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Q: Scaling relation of the mean looping time with the 
length of polymer? (Theory & Simulation ?)
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behavior. In essence, to a good approximation the phase
behavior of the binary or polydisperse system can be
mapped onto that of a single component system. In a sense,
this binary hard-sphere fluid is analogous to a colloidal
fluid of hard spheres with a polydispersity of 5%. Experi-
ments on colloidal systems have shown that a modest de-
gree of polydispersity causes a significant delay in crystal-
lization without having a significant effect on dynamical
properties such as the time correlation functions [19].

The data presented here was computed from simulations
consisting of N ! 10 976 particles. To check for finite size
effects we repeated the calculations of the VAF at the
highest ! ! 0:58 and lowest ! ! 0:15 volume fractions
with N ! 5" 105 particles. There was no discernible sys-
tematic difference in the results for the two system sizes.
We also calculated the speed of sound from the equation of
state [20], which showed that finite size effects should be
most important for the lowest volume fraction studied. For
the larger N ! 5" 105 system it was found that a low fre-
quency disturbance could not cross the periodic cell length
on the longest time scale in our VAF calculations, regard-
less of volume fraction. Thus there can be little doubt that
the results presented here are accurately representative of
what would be obtained in the thermodynamic limit.

The VAFs were computed from 50 independent simula-
tions, with a standard error in the region of the long-time
tails of 4"10#5, except those at the volume fractions
shown in Fig. 4, which were computed from ensembles
of 500 independent simulations, with a standard error of
1:5" 10#5.

Figure 1 shows the VAF versus log" for the one compo-
nent fluid at several volume fractions in thermodynamic
equilibrium (!<!f), at the freezing volume fraction
(!!!f) and at a volume fraction for a marginally under-
cooled fluid (!>!f). The units used are such that the
mean-squared thermal velocity, Z$0% ! kBT=m ! 1 and
the time unit is #

!!!!!!!!!!!!!!!
m=kBT

p
where T is the absolute tem-

perature, # is the atomic diameter, m is the atomic mass,
and kB is Boltzmann’s constant. From this plot it can be
seen that the VAF becomes negative for ! & 0:45.

In order to examine the long-time behavior, the data is
replotted in Fig. 2 as a double logarithmic plot of jZ$"%j
versus ". From this figure it is clear that Z$"% decays from
the mean-squared thermal velocity, a condition imposed by
definition, to an algebraic form consistent with "#3=2, for
all volume fractions below the freezing point, ! ! 0:494.
Thus, time coarse graining exposes a continuous and
smooth crossover from ballistic motion to fully developed,
viscous flow. The dip that becomes apparent for !> 0:3
manifests velocity reversal incurred by damped compres-
sion modes, i.e., a transient visco-elastic response [8]. This
transient response increases in strength with volume frac-
tion and, for ! ! 0:45, it causes Z$"% to become negative,
i.e., the velocities become anticorrelated at intermediate
times. But even then Z$"% crosses the abscissa again and
decays to zero from above in a manner consistent with the

power law, "#3=2. Thus, for the fluid in thermodynamic
equilibrium the data indicates that the fluid’s delayed
inelastic, viscous response to a thermally activated distur-
bance ultimately dominates, whatever the strength of its
transient elastic response. This provides confirmation of
what had previously only been conjectured [8,21].

The data in Fig. 2 suggests that there is a qualitative
change in behavior as the freezing point is approached, and

FIG. 1 (color online). A plot of the velocity autocorrelation
function Z$"% versus log" (symbols are defined in the legend),
calculated from one component hard-sphere molecular dynamics
simulations of fluids at various volume fractions ! ! (volume
of all the spheres divided by the total system volume). For ! &
0:45 the VAF becomes negative, so in order to expose the long-
time behavior, double logarithmic plots of jZ$"%j are needed (see
Fig. 2).

1×10-3

1×10-4

1×10-5

FIG. 2 (color online). A double logarithmic plot of jZ$"%j for
the data shown in Fig. 1. For all curves below !f ! 0:494 a
long-time 3=2 power law (indicated by the dashed line) is clearly
observed. As the volume fraction increases a nonmonotonic
decay emerges as may be seen distinctly from the curve. We
interpret this as indicative of the fluids strengthening visco-
elastic behavior. For ! & 0:45, the points where Z$"% cross
zero may be seen as a sharp minimum in this graph. For ! !
0:45 and ! ! 0:48 a second sharp minimum is observed [Z$"%
has crossed zero again and now becomes positive], followed by a
long-time 3=2 tail. Upon increasing the volume fraction to ! !
0:494 and ! ! 0:505 this reentrant positive behavior is no
longer observed.
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