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Prologue

– Ever since the birth of General Relativity, Riemannian geometry has been the mathematical
paradigm for modern physics. The metric, gµν , is privileged to be the fundamental variable
that provides a concrete tool to address the notion of ‘spacetime’.

– However, string theory suggests to put a two-form gauge potential, Bµν , and a scalar dilaton,
φ, on an equal footing along with the metric: Forming the closed string massless sector, they
are ubiquitous in all string theories, and are transformed to one another under T-duality.

– By now, Double Field Theory has evolved to achieve its own autonomy statute, perhaps as an
alternative gravitational theory to GR. Postulating the O(D,D) symmetry as the fundamental
principle, GR and the Einstein Field Equations are unambiguosly augmented.

– Further, it turns out that DFT encompasses not only the Riemannian geometry but also
non-Riemannian ones where the notion of Riemannian metric ceases to exist.

– In this talk, after reviewing these aspects of DFT, I will introduce my latest work with
Shigeki Sugimoto (arXiv:2008.03084, PRL), where we examined some quantum consistency
of the non-Riemannian geometries as novel backgrounds of string theory.
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O(D,D) Symmetry Principle

• Working hypothesis is to view an O(D,D) invariant metric, JMN =

 0 1

1 0

, and

an O(D,D) covariant generalized metric, HMN , as fundamental entities.

• The generalized metric should satisfy defining properties:

HMN = HNM , HM
KHN

LJKL = JMN .

• Combing the two, we have a pair of projectors (orthogonal and complete),

PMN = 1
2 (JMN +HMN ) , P̄MN = 1

2 (JMN −HMN ) ,

• Further, taking the ‘square root’ of each projector,

PMN = VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄ η̄p̄q̄ ,

we obtain a pair of DFT-vielbeins which meet their own defining properties,

VMpV M
q = ηpq , V̄Mp̄V̄ M

q̄ = η̄p̄q̄ , VMpV̄ M
q̄ = 0 .

• Besides, there is an O(D,D) singlet dilaton, d , which can be gauge fixed by diffeomorphisms.
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Semi-covariant formalism w/ Imtak Jeon and Kanghoon Lee 2010, 2011

• In GR, the Christoffel symbol is the unique metric-compatible connection, ∇λgµν = 0, which
satisfies either a torsionless condition, or an alternative condition that the metric is the only
ingredient to form the connection.

• Similarly, the connection in DFT can be uniquely fixed

ΓLMN =2(P∂LPP̄)[MN]
+2
(

P̄[M
J P̄N]

K−P[M
J PN]

K
)
∂J PKL− 4

D−1

(
P̄L[M P̄N]

K +PL[M PN]
K
)(
∂K d+(P∂J PP̄)[JK ]

)
while the compatibility holds,

∇LJMN = 0 , ∇LHMN = 0 , ∇Ld = − 1
2 e2d∇L

(
e−2d) = 0 .

• Further, spin connections for twofold local Lorentz symmetries can be determined,

ΦMpq = V N
p∇M VNq , Φ̄Mp̄q̄ = V̄ N

p̄∇M V̄Nq̄

by requiring that Master derivative,

DM = ∂M + ΓM + ΦM + Φ̄M = ∇M + ΦM + Φ̄M

should be compatible with the vielbeins,

DM VNp = ∇M VNp + ΦMp
qVNq = 0 , DM V̄Np̄ = ∇M V̄Np̄ + Φ̄Mp̄

q̄V̄Nq̄ = 0 .

These spin connections are essentially the ‘generalized fluxes’ à la Aldazabala, Marques, Nunez, and Grana.

Jeong-Hyuck Park String Theory and Non-Riemannian Geometry



Semi-covariant formalism w/ Imtak Jeon and Kanghoon Lee 2010, 2011

• Semi-covariant Riemann curvature :

SKLMN = S[KL][MN] = SMNKL := 1
2

(
RKLMN + RMNKL − ΓJ

KLΓJMN
)
, S[KLM]N = 0 ,

where RABCD denotes the ordinary “field strength”, RCDAB=∂AΓBCD−∂BΓACD+ΓAC
E ΓBED−ΓBC

E ΓAED .

By construction, it varies as δSABCD=∇[AδΓB]CD+∇[CδΓD]AB , hence good for variational principle.

• Semi-covariance means, with PLMN
EFG=PL

E P[M
[F PN]

G]+ 2
PK

K−1
PL[M PN]

[F PG]E ,

δξ
(
∇LTM1···Mn

)
= L̂ξ

(
∇LTM1···Mn

)
+
∑n

i=1 2(P+P̄)LMi
NEFG∂E∂F ξG TM1···Mi−1NMi+1···Mn

δξSKLMN = L̂ξSKLMN + 2∇[K
[
(P+P̄)L][MN]

EFG∂E∂F ξG
]

+ 2∇[M
[
(P+P̄)N][KL]

EFG∂E∂F ξG
]

δξΓCAB = L̂ξΓCAB + 2
[
(P + P̄)CAB

FDE − δ F
C δ D

A δ E
B

]
∂F∂[DξE ]

• The red-colored anomalies can be easily projected out to give fully covariant objects, e.g.

DpTq̄ = ∇LTM V L
pV̄ M

q̄ , Spq̄ = SMNV M
pV̄ N

q̄ ( Ricci ) , S(0) = Spq
pq − Sp̄q̄

p̄q̄ ( scalar )

γpDpρ , Dp̄ρ ( Dirac ) , Fpq̄ = (∇M WN −∇NWM − i [WM ,WN ]) V M
pV̄ N

q̄ ( Yang–Mills )

D±C = γpDpC ± γ(D+1)Dp̄Cγ̄p̄ , (D±)2 = 0 =⇒ F = D+C ( RR flux ) .
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Einstein Equations from General Covariance w/ S. Angus and K. Cho 1804.00964

• Let us consider a DFT action coupled to generic matter, Υa (e.g. RR, fermions, or tachyon),

Action =

ˆ
Σ

e−2d
[

1
16πG S(0) + Lmatter

(
Υa,DAΥb

) ]
Deriving the variation of the action induced by all the fields, d ,VAp, V̄Ap,Υa ,

δAction =

ˆ
Σ

e−2d
[

1
4πG V̄ Mq̄δVM

p(Spq̄ − 8πGKpq̄)− 1
8πG δd(S(0) − 8πGT(0)) + δΥa

δLmatter

δΥa

]
we naturally define

Kpq̄ := 1
2

(
VMp

δLmatter
δV̄M

q̄ − V̄Mq̄
δLmatter
δVM

p

)
= −2VMpV̄Nq̄

δLmatter
δHMN

, T(0) := e2d ×
δ
(

e−2d Lmatter
)

δd

• The diffeomorphic invariance of the action,

0 =

ˆ
Σ

e−2d
[

1
8πG ξ

NDM
[
4V[M

pV̄N]
q̄(Spq̄ − 8πGKpq̄)− 1

2JMN (S(0) − 8πGT(0))
]

+ δξΥa
δLmatter

δΥa

]
further guides us to identify the Einstein curvature, w/ S. Rey, W. Rim, and Y. Sakatani 2015

GMN := 4V[M
pV̄N]

q̄Spq̄ − 1
2JMNS(0) , ∇M GMN = 0 (off-shell) ,

and the Energy-Momentum tensor,

TMN := 4V[M
pV̄N]

q̄Kpq̄ − 1
2JMNT(0) , DM T MN = 0 (on-shell) .

• Equating them, we obtain the Einstein Double Field Equations: GMN = 8πGTMN
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Question: Is DFT a mere reformulation of SUGRA in an O(D,D) manifest fashion?

The answer would be (and had been) yes, if we employ the well-known parametrization,

HMN =

 g−1 −g−1B

Bg−1 g − Bg−1B

 e−2d =
√
|g|e−2φ

Giveon, Rabinovici, Veneziano ’89, Duff ’90

Upon this parametrization, EDFEs, GMN = 8πGTMN , unify

Rµν + 25µ(∂νφ)− 1
4 HµρσHν

ρσ = 8πGK(µν)

e2φ5ρ
(

e−2φHρµν
)

= 16πGK[µν]

R + 42φ− 4∂µφ∂
µ
φ− 1

12 HλµνHλµν = 8πGT(0)

which implies Stringy Newton Gravity in a non-relativistic limit (D = 4),

∇2ΦNewton = 4πGρ + H·H , ∇·H = 0 , ∇×H = 4πG K

⇒ H-flux as dark matter, w/ Kevin Morand and Kyungho Cho 2019

• The truth is that, DFT works perfectly fine with any generalized metric that satisfies

the defining properties: HMN = HNM , HM
KHN

LJKL = JMN .

And the above famous parametrization is not the most general solution to them.

Hence the answer to the question can be negative.
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Classification w/ Kevin Morand 1707.03713

The most general parametrizations of the generalized metric, HMN = HNM , HM
KHN

LJKL = JMN ,

can be classified by two non-negative integers, (n, n̄), 0 ≤ n + n̄ ≤ D :

HMN =

 Hµν −HµσBσλ + Yµi X i
λ − Ȳµı̄ X̄ ı̄λ

BκρHρν + X i
κYνi − X̄ ı̄κȲνı̄ Kκλ − BκρHρσBσλ + 2X i

(κBλ)ρYρi − 2X̄ ı̄(κBλ)ρȲρı̄



=

 1 0

B 1


 H Yi (X i )T − Ȳı̄(X̄ ı̄)T

X i (Yi )
T − X̄ ı̄(Ȳı̄)T K


 1 −B

0 1


i) Symmetric and skew-symmetric fields : Hµν = Hνµ, Kµν = Kνµ, Bµν = −Bνµ ;

ii) Two kinds of zero eigenvectors: with i, j = 1, 2, · · · , n & ı̄, ̄ = 1, 2, · · · , n̄,

HµνX i
ν = 0 , Hµν X̄ ı̄ν = 0 , KµνYνj = 0 , Kµν Ȳν̄ = 0 ;

iii) Completeness relation: HµρKρν + Yµi X i
ν + Ȳµı̄ X̄ ı̄ν = δµν .

– Both Hµν and Kµν have the signature,
(
t, s, n + n̄

)
for temporal, spatial, and non-Riemannian dimensions.

– The underlying coset is O(D,D)
O(t+n,s+n)×O(s+n̄,t+n̄) with dimensions D2− (n− n̄)2, whileHM

M = 2(n− n̄) .
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Classification w/ Kevin Morand 1707.03713

I. (n, n̄) = (0, 0) corresponds to the Riemannian case or Generalized Geometry à la Hitchin.

II. (n, n̄) 6= (0, 0)：Non-Riemannian. Examples include

• (1, 0) Newton–Cartan gravity, ds2 = −c2dt2 + dx2, lim
c→∞

g−1 is finite & degenerate

• (1, 1) Stringy/torsional Newton–Cartan (curved), Gomis–Ooguri non-relativistic string (flat)
Andringa, Bergshoeff, Gomis, de Roo 2012; Harmark, Hartong, Obers 2017; w/ Melby-Thompson, Meyer, Ko 2015; Blair 2019

• (D−1, 0) ultra-relativistic Carroll gravity, dτ2 = −dt2 + c−2dx2, lim
c→0

g−1 is finite & degenerate

• (n, n̄) with n + n̄ = D : maximally non-Riemannian with no time and no space.

In particular, (D, 0) or (0,D) is uniquely given asH = ±J with trivial coset, O(D,D)
O(D,D) .

These two are the perfectly O(D,D)-symmetric vacua of DFT with no moduli.

“Spacetime emerges after SSB of O(D,D), identifying {g,B} as Nambu–Goldstone boson moduli. "
Berman, Blair, and Otsuki 2019

– Generically, on worldsheet, string becomes chiral and anti-chiral over the n and n̄ dimensions:

X i
µ ∂+xµ(τ, σ) = 0 , X̄ ı̄µ ∂−xµ(τ, σ) = 0 .

– Further, analysis on Killing equations, L̂ξHMN = 8P̄(M
[K PN)

L]∇K ξL = 0, reveals that

non-Riemannian isometries are supertranslational. w/ Chris Blair and Gerben Oling, in preparation.
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Fluctuation Analysis w/ Melby-Thompson, Meyer, Ko 2015, and w/ K. Cho 2019

• Linearized Einstein Double Field Equations for vacuum, GMN = 0, are

(PMN − P̄MN )∇M∂Nδd − 1
4∇M∇NδHMN = 0 ( scalar )

PM
K P̄N

L∇K ∂Lδd + 1
8 (PM

K ∆̄N
L −∆M

K P̄N
L)δHKL = 0 ( Ricci )

which are invariant under the diffeomorphically inherited transformations of the fluctuations,

δξ(δd) = L̂ξd , δξ(δHMN ) = L̂ξHMN .

Note ∆K
L = PK

LPMN∇M∇N − 2PK
NPLM (∇M∇N − SMN ) and similarly for ∆̄K

L with P ↔ P̄.

• Analysis of δHMN around a generic (n, n̄) non-Riemannian background shows

– δHMN ’s form the coset O(D,D)
O(t+n,s+n)×O(s+n̄,t+n̄) with dimensions, D2 − (n − n̄)2.

– δHMN ’s include those which decrease the ‘non-Riemannianity’, e.g. (n, n̄)→ (n − 1, n̄ − 1).

Riemannian spacetime may then emerge out of a maximally non-Riemannian background.

It also suggests that the various non-Riemannian gravities, such as Newton–Cartan, should

better be identified as different solution sectors of DFT rather than viewed as independent theories.

Jeong-Hyuck Park String Theory and Non-Riemannian Geometry



Section condition = Doubled-yet-Gauged JHP 1304.5946

• DFT necessarily imposes the ‘section condition’ for xM = (x̃µ, xν),

∂M∂
M = ∂µ∂̃

µ + ∂̃µ∂µ = 0

which can be generically solved by letting ∂̃µ = 0, up to O(D,D) rotations.

• The section condition is mathematically equivalent to a certain translational invariance:

Φs(x) = Φs(x + ∆) , ∆M = Φt∂
M Φu ,

where Φs,Φt ,Φu ∈
{

d ,HMN , ξ
M , ∂Nd , ∂LHMN , · · ·

}
, arbitrary functions appearing in DFT,

and ∆M is said to be ‘derivative-index-valued’.

I ‘Physics’ should be invariant under such a shift of the doubled coordinates.

Doubled coordinates, xM = (x̃µ, xν), are gauged through an equivalence relation,

xM ∼ xM + ∆M (x) : Coordinate Gauge Symmetry

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

• With ∂̃µ = 0 and ∆M = cµ∂M xµ, we note (x̃µ , xν) ∼ (x̃µ + cµ , xν).

O(D,D) then rotates the gauged directions and hence the section.
c.f. Alfonsi 2019, 2020 for formal discussion
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Section condition = Doubled-yet-Gauged JHP 1304.5946

• In DFT, the usual coordinate basis of one-forms, dxA, is not covariant:
– Neither diffeomorphic covariant,

δxM = ξM , δ(dxM ) = dxN∂Nξ
M 6= dxN (∂Nξ

M − ∂MξN )

– Nor invariant under the coordinate gauge symmetry,

dxM −→ d
(
xM + ∆M) 6= dxM

.

⇒ The naive contraction, dxMdxNHMN , is not an invariant scalar nor ‘proper length’.

• These problems can be all cured by gauging the one-forms, dxA, explicitly,

DxM := dxM −AM , AM∂M = 0 (derivative-index-valued) .

DxM is covariant:

δxM = ∆M , δAM = d∆M =⇒ δ(DxM ) = 0 ;

δxM = ξM , δAM = ∂MξN (dxN −AN ) =⇒ δ(DxM ) = DxN (∂Nξ
M − ∂MξN ) .

– Concretely, setting ∂̃µ = 0 and AM = Aλ∂M xλ = (Aµ, 0), we get DxM = (dx̃µ − Aµ, dxν) .
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Proper Length & Point Particle w/ S. Ko, M. Suh 2016 and w/ T. Basile, E. Joung 2019

• With DxM = dxM −AM , it is possible to define the ‘proper length’ through a path integral,

Proper Length := − ln
[ ˆ
DA exp

(
−
ˆ √

DxM DxNHMN

)]
.

– With ∂̃µ = 0, AM = (Aµ, 0), and the decomposition, Aµ = (KH + X i Yi + X̄ ı̄Ȳı̄)µνAν ,

DxM DxNHMN = dxµdxνKµν + [dx̃µ − Bµκdxκ − (KHA)µ]
[
dx̃ν − Bνλdxλ − (KHA)ν

]
Hµν

+ 2X i
µdxµ [dx̃ν − Bνρdxρ − (X ·YA)ν ] Yνi − 2X̄ ı̄µdxµ

[
dx̃ν − Bνρdxρ − (X̄ ·ȲA)ν

]
Ȳνı̄

– Essentially, (KHA)µ leads to Gaussian integral, while (X ·YA)ν and (X̄ ·ȲA)µ are Lagrange

multipliers to freeze the non-Riemannian dimensions: X i
µdxµ = 0, X̄ ı̄µdxµ = 0

Proper Length then reduces consistently to
ˆ√

dxµdxνKµν(x) , which is independent of

x̃µ. Hence, it measures the distance between two gauge orbits, as desired.

• This line of thinking readily leads to a completely covariant particle action (Faddeev–Popov),

Sparticle =

ˆ
dτ 1

2 e−1DτxM DτxNHMN (x)− 1
2 m2e + kMAM + k(e − 1) + 1

2 θM θ̇
M +

2∑
a=1

1
2ϑaϑ̇

a

where θM = (Cµ,Bν) and ϑa = (c, b). This is a constrained system, and the relevant Dirac

bracket coincides with the graded Poisson bracket introduced by Deser and Sämann 2016.
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Doubled-yet-Gauged String

• The formalism extends to string: Hull 2006; w/ Kanghoon Lee 2013

Sstring = 1
4πα′

ˆ
d2σ − 1

2

√
−hhαβDαxM DβxNHMN (x)− εαβDαxMAβM

which is manifestly O(D,D) symmetric, doubled target spacetime diffeomorphism covariant,
the coordinate gauge symmetry invariant, and worldsheet diffeomorphism invariant.

– Classically, upon a generic (n, n̄) non-Riemannian backgrounds, after integrating out the
auxiliary gauge potential —quadratic in (KHA)µ and linear in (X ·Y A)µ, (X̄ ·ȲA)µ—

Sstring ⇒ 1
2πα′

ˆ
d2σ − 1

2

√
−hhαβ∂αxµ∂βxνKµν + 1

2 ε
αβ∂αxµ∂βxνBµν + 1

2 ε
αβ∂αx̃µ∂βxµ

and string becomes chiral and anti-chiral over the n and n̄ dimensions respectively,

X i
µ

(
∂αxµ + 1√

−h
εαβ∂βxµ

)
= 0 , X̄ ı̄µ

(
∂αxµ − 1√

−h
εαβ∂βxµ

)
= 0 .

– κ-symmetric Green–Schwarz superstring extension unifies IIA & IIB JHP 1609.04265

SGS = 1
4πα′

ˆ
d2σ − 1

2

√
−hhαβΠM

αΠN
βHMN − εαβDαxM (AβM − iΣβM

)
where ΠM

α = DαxM − iΣM
α , ΣM

α = θ̄γM∂αθ + θ̄′γ̄M∂αθ′ (IIA & IIB distinguished by VAp, V̄Bq̄).
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Doubled-yet-Gauged String

• The formalism extends to string: Hull 2006; w/ Kanghoon Lee 2013

Sstring = 1
4πα′

ˆ
d2σ − 1

2

√
−hhαβDαxM DβxNHMN (x)− εαβDαxMAβM

which is manifestly O(D,D) symmetric, doubled target spacetime diffeomorphism covariant,
the coordinate gauge symmetry invariant, and worldsheet diffeomorphism invariant.

– Classically, upon a generic (n, n̄) non-Riemannian backgrounds, after integrating out the
auxiliary gauge potential —quadratic in (KHA)µ and linear in (X ·Y A)µ, (X̄ ·ȲA)µ—

Sstring ⇒ 1
2πα′

ˆ
d2σ − 1

2

√
−hhαβ∂αxµ∂βxνKµν + 1

2 ε
αβ∂αxµ∂βxνBµν + 1

2 ε
αβ∂αx̃µ∂βxµ

and string becomes chiral and anti-chiral over the n and n̄ dimensions respectively,

X i
µ

(
∂αxµ + 1√

−h
εαβ∂βxµ

)
= 0 , X̄ ı̄µ

(
∂αxµ − 1√

−h
εαβ∂βxµ

)
= 0 .

– κ-symmetric Green–Schwarz superstring extension unifies IIA & IIB JHP 1609.04265

SGS = 1
4πα′

ˆ
d2σ − 1

2

√
−hhαβΠM

αΠN
βHMN − εαβDαxM (AβM − iΣβM

)
where ΠM

α = DαxM − iΣM
α , ΣM

α = θ̄γM∂αθ + θ̄′γ̄M∂αθ′ (IIA & IIB distinguished by VAp, V̄Bq̄).
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BRST quantization 1/4 w/ Shigeki Sugimoto 2008.03084

• Toward the BRST quantization, we fix the background to be constant flat and maximally
non-Riemannian: O(D,D)

O(n,n)×O(n̄,n̄)
, n + n̄ = D. With the decomposition of µ = (i, ı̄), performing a

field redefinition of the potential, Aαµ, to a coordinate gauge symmetry invariant quantity,

pαi := ∂αx̃i − Aαi , pαı̄ := Aαı̄ − ∂αx̃ı̄ ,

the doubled-yet-gauged string Lagrangian takes the form,

L0 = −
√
−h
(

pαi h
αβ
+ ∂βx i + pαı̄hαβ− ∂βx ı̄

)
+ εαβ∂αx̃µ∂βxµ

where hαβ± = 1
2

(
hαβ ± 1√

−h
εαβ
)

are 2× 2 chirality projectors on worldsheet, and pαµ’s are

evidently the Lagrange multipliers, imposing hαβ+ ∂βx i = 0 and hαβ− ∂βx ı̄ = 0.

– It is convenient to parametrize
√
−hhαβ , which has unit determinant, by two variables,

√
−hhττ = − 1

e ,
√
−hhτσ = ω

e ,
√
−hhσσ = e − ω2

e .

We may read off how these transform under δσα = cα, from the standard rule for
√
−hhαβ :

δe = cα∂αe+(∂τ cτ − ∂σcσ)e − 2∂σcτωe , δω= cα∂αω+(∂τ cτ − ∂σcσ)ω + ∂τ cσ − ∂σcτ (ω2 + e2) .

– From the orthogonality of hαβ+ and hαβ− , the Lagrangian possesses an extra gauge symmetry,
δpαi = Ĉβi h

β
−α

δpαı̄ = Ĉβı̄h
β
+α

⇐⇒


δp±i = (ω − e ± 1)Ci

δp±ı̄ = (ω + e ± 1)Cı̄

Jeong-Hyuck Park String Theory and Non-Riemannian Geometry



BRST quantization 2/4 w/ Shigeki Sugimoto 2008.03084

• Fixing all the gauges,

e ≡ 1 , ω ≡ 0 , x̃µ ≡ 0 , p−i ≡ 0 , p+ı̄ ≡ 0

the full Lagrangian with Faddeev–Popov ghosts is

Lfull = L0 − iδB

(
ln e be + ωbω + x̃µB̃µ + p−i Bi + p+ı̄Bı̄

)
where {be, bω , B̃µ,Bi ,Bı̄} are anti-ghosts, and δB denotes the nilpotent BRST transformation.

• After integrating out all the trivially-decoupled component fields, the full Lagrangian reduces to

Lred. = 2
(

p+i∂−x i + p−ı̄∂+x ı̄ + ib++∂−c+ + ib−−∂+c−
)

with left-moving {x i , p+i , c+, b++} and right-moving {x ı̄, p−ı̄, c−, b−−}.

Naturally, the bosonic component fields form D = n + n̄ pairs of βγ-system:

βi ≡ p+i , β̄ı̄ ≡ p−ı̄ (conformal weight 1) and γ j ≡ x j , γ̄ ̄ ≡ x ̄ (conformal weight 0).

Each pair contributes to a central charge by two.
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BRST quantization 3/4 w/ Shigeki Sugimoto 2008.03084

• The BRST charge decomposes, QB = QL + QR, with

QL =

˛
dσ βi∂+γ

i c+ + i(b++∂+c+)c+ = :
∞∑

m,n=−∞
n
(
−iβmiγ

i
n + bmcn

)
c−m−n : − a c0

and mirroring expression for QR.

The normal ordering constant arises upon quantization: [γ i
m, βnj ] = iδi

jδm+n , {bm, cn} = δm+n .

• The BRST charges, QL,QR, are nilpotent, if and only if n = n̄ = 13, implying the usual critical
dimension, D = 26, since the central charges are cL = 2n−26 and cR = 2n̄−26, both of
which should vanish.

• Physical states are annihilated by QL and the anti-ghost zero mode b0 (mirrored by the
right-moving sector). Their anti-commutator is

L0 =
{

b0,QB
}

= Nβ + Nγ + Nb + Nc − a

where the level-counting operators are

Nβ =
∑∞

p=1 − ipβ−piγ
i
p , Nγ =

∑∞
p=1 ipγ i

−pβpi , Nb =
∑∞

p=1 pb−pcp , Nc =
∑∞

p=1 pc−pbp .

These are all positive semi-definite. Hence, the vanishing of L0 on physical states means a

drastic truncation of the entire string spectrum to just one level.

From 〈0|[L1, L−1]|0〉 = −2 with Ln = {QL, bn}, we identify the level to be unity, a = 1.
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BRST quantization 4/4 w/ Shigeki Sugimoto 2008.03084

• In the end, the physical states consist of four sectors, with |k ↓〉 satisfying b0|k ↓〉 = 0,

δHi ı̄ γ
i
−1|kj ↓〉⊗γ̄ ı̄−1|k̄ ↓〉 , δHi

ı̄ γ i
−1|kj ↓〉⊗β̄−1ı̄|k̄ ↓〉

δHi
ı̄ β−1i |kj ↓〉⊗γ̄ ı̄−1|k̄ ↓〉, δHi ı̄ β−1i |kj ↓〉⊗β̄−1ı̄|k̄ ↓〉

which should satisfy on-shell relations for QB-closedness,

kiδHi
ı̄ = 0 , kı̄δHi

ı̄ = 0 , kiδHi ı̄ = 0 , kı̄δHi ı̄ = 0

and equivalence relations (QB-exactness): with divergenceless parameters, kiξ
i = kı̄ξı̄ = 0,

δHi
ı̄ ∼ δHi

ı̄ − kı̄ξi , δHi
ı̄ ∼ δHi

ı̄ + kiξ
ı̄ , δHi ı̄ ∼ δHi ı̄ + kiλı̄ − kı̄λi

• We have a good reason to denote the physical states by the same symbol as the generalized
metric: the 4nn̄ of

{
δHi ı̄, δHi

ı̄, δHi
ı̄, δHi ı̄} are literally the moduli of the maximally

non-Riemannian generalized metric, O(D,D)
O(n,n)×O(n̄,n̄)

, that we have been dealing with.
On-shell, the fluctuations meet the linearized Einstein Double Field Equations,

∂i∂jδHj
ı̄ − ∂ı̄∂̄δHi

̄ + 4∂i∂ı̄δd = 0 , ∂i∂jδHj ı̄ = 0 , ∂ı̄∂̄δHi ̄ = 0 , ∂i∂ı̄δHi ı̄ = 0

which enjoy local symmetries inherited from L̂ξHMN ,

δ(δHi
ı̄) = ∂ı̄ξi , δ(δHi

ı̄) = −∂iξ
ı̄ , δ(δHi ı̄) = ∂ı̄λi − ∂iλı̄ , δ(δd) = − 1

4 (∂iξ
i + ∂ı̄ξı̄)

– Remarkably, after choosing a gauge, δd = 0, and restricted to normalizable solutions,
the BRST string spectrum agrees with the fluctuation analysis of DFT.

– Comments: i) δHi ı̄ may condensate and create Riemannian spacetime. ii) DFT = SFT.
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Epilogue

– The conventional (or Riemannian) closed string effective action containing a tachyon,ˆ
dDx

√
−ge−2φ

[
R + 4∂µφ∂

µ
φ− 1

12 HλµνHλµν − 2(D−26)

3α′ − ∂µT∂µT + 4
α′ T

2 +O(T 3)
]

can be formulated as a DFT coupled to the tachyon,ˆ
e−2d

[
S(0) −

2(D−26)

3α′ −H
MN∂M T∂N T + 4

α′ T
2 +O(T 3)

]
With the choice of the section, ∂̃µ = 0, the tachyon kinetic term is Hµν∂µT∂νT which

obviously vanishes upon the maximally non-Riemannian backgrounds, as Hµν = Hµν = 0.

The vanishing kinetic term then may eliminate the tachyonic instability: there is no dynamics
for the tachyon to roll down. This agrees with our BRST spectrum analysis and also with a
classical intuition for chiral string,

x i (τ, σ) = x i (0, τ + σ)

Namely, it is fixed in space and thus hardly interacts with one another.

– Our BRST charge formula can be extended to a generic (n, n̄) non-Riemannian background,
to include n pairs of chiral βγ, n̄ pairs of anti-chiral β̄γ̄, and ordinary (left-right combined)
D−n−n̄ number of xµ. The central charges should be

cL/R = D ± (n − n̄)− 26 (bosonic string) , cL/R = D ± (n − n̄)− 10 (superstring)

Necessarily we require n = n̄ and D = 26 or D = 10, which might enlarge the string theory
landscape far beyond the Riemannian paradigm.
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Epilogue

– The conventional (or Riemannian) closed string effective action containing a tachyon,ˆ
dDx

√
−ge−2φ

[
R + 4∂µφ∂

µ
φ− 1

12 HλµνHλµν − 2(D−26)

3α′ − ∂µT∂µT + 4
α′ T

2 +O(T 3)
]

can be formulated as a DFT coupled to the tachyon,ˆ
e−2d

[
S(0) −

2(D−26)

3α′ −H
MN∂M T∂N T + 4

α′ T
2 +O(T 3)

]
With the choice of the section, ∂̃µ = 0, the tachyon kinetic term is Hµν∂µT∂νT which

obviously vanishes upon the maximally non-Riemannian backgrounds, as Hµν = Hµν = 0.

The vanishing kinetic term then may eliminate the tachyonic instability: there is no dynamics
for the tachyon to roll down. This agrees with our BRST spectrum analysis and also with a
classical intuition for chiral string,

x i (τ, σ) = x i (0, τ + σ)

Namely, it is fixed in space and thus hardly interacts with one another.

– Our BRST charge formula can be extended to a generic (n, n̄) non-Riemannian background,
to include n pairs of chiral βγ, n̄ pairs of anti-chiral β̄γ̄, and ordinary (left-right combined)
D−n−n̄ number of xµ. The central charges should be

cL/R = D ± (n − n̄)− 26 (bosonic string) , cL/R = D ± (n − n̄)− 10 (superstring)

Necessarily we require n = n̄ and D = 26 or D = 10, which might enlarge the string theory
landscape far beyond the Riemannian paradigm. Thank you
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