String Theory and Non－Riemannian Geometry

박 정혁／朴廷赫 Jeong－Hyuck Park Sogang U．／Kyoto U．（sabbatical）

String theory，Gravity and Cosmology
SKKU 19th November 2020

Prologue

- Ever since the birth of General Relativity, Riemannian geometry has been the mathematical paradigm for modern physics. The metric, $g_{\mu \nu}$, is privileged to be the fundamental variable that provides a concrete tool to address the notion of 'spacetime'.
- However, string theory suggests to put a two-form gauge potential, $B_{\mu \nu}$, and a scalar dilaton, ϕ, on an equal footing along with the metric: Forming the closed string massless sector, they are ubiquitous in all string theories, and are transformed to one another under T-duality.
- By now, Double Field Theory has evolved to achieve its own autonomy statute, perhaps as an alternative gravitational theory to GR. Postulating the $\mathbf{O}(D, D)$ symmetry as the fundamental principle, GR and the Einstein Field Equations are unambiguosly augmented.
- Further, it turns out that DFT encompasses not only the Riemannian geometry but also non-Riemannian ones where the notion of Riemannian metric ceases to exist.
- In this talk, after reviewing these aspects of DFT, I will introduce my latest work with Shigeki Sugimoto (arXiv:2008.03084, PRL), where we examined some quantum consistency of the non-Riemannian geometries as novel backgrounds of string theory.

O(D, D) Symmetry Principle

- Working hypothesis is to view an $\mathbf{O}(D, D)$ invariant metric, $\mathcal{J}_{M N}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and an $\mathbf{O}(D, D)$ covariant generalized metric, $\mathcal{H}_{M N}$, as fundamental entities.
- The generalized metric should satisfy defining properties:

$$
\mathcal{H}_{M N}=\mathcal{H}_{N M}, \quad \mathcal{H}_{M}{ }^{K} \mathcal{H}_{N}{ }^{L} \mathcal{J}_{K L}=\mathcal{J}_{M N} .
$$

- Combing the two, we have a pair of projectors (orthogonal and complete),

$$
P_{M N}=\frac{1}{2}\left(\mathcal{J}_{M N}+\mathcal{H}_{M N}\right), \quad \bar{P}_{M N}=\frac{1}{2}\left(\mathcal{J}_{M N}-\mathcal{H}_{M N}\right),
$$

- Further, taking the 'square root' of each projector,

$$
P_{M N}=V_{M}^{p} V_{N}{ }^{q} \eta_{p q}, \quad \bar{P}_{M N}=\bar{V}_{M}{ }^{\bar{p}} \bar{V}_{N} \bar{q}^{\bar{q}} \bar{\eta}_{\bar{q} \bar{q}},
$$

we obtain a pair of DFT-vielbeins which meet their own defining properties,

$$
V_{M p} V^{M}=\eta_{p q}, \quad \bar{V}_{M \bar{p}} \bar{V}_{\bar{q}}=\bar{\eta}_{\bar{p} \bar{q}}, \quad V_{M p} \bar{V}_{\bar{q}}=0 .
$$

- Besides, there is an $\mathbf{O}(D, D)$ singlet dilaton, d, which can be gauge fixed by diffeomorphisms.

Semi-covariant formalism

- In GR, the Christoffel symbol is the unique metric-compatible connection, $\nabla_{\lambda} g_{\mu \nu}=0$, which satisfies either a torsionless condition, or an alternative condition that the metric is the only ingredient to form the connection.
- Similarly, the connection in DFT can be uniquely fixed

$$
\Gamma_{L M N}=2\left(P \partial_{L} P \bar{P}\right)_{[M N]}+2\left(\bar{P}_{[M}{ }^{J} \bar{P}_{M}{ }^{K}-P_{[M}{ }^{J} P_{N}{ }^{K}\right) \partial_{J} P_{K L}-\frac{4}{D-1}\left(\bar{P}_{L[M} \bar{P}_{M}{ }^{K}+P_{L[M} P_{N}{ }^{K}\right)\left(\partial_{K} d+\left(P \partial^{J} P \bar{P}\right)_{[J K]}\right)
$$

while the compatibility holds,

$$
\nabla_{L} \mathcal{J}_{M N}=0, \quad \nabla_{L} \mathcal{H}_{M N}=0, \quad \nabla_{L} d=-\frac{1}{2} e^{2 d} \nabla_{L}\left(e^{-2 d}\right)=0 .
$$

- Further, spin connections for twofold local Lorentz symmetries can be determined,

$$
\Phi_{M p q}=V^{N}{ }_{p} \nabla_{M} V_{N q}, \quad \bar{\Phi}_{M \bar{p} \bar{q}}=\bar{V}^{N} \overline{\bar{p}} \nabla_{M} \bar{V}_{N \bar{q}}
$$

by requiring that Master derivative,

$$
\mathcal{D}_{M}=\partial_{M}+\Gamma_{M}+\Phi_{M}+\bar{\Phi}_{M}=\nabla_{M}+\Phi_{M}+\bar{\Phi}_{M}
$$

should be compatible with the vielbeins,

$$
\mathcal{D}_{M} V_{N p}=\nabla_{M} V_{N p}+\Phi_{M p}{ }^{q} V_{N q}=0, \quad \mathcal{D}_{M} \bar{V}_{N \bar{p}}=\nabla_{M} \bar{V}_{N \bar{p}}+\bar{\Phi}_{M \bar{p}}{ }^{\bar{q}} \bar{V}_{N \bar{q}}=0 .
$$

These spin connections are essentially the 'generalized fluxes' à la Aldazabala, Marques, Nunez, and Grana.

Semi-covariant formalism

- Semi-covariant Riemann curvature :

$$
S_{K L M N}=S_{[K L][M N]}=S_{M N K L}:=\frac{1}{2}\left(R_{K L M N}+R_{M N K L}-\Gamma^{J}{ }_{K L} \Gamma_{J M N}\right), \quad S_{[K L M] N}=0,
$$

where $R_{A B C D}$ denotes the ordinary "field strength", $R_{C D A B}=\partial_{A} \Gamma_{B C D}-\partial_{B} \Gamma_{A C D}+\Gamma_{A C}{ }^{E} \Gamma_{B E D}-\Gamma_{B C}{ }^{E} \Gamma_{A E D}$.
By construction, it varies as $\delta S_{A B C D}=\nabla_{[A} \delta \Gamma_{B] C D}+\nabla_{[C} \delta \Gamma_{D] A B}$, hence good for variational principle.

- Semi-covariance means, with $\mathcal{P}_{L M N}{ }^{E F G}=P_{L}{ }^{E} P_{[M}{ }^{[F} P_{N]}{ }^{G]}+\frac{2}{P_{K}{ }^{K}-1} P_{L[M} P_{M}{ }^{[F} P^{G] E}$,

$$
\begin{aligned}
& \delta_{\xi}\left(\nabla_{L} T_{M_{1} \cdots M_{n}}\right)=\hat{\mathcal{L}}_{\xi}\left(\nabla_{L} T_{M_{1} \cdots M_{n}}\right)+\sum_{i=1}^{n} 2(\mathcal{P}+\overline{\mathcal{P}})_{L M_{i}}{ }^{N E F G} \partial_{E} \partial_{F} \xi_{G} T_{M_{1} \cdots M_{i-1} N M_{i+1} \cdots M_{n}} \\
& \delta_{\xi} S_{K L M N}=\hat{\mathcal{L}}_{\xi} S_{K L M N}+2 \nabla_{[K}\left[(\mathcal{P}+\overline{\mathcal{P}})_{L][M N]} E F G \partial_{E} \partial_{F} \xi_{G}\right]+2 \nabla_{[M}\left[(\mathcal{P}+\overline{\mathcal{P}})_{N[K L]} E F G \partial_{E} \partial_{F} \xi_{G}\right] \\
& \delta_{\xi} \Gamma_{C A B}=\hat{\mathcal{L}}_{\xi} \Gamma_{C A B}+2\left[(\mathcal{P}+\overline{\mathcal{P}})_{C A B}{ }^{F D E}-\delta_{C}^{F} \delta_{A}^{D} \delta_{B}^{E}\right] \partial_{F} \partial_{[D} \xi_{E]}
\end{aligned}
$$

- The red-colored anomalies can be easily projected out to give fully covariant objects, e.g.

$$
\begin{gathered}
\mathcal{D}_{p} T_{\bar{q}}=\nabla_{L} T_{M} V^{L}{ }_{p} \bar{V}_{\bar{q}}, \quad S_{p \bar{q}}=S_{M N} V^{M}{ }_{p} \bar{V}_{\bar{q}} \quad(\text { Ricci }), \quad S_{(0)}=S_{p q} p q-S_{\bar{p} \bar{q}}{ }^{\bar{p} \bar{q}} \quad \text { (scalar) } \\
\gamma^{p} \mathcal{D}_{p} \rho, \quad \mathcal{D}_{\bar{p}} \rho \quad(\text { Dirac }), \quad \mathcal{F}_{p \bar{q}}=\left(\nabla_{M} W_{N}-\nabla_{N} W_{M}-i\left[W_{M}, W_{N}\right]\right) V^{M}{ }_{p} \overline{V^{N}} \bar{q}_{\bar{q}} \quad \text { (Yang-Mills) } \\
\mathcal{D}_{ \pm} \mathcal{C}=\gamma^{p} \mathcal{D}_{p} \mathcal{C} \pm \gamma^{(D+1)} \mathcal{D}_{\bar{p}} \mathcal{C} \bar{\gamma}^{\bar{p}}, \quad\left(\mathcal{D}_{ \pm}\right)^{2}=0 \Longrightarrow \mathcal{F}=\mathcal{D}_{+} \mathcal{C} \quad \text { (RR flux) }
\end{gathered}
$$

Einstein Equations from General Covariance w/ S. Angus and K. Cho 1804.00964

- Let us consider a DFT action coupled to generic matter, Υ_{a} (e.g. RR, fermions, or tachyon),

$$
\text { Action }=\int_{\Sigma} e^{-2 d}\left[\frac{1}{16 \pi G} S_{(0)}+L_{\text {matter }}\left(\Upsilon_{a}, \mathcal{D}_{A} \Upsilon_{b}\right)\right]
$$

Deriving the variation of the action induced by all the fields, $d, V_{A p}, \bar{V}_{A p}, \Upsilon_{a}$,
δ Action $=\int_{\Sigma} e^{-2 d}\left[\frac{1}{4 \pi G} \bar{V}^{M \bar{q}} \delta V_{M}^{p}\left(S_{p \bar{q}}-8 \pi G K_{p \bar{q}}\right)-\frac{1}{8 \pi G} \delta d\left(S_{(0)}-8 \pi G T_{(0)}\right)+\delta \Upsilon_{a} \frac{\delta L_{\text {matter }}}{\delta \Upsilon_{a}}\right]$
we naturally define
$K_{p \bar{q}}:=\frac{1}{2}\left(V_{M p} \frac{\delta L_{\text {matter }}}{\delta V_{M}{ }^{q}}-\bar{V}_{M \bar{q}} \frac{\delta L_{\text {matter }}}{\delta V_{M}{ }^{\rho}}\right)=-2 V_{M p} \bar{V}_{N \bar{q}} \frac{\delta L_{\text {matter }}}{\delta \mathcal{F} L_{M N}}, \quad T_{(0)}:=e^{2 d} \times \frac{\delta\left(e^{-2 d} L_{\text {matter }}\right)}{\delta d}$

- The diffeomorphic invariance of the action,
$0=\int_{\Sigma} e^{-2 d}\left[\frac{1}{8 \pi G} \xi^{N} \mathcal{D}^{M}\left[4 V_{\left[M^{p}\right.} \bar{V}_{N]}{ }^{\bar{q}}\left(S_{p \bar{q}}-8 \pi G K_{p \bar{q}}\right)-\frac{1}{2} \mathcal{J}_{M N}\left(S_{(0)}-8 \pi G T_{(0)}\right)\right]+\delta_{\xi} \Upsilon_{a} \frac{\delta L_{\text {matter }}}{\delta \Upsilon_{a}}\right]$
further guides us to identify the Einstein curvature,

$$
G_{M N}:=4 V_{[M}{ }^{p} \bar{V}_{N]}{ }^{\bar{q}} S_{p \bar{q}}-\frac{1}{2} \mathcal{J}_{M N} S_{(0)}, \quad \nabla_{M} G^{M N}=0 \quad \text { (off-shell) }
$$

and the Energy-Momentum tensor,

$$
T_{M N}:=4 V_{[M}{ }^{p} \bar{V}_{N]} \bar{q} K_{p \bar{q}}-\frac{1}{2} \mathcal{J}_{M N} T_{(0)}, \quad \mathcal{D}_{M} T^{M N}=0 \quad \text { (on-shell) }
$$

- Equating them, we obtain the Einstein Double Field Equations: $G_{M N}=8 \pi G T_{M N}$

Question: Is DFT a mere reformulation of SUGRA in an $\mathbf{O}(D, D)$ manifest fashion?
The answer would be (and had been) yes, if we employ the well-known parametrization,

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right) \quad e^{-2 d}=\sqrt{|g|} e^{-2 \phi}
$$

Giveon, Rabinovici, Veneziano '89, Duff '90
Upon this parametrization, EDFEs, $G_{M N}=8 \pi G T_{M N}$, unify

$$
\begin{aligned}
R_{\mu \nu}+2 \nabla_{\mu}\left(\partial_{\nu} \phi\right)-\frac{1}{4} H_{\mu \rho \sigma} H_{\nu}^{\rho \sigma} & =8 \pi G K_{(\mu \nu)} \\
e^{2 \phi} \nabla^{\rho}\left(e^{-2 \phi} H_{\rho \mu \nu}\right) & =16 \pi G K_{[\mu \nu]} \\
R+4 \square \phi-4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu} & =8 \pi G T_{(0)}
\end{aligned}
$$

which implies Stringy Newton Gravity in a non-relativistic limit ($D=4$),

$$
\nabla^{2} \Phi_{\text {Newton }}=4 \pi \mathbf{G} \rho+\mathbf{H} \cdot \mathbf{H}, \quad \nabla \cdot \mathbf{H}=\mathbf{0}, \quad \nabla \times \mathbf{H}=\mathbf{4} \pi \mathbf{G} \mathbf{K}
$$

$\Rightarrow H$-flux as dark matter, w/ Kevin Morand and Kyungho Cho 2019

The truth is that, DFT works perfectly fine with any generalized metric that satisfies

"the defining properties: $\mathcal{H}_{M N}=\mathcal{F L N M}_{\mathrm{NM}}, \mathcal{H}_{M}{ }^{K} \mathcal{H}_{N} \mathrm{~J}_{\mathrm{KL}}=\mathrm{J}_{M N}$
And the above famous parametrization is not the most general solution to them.
Hence the answer to the question can be neaative.

Question: Is DFT a mere reformulation of SUGRA in an $\mathbf{O}(D, D)$ manifest fashion?
The answer would be (and had been) yes, if we employ the well-known parametrization,

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{-1} & -g^{-1} B \\
B g^{-1} & g-B g^{-1} B
\end{array}\right) \quad e^{-2 d}=\sqrt{|g|} e^{-2 \phi}
$$

Giveon, Rabinovici, Veneziano '89, Duff '90
Upon this parametrization, EDFEs, $G_{M N}=8 \pi G T_{M N}$, unify

$$
\begin{aligned}
R_{\mu \nu}+2 \nabla_{\mu}\left(\partial_{\nu} \phi\right)-\frac{1}{4} H_{\mu \rho \sigma} H_{\nu}^{\rho \sigma} & =8 \pi G K_{(\mu \nu)} \\
e^{2 \phi} \nabla^{\rho}\left(e^{-2 \phi} H_{\rho \mu \nu}\right) & =16 \pi G K_{[\mu \nu]} \\
R+4 \square \phi-4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu} & =8 \pi G T_{(0)}
\end{aligned}
$$

which implies Stringy Newton Gravity in a non-relativistic limit ($D=4$),

$$
\nabla^{2} \Phi_{\text {Newton }}=4 \pi \mathbf{G} \rho+\mathbf{H} \cdot \mathbf{H}, \quad \nabla \cdot \mathbf{H}=\mathbf{0}, \quad \nabla \times \mathbf{H}=4 \pi \mathbf{G} \mathbf{K}
$$

$\Rightarrow H$-flux as dark matter, w/ Kevin Morand and Kyungho Cho 2019

- The truth is that, DFT works perfectly fine with any generalized metric that satisfies the defining properties: $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{M}{ }^{K} \mathcal{H}_{N}{ }^{L} \mathcal{J}_{K L}=\mathcal{J}_{M N}$.
And the above famous parametrization is not the most general solution to them.
Hence the answer to the question can be negative.

Classification

The most general parametrizations of the generalized metric, $\mathcal{H}_{M N}=\mathcal{H}_{N M}, \mathcal{H}_{M}{ }^{K} \mathcal{H}_{N}{ }^{L} \mathcal{J}_{K L}=\mathcal{J}_{M N}$, can be classified by two non-negative integers, $(n, \bar{n}), 0 \leq n+\bar{n} \leq D$:

$$
\begin{aligned}
\mathcal{H}_{M N} & =\left(\begin{array}{cc}
H^{\mu \nu} & -H^{\mu \sigma} B_{\sigma \lambda}+Y_{i}^{\mu} X_{\lambda}^{i}-\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\lambda}^{\bar{\imath}} \\
B_{\kappa \rho} H^{\rho \nu}+X_{\kappa}^{i} Y_{i}^{\nu}-\bar{X}_{\kappa}^{\bar{i}} \bar{Y}_{\bar{\imath}}^{\nu} & K_{\kappa \lambda}-B_{\kappa \rho} H^{\rho \sigma} B_{\sigma \lambda}+2 X_{(\kappa}^{i} B_{\lambda) \rho} Y_{i}^{\rho}-2 \bar{X}_{(\kappa}^{\bar{\imath}} B_{\lambda) \rho} \bar{Y}_{\bar{\imath}}^{\rho}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
B & 1
\end{array}\right)\left(\begin{array}{cc}
H & Y_{i}\left(X^{i}\right)^{T}-\bar{Y}_{\bar{\imath}}\left(\bar{X}^{\bar{\imath}}\right)^{T} \\
X^{i}\left(Y_{i}\right)^{T}-\bar{X}^{\bar{\imath}}\left(\bar{Y}_{\bar{\imath}}\right)^{T} & K
\end{array}\right)\left(\begin{array}{cc}
1 & -B \\
0 & 1
\end{array}\right)
\end{aligned}
$$

i) Symmetric and skew-symmetric fields: $\quad H^{\mu \nu}=H^{\nu \mu}, \quad K_{\mu \nu}=K_{\nu \mu}, \quad B_{\mu \nu}=-B_{\nu \mu}$;
ii) Two kinds of zero eigenvectors: with $i, j=1,2, \cdots, n \& \bar{\imath}, \bar{\jmath}=1,2, \cdots, \bar{n}$,

$$
H^{\mu \nu} X_{\nu}^{i}=0, \quad H^{\mu \nu} \bar{X}_{\nu}^{\bar{\imath}}=0, \quad K_{\mu \nu} Y_{j}^{\nu}=0, \quad K_{\mu \nu} \bar{Y}_{\bar{\jmath}}^{\nu}=0
$$

iii) Completeness relation: $\quad H^{\mu \rho} K_{\rho \nu}+Y_{i}^{\mu} X_{\nu}^{i}+\bar{Y}_{\bar{\imath}}^{\mu} \bar{X}_{\nu}^{\bar{\imath}}=\delta^{\mu}{ }_{\nu}$.

- Both $H^{\mu \nu}$ and $K_{\mu \nu}$ have the signature, $(t, s, n+\bar{n})$ for temporal, spatial, and non-Riemannian dimensions.
- The underlying coset is $\frac{O(D, D)}{0(t+n, s+n) \times 0(s+\bar{n}, t+\bar{n})}$ with dimensions $D^{2}-(n-\bar{n})^{2}$, while $\mathcal{H}_{M}{ }^{M}=2(n-\bar{n})$.

Classification

I. $(n, \bar{n})=(0,0)$ corresponds to the Riemannian case or Generalized Geometry à la Hitchin.
II. $(n, \bar{n}) \neq(0,0)$: Non-Riemannian. Examples include

- $(1,0)$ Newton-Cartan gravity, $\quad d s^{2}=-c^{2} \mathrm{~d} t^{2}+\mathrm{d} \mathbf{x}^{2}, \lim _{c \rightarrow \infty} g^{-1}$ is finite \& degenerate
- (1, 1) Stringy/torsional Newton-Cartan (curved), Gomis-Ooguri non-relativistic string (flat)

Andringa, Bergshoeff, Gomis, de Roo 2012; Harmark, Hartong, Obers 2017; w/ Melby-Thompson, Meyer, Ko 2015; Blair 2019

- $(D-1,0)$ ultra-relativistic Carroll gravity, $\mathrm{d} \tau^{2}=-\mathrm{d} t^{2}+c^{-2} \mathrm{~d} \mathbf{x}^{2}, \lim _{c \rightarrow 0} g^{-1}$ is finite \& degenerate
- (n, \bar{n}) with $n+\bar{n}=D$: maximally non-Riemannian with no time and no space.

In particular, $(D, 0)$ or $(0, D)$ is uniquely given as $\mathcal{H}= \pm \mathcal{J}$ with trivial coset, $\frac{O(D, D)}{O(D, D)}$.
These two are the perfectly $\mathbf{O}(D, D)$-symmetric vacua of DFT with no moduli.
"Spacetime emerges after SSB of $\mathbf{O}(D, D)$, identifying $\{g, B\}$ as Nambu-Goldstone boson moduli. " Berman, Blair, and Otsuki 2019

- Generically, on worldsheet, string becomes chiral and anti-chiral over the n and \bar{n} dimensions:

$$
X_{\mu}^{i} \partial_{+} X^{\mu}(\tau, \sigma)=0, \quad \bar{X}_{\mu}^{\bar{\imath}} \partial_{-} X^{\mu}(\tau, \sigma)=0
$$

Classification

I. $(n, \bar{n})=(0,0)$ corresponds to the Riemannian case or Generalized Geometry à la Hitchin.
II. $(n, \bar{n}) \neq(0,0)$: Non-Riemannian. Examples include

- $(1,0)$ Newton-Cartan gravity, $\quad d s^{2}=-c^{2} \mathrm{~d} t^{2}+\mathrm{d} \mathbf{x}^{2}, \lim _{c \rightarrow \infty} g^{-1}$ is finite \& degenerate
- $(1,1)$ Stringy/torsional Newton-Cartan (curved), Gomis-Ooguri non-relativistic string (flat)

Andringa, Bergshoeff, Gomis, de Roo 2012; Harmark, Hartong, Obers 2017; w/ Melby-Thompson, Meyer, Ko 2015; Blair 2019

- $(D-1,0)$ ultra-relativistic Carroll gravity, $\mathrm{d} \tau^{2}=-\mathrm{d} t^{2}+c^{-2} \mathrm{~d} \mathbf{x}^{2}, \lim _{c \rightarrow 0} g^{-1}$ is finite \& degenerate
- (n, \bar{n}) with $n+\bar{n}=D$: maximally non-Riemannian with no time and no space.

In particular, $(D, 0)$ or $(0, D)$ is uniquely given as $\mathcal{H}= \pm \mathcal{J}$ with trivial coset, $\frac{O(D, D)}{O(D, D)}$.
These two are the perfectly $\mathbf{O}(D, D)$-symmetric vacua of DFT with no moduli.
"Spacetime emerges after SSB of $\mathbf{O}(D, D)$, identifying $\{g, B\}$ as Nambu-Goldstone boson moduli. " Berman, Blair, and Otsuki 2019

- Generically, on worldsheet, string becomes chiral and anti-chiral over the n and \bar{n} dimensions:

$$
X_{\mu}^{i} \partial_{+} X^{\mu}(\tau, \sigma)=0, \quad \bar{X}_{\mu}^{\bar{\imath}} \partial_{-} X^{\mu}(\tau, \sigma)=0
$$

- Further, analysis on Killing equations, $\hat{\mathcal{L}}_{\xi} \mathcal{H}_{M N}=8 \bar{P}_{(M}{ }^{[K} P_{N)}{ }^{L]} \nabla_{K} \xi_{L}=0$, reveals that non-Riemannian isometries are supertranslational. w/ Chris Blair and Gerben Oling, in preparation.

Fluctuation Analysis

- Linearized Einstein Double Field Equations for vacuum, $G_{M N}=0$, are

$$
\begin{align*}
\left(P^{M N}-\bar{P}^{M N}\right) \nabla_{M} \partial_{N} \delta d-\frac{1}{4} \nabla_{M} \nabla_{N} \delta \mathcal{H}^{M N} & =0 \tag{scalar}\\
P_{M}{ }^{K} \bar{P}_{N}{ }^{L} \nabla_{K} \partial_{L} \delta d+\frac{1}{8}\left(P_{M}{ }^{K} \bar{\Delta}_{N}{ }^{L}-\Delta_{M}{ }^{K} \bar{P}_{N}{ }^{L}\right) \delta \mathcal{H}_{K L} & =0 \tag{Ricci}
\end{align*}
$$

which are invariant under the diffeomorphically inherited transformations of the fluctuations,

$$
\delta_{\xi}(\delta d)=\hat{\mathcal{L}}_{\xi} d, \quad \delta_{\xi}\left(\delta \mathcal{H}_{M N}\right)=\hat{\mathcal{L}}_{\xi} \mathcal{H}_{M N}
$$

Note $\Delta_{K}{ }^{L}=P_{K}{ }^{L} P^{M N} \nabla_{M} \nabla_{N}-2 P_{K}{ }^{N} P^{L M}\left(\nabla_{M} \nabla_{N}-S_{M N}\right)$ and similarly for $\bar{\Delta}_{K}{ }^{L}$ with $P \leftrightarrow \bar{P}$.

- Analysis of $\delta \mathcal{H}_{M N}$ around a generic (n, \bar{n}) non-Riemannian background shows
- $\delta \mathcal{H}_{M N}$'s form the coset $\frac{0(D, D)}{O(t+n, s+n) \times \mathbf{O}(s+\bar{n}, t+\bar{n})}$ with dimensions, $D^{2}-(n-\bar{n})^{2}$.
- $\delta \mathcal{H}_{M N}$'s include those which decrease the 'non-Riemannianity', e.g. $(n, \bar{n}) \rightarrow(n-1, \bar{n}-1)$. Riemannian spacetime may then emerge out of a maximally non-Riemannian background. It also suggests that the various non-Riemannian gravities, such as Newton-Cartan, should better be identified as different solution sectors of DFT rather than viewed as independent theories.

Section condition = Doubled-yet-Gauged

- DFT necessarily imposes the 'section condition' for $x^{M}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$,

$$
\partial_{M} \partial^{M}=\partial_{\mu} \tilde{\partial}^{\mu}+\tilde{\partial}^{\mu} \partial_{\mu}=0
$$

which can be generically solved by letting $\tilde{\partial}^{\mu}=0$, up to $\mathbf{O}(D, D)$ rotations.

- The section condition is mathematically equivalent to a certain translational invariance:

$$
\Phi_{s}(x)=\Phi_{s}(x+\Delta), \quad \Delta^{M}=\Phi_{t} \partial^{M} \Phi_{u}
$$

where $\Phi_{s}, \Phi_{t}, \Phi_{u} \in\left\{d, \mathcal{H}_{M N}, \xi^{M}, \partial_{N} d, \partial_{L} \mathcal{H}_{M N}, \cdots\right\}$, arbitrary functions appearing in DFT, and Δ^{M} is said to be 'derivative-index-valued'.

- 'Physics' should be invariant under such a shift of the doubled coordinates.

Doubled coordinates, $x^{M}=\left(\tilde{x}_{\mu}, x^{\nu}\right)$, are gauged through an equivalence relation,

$$
x^{M} \sim x^{M}+\Delta^{M}(x) \quad: \quad \text { Coordinate Gauge Symmetry }
$$

where Δ^{M} is derivative-index-valued.
Each equivalence class, or gauge orbit in \mathbb{R}^{D+D}, corresponds to a single physical point in \mathbb{R}^{D}.

- With $\tilde{\partial}^{\mu}=0$ and $\Delta^{M}=c_{\mu} \partial^{M} x^{\mu}$, we note $\left(\tilde{x}_{\mu}, x^{\nu}\right) \sim\left(\tilde{x}_{\mu}+c_{\mu}, x^{\nu}\right)$.
$\mathbf{O}(D, D)$ then rotates the gauged directions and hence the section.
c.f. Alfonsi 2019, 2020 for formal discussion

Section condition = Doubled-yet-Gauged

- In DFT, the usual coordinate basis of one-forms, $\mathrm{d} x^{A}$, is not covariant:
- Neither diffeomorphic covariant,

$$
\delta x^{M}=\xi^{M}, \quad \delta\left(\mathrm{~d} x^{M}\right)=\mathrm{d} x^{N} \partial_{N} \xi^{M} \neq \mathrm{d} x^{N}\left(\partial_{N} \xi^{M}-\partial^{M} \xi_{N}\right)
$$

- Nor invariant under the coordinate gauge symmetry,

$$
\mathrm{d} x^{M} \longrightarrow \mathrm{~d}\left(x^{M}+\Delta^{M}\right) \neq \mathrm{d} x^{M}
$$

\Rightarrow The naive contraction, $\mathrm{d} x^{M} \mathrm{~d} x^{N} \mathcal{H}_{M N}$, is not an invariant scalar nor 'proper length'.

- These problems can be all cured by gauging the one-forms, $\mathrm{d} x^{A}$, explicitly,

$$
D x^{M}:=\mathrm{d} x^{M}-\mathcal{A}^{M}, \quad \mathcal{A}^{M} \partial_{M}=0 \quad \text { (derivative-index-valued) } .
$$

$D x^{M}$ is covariant:

$$
\begin{array}{ll}
\delta x^{M}=\Delta^{M}, \quad \delta \mathcal{A}^{M}=\mathrm{d} \Delta^{M} & \Longrightarrow \quad \delta\left(D x^{M}\right)=0 ; \\
\delta x^{M}=\xi^{M}, & \delta \mathcal{A}^{M}=\partial^{M} \xi_{N}\left(\mathrm{~d} x^{N}-\mathcal{A}^{N}\right)
\end{array} \quad \Longrightarrow \quad \delta\left(D x^{M}\right)=D x^{N}\left(\partial_{N} \xi^{M}-\partial^{M} \xi_{N}\right) .
$$

- Concretely, setting $\tilde{\partial}^{\mu}=0$ and $\mathcal{A}^{M}=A_{\lambda} \partial^{M} x^{\lambda}=\left(A_{\mu}, 0\right)$, we get $D x^{M}=\left(\mathrm{d} \tilde{x}_{\mu}-A_{\mu}, \mathrm{d} x^{\nu}\right)$.

Proper Length \& Point Particle

- With $D x^{M}=\mathrm{d} x^{M}-\mathcal{A}^{M}$, it is possible to define the 'proper length' through a path integral,

$$
\text { Proper Length }:=-\ln \left[\int \mathcal{D} \mathcal{A} \exp \left(-\int \sqrt{D x^{M} D x^{N} \mathcal{H}_{M N}}\right)\right]
$$

- With $\tilde{\partial}^{\mu}=0, \mathcal{A}^{M}=\left(A_{\mu}, 0\right)$, and the decomposition, $A_{\mu}=\left(K H+X^{i} Y_{i}+\bar{X}^{\bar{\imath}} \bar{Y}_{\bar{\imath}}\right)_{\mu}{ }^{\nu} A_{\nu}$,

$$
\begin{aligned}
& D x^{M} D x^{N} \mathcal{H}_{M N}=\mathrm{d} x^{\mu} \mathrm{d} x^{\nu} K_{\mu \nu}+\left[\mathrm{d} \tilde{x}_{\mu}-B_{\mu \kappa} \mathrm{d} x^{\kappa}-(K H A)_{\mu}\right]\left[\mathrm{d} \tilde{X}_{\nu}-B_{\nu \lambda} \mathrm{d} x^{\lambda}-(K H A)_{\nu}\right] H^{\mu \nu} \\
& \quad+2 X_{\mu}^{i} \mathrm{~d} x^{\mu}\left[\mathrm{d} \tilde{X}_{\nu}-B_{\nu \rho} \mathrm{d} x^{\rho}-(X \cdot Y A)_{\nu}\right] Y_{i}^{\nu}-2 \bar{X}_{\mu}^{\bar{\imath}} \mathrm{d} x^{\mu}\left[\mathrm{d} \tilde{X}_{\nu}-B_{\nu \rho} \mathrm{d} x^{\rho}-(\bar{X} \cdot \bar{Y} A)_{\nu}\right] \bar{Y}_{\bar{\imath}}^{\nu}
\end{aligned}
$$

- Essentially, $(K H A)_{\mu}$ leads to Gaussian integral, while $(X \cdot Y A)_{\nu}$ and $(\bar{X} \cdot \bar{Y} A)_{\mu}$ are Lagrange multipliers to freeze the non-Riemannian dimensions: $\quad X_{\mu}^{i} \mathrm{~d} x^{\mu}=0, \quad \bar{X}_{\mu}^{\bar{i}} \mathrm{~d} x^{\mu}=0$
Proper Length then reduces consistently to $\int \sqrt{\mathrm{d} x^{\mu} \mathrm{d} x^{\nu} K_{\mu \nu}(x)}$, which is independent of \tilde{x}_{μ}. Hence, it measures the distance between two gauge orbits, as desired.
- This line of thinking readily leads to a completely covariant particle action (Faddeev-Popov)
where $\theta^{M}=\left(C_{\mu}, B^{\nu}\right)$ and $\vartheta^{a}=(c, b)$. This is a constrained system, and the relevant Dirac
hracket coincides with the graded Poisson hracket introduced hy Deser and Sämann 2016.

Proper Length \& Point Particle

- With $D x^{M}=\mathrm{d} x^{M}-\mathcal{A}^{M}$, it is possible to define the 'proper length' through a path integral,

$$
\text { Proper Length }:=-\ln \left[\int \mathcal{D} \mathcal{A} \exp \left(-\int \sqrt{D x^{M} D x^{N} \mathcal{H}_{M N}}\right)\right]
$$

- With $\tilde{\partial}^{\mu}=0, \mathcal{A}^{M}=\left(A_{\mu}, 0\right)$, and the decomposition, $A_{\mu}=\left(K H+X^{i} Y_{i}+\bar{X}^{\overline{ }} \bar{Y}_{\bar{\imath}}\right)_{\mu}{ }^{\nu} A_{\nu}$,

$$
\begin{aligned}
& D x^{M} D x^{N} \mathcal{H}_{M N}=\mathrm{d} x^{\mu} \mathrm{d} x^{\nu} K_{\mu \nu}+\left[\mathrm{d} \tilde{x}_{\mu}-B_{\mu \kappa} \mathrm{d} x^{\kappa}-(K H A)_{\mu}\right]\left[\mathrm{d} \tilde{X}_{\nu}-B_{\nu \lambda} \mathrm{d} x^{\lambda}-(K H A)_{\nu}\right] H^{\mu \nu} \\
& \quad+2 X_{\mu}^{i} \mathrm{~d} x^{\mu}\left[\mathrm{d} \tilde{X}_{\nu}-B_{\nu \rho} \mathrm{d} x^{\rho}-(X \cdot Y A)_{\nu}\right] Y_{i}^{\nu}-2 \bar{X}_{\mu}^{\bar{\imath}} \mathrm{d} x^{\mu}\left[\mathrm{d} \tilde{X}_{\nu}-B_{\nu \rho} \mathrm{d} x^{\rho}-(\bar{X} \cdot \bar{Y} A)_{\nu}\right] \bar{Y}_{\bar{\imath}}^{\nu}
\end{aligned}
$$

- Essentially, $(K H A)_{\mu}$ leads to Gaussian integral, while $(X \cdot Y A)_{\nu}$ and $(\bar{X} \cdot \bar{Y} A)_{\mu}$ are Lagrange multipliers to freeze the non-Riemannian dimensions: $\quad X_{\mu}^{i} \mathrm{~d} x^{\mu}=0, \quad \bar{X}_{\mu}^{\bar{i}} \mathrm{~d} x^{\mu}=0$ Proper Length then reduces consistently to $\int \sqrt{\mathrm{d} x^{\mu} \mathrm{d} x^{\nu} K_{\mu \nu}(x)}$, which is independent of \tilde{x}_{μ}. Hence, it measures the distance between two gauge orbits, as desired.
- This line of thinking readily leads to a completely covariant particle action (Faddeev-Popov), $S_{\text {particle }}=\int \mathrm{d} \tau \frac{1}{2} e^{-1} D_{\tau} x^{M} D_{\tau} x^{N} \mathcal{H}_{M N}(x)-\frac{1}{2} m^{2} e+k_{M} \mathcal{A}^{M}+k(e-1)+\frac{1}{2} \theta_{M} \dot{\theta}^{M}+\sum_{a=1}^{2} \frac{1}{2} \vartheta_{a} \dot{\vartheta}^{a}$ where $\theta^{M}=\left(C_{\mu}, B^{\nu}\right)$ and $\vartheta^{a}=(c, b)$. This is a constrained system, and the relevant Dirac bracket coincides with the graded Poisson bracket introduced by Deser and Sämann 2016.

Doubled-yet-Gauged String

- The formalism extends to string:

$$
S_{\text {string }}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{\alpha \beta} D_{\alpha} x^{M} D_{\beta} x^{N} \mathcal{H}_{M N}(x)-\epsilon^{\alpha \beta} D_{\alpha} x^{M} \mathcal{A}_{\beta M}
$$

which is manifestly $\mathbf{O}(D, D)$ symmetric, doubled target spacetime diffeomorphism covariant, the coordinate gauge symmetry invariant, and worldsheet diffeomorphism invariant.

- Classically, upon a generic (n, \bar{n}) non-Riemannian backgrounds, after integrating out the auxiliary gauge potential -quadratic in $(K H A)_{\mu}$ and linear in $(X \cdot Y A)_{\mu},(\bar{X} \cdot \bar{Y} A)_{\mu}$ -

$$
S_{\text {string }} \Rightarrow \frac{1}{2 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{\alpha \beta} \partial_{\alpha} x^{\mu} \partial_{\beta} X^{\nu} K_{\mu \nu}+\frac{1}{2} \epsilon^{\alpha \beta} \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu} B_{\mu \nu}+\frac{1}{2} \epsilon^{\alpha \beta} \partial_{\alpha} \tilde{x}_{\mu} \partial_{\beta} X^{\mu}
$$

and string becomes chiral and anti-chiral over the n and \bar{n} dimensions respectively,

$$
X_{\mu}^{i}\left(\partial_{\alpha} x^{\mu}+\frac{1}{\sqrt{-h}} \epsilon_{\alpha}{ }^{\beta} \partial_{\beta} x^{\mu}\right)=0, \quad \bar{X}_{\mu}^{\bar{i}}\left(\partial_{\alpha} x^{\mu}-\frac{1}{\sqrt{-h}} \epsilon_{\alpha}{ }^{\beta} \partial_{\beta} x^{\mu}\right)=0 .
$$

- κ-symmetric Green-Schwarz superstring extension unifies IIA \& IIB

Doubled-yet-Gauged String

- The formalism extends to string:

$$
S_{\text {string }}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{\alpha \beta} D_{\alpha} x^{M} D_{\beta} x^{N} \mathcal{H}_{M N}(x)-\epsilon^{\alpha \beta} D_{\alpha} x^{M} \mathcal{A}_{\beta M}
$$

which is manifestly $\mathbf{O}(D, D)$ symmetric, doubled target spacetime diffeomorphism covariant, the coordinate gauge symmetry invariant, and worldsheet diffeomorphism invariant.

- Classically, upon a generic (n, \bar{n}) non-Riemannian backgrounds, after integrating out the auxiliary gauge potential -quadratic in $(K H A)_{\mu}$ and linear in $(X \cdot Y A)_{\mu},(\bar{X} \cdot \bar{Y} A)_{\mu}$ -
$S_{\text {string }} \Rightarrow \frac{1}{2 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{\alpha \beta} \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu} K_{\mu \nu}+\frac{1}{2} \epsilon^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} B_{\mu \nu}+\frac{1}{2} \epsilon^{\alpha \beta} \partial_{\alpha} \tilde{x}_{\mu} \partial_{\beta} X^{\mu}$
and string becomes chiral and anti-chiral over the n and \bar{n} dimensions respectively,

$$
X_{\mu}^{i}\left(\partial_{\alpha} x^{\mu}+\frac{1}{\sqrt{-h}} \epsilon_{\alpha}^{\beta} \partial_{\beta} x^{\mu}\right)=0, \quad \bar{X}_{\mu}^{\bar{i}}\left(\partial_{\alpha} x^{\mu}-\frac{1}{\sqrt{-h}} \epsilon_{\alpha}{ }^{\beta} \partial_{\beta} x^{\mu}\right)=0 .
$$

- κ-symmetric Green-Schwarz superstring extension unifies IIA \& IIB

$$
\mathcal{S}_{\mathrm{GS}}=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d}^{2} \sigma-\frac{1}{2} \sqrt{-h} h^{\alpha \beta} \Pi_{\alpha}^{M} \Pi_{\beta}^{N} \mathcal{H}_{M N}-\epsilon^{\alpha \beta} D_{\alpha} x^{M}\left(\mathcal{A}_{\beta M}-i \Sigma_{\beta M}\right)
$$

where $\Pi_{\alpha}^{M}=D_{\alpha} x^{M}-i \Sigma_{\alpha}^{M}, \Sigma_{\alpha}^{M}=\bar{\theta} \gamma^{M} \partial_{\alpha} \theta+\bar{\theta}^{\prime} \bar{\gamma}^{M} \partial_{\alpha} \theta^{\prime}$ (IIA \& IIB distinguished by $V_{A p}, \bar{V}_{B \bar{q}}$).

BRST quantization 1/4

- Toward the BRST quantization, we fix the background to be constant flat and maximally non-Riemannian: $\frac{\mathbf{O}(D, D)}{\mathbf{O}(n, n) \times \mathbf{O}(\bar{n}, \bar{n})}, n+\bar{n}=D$. With the decomposition of $\mu=(i, \bar{\imath})$, performing a field redefinition of the potential, $A_{\alpha \mu}$, to a coordinate gauge symmetry invariant quantity,

$$
p_{\alpha i}:=\partial_{\alpha} \tilde{x}_{i}-A_{\alpha i}, \quad p_{\alpha \bar{\imath}}:=A_{\alpha \bar{\imath}}-\partial_{\alpha} \tilde{x}_{\bar{\imath}},
$$

the doubled-yet-gauged string Lagrangian takes the form,

$$
\mathcal{L}_{0}=-\sqrt{-h}\left(p_{\alpha i} h_{+}^{\alpha \beta} \partial_{\beta} x^{i}+p_{\alpha \bar{\imath}} h_{-}^{\alpha \beta} \partial_{\beta} x^{\bar{\imath}}\right)+\epsilon^{\alpha \beta} \partial_{\alpha} \tilde{x}_{\mu} \partial_{\beta} x^{\mu}
$$

where $h_{ \pm}^{\alpha \beta}=\frac{1}{2}\left(h^{\alpha \beta} \pm \frac{1}{\sqrt{-h}} \epsilon^{\alpha \beta}\right)$ are 2×2 chirality projectors on worldsheet, and $p_{\alpha \mu}$'s are evidently the Lagrange multipliers, imposing $h_{+}^{\alpha \beta} \partial_{\beta} x^{i}=0$ and $h_{-}^{\alpha \beta} \partial_{\beta} x^{\bar{\imath}}=0$.

- It is convenient to parametrize $\sqrt{-h} h^{\alpha \beta}$, which has unit determinant, by two variables,

$$
\sqrt{-h} h^{\tau \tau}=-\frac{1}{e}, \quad \sqrt{-h} h^{\tau \sigma}=\frac{\omega}{e}, \quad \sqrt{-h} h^{\sigma \sigma}=e-\frac{\omega^{2}}{e} .
$$

We may read off how these transform under $\delta \sigma^{\alpha}=c^{\alpha}$, from the standard rule for $\sqrt{-h} h^{\alpha \beta}$:

$$
\delta e=c^{\alpha} \partial_{\alpha} e+\left(\partial_{\tau} c^{\tau}-\partial_{\sigma} c^{\sigma}\right) e-2 \partial_{\sigma} c^{\tau} \omega e, \quad \delta \omega=c^{\alpha} \partial_{\alpha} \omega+\left(\partial_{\tau} c^{\tau}-\partial_{\sigma} c^{\sigma}\right) \omega+\partial_{\tau} c^{\sigma}-\partial_{\sigma} c^{\tau}\left(\omega^{2}+e^{2}\right) .
$$

- From the orthogonality of $h_{+}^{\alpha \beta}$ and $h_{-}^{\alpha \beta}$, the Lagrangian possesses an extra gauge symmetry,

$$
\left\{\begin{array} { l }
{ \delta p _ { \alpha i } = \hat { C } _ { \beta i } h _ { - \alpha } ^ { \beta } } \\
{ \delta p _ { \alpha \overline { \imath } } = \hat { C } _ { \beta \overline { \imath } } h _ { + \alpha } ^ { \beta } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\delta p_{ \pm i}=(\omega-e \pm 1) C_{i} \\
\delta p_{ \pm \bar{\imath}}=(\omega+e \pm 1) C_{\bar{\imath}}
\end{array}\right.\right.
$$

- Fixing all the gauges,

$$
e \equiv 1, \quad \omega \equiv 0, \quad \tilde{x}_{\mu} \equiv 0, \quad p_{-i} \equiv 0, \quad p_{+\bar{\imath}} \equiv 0
$$

the full Lagrangian with Faddeev-Popov ghosts is

$$
\mathcal{L}_{\text {full }}=\mathcal{L}_{0}-i \delta_{\mathbf{B}}\left(\ln e b_{e}+\omega b_{\omega}+\tilde{x}_{\mu} \tilde{B}^{\mu}+p_{-i} B^{i}+p_{+\bar{\imath}} B^{\bar{\imath}}\right)
$$

where $\left\{b_{e}, b_{\omega}, \tilde{B}^{\mu}, B^{i}, B^{\bar{i}}\right\}$ are anti-ghosts, and $\delta_{\mathbf{B}}$ denotes the nilpotent BRST transformation.

- After integrating out all the trivially-decoupled component fields, the full Lagrangian reduces to

$$
\mathcal{L}_{\text {red. }}=2\left(p_{+i} \partial_{-} x^{i}+p_{-\bar{\imath}} \partial_{+} x^{\bar{\imath}}+i b_{++} \partial_{-} c^{+}+i b_{--} \partial_{+} c^{-}\right)
$$

with left-moving $\left\{x^{i}, p_{+i}, c^{+}, b_{++}\right\}$and right-moving $\left\{x^{\bar{\imath}}, p_{-\bar{\imath}}, c^{-}, b_{--}\right\}$.

Naturally, the bosonic component fields form $D=n+\bar{n}$ pairs of $\beta \gamma$-system:
$\beta_{i} \equiv p_{+i}, \bar{\beta}_{\bar{\imath}} \equiv p_{-\bar{\imath}}$ (conformal weight 1) and $\gamma^{j} \equiv x^{j}, \bar{\gamma}^{\bar{\jmath}} \equiv x^{\bar{\jmath}}$ (conformal weight 0).
Each pair contributes to a central charge by two.

BRST quantization 3/4

- The BRST charge decomposes, $Q_{\mathrm{B}}=Q_{\mathrm{L}}+Q_{\mathrm{R}}$, with

$$
Q_{\mathrm{L}}=\oint \mathrm{d} \sigma \beta_{i} \partial_{+} \gamma^{i} c^{+}+i\left(b_{++} \partial_{+} c^{+}\right) c^{+}=: \sum_{m, n=-\infty}^{\infty} n\left(-i \beta_{m i} \gamma_{n}^{i}+b_{m} c_{n}\right) c_{-m-n}:-a c_{0}
$$

and mirroring expression for Q_{R}.
The normal ordering constant arises upon quantization: $\left[\gamma_{m}^{i}, \beta_{n j}\right]=i \delta^{i}{ }_{j} \delta_{m+n},\left\{b_{m}, c_{n}\right\}=\delta_{m+n}$.

- The BRST charges, $Q_{\mathrm{L}}, Q_{\mathrm{R}}$, are nilpotent, if and only if $n=\bar{n}=13$, implying the usual critical dimension, $D=26$, since the central charges are $\mathbf{c}_{\mathrm{L}}=2 n-26$ and $\mathbf{c}_{\mathbf{R}}=2 \bar{n}-26$, both of which should vanish.
- Physical states are annihilated by Q_{L} and the anti-ghost zero mode b_{0} (mirrored by the right-moving sector). Their anti-commutator is

$$
L_{0}=\left\{b_{0}, Q_{\mathrm{B}}\right\}=N_{\beta}+N_{\gamma}+N_{b}+N_{c}-a
$$

where the level-counting operators are

$$
N_{\beta}=\sum_{p=1}^{\infty}-i p \beta_{-p i} \gamma_{p}^{i}, \quad N_{\gamma}=\sum_{p=1}^{\infty} i p \gamma_{-p}^{i} \beta_{p i}, \quad N_{b}=\sum_{p=1}^{\infty} p b_{-p} c_{p}, \quad N_{c}=\sum_{p=1}^{\infty} p c_{-p} b_{p} .
$$

These are all positive semi-definite. Hence, the vanishing of L_{0} on physical states means a drastic truncation of the entire string spectrum to just one level.
From $\langle 0|\left[L_{1}, L_{-1}\right]|0\rangle=-2$ with $L_{n}=\left\{Q_{\mathrm{L}}, b_{n}\right\}$, we identify the level to be unity, $a=1$.

BRST quantization 4/4

- In the end, the physical states consist of four sectors, with $|k \downarrow\rangle$ satisfying $b_{0}|k \downarrow\rangle=0$,

$$
\begin{array}{ll}
\delta \mathcal{H}_{i \bar{\imath}} \gamma_{-1}^{i}\left|k_{j} \downarrow\right\rangle \otimes \bar{\gamma}_{-1}^{\bar{i}}\left|k_{\bar{\jmath}} \downarrow\right\rangle, & \delta \mathcal{H}_{i}^{\overline{ }} \gamma_{-1}^{i}\left|k_{j} \downarrow\right\rangle \otimes \bar{\beta}_{-1 \bar{\imath}}\left|k_{\bar{\jmath}} \downarrow\right\rangle \\
\delta \mathcal{H}^{i}{ }_{\imath} \beta_{-1 i}\left|k_{j} \downarrow\right\rangle \otimes \bar{\gamma}_{-1}^{\bar{i}}\left|k_{\bar{\jmath}} \downarrow\right\rangle, & \delta \mathcal{H}^{i \bar{\imath}} \beta_{-1 i}\left|k_{j} \downarrow\right\rangle \otimes \bar{\beta}_{-1 \bar{\imath}}\left|k_{\bar{\jmath}} \downarrow\right\rangle
\end{array}
$$

which should satisfy on-shell relations for Q_{B}-closedness,

$$
k_{i} \delta \mathcal{H}^{i}{ }_{\imath}=0, \quad k_{\bar{\imath}} \delta \mathcal{H}_{i}{ }^{\bar{\imath}}=0, \quad k_{i} \delta \mathcal{H}^{i \bar{\imath}}=0, \quad k_{\bar{\imath}} \delta \mathcal{H}^{i \bar{\imath}}=0
$$

and equivalence relations (Q_{B}-exactness): with divergenceless parameters, $k_{i} \xi^{i}=k_{\bar{\imath}} \xi^{\bar{\imath}}=0$,

$$
\delta \mathcal{H}^{i}{ }_{\bar{\imath}} \sim \delta \mathcal{H}^{i}{ }_{\bar{\imath}}-k_{\bar{\imath}} \xi^{i}, \quad \delta \mathcal{H}_{i}{ }^{\bar{\imath}} \sim \delta \mathcal{H}_{i}{ }^{\bar{\imath}}+k_{i} \xi^{\bar{\imath}}, \quad \delta \mathcal{H}_{i \bar{\imath}} \sim \delta \mathcal{H}_{i \bar{\imath}}+k_{i} \lambda_{\bar{\imath}}-k_{\bar{\imath}} \lambda_{i}
$$

- We have a good reason to denote the physical states by the same symbol as the generalized metric: the $4 n \bar{n}$ of $\left\{\delta \mathcal{H}_{i \bar{\imath}}, \delta \mathcal{H}_{i}{ }^{\bar{i}}, \delta \mathcal{H}^{i}{ }_{\bar{\imath}}, \delta \mathcal{H}^{i \overline{ }}\right\}$ are literally the moduli of the maximally non-Riemannian generalized metric, $\frac{\mathbf{O}(D, D)}{\mathbf{O}(n, n) \times \mathbf{O}(\bar{n}, \bar{n})}$, that we have been dealing with. On-shell, the fluctuations meet the linearized Einstein Double Field Equations,

$$
\partial_{i} \partial_{j} \delta \mathcal{H}_{\bar{\imath}}-\partial_{\bar{\imath}} \partial_{\bar{\jmath}} \delta \mathcal{H}_{i}^{\bar{\jmath}}+4 \partial_{i} \partial_{\bar{\imath}} \delta d=0, \quad \partial_{i} \partial_{j} \delta \mathcal{H}^{j \bar{\imath}}=0, \quad \partial_{\bar{\imath}} \partial_{\bar{\jmath}} \delta \mathcal{H}^{i \bar{\jmath}}=0, \quad \partial_{i} \partial_{\bar{\imath}} \delta \mathcal{H}^{i \bar{\imath}}=0
$$

which enjoy local symmetries inherited from $\hat{\mathcal{L}}_{\xi} \mathcal{H}_{M N}$,

$$
\delta\left(\delta \mathcal{H}^{i} \bar{\imath}\right)=\partial_{\bar{\imath}} \xi^{i}, \quad \delta\left(\delta \mathcal{H}_{i}^{\bar{\imath}}\right)=-\partial_{i} \xi^{\bar{\imath}}, \quad \delta\left(\delta \mathcal{H}_{i \bar{\imath}}\right)=\partial_{\bar{\imath}} \lambda_{i}-\partial_{i} \lambda_{\bar{\imath}}, \quad \delta(\delta d)=-\frac{1}{4}\left(\partial_{i} \xi^{i}+\partial_{\bar{\imath}} \xi^{\bar{\imath}}\right)
$$

- Remarkably, after choosing a gauge, $\delta d=0$, and restricted to normalizable solutions, the BRST string spectrum agrees with the fluctuation analysis of DFT.
- Comments: i) $\delta \mathcal{H}^{i \bar{z}}$ may condensate and create Riemannian spacetime. ii) DFT=SFT.

Epilogue

- The conventional (or Riemannian) closed string effective action containing a tachyon,

$$
\int \mathrm{d}^{D} x \sqrt{-g} e^{-2 \phi}\left[R+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}-\frac{2(D-26)}{3 \alpha^{\prime}}-\partial_{\mu} T \partial^{\mu} T+\frac{4}{\alpha^{\prime}} T^{2}+\mathcal{O}\left(T^{3}\right)\right]
$$

can be formulated as a DFT coupled to the tachyon,

$$
\int e^{-2 d}\left[S_{(0)}-\frac{2(D-26)}{3 \alpha^{\prime}}-\mathcal{H}^{M N} \partial_{M} T \partial_{N} T+\frac{4}{\alpha^{\prime}} T^{2}+\mathcal{O}\left(T^{3}\right)\right]
$$

With the choice of the section, $\tilde{\partial}^{\mu}=0$, the tachyon kinetic term is $\mathcal{H}^{\mu \nu} \partial_{\mu} T \partial_{\nu} T$ which obviously vanishes upon the maximally non-Riemannian backgrounds, as $\mathcal{H}^{\mu \nu}=H^{\mu \nu}=0$.

The vanishing kinetic term then may eliminate the tachyonic instability: there is no dynamics for the tachyon to roll down. This agrees with our BRST spectrum analysis and also with a classical intuition for chiral string,

$$
x^{i}(\tau, \sigma)=x^{i}(0, \tau+\sigma)
$$

Namely, it is fixed in space and thus hardly interacts with one another.

- Our BRST charge formula can be extended to a generic (n, \bar{n}) non-Riemannian background, to include n pairs of chiral $\beta \gamma, \bar{n}$ pairs of anti-chiral $\bar{\beta} \bar{\gamma}$, and ordinary (left-right combined) $D-n-\bar{n}$ number of x^{μ}. The central charges should be

$$
\mathbf{c}_{\mathrm{L} / \mathbf{R}}=D \pm(n-\bar{n})-26 \quad(\text { bosonic string }), \quad \mathbf{c}_{\mathrm{L} / \mathbf{R}}=D \pm(n-\bar{n})-10 \quad \text { (superstring) }
$$

Necessarily we require $n=\bar{n}$ and $D=26$ or $D=10$, which might enlarge the string theory landscape far beyond the Riemannian paradigm.

Epilogue

- The conventional (or Riemannian) closed string effective action containing a tachyon,

$$
\int \mathrm{d}^{D} x \sqrt{-g} e^{-2 \phi}\left[R+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu}-\frac{2(D-26)}{3 \alpha^{\prime}}-\partial_{\mu} T \partial^{\mu} T+\frac{4}{\alpha^{\prime}} T^{2}+\mathcal{O}\left(T^{3}\right)\right]
$$

can be formulated as a DFT coupled to the tachyon,

$$
\int e^{-2 d}\left[S_{(0)}-\frac{2(D-26)}{3 \alpha^{\prime}}-\mathcal{H}^{M N} \partial_{M} T \partial_{N} T+\frac{4}{\alpha^{\prime}} T^{2}+\mathcal{O}\left(T^{3}\right)\right]
$$

With the choice of the section, $\tilde{\partial}^{\mu}=0$, the tachyon kinetic term is $\mathcal{H}^{\mu \nu} \partial_{\mu} T \partial_{\nu} T$ which obviously vanishes upon the maximally non-Riemannian backgrounds, as $\mathcal{H}^{\mu \nu}=H^{\mu \nu}=0$.

The vanishing kinetic term then may eliminate the tachyonic instability: there is no dynamics for the tachyon to roll down. This agrees with our BRST spectrum analysis and also with a classical intuition for chiral string,

$$
x^{i}(\tau, \sigma)=x^{i}(0, \tau+\sigma)
$$

Namely, it is fixed in space and thus hardly interacts with one another.

- Our BRST charge formula can be extended to a generic (n, \bar{n}) non-Riemannian background, to include n pairs of chiral $\beta \gamma, \bar{n}$ pairs of anti-chiral $\bar{\beta} \bar{\gamma}$, and ordinary (left-right combined) $D-n-\bar{n}$ number of x^{μ}. The central charges should be

$$
\mathbf{c}_{\mathrm{L} / \mathbf{R}}=D \pm(n-\bar{n})-26 \quad(\text { bosonic string }), \quad \mathbf{c}_{\mathrm{L} / \mathbf{R}}=D \pm(n-\bar{n})-10 \quad \text { (superstring) }
$$

Necessarily we require $n=\bar{n}$ and $D=26$ or $D=10$, which might enlarge the string theory landscape far beyond the Riemannian paradigm.

