biotin±avidin simulation
(attributed both to polar and to nonpolar interactions). Finally, as
biotin left the pocket, a prominent jump occurred with lower forces
at ,1 nm in both simulations (attributed to hydrogen bonds) and
biotin was observed still to cling to peripheral polar groups at
,1.4 nm in avidin simulations. To show this behaviour clearly, we
have plotted a record of the instantaneous interaction energies
between biotin and avidin calculated over a half-nanosecond time
course of extraction in the simulations of Israilev et al.10 (Fig. 4b).

Transition states are readily identiÆed by regions with a paucity of
states where biotin passes quickly. Marked in Fig. 4b, the activation
barriers derived from the high and intermediate strength regimes in
Fig. 3b correlate with regions of rariÆed statistics and the qualitative
appearance of the energy landscape. The interpretation is that the
transition states implied by these features persist on long timescales
and that the molecular reaction coordinate perhaps deviates by
,40±458 from the direction of force local to the second transition
state. But surprisingly, the outer barrier indicated by the low-
strength regime in Fig. 3b is 2±3-fold more distant than the last
transition state seen in the MD simulation.
Guided by the MD simulation, we expect the outer barrier to

emanate from molecular interactions with the Øexible `3±4' loop,
which closes behind biotin in crystallographic images14±16 of the
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cally and then undergo a continuous inelastic “stretch transition” at much
lower forces, as shown in Fig. 1 b (taken from Kellermayer et al., 1997).
The elastic regime of titin elongation again followed the form predicted for
a WLC polymer, and the inelastic extension was also attributed to unfold-
ing of Ig domains. However, the forces for onset of unfolding Ig domains
in the LOT tests seemed to deviate significantly from the AFM values, as
seen in Fig. 2. Based on theory, we will show that the apparent discrepancy
between AFM and LOT tests vanishes for the most part when we recognize
the difference between force constants in the two techniques. Moreover, we
will show that nonsteady loading played an important role in the process of
unbonding in both experiments and that we must account for compliance of
the long titin chain to extract reliable properties of the unfolding kinetics
for Ig domains. (Although it is a similar type of LOT test, we do not show
results from Tskhovrebova et al. (1997) because the principal emphasis of
their paper was on force relaxation versus time after steps of !250-nm
extension of titin. In contrast to force relaxation at static extension, our
interest here is to examine dissociation of a weak bond connected by
polymer chains under constant speed extension.)

THEORY OF BOND BREAKAGE IN LIQUIDS

As background, we first give a brief review of the stochastic
process of bond dissociation under a ramp of force (Evans

and Ritchie, 1997). Then we enlarge the analysis to show
how soft-polymer linkages affect loading and alter the ex-
pected breakage force. In modeling the kinetics of dissoci-
ation, we take advantage of the enormous gap in time scale
that separates thermal-Brownian impulses in liquids
(!10"12 s or shorter) from force changes in laboratory
probe experiments (!10"4 s or longer). Hence the ultrafast
dynamics are analyzed under the assumption of constant
applied force using the statistical mechanics theory of
Kramers (Kramers, 1940; Hanggi et al., 1990). This step
yields a kinetic rate or frequency ! ( f ) for bond dissociation
that depends on the level of force. Next, bond breakage in a
laboratory test is treated as a first-order Markov process
with increasing rate of dissociation driven by the rising
force. The outcome is a distribution of breakage forces
whose breadth and peak location (bond strength) depend on
the rate at which force is applied to the bond.

Rate of dissociation under force

Although energy landscapes governing strengths of bonds
can be complex, with many pathways for unbonding, we
idealize a bond as confinement by a single energy barrier
positioned along a specific reaction path, which is selected
by the external pulling force. Starting far from equilibrium
with all states inside the barrier, the kinetics of dissociation
in Kramers’ theory are treated as a stationary flux of prob-
ability density along this preferential path from the deep
energy minimum outward past the barrier via a saddle point
in the energy surface. For overdamped liquid environments,
this transport is modeled by the Smoluchowski equation.
Mapped on a scalar coordinate x, the energy landscape E(x)
is assumed to be bounded by steeply rising energy in other
directions. With some orientation " relative to the molecular
coordinate, application of external force to the bond adds a

FIGURE 1 (a) Forces measured by AFM during extensions of recom-
binant constructs of eight immunoglobulin Ig domains of the muscle
protein titin (taken from Reif et al., 1997). Folded into compact #-sheet
structures, unfolding of each Ig domain shows up as a precipitous drop in
force followed by a !30-nm addition in length. As shown by the dotted
line, force rises with extension of the added length, as predicted by the
wormlike chain model and a persistence length of !0.4 nm (Reif et al.,
1997). (b) Forces measured by LOT during extension and release of a
native titin strand (taken from Kellermayer et al., 1997). The initial stretch
and final release phases follow the form predicted by the wormlike chain
model, but with a much longer persistence length of !2 nm. The abrupt
change in slope during extension reflects a sequence of many (!70)
unfolding events labeled as a “stretch transition” in Kellermayer et al.,
which accounts for the large hysteresis on release.

FIGURE 2 Plot of force versus log(pulling speed) for unfolding Ig
domains under titin extension. Results from the AFM stretch of !500 nm
pieces of native titin are grouped along the straight line (taken from Reif et
al., 1997). Well below the AFM data, open circles are forces for the onset
of unfolding at stretch transitions in the LOT tests of micron-length titin
(taken from Kellermayer et al., 1997).
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Figure 4. Dynamic force spectroscopy analysis using a model free energy profile F0(x) =
−V0|(x + 1)2 − ξ2| with V0 = 20 pN nm−1, ξ = 4 nm, and x ! 0. The lack of change in
xts as f changes shows a hard response under tension. (A) Effective free energy profile (F(x)) at
various values of f . (B) Distributions of unbinding forces at different loading rates. (C) Plot of the
most probable unbinding force ( f ∗) versus log r f .

plot is almost linear. The slight deviation from linearity is due to the force dependent curvature
near the bound state (ωb( f )). From the slope we find that #x ≈ 1 nm which is expected from
equation (22). In addition, we obtained from the intercept in figure 4(C) that κ = 1.58 s−1.
The value of κ[≡ k( f = 0)] directly computed using equation (10) is κ = 1.49 s−1. The two
values agree quite well. Thus, for brittle response the Bell model is expected to be accurate.

Soft response: If the position of the TS sensitively moves with force the biomolecule or
the complex is soft or plastic. To illustrate the behaviour of soft molecules we model the free
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Figure 5. Dynamic force spectroscopy for soft response to f using the f = 0 free energy profile
F0(x) = −V0 exp (−ξx) with V0 = 82.8 pN nm−1, ξ = 4 (nm)−1. (A) Effective free energy
profile (F(x)) as a function of f . For emphasis on the soft response of the potential, the position
of TS at each force value is indicated with arrows. (B) Distributions of unbinding forces at varying
loading rates. (C) Plot of most probable unbinding force ( f ∗) versus log r f . The slope of the tangent
at each loading rate value varies substantially, which suggests the variation in the TS (inset) as r f
changes.

energy potential in the absence of force using

F0(x) = −V0 exp (−ξx) with x ! 0 (23)

where V0 = 82.8 pN nm and ξ = 4 (nm)−1. The numerically computed P( f ) and [ f ∗, log r f ]
plots are shown figure 5. The slope of the [ f ∗, log r f ] plot is no longer constant but increases
continuously as r f increases. The extrapolated value of κ to zero f varies greatly depending
on the range of r f used. Even in the experimentally accessible range of r f there is curvature in
the [ f ∗, log r f ] plot. Thus, unlike the parameters (#x , κ) in the example of a brittle potential,
all the extracted parameters from the force profile are strongly dependent on the loading rate.
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constant rf, the dependence of log tU on fS shows curvature
(Fig. 5 A)—hence deviating from the often-used Bell model
(31). By fitting tU to the Bell formula (tU ¼ toUe

"fSDxTSF =kBT),
over a narrow range of fS we obtain DxTSF # 4 Å, which is too
small to be physically meaningful at fS ¼ 0.
Insights into the shift of DxTSF as fS increases can be

gleaned from the equilibrium force-dependent free energy

F(R) as a function of R. The one-dimensional free energy
profiles F(R) show significant movements in DxTSF as fS
changes (Fig. 5 C). As fS increases, DxTSF decreases sharply,
which implies that the unfolding TS is close to the folded
state. At smaller values of fS, the TS moves away from the
native state. At the midpoint of the transition, DxTSF # 5.5
nm, which is approximately half-way to the native state. The
result for DxTSF =RU # 1=2 (RU is the average value of R in the
unfolded state) is in accord with experiments (5) done at
forces that are not too far from the equilibrium unfolding
force. AlthoughDxTSF is dependent on the RNA sequence, it is
likely that, for simple hairpins, DxTSF =RU # 1=2. The
prediction that DxTSF is dependent on fS is amenable to ex-
perimental test.

Force-quench refolding times depend
(approximately) exponentially on fQ

One of the great advantages of force-quench refolding
experiments (8) is that the ensemble of conformations with
a predetermined value of R can be prepared by suitably
adjusting the value of fS (8). Because force-quench refolding
can be initiated from conformations with arbitrary values of
R, regions of the energy landscape that are completely
inaccessible in conventional experiments can be probed. To
initiate refolding by force-quench, we generated extended
conformations with R ¼ 13.5 nm, using fS ¼ 90 pN at T ¼
290 K. Subsequently, we reduced the force to fQ in the range
0.5 pN , fQ , 4 pN. For these values of fQ, the hairpin
conformation is preferentially populated at equilibrium. The
probability, PU(t), that the RNA hairpin remains unfolded at
six fQ values, decays nonexponentially (Fig. 6). The mean
refolding times, tF(fQ), upon force-quench, which are com-
puted using PU(t) (tF ¼

RN
0 tPUðtÞdt=

R
PUðtÞdt), show that

in the range 0.5 pN , fQ , 4 pN (Fig. 5 B),

tFðfQÞ ¼ toF expðfQDx
TS

U =kBTÞ; (13)

where DxTSU is the distance from the unfolded basin of
attraction to the refolding transition state, and toF is the

FIGURE 4 Constant loading rate force unfolding.
(A) The unfolding force distributions at different

pulling speeds with hard (k ¼ 70 pN/nm, top) and

soft springs (k ¼ 0.7 pN/nm, bottom). For the hard

spring, the pulling speeds from right to left are v ¼ 8.6
3 104, 8.6 3 103, and 8.6 3 102 mm/s. For the soft

spring, the pulling speeds are v¼ 8.63 104, 1.73 104,

8.63 103, 8.63 102, and 8.63 101 mm/s from right to
left force peaks. The peak in the distributions which are

fit to a Gaussian is the most probable force f*. (B) The
dependence of f* as a function of the loading rates, rf.
The results from the hard spring and soft spring are
combined using the loading rate as the relevant

variable. The inset illustrates the potential difficulties

in extrapolating from simulations at large rf to small

values of rf.

FIGURE 5 Kinetics of forced-unfolding and force-quench refolding. (A)
Plot of force-induced unfolding times (tU) as a function of the stretching

force. Over a narrow range of force tU decreases exponentially as f
increases. (B) Refolding time tF as a function of fQ. The initial value of the
stretching force is 90 pN. By fitting tF using tFðfQÞ ¼ toF exp(fQDx

TS
F =kBT),

in the range of 0.5 pN , fQ , 4 pN, we obtain DxTSF # 1 nm and toF #
290ms. (C) Changes in the equilibrium free energy profiles at T ¼ 290 K

F(R) as a function of the variable R. We show F(R) at various fS values. For
emphasis, the free energies at fS ¼ 0 and at the transition midpoint fS ¼ 7.5

pN (dashed line) are drawn in thick lines.

3416 Hyeon and Thirumalai

Biophysical Journal 90(9) 3410–3427

log k(f) = log k + (x

‡
/kBT )f

79



G(x) = fc(x� xc)�A(x� xc)
3 �f(x� xc)

x± = xc ± (fc/3A)1/2✏1/2

= ✏fc(x� xc)�A(x� xc)
3

x

‡(f)/x‡ = ✏

1/2

x

‡ = x+ � x�

G

‡ = G(x+)�G(x�)
G‡(f)/G‡ = ✏3/2

G(x) = (fc � f)(x� xc)�A(x� xc)
3

k(✏) = ✏ exp
⇣
��G‡✏3/2

⌘

✏ = 1� f/fc

G‡

x

‡

f
G‡(f)

x

‡(f)

80



055103-2 C. Hyeon and D. Thirumalai J. Chem. Phys. 137, 055103 (2012)

FIG. 1. Rupture characteristics obtained numerically using a potential with
two barriers at constant loading rates. (a) U(x) (magenta) and U(x) − f
· x (cyan) with A = 5 pN nm and f = 50 pN. Reflecting and absorbing
boundary conditions are set at x = a and x = b, respectively. (b) Rup-
ture force distributions, P (f ) = k(f )/rf · exp [−

∫ f
0 df ′k(f ′)/rf ], at vary-

ing rf were computed by using mean first passage time (MFPT), k−1(f )
= D−1

∫ b
a dyeβ(U (y)−f ·y)

∫ y
a dze−β(U (z)−f ·z), starting from the first bound

state at a(=0 nm) to reach an absorbing boundary at b(=5 nm). MFPT expres-
sion is valid in the force regime where stationary flux approximation holds.4

The length was scaled by nm, and D = 1.0 × 107 nm2/s was used for the
diffusion constant. (c) [f *, log rf] plots at three A values. Fits of [f *, log rf]
to Eq. (5) yield ν ≪ 0.5 for all A values (ν = 0.064, 0.075, 0.046 for A
= 4, 5, 6 pN nm, respectively). In this case, the data should be divided
into two regions and analyzed by the two linear fits as depicted using green
lines on the curve with A = 6 pN nm. (d) Loading rate dependent x‡(rf)
(= xts − xb), extracted from the slope of plot at each rf in (c) with
A = 5 pN nm, shows a sharp decrease from ∼3 nm to <1 nm around
rf ≈ (e−3 − e0) pN/s.

to interpret that the two discrete slopes in Fig. 1(c) (or the pre-
cipitous transition of x‡ in Fig. 1(d)) are due to crossing the
two barriers. In contrast, it is nontrivial to solve the inverse
problem, i.e., to unambiguously decide from [f *, log rf] plots
whether the underlying free energy profile has a single barrier
with a moving transition state or multiple barriers.

To establish a criterion for ascertaining whether the en-
ergy landscapes for forced-ligand rupture from biotin and
LFA-1 have multiple barriers, we study the range of appli-
cability of DFS formalism based on a model potential with a
single barrier. Consider a Kramers’ problem of barrier cross-
ing in a free energy profile G(x) in which a single barrier sep-
arates the bound and unbound states of a quasi-particle as in
ligand bound in a pocket of a receptor

G(x) = G(xc) + fc(x − xc) + (−1)n+1M

(n + 1)!
(x − xc)n+1, (1)

with M > 0. In G(x), a 1D-free energy profile with a sin-
gle barrier, the shape of barrier and energy well is approx-
imated using n-th order polynomial with n = 1, 2, 3, . . . .
For odd n, we assume that G(x) = −∞ for x > xc, so that
the transition state of G(x) is cusped. In the absence of ten-
sion, the barrier height, G‡, and the location of transition state,
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FIG. 2. The n-dependent shape of G(x) (Eq. (1)). The potential with increas-
ing n is associated with more brittle molecular complexes. The yellow circle
(x = xc) denotes an inflection point and a cusp in each even and odd n poten-
tial, respectively.

x‡, are G‡ = χ n
n+1fc(n!fc/M)1/n and x‡ = χ (n!fc/M)1/n, re-

spectively, where χ = 1 (for odd n), 2 (for even n). Thus,
the critical force (fc) at which the transition barrier vanishes
is given by fc = n+1

n
G‡/x‡. The form of G(x), an extension

of the so-called microscopic models using harmonic-cusp or
linear-cubic potential, accounts for the degree of plasticity (or
ductility) or brittleness of the energy landscape4 by changing
n (Fig. 2).5 Under tension, the effective free profile is given by
Geff(x) = G(x) − f · x, and fc should be replaced with fc(1 −
f/fc) = fcε. Therefore, the force dependent free energy barrier
and transition state are G‡(f) = G‡ε1 + 1/n and x‡(f) = x‡ε1/n.
Although Eq. (1) looks similar to the one Lin et al. used to dis-
cuss rupture dynamics for ε ≪ 1, where the barrier height is
almost negligible,12 we did not impose any specific force con-
dition on G(x). Instead of attributing the movement of transi-
tion state to a large external tension,7–10, 12, 13 we mapped the
nonlinearity in DFS data onto G(x) that has the n-dependent
shape of transition barrier and bound state. In G(x), increasing
brittleness makes x‡(f) insensitive to applied tension, which is
dictated by n; x‡(f)/x‡ = ε1/n → 1. For a generic free energy
profile F(x) with high curvatures at both x = xts and xb, x‡(f)/x‡

= 1 − f/x‡ × (|F′′(xts)|−1 + |F′′(xb)|−1) → 1.5 When free en-
ergy profile is associated with a brittle barrier, Bell’s formula
can be used to extract the feature of the underlying 1D profile
from DFS data.5

For general n, the Kramers’ rate equation based on the
Eq. (1) under tension can be derived as

k(ε) = κεα(n) exp (−βG‡ε(n+1)/n), (2)

where κ is the prefactor in Kramers’ theory and α(n) = χ

(1 − 1/n) with χ = 1, 2 for odd and even n, respectively. For
a given k(f), the most probable unbinding force is determined
by dP (f )/df |f =f ∗ = 0, resulting in a general equation for f *

k′(f ∗) = 1
rf

[k(f ∗)]2, (3)

where k′(f ) = dk(f )/df . This equation leads to

ε
n+1
n = −1

βG‡ log
[

rf x‡

κkBT
ε1/n−α(n)

(
1 − 1

βG‡
nα(n)
n + 1
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n

)]
.

(4)

Under the typical condition that rupture occurs by thermal ac-
tivation, i.e., f ≪ fc(ε ≈ 1) and βG‡ ≫ 1, the most probable
unbinding force is approximated as

f ∗ ≈ fc

[

1 −
(

−kBT

G‡ log
rf x‡

κkBT

)ν
]

, (5)
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FIG. 1. Rupture characteristics obtained numerically using a potential with
two barriers at constant loading rates. (a) U(x) (magenta) and U(x) − f
· x (cyan) with A = 5 pN nm and f = 50 pN. Reflecting and absorbing
boundary conditions are set at x = a and x = b, respectively. (b) Rup-
ture force distributions, P (f ) = k(f )/rf · exp [−

∫ f
0 df ′k(f ′)/rf ], at vary-

ing rf were computed by using mean first passage time (MFPT), k−1(f )
= D−1

∫ b
a dyeβ(U (y)−f ·y)

∫ y
a dze−β(U (z)−f ·z), starting from the first bound

state at a(=0 nm) to reach an absorbing boundary at b(=5 nm). MFPT expres-
sion is valid in the force regime where stationary flux approximation holds.4

The length was scaled by nm, and D = 1.0 × 107 nm2/s was used for the
diffusion constant. (c) [f *, log rf] plots at three A values. Fits of [f *, log rf]
to Eq. (5) yield ν ≪ 0.5 for all A values (ν = 0.064, 0.075, 0.046 for A
= 4, 5, 6 pN nm, respectively). In this case, the data should be divided
into two regions and analyzed by the two linear fits as depicted using green
lines on the curve with A = 6 pN nm. (d) Loading rate dependent x‡(rf)
(= xts − xb), extracted from the slope of plot at each rf in (c) with
A = 5 pN nm, shows a sharp decrease from ∼3 nm to <1 nm around
rf ≈ (e−3 − e0) pN/s.

to interpret that the two discrete slopes in Fig. 1(c) (or the pre-
cipitous transition of x‡ in Fig. 1(d)) are due to crossing the
two barriers. In contrast, it is nontrivial to solve the inverse
problem, i.e., to unambiguously decide from [f *, log rf] plots
whether the underlying free energy profile has a single barrier
with a moving transition state or multiple barriers.

To establish a criterion for ascertaining whether the en-
ergy landscapes for forced-ligand rupture from biotin and
LFA-1 have multiple barriers, we study the range of appli-
cability of DFS formalism based on a model potential with a
single barrier. Consider a Kramers’ problem of barrier cross-
ing in a free energy profile G(x) in which a single barrier sep-
arates the bound and unbound states of a quasi-particle as in
ligand bound in a pocket of a receptor

G(x) = G(xc) + fc(x − xc) + (−1)n+1M

(n + 1)!
(x − xc)n+1, (1)

with M > 0. In G(x), a 1D-free energy profile with a sin-
gle barrier, the shape of barrier and energy well is approx-
imated using n-th order polynomial with n = 1, 2, 3, . . . .
For odd n, we assume that G(x) = −∞ for x > xc, so that
the transition state of G(x) is cusped. In the absence of ten-
sion, the barrier height, G‡, and the location of transition state,
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FIG. 2. The n-dependent shape of G(x) (Eq. (1)). The potential with increas-
ing n is associated with more brittle molecular complexes. The yellow circle
(x = xc) denotes an inflection point and a cusp in each even and odd n poten-
tial, respectively.

x‡, are G‡ = χ n
n+1fc(n!fc/M)1/n and x‡ = χ (n!fc/M)1/n, re-

spectively, where χ = 1 (for odd n), 2 (for even n). Thus,
the critical force (fc) at which the transition barrier vanishes
is given by fc = n+1

n
G‡/x‡. The form of G(x), an extension

of the so-called microscopic models using harmonic-cusp or
linear-cubic potential, accounts for the degree of plasticity (or
ductility) or brittleness of the energy landscape4 by changing
n (Fig. 2).5 Under tension, the effective free profile is given by
Geff(x) = G(x) − f · x, and fc should be replaced with fc(1 −
f/fc) = fcε. Therefore, the force dependent free energy barrier
and transition state are G‡(f) = G‡ε1 + 1/n and x‡(f) = x‡ε1/n.
Although Eq. (1) looks similar to the one Lin et al. used to dis-
cuss rupture dynamics for ε ≪ 1, where the barrier height is
almost negligible,12 we did not impose any specific force con-
dition on G(x). Instead of attributing the movement of transi-
tion state to a large external tension,7–10, 12, 13 we mapped the
nonlinearity in DFS data onto G(x) that has the n-dependent
shape of transition barrier and bound state. In G(x), increasing
brittleness makes x‡(f) insensitive to applied tension, which is
dictated by n; x‡(f)/x‡ = ε1/n → 1. For a generic free energy
profile F(x) with high curvatures at both x = xts and xb, x‡(f)/x‡

= 1 − f/x‡ × (|F′′(xts)|−1 + |F′′(xb)|−1) → 1.5 When free en-
ergy profile is associated with a brittle barrier, Bell’s formula
can be used to extract the feature of the underlying 1D profile
from DFS data.5

For general n, the Kramers’ rate equation based on the
Eq. (1) under tension can be derived as

k(ε) = κεα(n) exp (−βG‡ε(n+1)/n), (2)

where κ is the prefactor in Kramers’ theory and α(n) = χ

(1 − 1/n) with χ = 1, 2 for odd and even n, respectively. For
a given k(f), the most probable unbinding force is determined
by dP (f )/df |f =f ∗ = 0, resulting in a general equation for f *

k′(f ∗) = 1
rf

[k(f ∗)]2, (3)

where k′(f ) = dk(f )/df . This equation leads to

ε
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βG‡ log
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)]
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Under the typical condition that rupture occurs by thermal ac-
tivation, i.e., f ≪ fc(ε ≈ 1) and βG‡ ≫ 1, the most probable
unbinding force is approximated as

f ∗ ≈ fc
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FIG. 1. Rupture characteristics obtained numerically using a potential with
two barriers at constant loading rates. (a) U(x) (magenta) and U(x) − f
· x (cyan) with A = 5 pN nm and f = 50 pN. Reflecting and absorbing
boundary conditions are set at x = a and x = b, respectively. (b) Rup-
ture force distributions, P (f ) = k(f )/rf · exp [−

∫ f
0 df ′k(f ′)/rf ], at vary-

ing rf were computed by using mean first passage time (MFPT), k−1(f )
= D−1

∫ b
a dyeβ(U (y)−f ·y)

∫ y
a dze−β(U (z)−f ·z), starting from the first bound

state at a(=0 nm) to reach an absorbing boundary at b(=5 nm). MFPT expres-
sion is valid in the force regime where stationary flux approximation holds.4

The length was scaled by nm, and D = 1.0 × 107 nm2/s was used for the
diffusion constant. (c) [f *, log rf] plots at three A values. Fits of [f *, log rf]
to Eq. (5) yield ν ≪ 0.5 for all A values (ν = 0.064, 0.075, 0.046 for A
= 4, 5, 6 pN nm, respectively). In this case, the data should be divided
into two regions and analyzed by the two linear fits as depicted using green
lines on the curve with A = 6 pN nm. (d) Loading rate dependent x‡(rf)
(= xts − xb), extracted from the slope of plot at each rf in (c) with
A = 5 pN nm, shows a sharp decrease from ∼3 nm to <1 nm around
rf ≈ (e−3 − e0) pN/s.

to interpret that the two discrete slopes in Fig. 1(c) (or the pre-
cipitous transition of x‡ in Fig. 1(d)) are due to crossing the
two barriers. In contrast, it is nontrivial to solve the inverse
problem, i.e., to unambiguously decide from [f *, log rf] plots
whether the underlying free energy profile has a single barrier
with a moving transition state or multiple barriers.

To establish a criterion for ascertaining whether the en-
ergy landscapes for forced-ligand rupture from biotin and
LFA-1 have multiple barriers, we study the range of appli-
cability of DFS formalism based on a model potential with a
single barrier. Consider a Kramers’ problem of barrier cross-
ing in a free energy profile G(x) in which a single barrier sep-
arates the bound and unbound states of a quasi-particle as in
ligand bound in a pocket of a receptor

G(x) = G(xc) + fc(x − xc) + (−1)n+1M

(n + 1)!
(x − xc)n+1, (1)

with M > 0. In G(x), a 1D-free energy profile with a sin-
gle barrier, the shape of barrier and energy well is approx-
imated using n-th order polynomial with n = 1, 2, 3, . . . .
For odd n, we assume that G(x) = −∞ for x > xc, so that
the transition state of G(x) is cusped. In the absence of ten-
sion, the barrier height, G‡, and the location of transition state,
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FIG. 2. The n-dependent shape of G(x) (Eq. (1)). The potential with increas-
ing n is associated with more brittle molecular complexes. The yellow circle
(x = xc) denotes an inflection point and a cusp in each even and odd n poten-
tial, respectively.

x‡, are G‡ = χ n
n+1fc(n!fc/M)1/n and x‡ = χ (n!fc/M)1/n, re-

spectively, where χ = 1 (for odd n), 2 (for even n). Thus,
the critical force (fc) at which the transition barrier vanishes
is given by fc = n+1

n
G‡/x‡. The form of G(x), an extension

of the so-called microscopic models using harmonic-cusp or
linear-cubic potential, accounts for the degree of plasticity (or
ductility) or brittleness of the energy landscape4 by changing
n (Fig. 2).5 Under tension, the effective free profile is given by
Geff(x) = G(x) − f · x, and fc should be replaced with fc(1 −
f/fc) = fcε. Therefore, the force dependent free energy barrier
and transition state are G‡(f) = G‡ε1 + 1/n and x‡(f) = x‡ε1/n.
Although Eq. (1) looks similar to the one Lin et al. used to dis-
cuss rupture dynamics for ε ≪ 1, where the barrier height is
almost negligible,12 we did not impose any specific force con-
dition on G(x). Instead of attributing the movement of transi-
tion state to a large external tension,7–10, 12, 13 we mapped the
nonlinearity in DFS data onto G(x) that has the n-dependent
shape of transition barrier and bound state. In G(x), increasing
brittleness makes x‡(f) insensitive to applied tension, which is
dictated by n; x‡(f)/x‡ = ε1/n → 1. For a generic free energy
profile F(x) with high curvatures at both x = xts and xb, x‡(f)/x‡

= 1 − f/x‡ × (|F′′(xts)|−1 + |F′′(xb)|−1) → 1.5 When free en-
ergy profile is associated with a brittle barrier, Bell’s formula
can be used to extract the feature of the underlying 1D profile
from DFS data.5

For general n, the Kramers’ rate equation based on the
Eq. (1) under tension can be derived as

k(ε) = κεα(n) exp (−βG‡ε(n+1)/n), (2)

where κ is the prefactor in Kramers’ theory and α(n) = χ

(1 − 1/n) with χ = 1, 2 for odd and even n, respectively. For
a given k(f), the most probable unbinding force is determined
by dP (f )/df |f =f ∗ = 0, resulting in a general equation for f *

k′(f ∗) = 1
rf

[k(f ∗)]2, (3)

where k′(f ) = dk(f )/df . This equation leads to
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Under the typical condition that rupture occurs by thermal ac-
tivation, i.e., f ≪ fc(ε ≈ 1) and βG‡ ≫ 1, the most probable
unbinding force is approximated as

f ∗ ≈ fc
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1 −
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FIG. 1. Rupture characteristics obtained numerically using a potential with
two barriers at constant loading rates. (a) U(x) (magenta) and U(x) − f
· x (cyan) with A = 5 pN nm and f = 50 pN. Reflecting and absorbing
boundary conditions are set at x = a and x = b, respectively. (b) Rup-
ture force distributions, P (f ) = k(f )/rf · exp [−

∫ f
0 df ′k(f ′)/rf ], at vary-

ing rf were computed by using mean first passage time (MFPT), k−1(f )
= D−1

∫ b
a dyeβ(U (y)−f ·y)

∫ y
a dze−β(U (z)−f ·z), starting from the first bound

state at a(=0 nm) to reach an absorbing boundary at b(=5 nm). MFPT expres-
sion is valid in the force regime where stationary flux approximation holds.4

The length was scaled by nm, and D = 1.0 × 107 nm2/s was used for the
diffusion constant. (c) [f *, log rf] plots at three A values. Fits of [f *, log rf]
to Eq. (5) yield ν ≪ 0.5 for all A values (ν = 0.064, 0.075, 0.046 for A
= 4, 5, 6 pN nm, respectively). In this case, the data should be divided
into two regions and analyzed by the two linear fits as depicted using green
lines on the curve with A = 6 pN nm. (d) Loading rate dependent x‡(rf)
(= xts − xb), extracted from the slope of plot at each rf in (c) with
A = 5 pN nm, shows a sharp decrease from ∼3 nm to <1 nm around
rf ≈ (e−3 − e0) pN/s.

to interpret that the two discrete slopes in Fig. 1(c) (or the pre-
cipitous transition of x‡ in Fig. 1(d)) are due to crossing the
two barriers. In contrast, it is nontrivial to solve the inverse
problem, i.e., to unambiguously decide from [f *, log rf] plots
whether the underlying free energy profile has a single barrier
with a moving transition state or multiple barriers.

To establish a criterion for ascertaining whether the en-
ergy landscapes for forced-ligand rupture from biotin and
LFA-1 have multiple barriers, we study the range of appli-
cability of DFS formalism based on a model potential with a
single barrier. Consider a Kramers’ problem of barrier cross-
ing in a free energy profile G(x) in which a single barrier sep-
arates the bound and unbound states of a quasi-particle as in
ligand bound in a pocket of a receptor

G(x) = G(xc) + fc(x − xc) + (−1)n+1M

(n + 1)!
(x − xc)n+1, (1)

with M > 0. In G(x), a 1D-free energy profile with a sin-
gle barrier, the shape of barrier and energy well is approx-
imated using n-th order polynomial with n = 1, 2, 3, . . . .
For odd n, we assume that G(x) = −∞ for x > xc, so that
the transition state of G(x) is cusped. In the absence of ten-
sion, the barrier height, G‡, and the location of transition state,
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FIG. 2. The n-dependent shape of G(x) (Eq. (1)). The potential with increas-
ing n is associated with more brittle molecular complexes. The yellow circle
(x = xc) denotes an inflection point and a cusp in each even and odd n poten-
tial, respectively.

x‡, are G‡ = χ n
n+1fc(n!fc/M)1/n and x‡ = χ (n!fc/M)1/n, re-

spectively, where χ = 1 (for odd n), 2 (for even n). Thus,
the critical force (fc) at which the transition barrier vanishes
is given by fc = n+1

n
G‡/x‡. The form of G(x), an extension

of the so-called microscopic models using harmonic-cusp or
linear-cubic potential, accounts for the degree of plasticity (or
ductility) or brittleness of the energy landscape4 by changing
n (Fig. 2).5 Under tension, the effective free profile is given by
Geff(x) = G(x) − f · x, and fc should be replaced with fc(1 −
f/fc) = fcε. Therefore, the force dependent free energy barrier
and transition state are G‡(f) = G‡ε1 + 1/n and x‡(f) = x‡ε1/n.
Although Eq. (1) looks similar to the one Lin et al. used to dis-
cuss rupture dynamics for ε ≪ 1, where the barrier height is
almost negligible,12 we did not impose any specific force con-
dition on G(x). Instead of attributing the movement of transi-
tion state to a large external tension,7–10, 12, 13 we mapped the
nonlinearity in DFS data onto G(x) that has the n-dependent
shape of transition barrier and bound state. In G(x), increasing
brittleness makes x‡(f) insensitive to applied tension, which is
dictated by n; x‡(f)/x‡ = ε1/n → 1. For a generic free energy
profile F(x) with high curvatures at both x = xts and xb, x‡(f)/x‡

= 1 − f/x‡ × (|F′′(xts)|−1 + |F′′(xb)|−1) → 1.5 When free en-
ergy profile is associated with a brittle barrier, Bell’s formula
can be used to extract the feature of the underlying 1D profile
from DFS data.5

For general n, the Kramers’ rate equation based on the
Eq. (1) under tension can be derived as

k(ε) = κεα(n) exp (−βG‡ε(n+1)/n), (2)

where κ is the prefactor in Kramers’ theory and α(n) = χ

(1 − 1/n) with χ = 1, 2 for odd and even n, respectively. For
a given k(f), the most probable unbinding force is determined
by dP (f )/df |f =f ∗ = 0, resulting in a general equation for f *

k′(f ∗) = 1
rf

[k(f ∗)]2, (3)

where k′(f ) = dk(f )/df . This equation leads to
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Under the typical condition that rupture occurs by thermal ac-
tivation, i.e., f ≪ fc(ε ≈ 1) and βG‡ ≫ 1, the most probable
unbinding force is approximated as
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FIG. 1. Rupture characteristics obtained numerically using a potential with
two barriers at constant loading rates. (a) U(x) (magenta) and U(x) − f
· x (cyan) with A = 5 pN nm and f = 50 pN. Reflecting and absorbing
boundary conditions are set at x = a and x = b, respectively. (b) Rup-
ture force distributions, P (f ) = k(f )/rf · exp [−

∫ f
0 df ′k(f ′)/rf ], at vary-

ing rf were computed by using mean first passage time (MFPT), k−1(f )
= D−1

∫ b
a dyeβ(U (y)−f ·y)

∫ y
a dze−β(U (z)−f ·z), starting from the first bound

state at a(=0 nm) to reach an absorbing boundary at b(=5 nm). MFPT expres-
sion is valid in the force regime where stationary flux approximation holds.4

The length was scaled by nm, and D = 1.0 × 107 nm2/s was used for the
diffusion constant. (c) [f *, log rf] plots at three A values. Fits of [f *, log rf]
to Eq. (5) yield ν ≪ 0.5 for all A values (ν = 0.064, 0.075, 0.046 for A
= 4, 5, 6 pN nm, respectively). In this case, the data should be divided
into two regions and analyzed by the two linear fits as depicted using green
lines on the curve with A = 6 pN nm. (d) Loading rate dependent x‡(rf)
(= xts − xb), extracted from the slope of plot at each rf in (c) with
A = 5 pN nm, shows a sharp decrease from ∼3 nm to <1 nm around
rf ≈ (e−3 − e0) pN/s.

to interpret that the two discrete slopes in Fig. 1(c) (or the pre-
cipitous transition of x‡ in Fig. 1(d)) are due to crossing the
two barriers. In contrast, it is nontrivial to solve the inverse
problem, i.e., to unambiguously decide from [f *, log rf] plots
whether the underlying free energy profile has a single barrier
with a moving transition state or multiple barriers.

To establish a criterion for ascertaining whether the en-
ergy landscapes for forced-ligand rupture from biotin and
LFA-1 have multiple barriers, we study the range of appli-
cability of DFS formalism based on a model potential with a
single barrier. Consider a Kramers’ problem of barrier cross-
ing in a free energy profile G(x) in which a single barrier sep-
arates the bound and unbound states of a quasi-particle as in
ligand bound in a pocket of a receptor

G(x) = G(xc) + fc(x − xc) + (−1)n+1M

(n + 1)!
(x − xc)n+1, (1)

with M > 0. In G(x), a 1D-free energy profile with a sin-
gle barrier, the shape of barrier and energy well is approx-
imated using n-th order polynomial with n = 1, 2, 3, . . . .
For odd n, we assume that G(x) = −∞ for x > xc, so that
the transition state of G(x) is cusped. In the absence of ten-
sion, the barrier height, G‡, and the location of transition state,
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FIG. 2. The n-dependent shape of G(x) (Eq. (1)). The potential with increas-
ing n is associated with more brittle molecular complexes. The yellow circle
(x = xc) denotes an inflection point and a cusp in each even and odd n poten-
tial, respectively.

x‡, are G‡ = χ n
n+1fc(n!fc/M)1/n and x‡ = χ (n!fc/M)1/n, re-

spectively, where χ = 1 (for odd n), 2 (for even n). Thus,
the critical force (fc) at which the transition barrier vanishes
is given by fc = n+1

n
G‡/x‡. The form of G(x), an extension

of the so-called microscopic models using harmonic-cusp or
linear-cubic potential, accounts for the degree of plasticity (or
ductility) or brittleness of the energy landscape4 by changing
n (Fig. 2).5 Under tension, the effective free profile is given by
Geff(x) = G(x) − f · x, and fc should be replaced with fc(1 −
f/fc) = fcε. Therefore, the force dependent free energy barrier
and transition state are G‡(f) = G‡ε1 + 1/n and x‡(f) = x‡ε1/n.
Although Eq. (1) looks similar to the one Lin et al. used to dis-
cuss rupture dynamics for ε ≪ 1, where the barrier height is
almost negligible,12 we did not impose any specific force con-
dition on G(x). Instead of attributing the movement of transi-
tion state to a large external tension,7–10, 12, 13 we mapped the
nonlinearity in DFS data onto G(x) that has the n-dependent
shape of transition barrier and bound state. In G(x), increasing
brittleness makes x‡(f) insensitive to applied tension, which is
dictated by n; x‡(f)/x‡ = ε1/n → 1. For a generic free energy
profile F(x) with high curvatures at both x = xts and xb, x‡(f)/x‡

= 1 − f/x‡ × (|F′′(xts)|−1 + |F′′(xb)|−1) → 1.5 When free en-
ergy profile is associated with a brittle barrier, Bell’s formula
can be used to extract the feature of the underlying 1D profile
from DFS data.5

For general n, the Kramers’ rate equation based on the
Eq. (1) under tension can be derived as

k(ε) = κεα(n) exp (−βG‡ε(n+1)/n), (2)

where κ is the prefactor in Kramers’ theory and α(n) = χ

(1 − 1/n) with χ = 1, 2 for odd and even n, respectively. For
a given k(f), the most probable unbinding force is determined
by dP (f )/df |f =f ∗ = 0, resulting in a general equation for f *

k′(f ∗) = 1
rf

[k(f ∗)]2, (3)

where k′(f ) = dk(f )/df . This equation leads to

ε
n+1
n = −1

βG‡ log
[

rf x‡

κkBT
ε1/n−α(n)

(
1 − 1

βG‡
nα(n)
n + 1

ε− n+1
n

)]
.

(4)

Under the typical condition that rupture occurs by thermal ac-
tivation, i.e., f ≪ fc(ε ≈ 1) and βG‡ ≫ 1, the most probable
unbinding force is approximated as

f ∗ ≈ fc

[

1 −
(

−kBT

G‡ log
rf x‡

κkBT

)ν
]

, (5)

↵(n) = �(1� n�1)
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FIG. 1. Rupture characteristics obtained numerically using a potential with
two barriers at constant loading rates. (a) U(x) (magenta) and U(x) − f
· x (cyan) with A = 5 pN nm and f = 50 pN. Reflecting and absorbing
boundary conditions are set at x = a and x = b, respectively. (b) Rup-
ture force distributions, P (f ) = k(f )/rf · exp [−

∫ f
0 df ′k(f ′)/rf ], at vary-

ing rf were computed by using mean first passage time (MFPT), k−1(f )
= D−1

∫ b
a dyeβ(U (y)−f ·y)

∫ y
a dze−β(U (z)−f ·z), starting from the first bound

state at a(=0 nm) to reach an absorbing boundary at b(=5 nm). MFPT expres-
sion is valid in the force regime where stationary flux approximation holds.4

The length was scaled by nm, and D = 1.0 × 107 nm2/s was used for the
diffusion constant. (c) [f *, log rf] plots at three A values. Fits of [f *, log rf]
to Eq. (5) yield ν ≪ 0.5 for all A values (ν = 0.064, 0.075, 0.046 for A
= 4, 5, 6 pN nm, respectively). In this case, the data should be divided
into two regions and analyzed by the two linear fits as depicted using green
lines on the curve with A = 6 pN nm. (d) Loading rate dependent x‡(rf)
(= xts − xb), extracted from the slope of plot at each rf in (c) with
A = 5 pN nm, shows a sharp decrease from ∼3 nm to <1 nm around
rf ≈ (e−3 − e0) pN/s.

to interpret that the two discrete slopes in Fig. 1(c) (or the pre-
cipitous transition of x‡ in Fig. 1(d)) are due to crossing the
two barriers. In contrast, it is nontrivial to solve the inverse
problem, i.e., to unambiguously decide from [f *, log rf] plots
whether the underlying free energy profile has a single barrier
with a moving transition state or multiple barriers.

To establish a criterion for ascertaining whether the en-
ergy landscapes for forced-ligand rupture from biotin and
LFA-1 have multiple barriers, we study the range of appli-
cability of DFS formalism based on a model potential with a
single barrier. Consider a Kramers’ problem of barrier cross-
ing in a free energy profile G(x) in which a single barrier sep-
arates the bound and unbound states of a quasi-particle as in
ligand bound in a pocket of a receptor

G(x) = G(xc) + fc(x − xc) + (−1)n+1M

(n + 1)!
(x − xc)n+1, (1)

with M > 0. In G(x), a 1D-free energy profile with a sin-
gle barrier, the shape of barrier and energy well is approx-
imated using n-th order polynomial with n = 1, 2, 3, . . . .
For odd n, we assume that G(x) = −∞ for x > xc, so that
the transition state of G(x) is cusped. In the absence of ten-
sion, the barrier height, G‡, and the location of transition state,
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FIG. 2. The n-dependent shape of G(x) (Eq. (1)). The potential with increas-
ing n is associated with more brittle molecular complexes. The yellow circle
(x = xc) denotes an inflection point and a cusp in each even and odd n poten-
tial, respectively.

x‡, are G‡ = χ n
n+1fc(n!fc/M)1/n and x‡ = χ (n!fc/M)1/n, re-

spectively, where χ = 1 (for odd n), 2 (for even n). Thus,
the critical force (fc) at which the transition barrier vanishes
is given by fc = n+1

n
G‡/x‡. The form of G(x), an extension

of the so-called microscopic models using harmonic-cusp or
linear-cubic potential, accounts for the degree of plasticity (or
ductility) or brittleness of the energy landscape4 by changing
n (Fig. 2).5 Under tension, the effective free profile is given by
Geff(x) = G(x) − f · x, and fc should be replaced with fc(1 −
f/fc) = fcε. Therefore, the force dependent free energy barrier
and transition state are G‡(f) = G‡ε1 + 1/n and x‡(f) = x‡ε1/n.
Although Eq. (1) looks similar to the one Lin et al. used to dis-
cuss rupture dynamics for ε ≪ 1, where the barrier height is
almost negligible,12 we did not impose any specific force con-
dition on G(x). Instead of attributing the movement of transi-
tion state to a large external tension,7–10, 12, 13 we mapped the
nonlinearity in DFS data onto G(x) that has the n-dependent
shape of transition barrier and bound state. In G(x), increasing
brittleness makes x‡(f) insensitive to applied tension, which is
dictated by n; x‡(f)/x‡ = ε1/n → 1. For a generic free energy
profile F(x) with high curvatures at both x = xts and xb, x‡(f)/x‡

= 1 − f/x‡ × (|F′′(xts)|−1 + |F′′(xb)|−1) → 1.5 When free en-
ergy profile is associated with a brittle barrier, Bell’s formula
can be used to extract the feature of the underlying 1D profile
from DFS data.5

For general n, the Kramers’ rate equation based on the
Eq. (1) under tension can be derived as

k(ε) = κεα(n) exp (−βG‡ε(n+1)/n), (2)

where κ is the prefactor in Kramers’ theory and α(n) = χ

(1 − 1/n) with χ = 1, 2 for odd and even n, respectively. For
a given k(f), the most probable unbinding force is determined
by dP (f )/df |f =f ∗ = 0, resulting in a general equation for f *

k′(f ∗) = 1
rf

[k(f ∗)]2, (3)

where k′(f ) = dk(f )/df . This equation leads to

ε
n+1
n = −1

βG‡ log
[

rf x‡

κkBT
ε1/n−α(n)

(
1 − 1

βG‡
nα(n)
n + 1

ε− n+1
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)]
.

(4)

Under the typical condition that rupture occurs by thermal ac-
tivation, i.e., f ≪ fc(ε ≈ 1) and βG‡ ≫ 1, the most probable
unbinding force is approximated as

f ∗ ≈ fc

[

1 −
(
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FIG. 1. Rupture characteristics obtained numerically using a potential with
two barriers at constant loading rates. (a) U(x) (magenta) and U(x) − f
· x (cyan) with A = 5 pN nm and f = 50 pN. Reflecting and absorbing
boundary conditions are set at x = a and x = b, respectively. (b) Rup-
ture force distributions, P (f ) = k(f )/rf · exp [−

∫ f
0 df ′k(f ′)/rf ], at vary-

ing rf were computed by using mean first passage time (MFPT), k−1(f )
= D−1

∫ b
a dyeβ(U (y)−f ·y)

∫ y
a dze−β(U (z)−f ·z), starting from the first bound

state at a(=0 nm) to reach an absorbing boundary at b(=5 nm). MFPT expres-
sion is valid in the force regime where stationary flux approximation holds.4

The length was scaled by nm, and D = 1.0 × 107 nm2/s was used for the
diffusion constant. (c) [f *, log rf] plots at three A values. Fits of [f *, log rf]
to Eq. (5) yield ν ≪ 0.5 for all A values (ν = 0.064, 0.075, 0.046 for A
= 4, 5, 6 pN nm, respectively). In this case, the data should be divided
into two regions and analyzed by the two linear fits as depicted using green
lines on the curve with A = 6 pN nm. (d) Loading rate dependent x‡(rf)
(= xts − xb), extracted from the slope of plot at each rf in (c) with
A = 5 pN nm, shows a sharp decrease from ∼3 nm to <1 nm around
rf ≈ (e−3 − e0) pN/s.

to interpret that the two discrete slopes in Fig. 1(c) (or the pre-
cipitous transition of x‡ in Fig. 1(d)) are due to crossing the
two barriers. In contrast, it is nontrivial to solve the inverse
problem, i.e., to unambiguously decide from [f *, log rf] plots
whether the underlying free energy profile has a single barrier
with a moving transition state or multiple barriers.

To establish a criterion for ascertaining whether the en-
ergy landscapes for forced-ligand rupture from biotin and
LFA-1 have multiple barriers, we study the range of appli-
cability of DFS formalism based on a model potential with a
single barrier. Consider a Kramers’ problem of barrier cross-
ing in a free energy profile G(x) in which a single barrier sep-
arates the bound and unbound states of a quasi-particle as in
ligand bound in a pocket of a receptor

G(x) = G(xc) + fc(x − xc) + (−1)n+1M

(n + 1)!
(x − xc)n+1, (1)

with M > 0. In G(x), a 1D-free energy profile with a sin-
gle barrier, the shape of barrier and energy well is approx-
imated using n-th order polynomial with n = 1, 2, 3, . . . .
For odd n, we assume that G(x) = −∞ for x > xc, so that
the transition state of G(x) is cusped. In the absence of ten-
sion, the barrier height, G‡, and the location of transition state,
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FIG. 2. The n-dependent shape of G(x) (Eq. (1)). The potential with increas-
ing n is associated with more brittle molecular complexes. The yellow circle
(x = xc) denotes an inflection point and a cusp in each even and odd n poten-
tial, respectively.

x‡, are G‡ = χ n
n+1fc(n!fc/M)1/n and x‡ = χ (n!fc/M)1/n, re-

spectively, where χ = 1 (for odd n), 2 (for even n). Thus,
the critical force (fc) at which the transition barrier vanishes
is given by fc = n+1

n
G‡/x‡. The form of G(x), an extension

of the so-called microscopic models using harmonic-cusp or
linear-cubic potential, accounts for the degree of plasticity (or
ductility) or brittleness of the energy landscape4 by changing
n (Fig. 2).5 Under tension, the effective free profile is given by
Geff(x) = G(x) − f · x, and fc should be replaced with fc(1 −
f/fc) = fcε. Therefore, the force dependent free energy barrier
and transition state are G‡(f) = G‡ε1 + 1/n and x‡(f) = x‡ε1/n.
Although Eq. (1) looks similar to the one Lin et al. used to dis-
cuss rupture dynamics for ε ≪ 1, where the barrier height is
almost negligible,12 we did not impose any specific force con-
dition on G(x). Instead of attributing the movement of transi-
tion state to a large external tension,7–10, 12, 13 we mapped the
nonlinearity in DFS data onto G(x) that has the n-dependent
shape of transition barrier and bound state. In G(x), increasing
brittleness makes x‡(f) insensitive to applied tension, which is
dictated by n; x‡(f)/x‡ = ε1/n → 1. For a generic free energy
profile F(x) with high curvatures at both x = xts and xb, x‡(f)/x‡

= 1 − f/x‡ × (|F′′(xts)|−1 + |F′′(xb)|−1) → 1.5 When free en-
ergy profile is associated with a brittle barrier, Bell’s formula
can be used to extract the feature of the underlying 1D profile
from DFS data.5

For general n, the Kramers’ rate equation based on the
Eq. (1) under tension can be derived as

k(ε) = κεα(n) exp (−βG‡ε(n+1)/n), (2)

where κ is the prefactor in Kramers’ theory and α(n) = χ

(1 − 1/n) with χ = 1, 2 for odd and even n, respectively. For
a given k(f), the most probable unbinding force is determined
by dP (f )/df |f =f ∗ = 0, resulting in a general equation for f *

k′(f ∗) = 1
rf

[k(f ∗)]2, (3)

where k′(f ) = dk(f )/df . This equation leads to
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[
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Under the typical condition that rupture occurs by thermal ac-
tivation, i.e., f ≪ fc(ε ≈ 1) and βG‡ ≫ 1, the most probable
unbinding force is approximated as

f ∗ ≈ fc

[

1 −
(
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FIG. 3. Analysis of DFS data with large curvatures. (a) The data obtained using biomembrane force probe (BFP) with force constant in the range 0.1–3 pN/nm
(Ref. 14) were fitted to Eq. (5) (solid lines) with ν = 0.40 for biotin-streptavidin (circle) and ν = 0.070 for biotin-avidin (triangle). The x‡(rf) at each rf is
calculated on the right using the slope of four successive data points of [f *, log rf] plot. Analyses of data using restricted ν values (ν = 0.5 fit is in dashed line in
Fig. 4(a)). (b) Analysis of DFS data of LFA-1 and its ligands, ICAM-1 and ICAM-2 in Ref. 16. The fits in log-log scale are shown on the right. In all cases, ν <
1/2 suggests that for these complexes as well the underlying free energy profiles must contain at least two barriers; thus multi-state fits are required by dividing
the DFS data into multiple regions as was already surmised in Ref. 16.

where ν = n
n+1 . In deriving Eq. (5) using G(x), the large force

ε(= 1 − f/fc) ≪ 1 or fast loading condition, an assumption
made in obtaining the mean unbinding force expression
similar to Eq. (5),6, 12, 13 is not needed. Only the shape of the
energy potential matters in deriving Eq. (5) from Eq. (1).
The DFS data will have a larger curvature for smaller n, for
example, when the energy landscape associated with a protein
complex is more ductile (Fig. 2). Because n = 1 (harmonic
cusp), 2 (linear cubic), . . . , ∞ (Bell), ν must satisfy the bound

1/2 ≤ ν ≤ 1, (6)

for an arbitrary 1D profile that suffices to describe rupture
kinetics.

For forced-rupture of biotin-ligand complex, fits to the
entire range of the data using Eq. (5) give ν in the disal-
lowed range; ν = 0.40 (biotin-streptavidin) and ν = 0.070
(biotin-avidin) (see Fig. 3(a)). Even in biotin-streptavidin

case, the parameters extracted from the fits with ν = 0.40 and
ν = 0.5 (fixed) are comparable; however, the fit with ν = 0.40
is superior yielding both smaller relative error and reduced
chi-square value, χ2

red , than with ν = 0.5, the lower bound
of Eq. (6), that gives the maximal curvature in the single-
barrier picture (see Figs. 3(a) and 4). For both the biotin-
ligand complexes, our criterion consistently suggests that the
unbinding landscapes for the complexes involve more than
one barrier, as was emphasized by Merkel et al.14 Next, we
analyzed the extensive data on LFA-1 expressed in Jurkat
T cells whose binding affinity to ICAM-1 and ICAM-2 can
be enhanced by treating the cells with phorbol myristate ac-
etate (PMA) and the divalent counterion, Mg2 +. Under all
conditions, the exponents that best fit the DFS data are ν

< 0.5 (Fig. 3 (b)). As originally argued by entirely differ-
ent method16 rupture of ICAM-1 and ICAM-2 from LFA-1
is best described using a free energy profile with at least two
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FIG. 1. Rupture characteristics obtained numerically using a potential with
two barriers at constant loading rates. (a) U(x) (magenta) and U(x) − f
· x (cyan) with A = 5 pN nm and f = 50 pN. Reflecting and absorbing
boundary conditions are set at x = a and x = b, respectively. (b) Rup-
ture force distributions, P (f ) = k(f )/rf · exp [−

∫ f
0 df ′k(f ′)/rf ], at vary-

ing rf were computed by using mean first passage time (MFPT), k−1(f )
= D−1

∫ b
a dyeβ(U (y)−f ·y)

∫ y
a dze−β(U (z)−f ·z), starting from the first bound

state at a(=0 nm) to reach an absorbing boundary at b(=5 nm). MFPT expres-
sion is valid in the force regime where stationary flux approximation holds.4

The length was scaled by nm, and D = 1.0 × 107 nm2/s was used for the
diffusion constant. (c) [f *, log rf] plots at three A values. Fits of [f *, log rf]
to Eq. (5) yield ν ≪ 0.5 for all A values (ν = 0.064, 0.075, 0.046 for A
= 4, 5, 6 pN nm, respectively). In this case, the data should be divided
into two regions and analyzed by the two linear fits as depicted using green
lines on the curve with A = 6 pN nm. (d) Loading rate dependent x‡(rf)
(= xts − xb), extracted from the slope of plot at each rf in (c) with
A = 5 pN nm, shows a sharp decrease from ∼3 nm to <1 nm around
rf ≈ (e−3 − e0) pN/s.

to interpret that the two discrete slopes in Fig. 1(c) (or the pre-
cipitous transition of x‡ in Fig. 1(d)) are due to crossing the
two barriers. In contrast, it is nontrivial to solve the inverse
problem, i.e., to unambiguously decide from [f *, log rf] plots
whether the underlying free energy profile has a single barrier
with a moving transition state or multiple barriers.

To establish a criterion for ascertaining whether the en-
ergy landscapes for forced-ligand rupture from biotin and
LFA-1 have multiple barriers, we study the range of appli-
cability of DFS formalism based on a model potential with a
single barrier. Consider a Kramers’ problem of barrier cross-
ing in a free energy profile G(x) in which a single barrier sep-
arates the bound and unbound states of a quasi-particle as in
ligand bound in a pocket of a receptor

G(x) = G(xc) + fc(x − xc) + (−1)n+1M

(n + 1)!
(x − xc)n+1, (1)

with M > 0. In G(x), a 1D-free energy profile with a sin-
gle barrier, the shape of barrier and energy well is approx-
imated using n-th order polynomial with n = 1, 2, 3, . . . .
For odd n, we assume that G(x) = −∞ for x > xc, so that
the transition state of G(x) is cusped. In the absence of ten-
sion, the barrier height, G‡, and the location of transition state,
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FIG. 2. The n-dependent shape of G(x) (Eq. (1)). The potential with increas-
ing n is associated with more brittle molecular complexes. The yellow circle
(x = xc) denotes an inflection point and a cusp in each even and odd n poten-
tial, respectively.

x‡, are G‡ = χ n
n+1fc(n!fc/M)1/n and x‡ = χ (n!fc/M)1/n, re-

spectively, where χ = 1 (for odd n), 2 (for even n). Thus,
the critical force (fc) at which the transition barrier vanishes
is given by fc = n+1

n
G‡/x‡. The form of G(x), an extension

of the so-called microscopic models using harmonic-cusp or
linear-cubic potential, accounts for the degree of plasticity (or
ductility) or brittleness of the energy landscape4 by changing
n (Fig. 2).5 Under tension, the effective free profile is given by
Geff(x) = G(x) − f · x, and fc should be replaced with fc(1 −
f/fc) = fcε. Therefore, the force dependent free energy barrier
and transition state are G‡(f) = G‡ε1 + 1/n and x‡(f) = x‡ε1/n.
Although Eq. (1) looks similar to the one Lin et al. used to dis-
cuss rupture dynamics for ε ≪ 1, where the barrier height is
almost negligible,12 we did not impose any specific force con-
dition on G(x). Instead of attributing the movement of transi-
tion state to a large external tension,7–10, 12, 13 we mapped the
nonlinearity in DFS data onto G(x) that has the n-dependent
shape of transition barrier and bound state. In G(x), increasing
brittleness makes x‡(f) insensitive to applied tension, which is
dictated by n; x‡(f)/x‡ = ε1/n → 1. For a generic free energy
profile F(x) with high curvatures at both x = xts and xb, x‡(f)/x‡

= 1 − f/x‡ × (|F′′(xts)|−1 + |F′′(xb)|−1) → 1.5 When free en-
ergy profile is associated with a brittle barrier, Bell’s formula
can be used to extract the feature of the underlying 1D profile
from DFS data.5

For general n, the Kramers’ rate equation based on the
Eq. (1) under tension can be derived as

k(ε) = κεα(n) exp (−βG‡ε(n+1)/n), (2)

where κ is the prefactor in Kramers’ theory and α(n) = χ

(1 − 1/n) with χ = 1, 2 for odd and even n, respectively. For
a given k(f), the most probable unbinding force is determined
by dP (f )/df |f =f ∗ = 0, resulting in a general equation for f *

k′(f ∗) = 1
rf

[k(f ∗)]2, (3)

where k′(f ) = dk(f )/df . This equation leads to

ε
n+1
n = −1

βG‡ log
[

rf x‡

κkBT
ε1/n−α(n)

(
1 − 1

βG‡
nα(n)
n + 1

ε− n+1
n

)]
.

(4)

Under the typical condition that rupture occurs by thermal ac-
tivation, i.e., f ≪ fc(ε ≈ 1) and βG‡ ≫ 1, the most probable
unbinding force is approximated as

f ∗ ≈ fc

[

1 −
(

−kBT

G‡ log
rf x‡

κkBT

)ν
]

, (5)1/2  ⌫  1
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Fig. 1. Unzipping of DNA hairpins in a nanopore. Experimental data from
ref. 28. (A) Unzipping voltage histograms at various voltage-ramp speeds.
Black lines are the predicted voltage histograms with parameters extracted
from the least-squares fit of Eq. 5 to the collapsed histograms, as shown in
B. (B) Lifetime τ (V ) of the DNA hairpin as a function of the applied voltage
V . The lifetime is obtained by transforming the rupture-voltage histograms
(filled symbols, colors as in A) according to Eq. 2. Note the excellent agreement
with the lifetimes measured directly at constant voltage (open circles).

that the estimates from the mean and variance of the rupture-force
distributions using Eq. 3 agree with the τ (F) from the histogram
transformation. Although in this case one does not have inde-
pendent measurements at constant force, the validity of Eq. 2 is
strongly supported by the fact that the histograms, collected over
pulling speeds that differ by a factor 20, collapse onto a single
master curve.

Interpretation of τ(F). Now that we have been able to extract the
force dependence of the lifetime from rupture-force histograms
obtained at different loading rates, we turn to the problem of inter-
preting this dependence in microscopic terms. Let us assume that
rupture can be described as escape from a deep one-dimensional
free-energy well. For several simple one-dimensional free-energy
profiles, the lifetime τ (F) calculated from Kramers theory can
then be written as (22):

τ (F) = τ0

(
1 − νFx‡

#G‡

)1−1/ν

e−β#G‡[1−(1−νFx‡/#G‡)1/ν ]. [5]

In this expression, x‡ is the distance to the transition state, τ0 is
the lifetime, and #G‡ is the apparent free-energy of activation in
the absence of an external force. The scaling factor ν specifies the
nature of the underlying free-energy profile (22): ν = 1/2 corre-
sponds to a harmonic well with a cusp-like barrier, or equivalently
a harmonic barrier with a cusp-like well; ν = 2/3 corresponds to
a potential that contains linear and cubic terms; for ν = 1 Bell’s
formula is recovered. Equation 5 was derived for forces at which a

significant barrier (several kBT) still exists and it is thus valid only
when the force is below a critical force at which the barrier van-
ishes, F < #G‡/νx‡. We suggest least-squares fitting ln τ (F) by
using Eq. 5 with several values of ν to estimate τ0, x‡, and #G‡. If
these parameters are insensitive to ν over a ν range that results in
a good fit, they can be considered to be independent of the precise
nature of the free-energy surface and thus meaningful.

Let us now validate this procedure by applying it to the
nanopore-unzipping experiments. It is clear from Fig. 1B that the
lifetime depends nonlinearly on the voltage (force) and thus can-
not be fit by Bell’s formula. By least-squares fitting the data in
Fig. 1B with Eq. 5, we find that τ0 = 14.3 s, V ‡ = 11.1 mV, and
#G‡ = 11.9 kBT for ν = 1/2, whereas τ0 = 9.6 s, V ‡ = 12.8 mV,
and #G‡ = 10.4 kBT for ν = 2/3. The resulting fit with ν = 1/2 is
shown in Fig. 1B; the fit with ν = 2/3 (not shown) is comparable.
How well do these parameters reproduce the original rupture-
force histograms? The solid lines in Fig. 1A are the predicted force
histograms, obtained by plotting the rupture-force distributions
(22) with the parameters extracted from the least-squares fit of
Eq. 5 to the collapsed data as described above. It can be seen
that both the fit to the collapsed data (Fig. 1B) and the prediction
of the force histograms (Fig. 1A) are more than satisfactory, and
the extracted parameters are relatively insensitive to ν. In addi-
tion, these parameters are close to those previously obtained (24)
by applying a more involved global maximum-likelihood method
(τ0 = 20 s, V ‡ = 9.9 mV, and #G‡ = 11.9 kBT for ν = 1/2, and

Fig. 2. Unfolding of a protein with AFM. Experimental data from ref. 10.
(A) Rupture-force histograms at various pulling speeds. Black lines are the
predicted rupture-force distributions, Eq. 1, with the parameters of the least-
squares fit of Eq. 5 to the collapsed histograms in B. (B) Lifetime τ (F) as
a function of the applied force F , obtained by transforming the force his-
tograms in A according to Eq. 2 (filled symbols; colors as in A) with the loading
rate Ḟ(F) given by Eq. 4. Open symbols show the transformed histograms
without linker correction.
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Fig. 1. Unzipping of DNA hairpins in a nanopore. Experimental data from
ref. 28. (A) Unzipping voltage histograms at various voltage-ramp speeds.
Black lines are the predicted voltage histograms with parameters extracted
from the least-squares fit of Eq. 5 to the collapsed histograms, as shown in
B. (B) Lifetime τ (V ) of the DNA hairpin as a function of the applied voltage
V . The lifetime is obtained by transforming the rupture-voltage histograms
(filled symbols, colors as in A) according to Eq. 2. Note the excellent agreement
with the lifetimes measured directly at constant voltage (open circles).

that the estimates from the mean and variance of the rupture-force
distributions using Eq. 3 agree with the τ (F) from the histogram
transformation. Although in this case one does not have inde-
pendent measurements at constant force, the validity of Eq. 2 is
strongly supported by the fact that the histograms, collected over
pulling speeds that differ by a factor 20, collapse onto a single
master curve.

Interpretation of τ(F). Now that we have been able to extract the
force dependence of the lifetime from rupture-force histograms
obtained at different loading rates, we turn to the problem of inter-
preting this dependence in microscopic terms. Let us assume that
rupture can be described as escape from a deep one-dimensional
free-energy well. For several simple one-dimensional free-energy
profiles, the lifetime τ (F) calculated from Kramers theory can
then be written as (22):

τ (F) = τ0

(
1 − νFx‡

#G‡

)1−1/ν

e−β#G‡[1−(1−νFx‡/#G‡)1/ν ]. [5]

In this expression, x‡ is the distance to the transition state, τ0 is
the lifetime, and #G‡ is the apparent free-energy of activation in
the absence of an external force. The scaling factor ν specifies the
nature of the underlying free-energy profile (22): ν = 1/2 corre-
sponds to a harmonic well with a cusp-like barrier, or equivalently
a harmonic barrier with a cusp-like well; ν = 2/3 corresponds to
a potential that contains linear and cubic terms; for ν = 1 Bell’s
formula is recovered. Equation 5 was derived for forces at which a

significant barrier (several kBT) still exists and it is thus valid only
when the force is below a critical force at which the barrier van-
ishes, F < #G‡/νx‡. We suggest least-squares fitting ln τ (F) by
using Eq. 5 with several values of ν to estimate τ0, x‡, and #G‡. If
these parameters are insensitive to ν over a ν range that results in
a good fit, they can be considered to be independent of the precise
nature of the free-energy surface and thus meaningful.

Let us now validate this procedure by applying it to the
nanopore-unzipping experiments. It is clear from Fig. 1B that the
lifetime depends nonlinearly on the voltage (force) and thus can-
not be fit by Bell’s formula. By least-squares fitting the data in
Fig. 1B with Eq. 5, we find that τ0 = 14.3 s, V ‡ = 11.1 mV, and
#G‡ = 11.9 kBT for ν = 1/2, whereas τ0 = 9.6 s, V ‡ = 12.8 mV,
and #G‡ = 10.4 kBT for ν = 2/3. The resulting fit with ν = 1/2 is
shown in Fig. 1B; the fit with ν = 2/3 (not shown) is comparable.
How well do these parameters reproduce the original rupture-
force histograms? The solid lines in Fig. 1A are the predicted force
histograms, obtained by plotting the rupture-force distributions
(22) with the parameters extracted from the least-squares fit of
Eq. 5 to the collapsed data as described above. It can be seen
that both the fit to the collapsed data (Fig. 1B) and the prediction
of the force histograms (Fig. 1A) are more than satisfactory, and
the extracted parameters are relatively insensitive to ν. In addi-
tion, these parameters are close to those previously obtained (24)
by applying a more involved global maximum-likelihood method
(τ0 = 20 s, V ‡ = 9.9 mV, and #G‡ = 11.9 kBT for ν = 1/2, and

Fig. 2. Unfolding of a protein with AFM. Experimental data from ref. 10.
(A) Rupture-force histograms at various pulling speeds. Black lines are the
predicted rupture-force distributions, Eq. 1, with the parameters of the least-
squares fit of Eq. 5 to the collapsed histograms in B. (B) Lifetime τ (F) as
a function of the applied force F , obtained by transforming the force his-
tograms in A according to Eq. 2 (filled symbols; colors as in A) with the loading
rate Ḟ(F) given by Eq. 4. Open symbols show the transformed histograms
without linker correction.
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P (f) ⇠ r�1
f ef

exp (�ef/rf
)

e.g. single molecule force spectroscopy (force-clamp, force-ramp)

poly-Ub
(Fernandez, Brujic, ….)

⌃(t) ⇠ e�k(f)⇥t

exponentiality. Using single-molecule force-clamp techniques,
the measured survival probabilities over a range of forces were
found to be nonexponential (Fig. 2, symbols; 90 pN, 110 pN,
130 pN, 150 pN, 170 pN, 190 pN). We then fit the static disorder
model (Eq. 7) to the survival probability measured at each force,
with the fit variables kF and σ2, using the Levenberg-Marquardt
least-squares algorithm (39) (Fig. 2, solid lines). The measured
values of kF and σ2 are listed in Table 1. The errors in the fit para-
meters were estimated using the bootstrap method (40).

From the measured values of kF we observed a linear relation-
ship between ln kF and the applied force (Fig. 3), demonstrating
that the most probable unfolding rate kF , corresponding to the
rate of crossing the average barrier height ΔGavg − FΔxavg, fol-
lows the simple Arrhenius law. Fitting ln kF with the Arrhenius
equation using a preexponential factor of A ¼ 106 s−1 (41) gives
an average barrier height of ΔGavg ¼ 85.1 pNnm and an average
distance to the transition state of Δxavg ¼ 0.23 nm. The extrapo-
lated value of the most probable unfolding rate at zero force is
kF¼0 ¼ 10−3 s−1. More strikingly, the measured variance of the
barrier heights σ2 is linearly dependent on the square of the force,
in good agreement with the predictions of our model (Fig. 4). In
this plot, the intercept at zero force is equal to σ2ΔG and the slope
corresponds to σ2Δx, demonstrating that the dispersed kinetics of
ubiquitin unfolding results from both the disorder of ΔG and the
disorder of Δx. A fit of Eq. 4 to σ2 (Fig. 4, solid line) yields the
values of σ2ΔG ¼ 4.34" 2.76 ðpNnmÞ2 and σ2Δx ¼ 6.4 × 10−4"
1.6 × 10−4 nm2. From these measurements we conclude that
the probability distribution of barrier heights in the absence of
force is a Gaussian distribution with a mean of 85.1 pNnm
and a standard deviation of 2.1 pNnm. Similarly, the probability
distribution of distances to the transition state is a Gaussian
distribution centered at 0.23 nm with a width of 0.025 nm. While
these measurements show consistency with the theory up to
170 pN, the data point at 190 pN shows a significantly reduced
variance from that predicted by Eq. 4. However, the kinetics of
ubiquitin unfolding at 190 pN (kF ∼36.8 s−1) is near the upper
limit of the resolution of our instrument which has a feedback
response time constant of ∼1–3 ms. Therefore, we are likely to
be missing many fast unfolding events with short dwell times. Al-
ternatively, the abrupt decrease in disorder observed at 190 pN
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Fig. 1. Measuring the survival probability of ubiquitin proteins unfolding
under a stretching force. (A) A single polyubiquitin molecule is picked up
from the surface by the cantilever tip and stretched under a constant force.
(B) Stretching a ubiquitin polyprotein at a constant force of 110 pN results in
a series of 20 nm stepwise increments in the polyprotein length, marking the
unfolding of individual ubiquitins in the chain. Wemeasure the dwell time to
unfolding, ti , for each unfolding event. (C) A histogram of 2799 unfolding
events measures the probability density of unfolding pðtÞ at 110 pN. At short
dwell times the distribution deviates significantly from a single exponential
(black trace).
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Fig. 2. Survival probability for ubiquitin unfolding under force is well de-
scribed by static disorder theory. Plot of ln½− lnhSðtÞi& versus ln t at 90 pN
(filled circles), 110 pN (open circles), 130 pN (filled squares), 150 pN (open
squares), 170 pN (filled triangles), and 190 pN (open triangles), respectively.
The slopes of all the curves are less than 1, indicating the nonexponential
survival probability measured at all forces. The solid lines represent the fits
of the static disorder survival probability (Eq. 7) to the data at each force,
with the unfolding rate of crossing the average barrier height kF and the
variance of the barrier heights σ2 as fit parameters. The values of these
parameters are compiled in Table 1. The errors in the fit parameters were
estimated using the bootstrap method.

Table 1. Kinetic parameters for ubiquitin unfolding from the static
disorder model fit

Force [pN] kF [s−1] σ2 [ðpNnmÞ2]

90 0.13 ± 0.02 9.07 ± 3.48
110 0.73 ± 0.03 12.01 ± 1.35
130 1.28 ± 0.15 17.23 ± 3.40
150 3.11 ± 0.16 18.54 ± 1.47
170 16.28 ± 2.82 22.89 ± 4.35
190 36.81 ± 2.86 12.42 ± 2.26

The unfolding rate of crossing the average barrier height, kF , and the
variance of the barrier heights, σ2, were obtained by the static disorder
model fit to the data. The errors of kF and σ2 were estimated using the
bootstrap method.

Fig. 3. The unfolding rate of crossing the average barrier height, kF , de-
pends exponentially on the pulling force. A linear dependence between
ln kF and the applied force reveals the remarkable result that the most
probable unfolding rate, kF , follows the simple Arrhenius law. Fitting ln kF

with the Arrhenius equation (solid line) yields the average barrier height
in the absence of force ΔGavg ¼ 85.1 pNnm and the average distance to
the transition state Δxavg ¼ 0.23 nm.
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⌃(t)

2

barriers, or annealed disorder (k/� ⌧ 1), unbinding
via a single path over a rapidly averaging barrier. If
k/� ⇠ O(1), the gating produces a fluctuating envi-
ronment along the dynamic pathway of the ligand and
a↵ects the unbinding process in a non-trivial fashion.
This regime is often termed dynamic disorder [18, 19].
The gating mechanism has been extensively studied in
both experiments and theories in the context of oxy-
gen binding to myoglobin [18, 20, 21]. The presence
of dynamical disorder in the oxygen-myoglobin system
results in a power law decay of unreacted oxygen and
a fractional order dependence of binding rate constant
on solvent viscosity [20]. To account for the origin of
this phenomenon, Zwanzig proposed a fluctuating bot-
tleneck (FB) model [18], which considers a rate pro-
cess controlled by passage through a bottleneck whose
cross-sectional area, responsible for the reactivity, un-
dergoes stochastic fluctuations.

While the frequency � governing the internal dy-
namics, which is intrinsic to a molecule, can in prin-
ciple be varied to a certain extent by changing vis-
cosity [20], the unbinding rate k can be more easily
altered in single-molecule pulling experiments, thus
providing a way to infer dynamic disorder. Here,
we adopt Zwanzig’s FB concept as a general mech-
anism for probing the internal disorder in biological
molecules, with explicit experimental consequences.
By fitting our analytical expressions to single-molecule
force data, we extract a measure of dynamic disoder
in proteins and DNA.

To model the e↵ect of mechanical force on the dy-
namics of crossing a free energy barrier in the pres-
ence of molecular gating, we modified Zwanzig’s FB
model [18] using an e↵ective potential Ue↵(x; r) =
U(x; r) � fx that depends parametrically on r, the
auxiliary variable characterizing the internal dynam-
ics, and explicitly on the molecular extension x con-
jugate to the applied force, f [22]. The FB model is
governed by two Langevin equations of motion:

⇣@

t

x = �@

x

Ue↵(x; r) + F

x

(t)
@

t

r = ��r + F

r

(t) (1)

where ⇣ is the friction coe�cient along x. The pre-
cise functional form of U(x; r) is arbitrary except it
should have a local minimum corresponding to a bound
(folded) state at x = xb, separated by a free energy
barrier at x = xts > xb from the unbound (unfolded)
ensemble at large x. Both the noise-related random
force F

x

(t) along x and F

r

(t), the stochastic fluctua-
tion of the dimensionless bottleneck radius r, satisfy
the fluctuation-dissipation theorem: hF

x

(t)F
x

(t0)i =
2⇣k

B

T �(t � t

0) and hF
r

(t)F
r

(t0)i = 2�✓�(t � t

0), with
k

B

T being the thermal energy, and hr2i ⌘ ✓. Forced-
unbinding occurs on first passage from xb to xts, with

a rate K(f, r) that in general varies with both f and
r. In traditional models of barrier crossing, there is
no coupling between reaction dynamics in x and other
degrees of freedom, so K only depends on f . For ex-
ample, in the Bell approximation K(f) / e

f�x

‡
/kBT ,

where �x

‡ = xts � xb. In the FB model, the cou-
pling to r is incorporated by making the reaction sink
proportional to the area of the bottleneck, K(f, r) ⌘
k(f)r2. The form of K(f, r) is physical for the appli-
cations here because the rate of unfolding of proteins
or unzipping of DNA should increase as the solvent
accessible area (/ r

2) increases. For simplicity, we as-
sume the force-dependence is described by the Bell ap-
proximation, k(f) = k0e

f�x

‡
/kBT , though the calcu-

lations below can be generalized to more complicated
models where k(f) reflects movement of the transition
state under force [22, 23]. The Langevin equations
in Eq.1 can be translated into the following Smolu-
chowski equation (see Supporting Information (SI) for
details):

@

t

C(r, t) =
⇥L

r

(r)� k(f)r2
⇤
C(r, t) (2)

where C(r, t) is the mean probability of finding the sys-
tem still bound (x < xts) with bottleneck value r at
time t, and L

r

(r) = �✓@

r

(@
r

+ r/✓) [18, 22]. Depend-
ing on whether f is constant or is a linearly varying
quantity with time, i.e., f(t) = �t, our problem is clas-
sified into unbinding under force-clamp or force-ramp
conditions, respectively.

Force-clamp: For a constant f , Eq. 2 for C(r, t)
is solved analytically with a reflecting boundary con-
dition at r = 0, and an initial condition C(r, 0) =q

2
⇡✓

e

�r

2
/2✓. The resulting survival probability

⌃f

�

(t) =
R1
0 drC(r, t) is [18, 22]:

⌃f

�

(t) = e

��
2 (S�1)t


(S + 1)2 � (S � 1)2E

4S

��1/2

(3)

where S ⌘
⇣
1 + 4k(f)✓

�

⌘1/2
and E ⌘ e

�2�St. In

two asymptotic limits of �, the expression for ⌃f

�

(t)
becomes simple. (i) For 4k(f)✓/� ⌧ 1, we have
S ⇡ 1 and the survival probability decays exponen-
tially, ⌃f

�

(t) = exp (�k(f)✓t), with k(f)✓ acting as an
e↵ective rate constant. (ii) For 4k(f)✓/� � 1, we get
S � 1 and the survival probability exhibits a power-
law decay, ⌃f

�

(t) = (1 + 2k(f)✓t)�1/2 at short times
t ⌧ (k(f)✓�)�1/2, changing over into an exponential
decay with rate k(f)✓ at long times t � (k(f)✓�)�1/2.
In the limit of quenched disorder, as � ! 0, the power-
law decay extends to all times.

Using the Bell force dependence for k(f) in Eq. 3, we
find S =

�
1 + e

⇤(f)
�1/2

, where ⇤(f) = �x

‡

kBT

(f � fcr)

Ueff (x) = U(x)� fx

Zwanzig, J. Chem. Phys. (1992)
J. Phys. Cond. Matt. (2007) 113101
Phys. Rev. Lett. (2014) 112, 138101
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Derivation of the Smoluchowski equation for

FB model : According to the Liouville theorem
(d'/dt = 0) the time evolution of probability density
'(x, r, t) in terms of x and r satisfies
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Insertion of two Langevin equations (Eq.(1) in the
main text) for the fluctuating bottleneck model @
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(t)] and @
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Eq.S1 leads to
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where ~a ⌘ (x, r) and ~

F (t) ⌘ ( 1
⇣

F

x

(t), F
r

(t)). Using
the vector notation as in the second line of Eq.S2, one
can formally solve for the probability density '(~a, t)
as
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Averaging '(~a, t) over noise after iterating '(~a, t) into
the noise related term in the integrand and exploit-
ing the fluctuation-dissipation theorem, we obtain the
Smoluchowski equation for '(x, r, t) in the presence of
a reaction sink, S(x, r) = k

r

r

2
�(x� xts),

@'(x, r, t)
@t

= [L
x
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r
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+ r/✓). Integrating both sides
of the equation over x by defining C(r, t) ⌘R1
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where k ⌘ k
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p
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‡ ⌘ U(xts) � U(xb). In all likelihood,
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T

�
represents the product

of di↵usion coe�cient D associated with barrier
crossing dynamics and the contribution of dy-
namics at the barrier top. Thus, under tension
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and ⇠ describes the correction due to geometrical
information of the cross section of bottleneck [1, 2].
Therefore, under tension f , Eq.S5 becomes Eq.(2) in
the main text.

Solution of the Smoluchowski equation with

time-dependent sink : For the problem with a
constant loading rate, the sink function of our Smolu-
chowski equation becomes time-dependent, resulting
in the following equation for the flux C(r, t),
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with C(r, t = 0) =
q

2
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2
/2✓. Although a time-dependent sink term, in general, makes Smoluchowski equations

analytically intractable, the ansatz C(r, t) ⇠ e

⌫(t)�µ(t)r2
used in the Ref. [1] allows us to solve the above problem

exactly. Substitution of C(r, t) ⇠ e

⌫(t)�µ(t)r2
leads to two ODEs for ⌫(t) and µ(t) (with 0 denoting derivative
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Reanalyze the unfolding data of polyubiquitin under force-clamp (Kuo et al. PNAS 2010) 
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barriers, or annealed disorder (k/� ⌧ 1), unbinding
via a single path over a rapidly averaging barrier. If
k/� ⇠ O(1), the gating produces a fluctuating envi-
ronment along the dynamic pathway of the ligand and
a↵ects the unbinding process in a non-trivial fashion.
This regime is often termed dynamic disorder [18, 19].
The gating mechanism has been extensively studied in
both experiments and theories in the context of oxy-
gen binding to myoglobin [18, 20, 21]. The presence
of dynamical disorder in the oxygen-myoglobin system
results in a power law decay of unreacted oxygen and
a fractional order dependence of binding rate constant
on solvent viscosity [20]. To account for the origin of
this phenomenon, Zwanzig proposed a fluctuating bot-
tleneck (FB) model [18], which considers a rate pro-
cess controlled by passage through a bottleneck whose
cross-sectional area, responsible for the reactivity, un-
dergoes stochastic fluctuations.

While the frequency � governing the internal dy-
namics, which is intrinsic to a molecule, can in prin-
ciple be varied to a certain extent by changing vis-
cosity [20], the unbinding rate k can be more easily
altered in single-molecule pulling experiments, thus
providing a way to infer dynamic disorder. Here,
we adopt Zwanzig’s FB concept as a general mech-
anism for probing the internal disorder in biological
molecules, with explicit experimental consequences.
By fitting our analytical expressions to single-molecule
force data, we extract a measure of dynamic disoder
in proteins and DNA.

To model the e↵ect of mechanical force on the dy-
namics of crossing a free energy barrier in the pres-
ence of molecular gating, we modified Zwanzig’s FB
model [18] using an e↵ective potential Ue↵(x; r) =
U(x; r) � fx that depends parametrically on r, the
auxiliary variable characterizing the internal dynam-
ics, and explicitly on the molecular extension x con-
jugate to the applied force, f [22]. The FB model is
governed by two Langevin equations of motion:

⇣@

t

x = �@

x

Ue↵(x; r) + F

x

(t)
@

t

r = ��r + F

r

(t) (1)

where ⇣ is the friction coe�cient along x. The pre-
cise functional form of U(x; r) is arbitrary except it
should have a local minimum corresponding to a bound
(folded) state at x = xb, separated by a free energy
barrier at x = xts > xb from the unbound (unfolded)
ensemble at large x. Both the noise-related random
force F

x

(t) along x and F

r

(t), the stochastic fluctua-
tion of the dimensionless bottleneck radius r, satisfy
the fluctuation-dissipation theorem: hF

x

(t)F
x

(t0)i =
2⇣k

B

T �(t � t

0) and hF
r

(t)F
r

(t0)i = 2�✓�(t � t

0), with
k

B

T being the thermal energy, and hr2i ⌘ ✓. Forced-
unbinding occurs on first passage from xb to xts, with

a rate K(f, r) that in general varies with both f and
r. In traditional models of barrier crossing, there is
no coupling between reaction dynamics in x and other
degrees of freedom, so K only depends on f . For ex-
ample, in the Bell approximation K(f) / e

f�x

‡
/kBT ,

where �x

‡ = xts � xb. In the FB model, the cou-
pling to r is incorporated by making the reaction sink
proportional to the area of the bottleneck, K(f, r) ⌘
k(f)r2. The form of K(f, r) is physical for the appli-
cations here because the rate of unfolding of proteins
or unzipping of DNA should increase as the solvent
accessible area (/ r

2) increases. For simplicity, we as-
sume the force-dependence is described by the Bell ap-
proximation, k(f) = k0e

f�x

‡
/kBT , though the calcu-

lations below can be generalized to more complicated
models where k(f) reflects movement of the transition
state under force [22, 23]. The Langevin equations
in Eq.1 can be translated into the following Smolu-
chowski equation (see Supporting Information (SI) for
details):

@

t

C(r, t) =
⇥L

r

(r)� k(f)r2
⇤
C(r, t) (2)

where C(r, t) is the mean probability of finding the sys-
tem still bound (x < xts) with bottleneck value r at
time t, and L

r

(r) = �✓@

r

(@
r

+ r/✓) [18, 22]. Depend-
ing on whether f is constant or is a linearly varying
quantity with time, i.e., f(t) = �t, our problem is clas-
sified into unbinding under force-clamp or force-ramp
conditions, respectively.

Force-clamp: For a constant f , Eq. 2 for C(r, t)
is solved analytically with a reflecting boundary con-
dition at r = 0, and an initial condition C(r, 0) =q

2
⇡✓

e

�r

2
/2✓. The resulting survival probability

⌃f

�

(t) =
R1
0 drC(r, t) is [18, 22]:

⌃f

�

(t) = e

��
2 (S�1)t


(S + 1)2 � (S � 1)2E

4S

��1/2

(3)

where S ⌘
⇣
1 + 4k(f)✓

�

⌘1/2
and E ⌘ e

�2�St. In

two asymptotic limits of �, the expression for ⌃f

�

(t)
becomes simple. (i) For 4k(f)✓/� ⌧ 1, we have
S ⇡ 1 and the survival probability decays exponen-
tially, ⌃f

�

(t) = exp (�k(f)✓t), with k(f)✓ acting as an
e↵ective rate constant. (ii) For 4k(f)✓/� � 1, we get
S � 1 and the survival probability exhibits a power-
law decay, ⌃f

�

(t) = (1 + 2k(f)✓t)�1/2 at short times
t ⌧ (k(f)✓�)�1/2, changing over into an exponential
decay with rate k(f)✓ at long times t � (k(f)✓�)�1/2.
In the limit of quenched disorder, as � ! 0, the power-
law decay extends to all times.

Using the Bell force dependence for k(f) in Eq. 3, we
find S =

�
1 + e

⇤(f)
�1/2

, where ⇤(f) = �x

‡

kBT

(f � fcr)

⇠
⇢

e�k(f)✓t : �� k(f)
(1 + 2k(f)✓t)�1/2 : �⌧ k(f)

Unbinding (unfolding) kinetics at constant force, f (force-clamp)
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with respect to t),
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with µ(0) = 1/2✓. The equation for µ(t) in Eq.S13
is the Riccati equation, y

0 = q0(t) + q1(t)y + q2(t)y2

with y(t) ⌘ µ(t)� 1/4✓. In general, the Riccati equa-
tion can be reduced to a second order ODE. The vari-
able is changed in two steps : (i) v(t) = q2(t)y(t)
leads to v

0 = v

2 + P (t)v + Q(t) where Q = q0q2 =
��

2
�
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�
and P = q1 + q

0
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Introducing the variable ⇢ = 2�

�̃

q
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t�̃/2 = �(t)

with � ⌘ 2�
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and (t) ⌘
q

4k0✓

�

e

t�̃/2 one can modify
the second-order ODE in Eq.S9 into a more familiar
modified Bessel equation,
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where u(t) = U(⇢). The solution of the above ODE
is the linear combination of I±�

(⇢) for non-integer �,
and the linear combination of I
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(⇢) and K
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(⇢) when
� is integer. Thus, the solution of Eq.S10 is
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For simplicity, we use the notation Q
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Thus one obtains µ(t) using y(t) = � u
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q2(t)u(t) .
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Note that I

0
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(⇢) ⌘ dI
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(⇢)/d⇢. The initial condition
µ(0) = 1/2✓ determines the constant c in Eq.S13
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With µ(t) (Eq.S15) and ⌫(t) (Eq.S16) in hand, we can
solve
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from which the survival probability is obtained as
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Note that I
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µ(0) = 1/2✓ determines the constant c in Eq.S13
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where ⇢0 ⌘ �(0). Thus, one obtains
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With µ(t) (Eq.S15) and ⌫(t) (Eq.S16) in hand, we can
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from which the survival probability is obtained as
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The �-dependent unbinding time distribution P
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(t) are obtained from the relation P

�

(t) = �d⌃�

�

(t)/dt,

P

�

(t) =
�e

�t/2

p
2




2(t)
I 00(⇢)
I(⇢)

+
1
�

(t)
I 0(⇢)
I(⇢)

� 1
�  I(⇢)

I(⇢0)

��1/2 
1 + (t)

I 0(⇢)
I(⇢)

��3/2

. (S19)

Transformation to the unbinding force distribution
P

�

(f̃)
⇥
= �̃

�1
P

�

(t)
⇤

is made through the relationship
between dimensionless scaled-force (f̃) and time t:
f̃ = �̃t with �̃ = ��x

‡
/k

B

T .

Illustration using synthetic data : Although
P

�

(f̃) in Eq.S19 is complicated, the familiar expres-
sion used in the Dynamic Force Spectroscopy (DFS)
for P (f) is restored when � ! 1 (see below). In
order to obtain insight into the behavior of P

�

(f̃) we
generated several synthetic distributions for varying
� values and loading rates. We find that P

�

(f̃) with
varying �̃(= ��x

‡
/k

B

T ) shows the standard pattern
of force distribution in DFS (Fig.S1-A, B) [2, 3]. The

e↵ect of varying � on P

�

(f̃) is shown in Fig.S1-C, D.
It is of particular interest that if �̃ � k0✓ then the
most probable forces f

⇤
�

from P

�

(f̃) are insensitive to
the variation in � even though the shapes of P

�!0(f̃)
and P

�!1(f̃) are very di↵erent from each other
(Fig.S1-C). However, when �̃ ⇠ k0✓, f̃

⇤
�

changes with
� (Fig.S1-E) and the shape of P

�!0(f̃) di↵ers from
P

�!1(f̃) qualitatively (Fig.S1-D).

Asymptotic behavior at �/�̃ !1 : To obtain the
asymptotic behavior we will use the following uniform
asymptotic expansion of the modified Bessel function
for large orders (⌫ !1) [4].
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Using these asymptotics, we obtain the following relations at � = 2�/�̃ !1.
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where S(t) ⌘ (1 + 
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Unbinding force distribution at constant loading rate, γ (force-ramp)
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Transformation to the unbinding force distribution
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Illustration using synthetic data : Although
P
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(f̃) in Eq.S19 is complicated, the familiar expres-
sion used in the Dynamic Force Spectroscopy (DFS)
for P (f) is restored when � ! 1 (see below). In
order to obtain insight into the behavior of P
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(f̃) we
generated several synthetic distributions for varying
� values and loading rates. We find that P
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(f̃) with
varying �̃(= ��x
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T ) shows the standard pattern
of force distribution in DFS (Fig.S1-A, B) [2, 3]. The

e↵ect of varying � on P
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(f̃) is shown in Fig.S1-C, D.
It is of particular interest that if �̃ � k0✓ then the
most probable forces f
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from P
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(f̃) are insensitive to
the variation in � even though the shapes of P

�!0(f̃)
and P

�!1(f̃) are very di↵erent from each other
(Fig.S1-C). However, when �̃ ⇠ k0✓, f̃
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changes with
� (Fig.S1-E) and the shape of P

�!0(f̃) di↵ers from
P

�!1(f̃) qualitatively (Fig.S1-D).

Asymptotic behavior at �/�̃ !1 : To obtain the
asymptotic behavior we will use the following uniform
asymptotic expansion of the modified Bessel function
for large orders (⌫ !1) [4].
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Using these asymptotics, we obtain the following relations at � = 2�/�̃ !1.
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FIG. S1: A-D Rupture force distributions, P (f̃), under varying loading rates (�̃) and the gating frequency (�) charac-
terizing the disorder. E. f̃⇤ vs �̃ plot under two limiting values of �.
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Thus, substituting Eq.S25 and S26 into ⌃(t) =
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For � ! 1 and � ! 0, lim
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FIG. 4:

anisotropic deformation

multiple repeating subunits leading to a characteristic sawtooth-
shaped mechanical unfolding pattern has proven a robust strategy
to detect and measure unfolding forces of the individual subunits (9,
26–28). In the present experiment, we have combined this strategy
with the possibility to investigate single protein domains (5).
Therefore, we sandwiched GFP between four N-terminal and four
C-terminal Ig domains of human cardiac titin to create an Ig8–GFP
chimera protein (Fig. 1a). Force extension curves of this construct
should exhibit a clear sawtooth pattern because of the unfolding of
the Ig domains (9) and an additional unfolding event reflecting
GFP unfolding. Force extension curves from this construct are
shown in Fig. 1b. In all traces at extensions !80 nm, the well studied
sawtooth pattern of titin domain unfolding is visible (colored in
blue). In contrast to curves obtained from an Ig8 construct lacking
the GFP insert (9), at shorter extensions and lower forces, an
additional unfolding event appears (colored in green). The length
increase associated with this unfolding event is 2.5 times larger than
that of an individual Ig domain. Comparing the number of amino
acids constituting GFP (238 amino acids) with that folded in an Ig
domain (89 amino acids), we arrive at a length for the unfolded
polypeptide chain of GFP longer by a factor of 2.7 as compared with
Ig domains, which suggests that the observed unfolding event
reflects GFP unfolding. Titin Ig domains exhibit a much higher
unfolding force than GFP; thus, GFP unfolding events always occur
at small extensions close to the surface where nonspecific interac-
tions often mask true unfolding events. To rule out any nonspecific
contributions, we designed a construct comprising five Ig domains
from the actin crosslinker DdFLN with GFP sandwiched between
domain 3 and 4 (DdFLN1-5–GFP) (Fig. 1c). The Ig domains of
DdFLN exhibit unfolding forces in a range between 40 and 100 pN
(5), and GFP unfolding in this chimera construct should occur at
higher extensions after the weakest Ig domains have already
unfolded. In force extension traces obtained with DdFLN1-5–GFP
(Fig. 1d), the GFP unfolding events are indeed shifted toward
higher extensions. Nonetheless, both the length gain and the
unfolding force are identical to Ig8–GFP. Results for the two
constructs are therefore in agreement, and we conclude that at
pulling velocities of 300 nm!s GFP on average can bear mechanical
loads of 104 " 40 pN (Fig. 1e) before it unfolds.

Unfolding of the !-Barrel Occurs from an Intermediate. Evans and
Ritchie (29) have shown that the distribution of unfolding forces
(Fig. 1e) contains information about the underlying energy profile,
that is, both the lifetime of the domain in the absence of force !0 and
the N-terminal -to-C-terminal distance from the folded structure to
the transition state #x. We have used a Monte Carlo simulation to
extract !0 and #x from the data (open bars in Fig. 1e). We get a good
fit to our histogram by using a value of 0.28 " 0.03 nm for #x and
14 " 6 s for !0. A value of 0.3 nm for #x is typical for "-sheet
domains (9, 30, 31). However, a lifetime of 14 s stands in stark
contrast to values of 1010 s obtained from solution experiments (12).
Moreover, comparing the folding time of GFP of 600 s (10, 11) with
our measured lifetime of 14 s suggests the state before mechanical
unfolding has a positive free energy of at least 3.7 kBT in contrast
to #G $ %16 kBT, which is determined from bulk measurements
(12). This seeming discrepancy can be resolved if we consider that
the GFP structure unfolding at 104 pN may not be the native state
but an intermediate state, during which part of the structure has
already unfolded at lower forces. Clear evidence for the existence
of such an intermediate comes from measuring the contour length
increase #L upon GFP unfolding (see Materials and Methods).
Force spectroscopy has an excellent length resolution down to the
single amino acid (5, 6). The average length increase, #L, we
measure is 76.6 " 0.3 nm, n $ 87 (Fig. 1f). If all of the 227 amino
acids resolved in the x-ray structure of Cycle3–GFP (amino acids
4–230) by Battistutta et al. (22) contributed to the measured length
increase, the expected value for #L would be 79.4 nm. This
difference is well resolvable with our instrument, and it shows that

the force-bearing structure unfolding at 104 pN is smaller than the
native structure. A more detailed analysis, for which we plotted the
calculated #L for structures that lack a certain amount of amino
acids from either the N terminus (red) or the C terminus (blue) of
the crystal structure of GFP is shown in Fig. 2a (see Materials and
Methods for details). This analysis suggests two possible structures
for the shorter intermediate state. The intersection points of the
horizontal line indicating our measured value of #L $ 76.6 " 0.3
nm with the calculated curve in Fig. 2a lead to either seven amino
acids removed from the N terminus or eight to nine amino acids
removed from the C terminus. Intriguingly, the seven N-terminal
amino acids constitute an #-helix that ends at the first "-sheet of the

Fig. 1. Single-domain force spectroscopy of GFP. (a) Scheme of Ig8–GFP chi-
mera protein, stretched between a gold surface and a gold-coated cantilever tip.
(b) Three typical force-extension traces measured with Ig8–GFP. GFP unfolding
and the subsequent stretching phase of the unfolded polypeptide now length-
ened by #L is marked in green. Black lines show WLC fits by using a persistence
length, p, of 0.5 nm and contour lengths L and L & #L. (c) Scheme of DdFLN1-5–
GFP chimera protein. (d) Three typical force-extension traces measured with
DdFLN1-5–GFP. The GFP unfolding pattern is marked in green, and the double
peak indicating DdFLN domain 4 unfolding (5) is marked in yellow. Black lines
show WLC fits as in b. (e) Distribution of GFP## unfolding forces F (see Materials
and Methods) obtained from measurements with DdFLN1-5–GFP. Open red bars
showresults fromaMonteCarlounfoldingkinetics simulationofGFP##with !0 $
14 s and #x $ 0.28 nm. (f) Distribution of the contour length increase,#L, because
of GFP## unfolding as measured by WLC fits to DdFLN1-5–GFP traces (compare
to d).

16194 " www.pnas.org!cgi!doi!10.1073!pnas.0404549101 Dietz and Rief
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FIG. 1: Interpretation of polyubiquitin data at constant
force using the FB model. (a) Survival probability con-
structed from dwell time analysis of polyubiquitin data in
a force-clamp at f = 110 pN (digitized from Fig.1 in Ref.
[16]). The line is the fit using Eq. 3. The inset shows
⌃f (t) using a logarithmic scale. (b) (top) Solid lines show
our theoretical fits to the survival probability data (col-
ored circles obtained by digitizing the results in Fig.2 in
Ref.[16]) at di↵erent values of the force f = 90 � 190 pN.
The extracted parameters k(f)✓ and � are plotted against
f on the two panels at the bottom.

were not discussed in the original paper. Fig. 2 shows
the unzipping force distribution at two pulling speeds,
8 nm/s and 1600 nm/s, and fits using our model,
compared to two other models commonly employed
in analyzing DFS experiments. It is clear that our
theory for P

�

�

(f) using the FB model most accurately
fits the force data. Two other models, based on
the Bell model [26] and a cubic potential [23], fail
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P(
f)
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FIG. 2: Analysis of rupture force distributions from a
DNA unzipping force spectroscopy experiment (the AFM
cantilever spring constant ⇡ 2 pN/nm) [17] using three dif-
ferent models. The fits using P

�

�

(f) (solid lines), based on
our FB model, yield (�x

‡ [nm], k0✓ [s�1], � [s�1])=(1.1,
0.017, 2.8 ⇥ 10�5) for v = 8 nm/s and (0.66, 0.99,
0.48) for v = 1600 nm/s. The fits using Pcubic["(f)] =
k(")

�

exp
h

k0
��x

‡

“
1� k(")

k0
"

�1/2
”i

(dashed lines) with

k(") = k0"
1/2

e

�G

‡(1�"

3/2) and "(f) = 1 � 2f�x

‡
/3�G

‡

[23] yield (�x

‡ [nm], k0 [s�1], �G

‡ [pN·nm])=(0.12,
0.12, 31.9) for v = 8 nm/s and (0.09,7.16,19.0)
for v = 1600 nm/s. The fits using PBell(f) =

�

�1
k0e

f�x

‡
/kBT exp

“
��

�1
k0kB

T/�x

‡(ef�x

‡
/kBT � 1)

”

(dotted lines) yield (�x

‡ [nm], k0 [s�1])=(0.49, 0.13) for
v = 8 nm/s and (0.32, 8.19) for v = 1600 nm/s. Note
that P

�

(f) describes the heavy tails of the distributions
better than Pcubic(f) or PBell(f), implying that unbinding
of these DNA duplexes by force cannot be accounted for
using one-dimensional models.

to capture the tail part of the data because they
incorporate no disorder, only unbinding through a
one-dimensional free energy profile. For 8 nm/s, the
gating frequencies are almost zero (� ⇡ 2.8 ⇥ 10�5

s�1). However, � increases by nearly four orders
of magnitude to � = 0.48 s�1 at v = 1600 nm/s.
Given that the bubble dynamics of a DNA duplex
occur with a characteristic time scale of ⇠ 50 µs [27],
our extracted � values are too large for breathing
motion of base pairs to be a source of disorder. It is
more reasonable to surmise that each duplex is pulled
from starkly di↵erent and very slowly interconverting
conformations, similar to that found in Holliday
junctions and RecBCD. The origin of this disorder
is likely to be in the heterogeneity of base pairings,
although the experiment was intended to probe the
unbinding dynamics from a homogeneous sample
made of two DNA strands with perfect complimenta-
rity. The large increase in � as v increases suggests

5

that tension facilitates interconversion between states,
which accords well with the expectation that force
lowers barriers between distinct bound states.

The applications of our theory to the force-clamp
and force-ramp experiments reveal that by analyzing
data from single-molecule pulling experiments over a
range of forces and loading rates one can infer the
role that dynamical disorder, intrinsic to the molecule,
plays in unfolding or unbinding kinetics. It is worth
emphasizing that the observed non-exponential kinet-
ics in survival probability or fat tails in the unfold-
ing force distributions cannot be captured by theories
based on one-dimensional free energy profiles. The role
multidimensionality plays in a system’s response to
force is increasingly becoming relevant, as suggested by
several experimental studies [28–31]. Our work shows
that by using an auxiliary coordinate in addition to ex-
tension we can quantitatively predict the consequences
of disorder in the dynamics of biological molecules.
The theory provides a conceptual framework for an-
alyzing future single molecule pulling experiments on
complexes involving proteins, DNA, and RNA in which
heterogeneity is sure to play a prominent role.
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The �-dependent unbinding time distribution P

�

(t) are obtained from the relation P

�

(t) = �d⌃�
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Transformation to the unbinding force distribution
P

�

(f̃)
⇥
= �̃

�1
P

�

(t)
⇤

is made through the relationship
between dimensionless scaled-force (f̃) and time t:
f̃ = �̃t with �̃ = ��x

‡
/k

B

T .

Illustration using synthetic data : Although
P

�

(f̃) in Eq.S19 is complicated, the familiar expres-
sion used in the Dynamic Force Spectroscopy (DFS)
for P (f) is restored when � ! 1 (see below). In
order to obtain insight into the behavior of P

�

(f̃) we
generated several synthetic distributions for varying
� values and loading rates. We find that P

�

(f̃) with
varying �̃(= ��x

‡
/k

B

T ) shows the standard pattern
of force distribution in DFS (Fig.S1-A, B) [2, 3]. The

e↵ect of varying � on P

�

(f̃) is shown in Fig.S1-C, D.
It is of particular interest that if �̃ � k0✓ then the
most probable forces f

⇤
�

from P

�

(f̃) are insensitive to
the variation in � even though the shapes of P

�!0(f̃)
and P

�!1(f̃) are very di↵erent from each other
(Fig.S1-C). However, when �̃ ⇠ k0✓, f̃

⇤
�

changes with
� (Fig.S1-E) and the shape of P

�!0(f̃) di↵ers from
P

�!1(f̃) qualitatively (Fig.S1-D).

Asymptotic behavior at �/�̃ !1 : To obtain the
asymptotic behavior we will use the following uniform
asymptotic expansion of the modified Bessel function
for large orders (⌫ !1) [4].
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where I
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The asymptotic behavior at large negative orders can be obtained by using the relation I�⌫
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Using these asymptotics, we obtain the following relations at � = 2�/�̃ !1.
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where S(t) ⌘ (1 + 

2(t))1/2. Therefore

lim
�!1

I 0(⇢)
I(⇢)

=
S(t)
(t)


(S(t) + 1)� (S(t)� 1)e�2�(⌘�⌘0)

(S(t) + 1) + (S(t)� 1)e�2�(⌘�⌘0)

�
(S23)

⇢ = �(t) � = 2�/�̃ (t) =
p

4k0✓/�et�̃/2

Unbinding force distribution at constant loading rate, γ (force-ramp)
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and 20 pN, ;25% of all events at 200 nm/s). At this point it
is extremely important to be certain about the number of
missed low-force events in the experiment. Because our
experiment involves repeated unfolding-refolding cycles of a
single ddFLN4 domain with well-studied refolding kinetics
we can estimate the number of missed events to be,5% (for
details see Supplementary Material). In contrast, the prob-
ability distribution at high pulling velocities (4000 nm/s) as
calculated by the Bell model appears too narrow compared to
the data. The changing width of the measured force distri-
butions is a strong indication for a transition state position
that moves with force.
How can we resolve the puzzling disagreement between

an apparently logarithmic force-velocity behavior and yet a
moving transition-state position? Obviously our data call for
a more realistic model to describe unfolding force data. Pre-

vious theoretical studies have shown that the adaptation of
Kramers’ diffusion model to forced unbinding can give impor-
tant information about the underlying energy landscape (9,10).
Following Shillcock and Seifert (11) we calculated the mean
first passage time for a particle in a given potential at in-
creasing external forces according to:

1

kðFÞ ¼
1

D
3

Z xmax

xmin

exp
$UFðxÞ
kBT

! "

3
Z x

0

exp
UFðx9Þ
kBT

! "
dx9

# $
dx;

where D represents the diffusion constant of the particle and
UF(x) represents the energy profile along the pulling di-
rection at force F (for details see Supplementary Material)

FIGURE 1 A comparison between the commonly used Bell view and Kramers’ view for analysis of protein unfolding data. (A) The
pulling velocity data of the native-state unfolding of ddFLN4 show a logarithmic behavior within the experimental error. The inset shows
a schematic illustration of the experimental setup. (B) Schematic reconstruction of the energy landscape in the Bell view along the NC-
terminal vector. (C) Normalized unfolding probability force distributions (histogram with statistical error) at four different pulling
velocities in comparisonwith the theoretical distributions using the Bell model (lines). (D) Pulling velocity datamodeled using Kramers’
theory. (E) The reconstructed energy landscape shows detailed curvature along the unfolding/folding pathway. (F) The characteristic
behavior of the experimental unfolding force distributions with increasing pulling velocity is reproduced well using the Kramers’
model.
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(LFA1) integrin from its ligand, intercellular adhesion molecule-1
(ICAM1) (34); (B) rupture of the GTPase protein Ran from the
nuclear receptor importin β (impβ) (35); for this dataset, Ran is
loaded with a GTP analog (GppNHp), as well complexed with
another binding partner, the protein RanBP1; (C) unzipping of a
10-bp DNA duplex (36); (D) Raible et al. (22) (based on earlier
experimental data from ref. 37), the unbinding of the regulatory
protein expG from a promoter DNA fragment; (E) Fuhrmann et al.
(38), the unbinding of the protein ATGRP8 (in the mutant
ATGRP8-RQ form) from its RNA target.
In all of these cases, the theoretical fit to Eqs. 6 and 7 (solid

curves) is excellent, allowing us to extract the fitting parameters
listed in each panel of Fig. 6. The values of k0, the effective zero-
force off-rate, are in the range ∼Oð0.01− 0.1  sÞ, whereas the ef-
fective transition state distance b∼Oð0.1− 1  nmÞ. Both of these
scales are physically sensible for protein or nucleic acid systems. The
panels in Fig. 6 are ordered by increasingΔ, which varies from 1.5 to
13.3. To verify the robustness of these Δ values, we also calculated
the pair parameters Δp for every dataset that had at least three
different loading rates. These are shown in Fig. 3B, with the cor-
responding Δ for the full data indicated as horizontal dashed lines.
As is expected for the NC regime, the Δp do not vary significantly
with rupture rate, and are consistent with Δ in each case. The three
largest values of Δ (Fig. 6 C–E) correspond to bonds composed of
nucleic acid base pairing or protein/nucleic acid interactions. This
significant heterogeneity may reflect the tendency for free-energy
landscapes involving nucleic acids to be more intrinsically rugged.
However, it is not necessarily the case that all nucleic acid systems

are heterogeneous (the BsoBI–DNA complex of Fig. 5B and the
RNA hairpin of Fig. 5E are counterexamples).
All of the data in Fig. 6 were collected using AFM pulling ex-

periments, in contrast to Fig. 5, where B,D, and E were optical-trap
results (the rest being AFM). It is thus worthwhile to wonder
whether aspects of the AFM experimental setup could affect the
heterogeneity analysis. In Supporting Information, 5. Sensitivity of the
Heterogeneity Analysis to Experimental Artifacts, we have analyzed
possible errors from several sources: the finite force resolution of
AFM cantilever, the nonnegligible hydrodynamic drag on the can-
tilever at large pulling speeds (>1 μm/s) (39–41), uncertainties
arising from finite sampling of the rupture force distributions, and
the apparatus response time. Based on this error analysis, we con-
clude that the estimation of the heterogeneity parameterΔ from the
experimental data are reliable in all of the systems of Fig. 6. The
observed heterogeneity must therefore be an intrinsic aspect to
the biomolecules, rather than an artifact of the AFM experiment.
The fidelity of the theoretical fits to the data in Fig. 6 (with no

signs of PC) means all of the experiments were in the heterogeneous,
adiabatic regime. Thus, the range of observed kðrÞ allows us to place
upper bounds on ki and lower bounds on keq, which are plotted in
the bar chart of Fig. 6F. There is a clear separation of timescales,
with all of the upper bounds on ki K 10 s−1, and the lower bounds on
keq J 102 s−1. The slow interconversion rates ki in these systems are
remarkable, particularly the DNA oligomer in Fig. 6C, which is a
tiny system only 10 bp long. The rupture force distributions for the
DNA unzipping were earlier fit to a specific model of dynamic
disorder in ref. 23, where force-dependent rates of conformational

A

D E F

B C

Fig. 5. Experimental ΩrðfÞ data (circles) calculated from rupture force distributions in five studies: (A) ref. 29, (B) ref. 30, (C) ref. 31, (D) ref. 6, and (E) ref. 32.
All these cases exhibit no apparent heterogeneity, with the ΩrðfÞ curves for each system collapsing on one another. Colors denote different pulling velocities
v or loading rates r, as reported in each study. For A and D, where v is reported, the linker stiffness values of ωs = 4.1 (A) and 0.043 pN/nm (D) are used to get
the corresponding loading rates r =ωsv. (F) For each of the experimental cases, the lower bounds on the possible values of keq and ki, derived from the
theoretical analysis.
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fluctuations were extracted. The range of these estimated rates
(2.8 × 10−5 to 4.8 × 10−1 s−1) are consistent with the upper bound
derived from the current analysis, ki < 0.6 s−1. However, we must
keep in mind that—unless PC is observed, pinpointing the scale of
ki—our analysis cannot distinguish between a heterogeneous sys-
tem characterized by dynamic disorder with slow ki and one with
quenched disorder (ki = 0) caused by covalent chemical differ-
ences among the experimental samples.
The Ran–impβ system in Fig. 6B provides an interesting coun-

terpart to the A1–GPIbα complex discussed earlier. As in that
example, the system is believed to exhibit two bound conformations
with different adhesion strengths (35, 42). This is also supported by
evidence of conformational variability in the crystal structure of a
truncated impβ bound to Ran–GppNHp, where two versions of the
molecular complex were observed, characterized by substantially
different sets of interactions (43). The bound conformations are
expected to dynamically interconvert, but the timescale has not
been measured. Our analysis of the existing data provides an upper
bound on the rate, ki < 6.4 s−1. We predict that further experi-
ments could fix the rate more precisely: for example, by going to
pulling velocities slower than v= 100 nm/s (the slowest v in the
current dataset), we may be able to observe PC, like in Fig. 2D,
Middle, establishing the scale of ki. This is opposite of the pre-
scription we gave above for the A1–GPIbα complex, where the
existing experiments have been too slow rather than too fast. Our
theory thus provides a guide for experimentalists to fine-tune their

parameters to extract the most information possible from the
system under study.
We envision that our approach will become one part of a

larger, comprehensive experimental toolbox for investigating
heterogeneity in biomolecules: it can test for and quantify het-
erogeneity based on the rupture force distributions, but these
distributions do not contain all of the information we would like
to know about a system. A large Δ parameter indicates that there
are multiple states in the intact/folded part of the free-energy
landscape, and that these states must interconvert on timescales
slower than the mean rupture time. To extract additional details,
like the precise number of functional states, requires using
other experimental/analytical techniques, like single-molecule
FRET. One recent example where this was demonstrated was the
k-means clustering algorithm applied by Hyeon et al. (16) to esti-
mate the number of interconverting states from single-molecule
FRET trajectories of a simple nucleic acid construct, the Holliday
junction. In principle, this approach could be extended to folding
trajectories obtained in constant force experiments, which in con-
junction with the distribution of rupture forces could be used to
extract the number of distinct functional states.

Conclusions
Our work introduces a generic method for characterizing het-
erogeneity in biomolecules using rupture force distributions from
force spectroscopy experiments. The central result is a single
nondimensional parameter Δ≥ 0. A system with no measurable

A

D E F

B C

Fig. 6. ExperimentalΩrðfÞ data (circles) calculated from rupture force distributions in five studies: (A) ref. (34), (B) ref. (35), (C) ref. (36), (D) ref. (22), and (E) ref. (38). In
contrast to Fig. 5, these systems exhibit heterogeneity, with distinct ΩrðfÞ curves. Colors denote different pulling velocities v or loading rates r, as reported in each
study. For B–E, where v is reported, the linker stiffness values of ωs = 5.0 (B), 2.0 (C), 3.0 (D), and 6.0 pN/nm (E) are used to get the corresponding loading rates r =ωsv.
Solid curves show the theoretical best fit to Eqs. 6 and 7, with the fitted parameters k0, x‡, and Δ listed in each panel. (F) For each of the experimental cases, the lower
bounds on the possible values of keq (blue bars) and the upper bounds on ki (pink bars), derived from the theoretical analysis.
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Theory
Force Spectroscopy for a Pure, Adiabatic System.As a starting point,
consider a generic free-energy landscape for a biomolecular sys-
tem with a single functional state (Fig. 1A) subject to an increasing
time-dependent external force f ðtÞ. For a molecular complex, the
functional basin of attraction in the landscape would correspond
to an ensemble of bound conformations with similar energies,
which we label N. For the case of single-molecule folding, this
would be the unique native ensemble. The force is applied through
an experimental apparatus like an AFM or optical tweezer, typi-
cally connected to the biomolecule through protein or nucleic acid
linkers of known stiffness. The apparatus is pulled at a constant
velocity v, leading to a force ramp with slope df=dt=ωsðf Þv, where
ωsðf Þ is the effective stiffness of the setup (linkers plus the AFM
cantilever or optical trap). This ωsðf Þ may in general depend on
the force, particularly for the AFM setup, where the cantilever

stiffness is often comparable to or greater than that of the mo-
lecular construct. So we also define a characteristic stiffness ωs,
which we set to the mean ωsðf Þ over the range of forces probed in
the experiment (although the precise value of ωs is not important).
This allows us to introduce a characteristic force loading rate r
proportional to the velocity, r=ωsv.
If at time t= 0 the system starts in N, the force ramp tilts the

landscape along the extension coordinate. If we model the con-
formational dynamics of the system as diffusion within this land-
scape, the tilting eventually leads to a transition out of N, associated
with unbinding of the complex or unfolding of the molecule (an
ensemble of states we call U). We let ΣrðtÞ be the survival proba-
bility for loading rate r, in other words, the probability that the
transition to U has not occurred by time t. The distribution of first
rupture times is then −dΣr=dt, and the mean rupture rate kðrÞ is just
the inverse of the average rupture time:

kðrÞ=
! Z ∞

0
dt  t

"
−
dΣr

dt

#$−1
=
!Z ∞

0
dt  ΣrðtÞ

$−1
, [1]

where we have used integration by parts and assumed that rupture
always occurs if we wait long enough, Σrð∞Þ= 0.
The behavior of ΣrðtÞ at different r depends on how kðrÞ

compares to two other intrinsic rates. The first is the equilibration
rate keq in the N well, or how quickly the system samples the con-
figurations of the functional ensemble. For a single, smooth well
with mean curvature ω0 and a diffusion constant D, this rate is on
the order of keq ∼ βω0D, where β= 1=kBT. The second is a critical
rate kcðrÞ= r=fc, which describes how quickly the force reaches a
critical force scale for rupture fc ∼G‡=x‡. Here, G‡ is the energy
scale of the barrier that needs to be overcome for the N-to-U
transition at zero force, and x‡ is the extension difference between
the N well minimum and the transition state. For f J fc, the land-
scape is tilted sufficiently that the barrier becomes insignificant,
and rupture occurs quickly (on a diffusion-limited timescale). If
kcðrÞ # kðrÞ # keq, the system is in the adiabatic regime. The force
ramp is sufficiently slow that rupture occurs before the critical force
is reached, and equilibration is fast enough that the system can
reach quasiequilibrium at the instantaneous value of the force f ðtÞ
at all times t before the rupture.
If the adiabatic condition is satisfied, the survival probability

ΣrðtÞ obeys the kinetic equation dΣrðtÞ=dt=−kðf ðtÞÞΣrðtÞ, where
kðf Þ is the rupture rate at constant force f. Because f ðtÞ is a
monotonically increasing function of t, we can change variables
from t to f ðtÞ (25), and solve for Σrðf Þ, the probability that the
system does not rupture before the force value f is reached:

Σrðf Þ= exp
"
−
1
r

Z f

0
df ′ωskðf ′Þ

ωsðf ′Þ

#
. [2]

Interestingly, the integral inside the exponential is independent
of the loading rate r. Hence, for a system pulled from a single native
ensemble, we can calculate the following quantity from experi-
mental trajectories at different r:

Ωr ðf Þ≡ − r   log  Σrðf Þ, [3]

and the results should collapse onto a single master curve for all r in
the adiabatic regime. When r is sufficiently large that kðrÞ< kcðrÞ or
kðrÞ> keq, the assumption of quasiequilibrium on a slowly changing
energy landscape breaks down, and Eq. 2 no longer holds. For this
fast, nonadiabatic case (26, 27), we should find that Ωrðf Þ varies
with r, as we will explore later in more detail.

Force Spectroscopy for a Heterogeneous, Adiabatic System. In a pio-
neering series of studies, Raible and collaborators (20–22) analyzed
force ramp experiments for the regulatory protein ExpG unbinding
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Fig. 1. (A) Schematic biomolecular free-energy landscape with a single
functional state, N, corresponding to an ensemble of folded/bound confor-
mations. Under an adiabatically increasing external force fðtÞ, there is an
instantaneous rupture rate kðfðtÞÞ describing transitions between N and the
unfolded/unbound ensemble U. (B) Schematic free-energy landscape of a
heterogeneous system with multiple functional states. Each functional en-
semble Nα will have a state-dependent adiabatic rupture rate kðf , αÞ. As-
suming the states are roughly equally probable in equilibrium, there will be
a single overall rate ki for interconversion between the various states.
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Theory
Force Spectroscopy for a Pure, Adiabatic System.As a starting point,
consider a generic free-energy landscape for a biomolecular sys-
tem with a single functional state (Fig. 1A) subject to an increasing
time-dependent external force f ðtÞ. For a molecular complex, the
functional basin of attraction in the landscape would correspond
to an ensemble of bound conformations with similar energies,
which we label N. For the case of single-molecule folding, this
would be the unique native ensemble. The force is applied through
an experimental apparatus like an AFM or optical tweezer, typi-
cally connected to the biomolecule through protein or nucleic acid
linkers of known stiffness. The apparatus is pulled at a constant
velocity v, leading to a force ramp with slope df=dt=ωsðf Þv, where
ωsðf Þ is the effective stiffness of the setup (linkers plus the AFM
cantilever or optical trap). This ωsðf Þ may in general depend on
the force, particularly for the AFM setup, where the cantilever

stiffness is often comparable to or greater than that of the mo-
lecular construct. So we also define a characteristic stiffness ωs,
which we set to the mean ωsðf Þ over the range of forces probed in
the experiment (although the precise value of ωs is not important).
This allows us to introduce a characteristic force loading rate r
proportional to the velocity, r=ωsv.
If at time t= 0 the system starts in N, the force ramp tilts the

landscape along the extension coordinate. If we model the con-
formational dynamics of the system as diffusion within this land-
scape, the tilting eventually leads to a transition out of N, associated
with unbinding of the complex or unfolding of the molecule (an
ensemble of states we call U). We let ΣrðtÞ be the survival proba-
bility for loading rate r, in other words, the probability that the
transition to U has not occurred by time t. The distribution of first
rupture times is then −dΣr=dt, and the mean rupture rate kðrÞ is just
the inverse of the average rupture time:

kðrÞ=
! Z ∞

0
dt  t

"
−
dΣr

dt

#$−1
=
!Z ∞

0
dt  ΣrðtÞ

$−1
, [1]

where we have used integration by parts and assumed that rupture
always occurs if we wait long enough, Σrð∞Þ= 0.
The behavior of ΣrðtÞ at different r depends on how kðrÞ

compares to two other intrinsic rates. The first is the equilibration
rate keq in the N well, or how quickly the system samples the con-
figurations of the functional ensemble. For a single, smooth well
with mean curvature ω0 and a diffusion constant D, this rate is on
the order of keq ∼ βω0D, where β= 1=kBT. The second is a critical
rate kcðrÞ= r=fc, which describes how quickly the force reaches a
critical force scale for rupture fc ∼G‡=x‡. Here, G‡ is the energy
scale of the barrier that needs to be overcome for the N-to-U
transition at zero force, and x‡ is the extension difference between
the N well minimum and the transition state. For f J fc, the land-
scape is tilted sufficiently that the barrier becomes insignificant,
and rupture occurs quickly (on a diffusion-limited timescale). If
kcðrÞ # kðrÞ # keq, the system is in the adiabatic regime. The force
ramp is sufficiently slow that rupture occurs before the critical force
is reached, and equilibration is fast enough that the system can
reach quasiequilibrium at the instantaneous value of the force f ðtÞ
at all times t before the rupture.
If the adiabatic condition is satisfied, the survival probability

ΣrðtÞ obeys the kinetic equation dΣrðtÞ=dt=−kðf ðtÞÞΣrðtÞ, where
kðf Þ is the rupture rate at constant force f. Because f ðtÞ is a
monotonically increasing function of t, we can change variables
from t to f ðtÞ (25), and solve for Σrðf Þ, the probability that the
system does not rupture before the force value f is reached:

Σrðf Þ= exp
"
−
1
r

Z f

0
df ′ωskðf ′Þ

ωsðf ′Þ

#
. [2]

Interestingly, the integral inside the exponential is independent
of the loading rate r. Hence, for a system pulled from a single native
ensemble, we can calculate the following quantity from experi-
mental trajectories at different r:

Ωr ðf Þ≡ − r   log  Σrðf Þ, [3]

and the results should collapse onto a single master curve for all r in
the adiabatic regime. When r is sufficiently large that kðrÞ< kcðrÞ or
kðrÞ> keq, the assumption of quasiequilibrium on a slowly changing
energy landscape breaks down, and Eq. 2 no longer holds. For this
fast, nonadiabatic case (26, 27), we should find that Ωrðf Þ varies
with r, as we will explore later in more detail.

Force Spectroscopy for a Heterogeneous, Adiabatic System. In a pio-
neering series of studies, Raible and collaborators (20–22) analyzed
force ramp experiments for the regulatory protein ExpG unbinding
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Fig. 1. (A) Schematic biomolecular free-energy landscape with a single
functional state, N, corresponding to an ensemble of folded/bound confor-
mations. Under an adiabatically increasing external force fðtÞ, there is an
instantaneous rupture rate kðfðtÞÞ describing transitions between N and the
unfolded/unbound ensemble U. (B) Schematic free-energy landscape of a
heterogeneous system with multiple functional states. Each functional en-
semble Nα will have a state-dependent adiabatic rupture rate kðf , αÞ. As-
suming the states are roughly equally probable in equilibrium, there will be
a single overall rate ki for interconversion between the various states.
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from a DNA fragment. Plotting Ωrðf Þ (the data reproduced in Fig.
6D), they did not find any collapse, as might be surmised from
Eq. 3. This was not an artifact due to nonadiabaticity [violation of
the inequality kcðrÞ # kðrÞ # keq], because the absence of collapse
becomes even more pronounced at small loading rates, further into
the adiabatic territory where collapse should be observed. They
correctly inferred that the cause of this divergence is heterogeneity
in the ensemble of states in the protein–DNA complex.
To understand the behavior of Ωrðf Þ in a heterogeneous system,

let us consider the effects of a force ramp on a biomolecular free-
energy landscape with multiple functional states (Fig. 1B). Our goal
is to use Ωrðf Þ, derived from experimental pulling trajectories, to
quantify the extent of the heterogeneity and extract information
about the underlying conformational dynamics. The functional states
are distinct basins of attraction in the landscape, corresponding to
distinct functional ensembles which we label Nα for state α. We as-
sume the minimum energy in each well and their overall dimensions
are comparable, so that the equilibrium probabilities peqα of the
various states are of the same order. In this case, if α≠ α′, the
transition rates kα→α′ and kα′→α are also similar from detailed bal-
ance, kα→α′=kα′→α = peqα′ =p

eq
α ∼Oð1Þ. Hence, we can introduce an

overall scale for the interconversion rate between the different states,
ki, such that kα→α′ ∼OðkiÞ for any α≠ α′. Thus, we now have two
intrinsic timescales: keq for equilibration within a single Nα, and ki
for transitions between distinct Nα values, where typically ki # keq
must be true in order to observe clear heterogeneity.
The experimental setup is the same as above, with a loading rate

r, and a corresponding mean rupture rate kðrÞ for reaching the U
ensemble. We can identify three dynamical regimes, based on the
magnitude of ki. In the first regime, interconversion is slow, with
ki # kðrÞ. In the second regime, ki is comparable to kðrÞ. In fact, as
we will discuss later in more detail, we will be particularly interested
in the crossover scenario where ki ≥ kðrÞ for some subset of the r
values in the experiment, but ki < kðrÞ for the remainder. If this
second regime is identified in an experiment, it provides a way to
estimate the scale of ki. Finally, in the third regime, the barriers
between the Nα basins of attraction are small, such that ki $ kðrÞ,
and the system can sample all of the states before rupture. Quali-
tatively, this scenario is indistinguishable from the case of a system
with a single native basin of attraction, with ki taking the role of keq
as the rate scale for overall equilibration in the landscape. Because
the first regime is simpler to treat mathematically than the second
regime, we will initially focus on a theory to describe the first regime
and identify its signatures in experimental data. Assessing the
validity of this theory in experiments will turn out to be a useful
criterion for distinguishing between the first, second, and third re-
gimes, and thus putting bounds on ki. This by-product of our theory
is of considerable importance because it is a priori very difficult to
estimate ki.
To begin, consider adiabatic pulling where ki is the slowest

rate in the system, ki # kcðrÞ # kðrÞ # keq. On the timescale of
pulling and rupture, the system is effectively trapped in a het-
erogeneous array of states: if we start a pulling trajectory in state
α, the system will remain in that state until rupture. The rupture
rate at constant force, kðf , αÞ will in general depend on the state,
and the ensemble of molecules from which we pull will be
characterized by a set of initial state probabilities pα. If ki is ex-
tremely small, such that the system cannot interconvert even on
the macroscopic timescales of experimental preparation, pα may
be different from peqα , because we are not guaranteed to draw
from an equilibrium distribution across the entire landscape.
This distinction is not important for the analysis below. In fact,
our approach also works when ki = 0, corresponding to the
quenched disorder limit, as seen for example in an ensemble of
molecules with covalent chemical differences.
The analog of Eq. 2 for the survival probability Σrðf Þ during adi-

abatic pulling in a heterogeneous system with small ki is as follows:

Σrðf Þ=
!
exp

"
−
1
r

Z f

0
df ′ωskðf ′, αÞ

ωsðf ′Þ

#$
, [4]

where the brackets denote an average over the initial ensemble of
states, hOðαÞi≡

P
αpαOðαÞ for any quantity OðαÞ. The associated

Ωrðf Þ from Eq. 3 can be expressed through a cumulant expansion in
terms of the integrand Iðf , αÞ≡

R f
0 df ′ωskðf ′, αÞ=ωsðf ′Þ as follows:

Ωrðf Þ=−
X∞

n=1
ð−1Þn κnðf Þ

n!rn−1
,

κnðf Þ≡ ∂n
∂λn   log

%
eλIðf , αÞ

&''
λ=0.

[5]

The first two cumulants are κ1ðf Þ= hIðf , αÞi and κ2ðf Þ= hI2ðf , αÞi−
hIðf , αÞi2. In the absence of heterogeneity, all cumulants κnðf Þ with
n> 1 are exactly zero. For a small degree of heterogeneity, or equiv-
alently for sufficiently fast loading rates r, the main contribution to
the expansion is from the n= 1 and n= 2 terms. For the case of
fast r, we assume that we are still within the adiabatic regime,
where kcðrÞ # kðrÞ, which turns out to be valid even for the largest
loading rates in the experimental studies discussed below. In this
scenario, where the n> 2 contributions are negligible, Ωrðf Þ can be
approximated as follows:

Ωrðf Þ≈
r

Δðf Þ log
"
1+

κ1ðf ÞΔðf Þ
r

#
, [6]

where Δðf Þ≡ κ2ðf Þ=κ21ðf Þ≥ 0 is a dimensionless measure of the
ensemble heterogeneity. For a pure system, Δðf Þ→ 0, giving
Ωrðf Þ→ κ1ðf Þ, independent of r. Eq. 6 agrees with the expansion in
Eq. 5 up to order n= 2, and also has the nice property that it
satisfies the inequality Ωrðf Þ≤ κ1ðf Þ, just like the exact form. The
latter inequality follows from the definition of Σrðf Þ in Eq. 4 and
Jensen’s inequality, Σrðf Þ≥ expð−κ1ðf Þ=rÞ.

Implementing the Model on Experimental Data. So far, the discussion
has been completely general, but to fit Eq. 6 to experimental data
we need specific forms for Δðf Þ and κ1ðf Þ. The minimal physically
sensible approximation, with the smallest number of unknown pa-
rameters, supplements Eq. 6 with the following assumptions:

Δðf Þ=Δ, κ1ðf Þ=
k0
βx‡

(
eβfx

‡ − 1
)
. [7]

The constants Δ, k0, and x‡ are fitting parameters. This presumes
that Δðf Þ changes little over the range of forces in the data, and
κ1ðf Þ has the same mathematical form as in a pure Bell model
with an escape rate kðf Þ= k0eβfx

‡ and ωsðf Þ=ωs, where k0 is the
escape rate at zero force and x‡ is the distance to the transition
state. For a heterogeneous system, the parameters k0 and x‡ no
longer have this simple interpretation, but we can still treat them
as effective Bell values, averaged over the ensemble, with Δ
measuring the overall scale of the heterogeneity. Eq. 6, together
with the three-parameter approximation of Eq. 7, provides re-
markably accurate fits to all of the heterogeneous experimental
datasets we have encountered in the literature. As will be seen
below, it is capable of simultaneously fitting Ωrðf Þ data for load-
ing rates r spanning nearly two orders of magnitude.
Although we focus on Ωrðf Þ as the main experimental quantity

of interest, Eqs. 6 and 7 can also be used to derive a closed form
expression for the probability distribution of rupture forces,
prðf Þ=−dΣrðf Þ=df =−ðd=df Þexpð−Ωrðf Þ=rÞ, at loading rate r:

prðf Þ=
k0eβ fx

‡

r

 

1+
Δk0

*
eβ fx‡ − 1

+

βrx‡

!−Δ+1
Δ

. [8]

In the limit of no heterogeneity, Δ→ 0, this distribution reduces
to the one predicted for a Bell model under a constant loading
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from a DNA fragment. Plotting Ωrðf Þ (the data reproduced in Fig.
6D), they did not find any collapse, as might be surmised from
Eq. 3. This was not an artifact due to nonadiabaticity [violation of
the inequality kcðrÞ # kðrÞ # keq], because the absence of collapse
becomes even more pronounced at small loading rates, further into
the adiabatic territory where collapse should be observed. They
correctly inferred that the cause of this divergence is heterogeneity
in the ensemble of states in the protein–DNA complex.
To understand the behavior of Ωrðf Þ in a heterogeneous system,

let us consider the effects of a force ramp on a biomolecular free-
energy landscape with multiple functional states (Fig. 1B). Our goal
is to use Ωrðf Þ, derived from experimental pulling trajectories, to
quantify the extent of the heterogeneity and extract information
about the underlying conformational dynamics. The functional states
are distinct basins of attraction in the landscape, corresponding to
distinct functional ensembles which we label Nα for state α. We as-
sume the minimum energy in each well and their overall dimensions
are comparable, so that the equilibrium probabilities peqα of the
various states are of the same order. In this case, if α≠ α′, the
transition rates kα→α′ and kα′→α are also similar from detailed bal-
ance, kα→α′=kα′→α = peqα′ =p

eq
α ∼Oð1Þ. Hence, we can introduce an

overall scale for the interconversion rate between the different states,
ki, such that kα→α′ ∼OðkiÞ for any α≠ α′. Thus, we now have two
intrinsic timescales: keq for equilibration within a single Nα, and ki
for transitions between distinct Nα values, where typically ki # keq
must be true in order to observe clear heterogeneity.
The experimental setup is the same as above, with a loading rate

r, and a corresponding mean rupture rate kðrÞ for reaching the U
ensemble. We can identify three dynamical regimes, based on the
magnitude of ki. In the first regime, interconversion is slow, with
ki # kðrÞ. In the second regime, ki is comparable to kðrÞ. In fact, as
we will discuss later in more detail, we will be particularly interested
in the crossover scenario where ki ≥ kðrÞ for some subset of the r
values in the experiment, but ki < kðrÞ for the remainder. If this
second regime is identified in an experiment, it provides a way to
estimate the scale of ki. Finally, in the third regime, the barriers
between the Nα basins of attraction are small, such that ki $ kðrÞ,
and the system can sample all of the states before rupture. Quali-
tatively, this scenario is indistinguishable from the case of a system
with a single native basin of attraction, with ki taking the role of keq
as the rate scale for overall equilibration in the landscape. Because
the first regime is simpler to treat mathematically than the second
regime, we will initially focus on a theory to describe the first regime
and identify its signatures in experimental data. Assessing the
validity of this theory in experiments will turn out to be a useful
criterion for distinguishing between the first, second, and third re-
gimes, and thus putting bounds on ki. This by-product of our theory
is of considerable importance because it is a priori very difficult to
estimate ki.
To begin, consider adiabatic pulling where ki is the slowest

rate in the system, ki # kcðrÞ # kðrÞ # keq. On the timescale of
pulling and rupture, the system is effectively trapped in a het-
erogeneous array of states: if we start a pulling trajectory in state
α, the system will remain in that state until rupture. The rupture
rate at constant force, kðf , αÞ will in general depend on the state,
and the ensemble of molecules from which we pull will be
characterized by a set of initial state probabilities pα. If ki is ex-
tremely small, such that the system cannot interconvert even on
the macroscopic timescales of experimental preparation, pα may
be different from peqα , because we are not guaranteed to draw
from an equilibrium distribution across the entire landscape.
This distinction is not important for the analysis below. In fact,
our approach also works when ki = 0, corresponding to the
quenched disorder limit, as seen for example in an ensemble of
molecules with covalent chemical differences.
The analog of Eq. 2 for the survival probability Σrðf Þ during adi-

abatic pulling in a heterogeneous system with small ki is as follows:

Σrðf Þ=
!
exp

"
−
1
r

Z f

0
df ′ωskðf ′, αÞ

ωsðf ′Þ

#$
, [4]

where the brackets denote an average over the initial ensemble of
states, hOðαÞi≡

P
αpαOðαÞ for any quantity OðαÞ. The associated

Ωrðf Þ from Eq. 3 can be expressed through a cumulant expansion in
terms of the integrand Iðf , αÞ≡

R f
0 df ′ωskðf ′, αÞ=ωsðf ′Þ as follows:

Ωrðf Þ=−
X∞

n=1
ð−1Þn κnðf Þ

n!rn−1
,

κnðf Þ≡ ∂n
∂λn   log

%
eλIðf , αÞ

&''
λ=0.

[5]

The first two cumulants are κ1ðf Þ= hIðf , αÞi and κ2ðf Þ= hI2ðf , αÞi−
hIðf , αÞi2. In the absence of heterogeneity, all cumulants κnðf Þ with
n> 1 are exactly zero. For a small degree of heterogeneity, or equiv-
alently for sufficiently fast loading rates r, the main contribution to
the expansion is from the n= 1 and n= 2 terms. For the case of
fast r, we assume that we are still within the adiabatic regime,
where kcðrÞ # kðrÞ, which turns out to be valid even for the largest
loading rates in the experimental studies discussed below. In this
scenario, where the n> 2 contributions are negligible, Ωrðf Þ can be
approximated as follows:

Ωrðf Þ≈
r

Δðf Þ log
"
1+

κ1ðf ÞΔðf Þ
r

#
, [6]

where Δðf Þ≡ κ2ðf Þ=κ21ðf Þ≥ 0 is a dimensionless measure of the
ensemble heterogeneity. For a pure system, Δðf Þ→ 0, giving
Ωrðf Þ→ κ1ðf Þ, independent of r. Eq. 6 agrees with the expansion in
Eq. 5 up to order n= 2, and also has the nice property that it
satisfies the inequality Ωrðf Þ≤ κ1ðf Þ, just like the exact form. The
latter inequality follows from the definition of Σrðf Þ in Eq. 4 and
Jensen’s inequality, Σrðf Þ≥ expð−κ1ðf Þ=rÞ.

Implementing the Model on Experimental Data. So far, the discussion
has been completely general, but to fit Eq. 6 to experimental data
we need specific forms for Δðf Þ and κ1ðf Þ. The minimal physically
sensible approximation, with the smallest number of unknown pa-
rameters, supplements Eq. 6 with the following assumptions:

Δðf Þ=Δ, κ1ðf Þ=
k0
βx‡

(
eβfx

‡ − 1
)
. [7]

The constants Δ, k0, and x‡ are fitting parameters. This presumes
that Δðf Þ changes little over the range of forces in the data, and
κ1ðf Þ has the same mathematical form as in a pure Bell model
with an escape rate kðf Þ= k0eβfx

‡ and ωsðf Þ=ωs, where k0 is the
escape rate at zero force and x‡ is the distance to the transition
state. For a heterogeneous system, the parameters k0 and x‡ no
longer have this simple interpretation, but we can still treat them
as effective Bell values, averaged over the ensemble, with Δ
measuring the overall scale of the heterogeneity. Eq. 6, together
with the three-parameter approximation of Eq. 7, provides re-
markably accurate fits to all of the heterogeneous experimental
datasets we have encountered in the literature. As will be seen
below, it is capable of simultaneously fitting Ωrðf Þ data for load-
ing rates r spanning nearly two orders of magnitude.
Although we focus on Ωrðf Þ as the main experimental quantity

of interest, Eqs. 6 and 7 can also be used to derive a closed form
expression for the probability distribution of rupture forces,
prðf Þ=−dΣrðf Þ=df =−ðd=df Þexpð−Ωrðf Þ=rÞ, at loading rate r:

prðf Þ=
k0eβ fx

‡

r

 

1+
Δk0

*
eβ fx‡ − 1

+

βrx‡

!−Δ+1
Δ

. [8]

In the limit of no heterogeneity, Δ→ 0, this distribution reduces
to the one predicted for a Bell model under a constant loading
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(LFA1) integrin from its ligand, intercellular adhesion molecule-1
(ICAM1) (34); (B) rupture of the GTPase protein Ran from the
nuclear receptor importin β (impβ) (35); for this dataset, Ran is
loaded with a GTP analog (GppNHp), as well complexed with
another binding partner, the protein RanBP1; (C) unzipping of a
10-bp DNA duplex (36); (D) Raible et al. (22) (based on earlier
experimental data from ref. 37), the unbinding of the regulatory
protein expG from a promoter DNA fragment; (E) Fuhrmann et al.
(38), the unbinding of the protein ATGRP8 (in the mutant
ATGRP8-RQ form) from its RNA target.
In all of these cases, the theoretical fit to Eqs. 6 and 7 (solid

curves) is excellent, allowing us to extract the fitting parameters
listed in each panel of Fig. 6. The values of k0, the effective zero-
force off-rate, are in the range ∼Oð0.01− 0.1  sÞ, whereas the ef-
fective transition state distance b∼Oð0.1− 1  nmÞ. Both of these
scales are physically sensible for protein or nucleic acid systems. The
panels in Fig. 6 are ordered by increasingΔ, which varies from 1.5 to
13.3. To verify the robustness of these Δ values, we also calculated
the pair parameters Δp for every dataset that had at least three
different loading rates. These are shown in Fig. 3B, with the cor-
responding Δ for the full data indicated as horizontal dashed lines.
As is expected for the NC regime, the Δp do not vary significantly
with rupture rate, and are consistent with Δ in each case. The three
largest values of Δ (Fig. 6 C–E) correspond to bonds composed of
nucleic acid base pairing or protein/nucleic acid interactions. This
significant heterogeneity may reflect the tendency for free-energy
landscapes involving nucleic acids to be more intrinsically rugged.
However, it is not necessarily the case that all nucleic acid systems

are heterogeneous (the BsoBI–DNA complex of Fig. 5B and the
RNA hairpin of Fig. 5E are counterexamples).
All of the data in Fig. 6 were collected using AFM pulling ex-

periments, in contrast to Fig. 5, where B,D, and E were optical-trap
results (the rest being AFM). It is thus worthwhile to wonder
whether aspects of the AFM experimental setup could affect the
heterogeneity analysis. In Supporting Information, 5. Sensitivity of the
Heterogeneity Analysis to Experimental Artifacts, we have analyzed
possible errors from several sources: the finite force resolution of
AFM cantilever, the nonnegligible hydrodynamic drag on the can-
tilever at large pulling speeds (>1 μm/s) (39–41), uncertainties
arising from finite sampling of the rupture force distributions, and
the apparatus response time. Based on this error analysis, we con-
clude that the estimation of the heterogeneity parameterΔ from the
experimental data are reliable in all of the systems of Fig. 6. The
observed heterogeneity must therefore be an intrinsic aspect to
the biomolecules, rather than an artifact of the AFM experiment.
The fidelity of the theoretical fits to the data in Fig. 6 (with no

signs of PC) means all of the experiments were in the heterogeneous,
adiabatic regime. Thus, the range of observed kðrÞ allows us to place
upper bounds on ki and lower bounds on keq, which are plotted in
the bar chart of Fig. 6F. There is a clear separation of timescales,
with all of the upper bounds on ki K 10 s−1, and the lower bounds on
keq J 102 s−1. The slow interconversion rates ki in these systems are
remarkable, particularly the DNA oligomer in Fig. 6C, which is a
tiny system only 10 bp long. The rupture force distributions for the
DNA unzipping were earlier fit to a specific model of dynamic
disorder in ref. 23, where force-dependent rates of conformational

A

D E F

B C

Fig. 5. Experimental ΩrðfÞ data (circles) calculated from rupture force distributions in five studies: (A) ref. 29, (B) ref. 30, (C) ref. 31, (D) ref. 6, and (E) ref. 32.
All these cases exhibit no apparent heterogeneity, with the ΩrðfÞ curves for each system collapsing on one another. Colors denote different pulling velocities
v or loading rates r, as reported in each study. For A and D, where v is reported, the linker stiffness values of ωs = 4.1 (A) and 0.043 pN/nm (D) are used to get
the corresponding loading rates r =ωsv. (F) For each of the experimental cases, the lower bounds on the possible values of keq and ki, derived from the
theoretical analysis.

8 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1518389113 Hinczewski et al.

For 

� ! 0

� 6= 0 ⌦rf (f) ⇡
rf
�

log


1 +

1(f)�

rf

�

1(f) = h
Z f

0
df 0k(f 0)i = h

Z f

0
df 0k0e

f/f i = k0f(e
f/f � 1)

from a DNA fragment. Plotting Ωrðf Þ (the data reproduced in Fig.
6D), they did not find any collapse, as might be surmised from
Eq. 3. This was not an artifact due to nonadiabaticity [violation of
the inequality kcðrÞ # kðrÞ # keq], because the absence of collapse
becomes even more pronounced at small loading rates, further into
the adiabatic territory where collapse should be observed. They
correctly inferred that the cause of this divergence is heterogeneity
in the ensemble of states in the protein–DNA complex.
To understand the behavior of Ωrðf Þ in a heterogeneous system,

let us consider the effects of a force ramp on a biomolecular free-
energy landscape with multiple functional states (Fig. 1B). Our goal
is to use Ωrðf Þ, derived from experimental pulling trajectories, to
quantify the extent of the heterogeneity and extract information
about the underlying conformational dynamics. The functional states
are distinct basins of attraction in the landscape, corresponding to
distinct functional ensembles which we label Nα for state α. We as-
sume the minimum energy in each well and their overall dimensions
are comparable, so that the equilibrium probabilities peqα of the
various states are of the same order. In this case, if α≠ α′, the
transition rates kα→α′ and kα′→α are also similar from detailed bal-
ance, kα→α′=kα′→α = peqα′ =p

eq
α ∼Oð1Þ. Hence, we can introduce an

overall scale for the interconversion rate between the different states,
ki, such that kα→α′ ∼OðkiÞ for any α≠ α′. Thus, we now have two
intrinsic timescales: keq for equilibration within a single Nα, and ki
for transitions between distinct Nα values, where typically ki # keq
must be true in order to observe clear heterogeneity.
The experimental setup is the same as above, with a loading rate

r, and a corresponding mean rupture rate kðrÞ for reaching the U
ensemble. We can identify three dynamical regimes, based on the
magnitude of ki. In the first regime, interconversion is slow, with
ki # kðrÞ. In the second regime, ki is comparable to kðrÞ. In fact, as
we will discuss later in more detail, we will be particularly interested
in the crossover scenario where ki ≥ kðrÞ for some subset of the r
values in the experiment, but ki < kðrÞ for the remainder. If this
second regime is identified in an experiment, it provides a way to
estimate the scale of ki. Finally, in the third regime, the barriers
between the Nα basins of attraction are small, such that ki $ kðrÞ,
and the system can sample all of the states before rupture. Quali-
tatively, this scenario is indistinguishable from the case of a system
with a single native basin of attraction, with ki taking the role of keq
as the rate scale for overall equilibration in the landscape. Because
the first regime is simpler to treat mathematically than the second
regime, we will initially focus on a theory to describe the first regime
and identify its signatures in experimental data. Assessing the
validity of this theory in experiments will turn out to be a useful
criterion for distinguishing between the first, second, and third re-
gimes, and thus putting bounds on ki. This by-product of our theory
is of considerable importance because it is a priori very difficult to
estimate ki.
To begin, consider adiabatic pulling where ki is the slowest

rate in the system, ki # kcðrÞ # kðrÞ # keq. On the timescale of
pulling and rupture, the system is effectively trapped in a het-
erogeneous array of states: if we start a pulling trajectory in state
α, the system will remain in that state until rupture. The rupture
rate at constant force, kðf , αÞ will in general depend on the state,
and the ensemble of molecules from which we pull will be
characterized by a set of initial state probabilities pα. If ki is ex-
tremely small, such that the system cannot interconvert even on
the macroscopic timescales of experimental preparation, pα may
be different from peqα , because we are not guaranteed to draw
from an equilibrium distribution across the entire landscape.
This distinction is not important for the analysis below. In fact,
our approach also works when ki = 0, corresponding to the
quenched disorder limit, as seen for example in an ensemble of
molecules with covalent chemical differences.
The analog of Eq. 2 for the survival probability Σrðf Þ during adi-

abatic pulling in a heterogeneous system with small ki is as follows:

Σrðf Þ=
!
exp

"
−
1
r

Z f

0
df ′ωskðf ′, αÞ

ωsðf ′Þ

#$
, [4]

where the brackets denote an average over the initial ensemble of
states, hOðαÞi≡

P
αpαOðαÞ for any quantity OðαÞ. The associated

Ωrðf Þ from Eq. 3 can be expressed through a cumulant expansion in
terms of the integrand Iðf , αÞ≡

R f
0 df ′ωskðf ′, αÞ=ωsðf ′Þ as follows:

Ωrðf Þ=−
X∞

n=1
ð−1Þn κnðf Þ

n!rn−1
,

κnðf Þ≡ ∂n
∂λn   log

%
eλIðf , αÞ

&''
λ=0.

[5]

The first two cumulants are κ1ðf Þ= hIðf , αÞi and κ2ðf Þ= hI2ðf , αÞi−
hIðf , αÞi2. In the absence of heterogeneity, all cumulants κnðf Þ with
n> 1 are exactly zero. For a small degree of heterogeneity, or equiv-
alently for sufficiently fast loading rates r, the main contribution to
the expansion is from the n= 1 and n= 2 terms. For the case of
fast r, we assume that we are still within the adiabatic regime,
where kcðrÞ # kðrÞ, which turns out to be valid even for the largest
loading rates in the experimental studies discussed below. In this
scenario, where the n> 2 contributions are negligible, Ωrðf Þ can be
approximated as follows:

Ωrðf Þ≈
r

Δðf Þ log
"
1+

κ1ðf ÞΔðf Þ
r

#
, [6]

where Δðf Þ≡ κ2ðf Þ=κ21ðf Þ≥ 0 is a dimensionless measure of the
ensemble heterogeneity. For a pure system, Δðf Þ→ 0, giving
Ωrðf Þ→ κ1ðf Þ, independent of r. Eq. 6 agrees with the expansion in
Eq. 5 up to order n= 2, and also has the nice property that it
satisfies the inequality Ωrðf Þ≤ κ1ðf Þ, just like the exact form. The
latter inequality follows from the definition of Σrðf Þ in Eq. 4 and
Jensen’s inequality, Σrðf Þ≥ expð−κ1ðf Þ=rÞ.

Implementing the Model on Experimental Data. So far, the discussion
has been completely general, but to fit Eq. 6 to experimental data
we need specific forms for Δðf Þ and κ1ðf Þ. The minimal physically
sensible approximation, with the smallest number of unknown pa-
rameters, supplements Eq. 6 with the following assumptions:

Δðf Þ=Δ, κ1ðf Þ=
k0
βx‡

(
eβfx

‡ − 1
)
. [7]

The constants Δ, k0, and x‡ are fitting parameters. This presumes
that Δðf Þ changes little over the range of forces in the data, and
κ1ðf Þ has the same mathematical form as in a pure Bell model
with an escape rate kðf Þ= k0eβfx

‡ and ωsðf Þ=ωs, where k0 is the
escape rate at zero force and x‡ is the distance to the transition
state. For a heterogeneous system, the parameters k0 and x‡ no
longer have this simple interpretation, but we can still treat them
as effective Bell values, averaged over the ensemble, with Δ
measuring the overall scale of the heterogeneity. Eq. 6, together
with the three-parameter approximation of Eq. 7, provides re-
markably accurate fits to all of the heterogeneous experimental
datasets we have encountered in the literature. As will be seen
below, it is capable of simultaneously fitting Ωrðf Þ data for load-
ing rates r spanning nearly two orders of magnitude.
Although we focus on Ωrðf Þ as the main experimental quantity

of interest, Eqs. 6 and 7 can also be used to derive a closed form
expression for the probability distribution of rupture forces,
prðf Þ=−dΣrðf Þ=df =−ðd=df Þexpð−Ωrðf Þ=rÞ, at loading rate r:

prðf Þ=
k0eβ fx

‡

r

 

1+
Δk0

*
eβ fx‡ − 1

+

βrx‡

!−Δ+1
Δ

. [8]

In the limit of no heterogeneity, Δ→ 0, this distribution reduces
to the one predicted for a Bell model under a constant loading
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fluctuations were extracted. The range of these estimated rates
(2.8 × 10−5 to 4.8 × 10−1 s−1) are consistent with the upper bound
derived from the current analysis, ki < 0.6 s−1. However, we must
keep in mind that—unless PC is observed, pinpointing the scale of
ki—our analysis cannot distinguish between a heterogeneous sys-
tem characterized by dynamic disorder with slow ki and one with
quenched disorder (ki = 0) caused by covalent chemical differ-
ences among the experimental samples.
The Ran–impβ system in Fig. 6B provides an interesting coun-

terpart to the A1–GPIbα complex discussed earlier. As in that
example, the system is believed to exhibit two bound conformations
with different adhesion strengths (35, 42). This is also supported by
evidence of conformational variability in the crystal structure of a
truncated impβ bound to Ran–GppNHp, where two versions of the
molecular complex were observed, characterized by substantially
different sets of interactions (43). The bound conformations are
expected to dynamically interconvert, but the timescale has not
been measured. Our analysis of the existing data provides an upper
bound on the rate, ki < 6.4 s−1. We predict that further experi-
ments could fix the rate more precisely: for example, by going to
pulling velocities slower than v= 100 nm/s (the slowest v in the
current dataset), we may be able to observe PC, like in Fig. 2D,
Middle, establishing the scale of ki. This is opposite of the pre-
scription we gave above for the A1–GPIbα complex, where the
existing experiments have been too slow rather than too fast. Our
theory thus provides a guide for experimentalists to fine-tune their

parameters to extract the most information possible from the
system under study.
We envision that our approach will become one part of a

larger, comprehensive experimental toolbox for investigating
heterogeneity in biomolecules: it can test for and quantify het-
erogeneity based on the rupture force distributions, but these
distributions do not contain all of the information we would like
to know about a system. A large Δ parameter indicates that there
are multiple states in the intact/folded part of the free-energy
landscape, and that these states must interconvert on timescales
slower than the mean rupture time. To extract additional details,
like the precise number of functional states, requires using
other experimental/analytical techniques, like single-molecule
FRET. One recent example where this was demonstrated was the
k-means clustering algorithm applied by Hyeon et al. (16) to esti-
mate the number of interconverting states from single-molecule
FRET trajectories of a simple nucleic acid construct, the Holliday
junction. In principle, this approach could be extended to folding
trajectories obtained in constant force experiments, which in con-
junction with the distribution of rupture forces could be used to
extract the number of distinct functional states.

Conclusions
Our work introduces a generic method for characterizing het-
erogeneity in biomolecules using rupture force distributions from
force spectroscopy experiments. The central result is a single
nondimensional parameter Δ≥ 0. A system with no measurable

A

D E F

B C

Fig. 6. ExperimentalΩrðfÞ data (circles) calculated from rupture force distributions in five studies: (A) ref. (34), (B) ref. (35), (C) ref. (36), (D) ref. (22), and (E) ref. (38). In
contrast to Fig. 5, these systems exhibit heterogeneity, with distinct ΩrðfÞ curves. Colors denote different pulling velocities v or loading rates r, as reported in each
study. For B–E, where v is reported, the linker stiffness values of ωs = 5.0 (B), 2.0 (C), 3.0 (D), and 6.0 pN/nm (E) are used to get the corresponding loading rates r =ωsv.
Solid curves show the theoretical best fit to Eqs. 6 and 7, with the fitted parameters k0, x‡, and Δ listed in each panel. (F) For each of the experimental cases, the lower
bounds on the possible values of keq (blue bars) and the upper bounds on ki (pink bars), derived from the theoretical analysis.
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fluctuations were extracted. The range of these estimated rates
(2.8 × 10−5 to 4.8 × 10−1 s−1) are consistent with the upper bound
derived from the current analysis, ki < 0.6 s−1. However, we must
keep in mind that—unless PC is observed, pinpointing the scale of
ki—our analysis cannot distinguish between a heterogeneous sys-
tem characterized by dynamic disorder with slow ki and one with
quenched disorder (ki = 0) caused by covalent chemical differ-
ences among the experimental samples.
The Ran–impβ system in Fig. 6B provides an interesting coun-

terpart to the A1–GPIbα complex discussed earlier. As in that
example, the system is believed to exhibit two bound conformations
with different adhesion strengths (35, 42). This is also supported by
evidence of conformational variability in the crystal structure of a
truncated impβ bound to Ran–GppNHp, where two versions of the
molecular complex were observed, characterized by substantially
different sets of interactions (43). The bound conformations are
expected to dynamically interconvert, but the timescale has not
been measured. Our analysis of the existing data provides an upper
bound on the rate, ki < 6.4 s−1. We predict that further experi-
ments could fix the rate more precisely: for example, by going to
pulling velocities slower than v= 100 nm/s (the slowest v in the
current dataset), we may be able to observe PC, like in Fig. 2D,
Middle, establishing the scale of ki. This is opposite of the pre-
scription we gave above for the A1–GPIbα complex, where the
existing experiments have been too slow rather than too fast. Our
theory thus provides a guide for experimentalists to fine-tune their

parameters to extract the most information possible from the
system under study.
We envision that our approach will become one part of a

larger, comprehensive experimental toolbox for investigating
heterogeneity in biomolecules: it can test for and quantify het-
erogeneity based on the rupture force distributions, but these
distributions do not contain all of the information we would like
to know about a system. A large Δ parameter indicates that there
are multiple states in the intact/folded part of the free-energy
landscape, and that these states must interconvert on timescales
slower than the mean rupture time. To extract additional details,
like the precise number of functional states, requires using
other experimental/analytical techniques, like single-molecule
FRET. One recent example where this was demonstrated was the
k-means clustering algorithm applied by Hyeon et al. (16) to esti-
mate the number of interconverting states from single-molecule
FRET trajectories of a simple nucleic acid construct, the Holliday
junction. In principle, this approach could be extended to folding
trajectories obtained in constant force experiments, which in con-
junction with the distribution of rupture forces could be used to
extract the number of distinct functional states.

Conclusions
Our work introduces a generic method for characterizing het-
erogeneity in biomolecules using rupture force distributions from
force spectroscopy experiments. The central result is a single
nondimensional parameter Δ≥ 0. A system with no measurable

A

D E F

B C

Fig. 6. ExperimentalΩrðfÞ data (circles) calculated from rupture force distributions in five studies: (A) ref. (34), (B) ref. (35), (C) ref. (36), (D) ref. (22), and (E) ref. (38). In
contrast to Fig. 5, these systems exhibit heterogeneity, with distinct ΩrðfÞ curves. Colors denote different pulling velocities v or loading rates r, as reported in each
study. For B–E, where v is reported, the linker stiffness values of ωs = 5.0 (B), 2.0 (C), 3.0 (D), and 6.0 pN/nm (E) are used to get the corresponding loading rates r =ωsv.
Solid curves show the theoretical best fit to Eqs. 6 and 7, with the fitted parameters k0, x‡, and Δ listed in each panel. (F) For each of the experimental cases, the lower
bounds on the possible values of keq (blue bars) and the upper bounds on ki (pink bars), derived from the theoretical analysis.
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