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Prologue

— Ever since the birth of General Relativity, Riemannian geometry has been the mathematical
paradigm for modern physics. The metric, g,..., is privileged to be the fundamental variable
that provides a concrete tool to address the notion of ‘spacetime’.

— However, string theory suggests to put a two-form gauge potential, B,,.,, and a scalar dilaton,
¢, on an equal footing along with the metric: Forming the closed string massless sector, they
are ubiquitous in all string theories, and are transformed to one another under T-duality.

— By now, Double Field Theory has evolved to achieve its own autonomy statute, perhaps as an
alternative gravitational theory to GR. Postulating the O(D, D) symmetry as the fundamental
principle, GR and the Einstein Field Equations are unambiguosly augmented.

— Further, it turns out that DFT encompasses not only the Riemannian geometry but also
non-Riemannian ones where the notion of Riemannian metric ceases to exist.

— In this talk, after reviewing these aspects of DFT, | will introduce my latest work with
Shigeki Sugimoto (arXiv:2008.03084, PRL), where we examined some quantum consistency
of the non-Riemannian geometries as novel backgrounds of string theory.
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O(D, D) Symmetry Principle

e Working hypothesis is to view an O(D, D) invariant metric, 7yn = o , and
1 0

an O(D, D) covariant generalized metric, H v, as fundamental entities.
e The generalized metric should satisfy defining properties:
Hun = Hm HuKHNE T = T -
e Combing the two, we have a pair of projectors (orthogonal and complete),
Pun = 3(JTun + Huw) » Pun = 3(JTun — Hmw) »
e Further, taking the ‘square root’ of each projector,
Pun = VP VnInpq » Pun = VP Vg .
we obtain a pair of DFT-vielbeins which meet their own defining properties,

M _ M. _ = _ M- _
Vo V¥ q = 1ipg , Vip V¥ = Tipg » Vip V" =0.

e Besides, there is an O(D, D) singlet dilaton, d, which can be gauge fixed by diffeomorphisms.
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Semi-covariant formalism w/ Imtak Jeon and Kanghoon Lee 2010, 2011

e In GR, the Christoffel symbol is the unique metric-compatible connection, V5 g,., = 0, which
satisfies either a torsionless condition, or an alternative condition that the metric is the only
ingredient to form the connection.

e Similarly, the connection in DFT can be uniquely fixed
FLun=2(POLPP) +2(Pyr Py K = Praa? ) 0 Pi — s (PugmPrn+Puy P ) (0K a+ (PO PP) i )
while the compatibility holds,
ViJun =0, ViHun =0, Vid=-}e?v, (e729) =0.
e Further, spin connections for twofold local Lorentz symmetries can be determined,
q)Mpq = VNpVM V/\/q7 &)Mﬁa = VNpVM \_/Na
by requiring that Master derivative,
DM:8M+FM+¢M+&>M:VM+¢M+4->M
should be compatible with the vielbeins,
Dum VNp =Vu VNp + ¢’Mpq VNq =0, Du \_/Nﬁ =Vum \_/Nﬁ + (T)Mpa _VNa =0.

These spin connections are essentially the ‘generalized fluxes’ a la Aldazabala, Marques, Nunez, and Grana.
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Semi-covariant formalism w/ Imtak Jeon and Kanghoon Lee 2010, 2011

e Semi-covariant Riemann curvature :

1 _
Skumn = Sikumng = Sunke = 3 (Rkemn + Rkt — T ke Tumn) Sikemn =0,
where Rugcp denotes the ordinary “field strength”, Repas=0aTscp—98T aco+T act T8ep—TBcET AED -
By construction, it varies as 6Sagcp=V40r gicp+V(co pjas, NENCE good for variational principle.

[F pGIE

e Semi-covariance means, with 7,5 %=p Ep,1F Py, G+ 5 PumPuy
K=
d¢ (VL TMw "'Mn) = ﬁf (VLTM1 "'Mn)+zll'7:1 2(P+75)LM,NEFGaEaFEG TM1 My NMjyq---Mp
8¢ Skimn = Le Skmn + 2V [k [(P+P) gun EF0e0r 6] + 2V [(P+P) iy Fr80e0F €G]

8eTcap = LeTonp + 2[(P + P)cas™F — 6 £6,P5,F0r0pte

e The red-colored anomalies can be easily projected out to give fully covariant objects, e.g.
DpTg = ViTuVp VMg, Spg = SunVMp VN5 (Ricci), So) = SpgP — SpgP? (scalar)
’prpp, Dpp (Dirac) 9 }—PEI = (VM Wy — VnWy — I'[WM7 WN]) VMp \_/Na (Yang—MiIIs)

DiC = vPDpC £ +yPNDpCHP, (D1)?=0 = F=D;C (RR flux).
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Einstein Equations from General Covariance w/s. Angus and K. Cho 1804.00964

e Let us consider a DFT action coupled to generic matter, T, (e.g. RR, fermions, or tachyon),

Action = / e’Zd{ 16;63(0) + Lmatter (Ta, DaTp) ]
Jx
Deriving the variation of the action induced by all the fields, d, Vg, \_/Ap7 Ta,

5d(Sw) — 87GT0)) + 672

5Lma er
SAction :/e‘Zd [ 5 VM6 VP (Spg — 87GKpg) — oG 7m}
Jx

T2
we naturally define

K. :— 1V, dtmatter Vij SLmatter |\ — _o\/ {/,- SLmatter T = g2d 6(972dL"‘a“‘e')
03 (Mp SVt /Mg 5vMp)*— MpNiN’ =67 X ———%g
e The diffeomorphic invariance of the action,
' > £ OLm:
0 :/):672d [S%GENDM [4ViusP Vag?(Sp — 87GKo) — 1Tun( Sy — 8GTo)] +5En%t;er}
further guides us to identify the Einstein curvature, w/ S. Rey, W. Rim, and Y. Sakatani 2015

G = 4VinP Vi 9Spg — 3 TmnSoo) VuGMN =0 (off-shell),
and the Energy-Momentum tensor,
T == 4VinP Vi TKpg — 3 Tmn Too) » DyTMN =0  (on-shell).

e Equating them, we obtain the Einstein Double Field Equations: Gy = 87GTyy
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Question: Is DFT a mere reformulation of SUGRA in an O(D, D) manifest fashion?

The answer would be (and had been) yes, if we employ the well-known parametrization,

g -g7'B —2d —2¢
Hun = e =% =/|gle
Bg~' g-Bg'B
Giveon, Rabinovici, Veneziano ’'89, Duff '90

Upon this parametrization, EDFEs, Gyn = 87 GTyw, unify

ALL FOR ONE \|
ONE FOR ALL)

Ruv +2v,(00¢) — §Hupo Ho?7 = 87GK(,.)
& (672 Hpp ) = 167GKiur
R+40¢ — 40,,$0" ¢ — L Hxu HMY = 87GT)
which implies Stringy Newton Gravity in a non-relativistic limit (D = 4),

VZONewton = 41Gp+HH, V-H=0, VxH=47GK

= H-flux as dark matter, w/ Kevin Morand and Kyungho Cho 2019
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The answer would be (and had been) yes, if we employ the well-known parametrization,
=f =f
g -9 'B
Hun = e 29 = /|gle=2¢
Bg~' g-Bg 'B
Giveon, Rabinovici, Veneziano ’'89, Duff '90

Upon this parametrization, EDFEs, Gyny = 87 GTyp, unify

ALL FOR ONE \|
ONE FOR ALL)

Ruv +2v,(00¢) — §Hupo H?7 = 87GK..)
& (672 Hpp ) = 167GKiur
R+40¢ — 40,,$0" ¢ — L Hxu HMY = 87GT)

which implies Stringy Newton Gravity in a non-relativistic limit (D = 4),

V2Oewton = 47Gp +HH, VH=0, VxH=47GK

= H-flux as dark matter, w/ Kevin Morand and Kyungho Cho 2019

e The truth is that, DFT works perfectly fine with any generalized metric that satisfies
the defining properties: Hyn = Hams Hu"HNETe = Tun-
And the above famous parametrization is not the most general solution to them.
Hence the answer to the question can be negative.
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Classification w/ Kevin Morand 1707.03713

The most general parametrizations of the generalized metric, Hyn = Hn, Hu HN Tk = Tuns
can be classified by two non-negative integers, (n,n), 0 <n+n<D:

Hev —HETBos + YEXL — YVEX]
Hun = ‘
B, HPY + XYy — XTyY Kix — BrpH?7Box + 22X/, By, YP — 2X[ By, YF
1.0 H Yi(X)T = Va(X))T 1 -8B
B 1 X = X' (V)T K 0o 1
i) Symmetric and skew-symmetric fields: H*Y = H"#,  K,, = Koy, Buw = —Buy;
i) Two kinds of zero eigenvectors: with i,j =1,2,--- ,n & 7,7=1,2,--- ,n,
HP X!, =0, HrY X =0, K Yj =0, Kuw Yy = 0;

iii) Completeness relation: HEP Ky + YEXD + YEXT = 61,.

— Both H*” and K,,,, have the signature, (t, s, n+ Fz) for temporal, spatial, and non-Riemannian dimensions.

o(D,D)

— The underlying coset is r—s-prolsrr With dimensions D? — (n — /)%, while Hy" = 2(n— 7).
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Classification w/ Kevin Morand 1707.03713
I. (n,n) = (0,0) corresponds to the Riemannian case or Generalized Geometry a la Hitchin.

Il. (n,n) # (0,0) : Non-Riemannian. Examples include
e (1,0) Newton—Cartan gravity, ds? = —c?df? + dx?, Jim g~ is finite & degenerate
— 00

e (1, 1) Stringy/torsional Newton—Cartan (curved), Gomis—Ooguri non-relativistic string (flat)
Andringa, Bergshoeff, Gomis, de Roo 2012; Harmark, Hartong, Obers 2017; w/ Melby-Thompson, Meyer, Ko 2015; Blair 2019

e (D—1,0) ultra-relativistic Carroll gravity, dr? = —df? + ¢c2dx?, lim g~ " is finite & degenerate
c—

e (n,n) with n+ n = D: maximally non-Riemannian with no time and no space.

In particular, (D, 0) or (0, D) is uniquely given as H = +.7 with trivial coset, OED D;.

These two are the perfectly O(D, D)-symmetric vacua of DFT with no moduli.

“Spacetime emerges after SSB of O(D, D), identifying {g, B} as Nambu—Goldstone boson moduli. "
Berman, Blair, and Otsuki 2019

— Generically, on worldsheet, string becomes chiral and anti-chiral over the n and n dimensions:

XL Oy xH(1,0) =0, )_(Z O_xH(r,0) =0.
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e (1,0) Newton—Cartan gravity, ds? = —c?df? + dx?, Jim g~ is finite & degenerate
— 00

e (1, 1) Stringy/torsional Newton—Cartan (curved), Gomis—Ooguri non-relativistic string (flat)
Andringa, Bergshoeff, Gomis, de Roo 2012; Harmark, Hartong, Obers 2017; w/ Melby-Thompson, Meyer, Ko 2015; Blair 2019

e (D—1,0) ultra-relativistic Carroll gravity, dr? = —df? + ¢c2dx?, lim g~ " is finite & degenerate
c—

e (n,n) with n+ n = D: maximally non-Riemannian with no time and no space.

In particular, (D, 0) or (0, D) is uniquely given as H = +.7 with trivial coset, °<D D;

These two are the perfectly O(D, D)-symmetric vacua of DFT with no moduli.

“Spacetime emerges after SSB of O(D, D), identifying {g, B} as Nambu—Goldstone boson moduli. "
Berman, Blair, and Otsuki 2019

— Generically, on worldsheet, string becomes chiral and anti-chiral over the n and n dimensions:

XL6+X“(T,J):0, )_(Za_X‘U‘(T,O'):O.

— Further, analysis on Killing equations, £¢Huyn = 8PulK Py k&, = 0, reveals that
non-Riemannian isometries are supertranslational. w/ Chris Blair and Gerben Oling, in preparation.

Jeong-Hyuck Park String Theory and Non-Riemannian Geometry



Fluctuation Analysis w/ Melby-Thompson, Meyer, Ko 2015, and w/ K. Cho 2019

e Linearized Einstein Double Field Equations for vacuum, Gyy = 0, are

(PMN _ BMNY7 and — %VMVNM-LMN =0 (scalar)
Py Pyt coLsd + %(PMKANL — AR PN oHK =0 (Ricci)

which are invariant under the diffeomorphically inherited transformations of the fluctuations,

5¢(0d) = Led, Se(OHMN) = LeHmn -

Note Akl = PxLPMNY Wy — 2P NPIM(V ),V — Syw) and similarly for Akt with P < P.

e Analysis of §Hyy around a generic (n, n) non-Riemannian background shows

— 8Hun's form the coset m with dimensions, D? — (n — 7).

— §Hmn's include those which decrease the ‘non-Riemannianity’, e.g. (n,n) — (n— 1,0 —1).
Riemannian spacetime may then emerge out of a maximally non-Riemannian background.
It also suggests that the various non-Riemannian gravities, such as Newton—Cartan, should

better be identified as different solution sectors of DFT rather than viewed as independent theories.
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Section condition = Doubled-yet-Gauged JHP 1304.5946

o DFT necessarily imposes the ‘section condition’ for x* = (%,,, x*),
moM = 9,8 + 949, =0
which can be generically solved by letting 5* = 0, up to O(D, D) rotations.

e The section condition is mathematically equivalent to a certain translational invariance:

Ds(x) = ds(x + A), AM = oMo,

where &g, &, &y € { d, Hyn , &M, Ond, 8 Huw, - - - }, arbitrary functions appearing in DFT,
and AM is said to be ‘derivative-index-valued'.

» ‘Physics’ should be invariant under such a shift of the doubled coordinates.

Doubled coordinates, x' = (%, x”), are gauged through an equivalence relation,
" ~ xM 4 AM(x) : Coordinate Gauge Symmetry

where AM is derivative-index-valued.

Each equivalence class, or gauge orbit in R°*°, corresponds to a single physical point in R°.

o With 9# = 0and AM = ¢, dMx#, we note (X, , x*) ~ (Xu +Cu, X¥).

O(D, D) then rotates the gauged directions and hence the section.
c.f. Alfonsi 2019, 2020 for formal discussion
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Section condition = Doubled-yet-Gauged JHP 1304.5946

e In DFT, the usual coordinate basis of one-forms, dx#, is not covariant:
— Neither diffeomorphic covariant,

oxM =M 5(dxM) = dxNoyeM # dxN(aneM — Mep)

— Nor invariant under the coordinate gauge symmetry,
M — aMEaM) £ axM.

= The naive contraction, dxMdxN#yy, is not an invariant scalar nor ‘proper length’.
e These problems can be all cured by gauging the one-forms, dx*, explicitly,

DxM .= dxM — AM | AM9y =0 (derivative-index-valued) .

DxM is covariant:
oxM=naM — 5AM = aaM = §(Dx")=0;

oM =M s AM = OMey(axN — AN) = §(DxM) = DxN(aneM — aMey) .

— Concretely, setting &* = 0 and AM = A 0Mx* = (A,,0), we get DxM = (d%, — A, dx").
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Proper Length & Point Particle  w/s. Ko, M. Suh 2016 and w/ T. Basile, E. Joung 2019

o With DxM = dxM — AM it is possible to define the ‘proper length’ through a path integral,

Proper Length := —In [/DA exp (—/\/DXMDXN'HMN>] .

— With " = 0, AM = (A,,,0), and the decomposition, A, = (KH 4+ X'Y; + X" ¥3),.* Av,

DXMDxN Ly = dxdx” K, + [d%, — Bj..dx" — (KHA),] [di,, — B,xdx* — (KHA)V} H#

+ 22X/ dx* [d%, — B, ,dx” — (X-YA),] Y — 2X\dx* [dX, — B,,dx” — (X-YA),] V¥

— Essentially, (KHA),, leads to Gaussian integral, while (X-YA), and (X-YA),, are Lagrange
multipliers to freeze the non-Riemannian dimensions: X/’de“ =0, )_(de“ =0

Proper Length then reduces consistently to / dx»dx¥ K, (x), which is independent of
X... Hence, it measures the distance between two gauge orbits, as desired.
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Proper Length & Point Particle  w/s. Ko, M. Suh 2016 and w/ T. Basile, E. Joung 2019

o With DxM = dxM — AM it is possible to define the ‘proper length’ through a path integral,

Proper Length := —In [/DA exp (—/\/DXMDXN'HMN>] .

— With 8» = 0, AM = (A,,0), and the decomposition, A, = (KH + X'Y; + X7 ¥;),* A,,

DXMDxN Ly = dxdx” K, + [d%, — Bj..dx" — (KHA),] [di,, — B,xdx* — (KHA)V} H#

+ 22X/ dx* [d%, — B, ,dx” — (X-YA),] Y — 2X\dx* [dX, — B,,dx” — (X-YA),] V¥

— Essentially, (KHA),, leads to Gaussian integral, while (X-YA), and (X-YA),, are Lagrange
multipliers to freeze the non-Riemannian dimensions: X/’de“ =0, )_(ﬁdx“ =0

Proper Length then reduces consistently to / dx+#dxv K, (x), which is independent of
X... Hence, it measures the distance between two gauge orbits, as desired.

e This line of thinking readily leads to a completely covariant particle action (Faddeev—Popov),
. 2
Sparticlc:/dT %9_1 DTXMDTXNHMN(X) - %mzeJr kyAM + k(e—1)+ %HMéM + Z %193193
. a=1
where §¥ = (C,,, B¥) and 92 = (c, b). This is a constrained system, and the relevant Dirac
bracket coincides with the graded Poisson bracket introduced by Deser and Sadmann 2016.
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Doubled-yet-Gauged String
e The formalism extends to string: Hull 2006; w/ Kanghoon Lee 2013

Sutring = 32 /d% — 1/ZBh* Do xM D xNHyn(x) — € DoxM Ay

which is manifestly O(D, D) symmetric, doubled target spacetime diffeomorphism covariant,
the coordinate gauge symmetry invariant, and worldsheet diffeomorphism invariant.

— Classically, upon a generic (n, n) non-Riemannian backgrounds, after integrating out the
auxiliary gauge potential —quadratic in (KHA),, and linear in (X-YA),, (X-YA),—

Sstrlug =

o /d2 — 3V/=Rh*P8ax B XY Kuy + 3P 0ax"0x" Buy + 3P 00X, 05 X"

and string becomes chiral and anti-chiral over the n and n dimensions respectively,

Xi, (9axt + peaPOpxi) =0, X;, (9axt — —peaPOpxi) = 0.

1
vV—h
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Doubled-yet-Gauged String
e The formalism extends to string: Hull 2006; w/ Kanghoon Lee 2013

Sstring = 47ra /dza = 7\/ h”ﬁD XMDBXNHMN(X)—eaﬂD XM.A[}M

which is manifestly O(D, D) symmetric, doubled target spacetime diffeomorphism covariant,
the coordinate gauge symmetry invariant, and worldsheet diffeomorphism invariant.

— Classically, upon a generic (n, n) non-Riemannian backgrounds, after integrating out the
auxiliary gauge potential —quadratic in (KHA),, and linear in (X-YA),, (X-YA),—

Sstrlug =

o /d2 — 3V/=Rh*P8ax B XY Kuy + 3P 0ax"0x" Buy + 3P 00X, 05 X"

and string becomes chiral and anti-chiral over the n and n dimensions respectively,

Xi, (9axt + peaPOpxi) =0, X;, (9axt — —peaPOpxi) = 0.
— k-symmetric Green—-Schwarz superstring extension unifies IlA & 1B JHP 1609.04265

S = 47:7/&0 — 3V/=hn NNy — 2P DaxM (Agy — iZum)
where MY = DoxM — izM, ¥M = 9yM9,0 + 6'7M04,0" (1A & 1IB distinguished by Vap, Vig).
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BRST quantization 1/4 w/ Shigeki Sugimoto 2008.03084

e Toward the BRST quantization, we fix the background to be constant flat and maximally
non-Riemannian: %, n+ n = D. With the decomposition of n = (/,7), performing a
field redefinition of the potential, A, to a coordinate gauge symmetry invariant quantity,

Pai = OaXi — Aais Pai = Aai — Oa X,
the doubled-yet-gauged string Lagrangian takes the form,

By= _\/_7/7(Pa,'hiﬁ8ﬁx" + Pazhcfﬁaaxi> + P9 %, 0p x4
where h}? = 1 (h*f +

\/175“5) are 2 x 2 chirality projectors on worldsheet, and pq,,’s are
evidently the Lagrange multipliers, imposing hﬁﬁﬁﬁx" =0 and h‘iﬁaﬁﬂ =0.

It is convenient to parametrize v/—hh®?#, which has unit determinant, by two variables,

V=hh'T = -1, v—hhre =<, V=RhoT —e— <.

We may read off how these transform under §c® = ¢, from the standard rule for v/—hh®#:

b6 =CcY0ne+(0,C7 — 05c7)e — 20,CTwe, dw= C¥0qw+(0+CT — 8sC”)w + - ¢ — B, C7 (WP + €2).

— From the orthogonality of hi’j and hfﬁ, the Lagrangian possesses an extra gauge symmetry,

6Pai = Caih’® o op+i=(w—ex1)G;
<~
Opaz = nghfa op+: = (w+ex1)C

Jeong-Hyuck Park String Theory and Non-Riemannian Geometry



BRST quantization 2/4 w/ Shigeki Sugimoto 2008.03084

e Fixing all the gauges,

e=1, w=0, X, =0, p_i=0, Pz

Il
o

the full Lagrangian with Faddeev—Popov ghosts is
Liun= Lo — ids (In ebe +wby, + X, B" + p_;B + pHBi)
where {be, b, B~ B, B} are anti-ghosts, and &g denotes the nilpotent BRST transformation.
e After integrating out all the trivially-decoupled component fields, the full Lagrangian reduces to
Lred. = 2(pid—x"+ p—70:X" + ibs1:d_ct +ib__0.c7)
with left-moving {x/, p.;, ¢*, by} and right-moving {x”, p_z,c¢—,b__}.

Naturally, the bosonic component fields form D = n+ n pairs of 8~-system:
Bi = p4i, Br = p—z (conformal weight 1) and +/ = x/, 57 = x7 (conformal weight 0).

Each pair contributes to a central charge by two.
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BRST quantization 3/4 w/ Shigeki Sugimoto 2008.03084

e The BRST charge decomposes, Qs = QL + Qr, with

Q= %do’ 6/8+’YIC+ +i(byyoyct)ct = Z n (‘iﬂmi’% + men> C_m—n: —ac

m,n=—oo0

and mirroring expression for Q.

The normal ordering constant arises upon quantization: [y, 8] = ié’j5m+n, {bm, n} = 6min.

e The BRST charges, Q., Q, are nilpotent, if and only if n = n = 13, implying the usual critical
dimension, D = 26, since the central charges are ¢, = 2n—26 and cg = 2n—26, both of
which should vanish.

e Physical states are annihilated by Q. and the anti-ghost zero mode by (mirrored by the
right-moving sector). Their anti-commutator is

Lo={bg,Qe} = Ng+Ny+Np+N:—a
where the level-counting operators are
Ns =352 —ipB-pivp, Ny =20 oY pBpis No=352 pb_pco, Noe=352 pcpbp.
These are all positive semi-definite. Hence, the vanishing of Ly on physical states means a
drastic truncation of the entire string spectrum to just one level.
From (O|[L1,L_1]|0) = —2 with L, = {Qv, bn}, we identify the level to be unity, a = 1.
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BRST quantization 4/4 w/ Shigeki Sugimoto 2008.03084

e In the end, the physical states consist of four sectors, with |k |) satisfying by|kJ) = 0,

SHi v 1L @FL kL) SHI Ak L) ®B_13 ks L)
SH'z B_1ilk L)@ 1ks L), SH" B_1ilk 1) ®B_13lk; L)
which should satisfy on-shell relations for Qg-closedness,
kisH'zs =0, Ke6H;* =0, kisH™ =0, ki6H'® =0
and equivalence relations (Qs-exactness): with divergenceless parameters, k&' = k;¢* = 0,
SHIT ~ OMH's — kel M~ SHT + KEY,  Hip ~ SHip + Kida — ki

e We have a good reason to denote the physical states by the same symbol as the generalized
metric: the 4nh of {§H;, 6H;", 6H'z, 51"} are literally the moduli of the maximally
non-Riemannian generalized metric, % , that we have been dealing with.

On-shell, the fluctuations meet the linearized Einstein Double Field Equations,

006 H/z — 0;0;0M7 + 40,0;0d =0,  8;0;,0H* =0, 9;0;0HT =0, ;001" =0
which enjoy local symmetries inherited from [15?-[,\/,,\,,

S(0H7) = 8:¢,  S(6H;) = 9", S(0Hj) = I\ — Fidi,  6(dd) = —}1(8,{" + 5;:€%)

— Remarkably, after choosing a gauge, dd = 0, and restricted to normalizable solutions,
the BRST string spectrum agrees with the fluctuation analysis of DFT.

— Comments: i) 4" may condensate and create Riemannian spacetime. ii) DFT =SFT.
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Epilogue

— The conventional (or Riemannian) closed string effective action containing a tachyon,
/ﬁxM—w*¢h+4@¢%¢—%HMJPWAf%gﬂ—aJ&7+gﬂq+OUﬂ
can be formulated as a DFT coupled to the tachyon,
/é‘”[sm)grﬂggga——}MWOMTGNT+—£%T2+—O(T%]

With the choice of the section, 8+ = 0, the tachyon kinetic term is #+* 3, Td, T which
obviously vanishes upon the maximally non-Riemannian backgrounds, as H** = H*¥ = 0.

The vanishing kinetic term then may eliminate the tachyonic instability: there is no dynamics
for the tachyon to roll down. This agrees with our BRST spectrum analysis and also with a
classical intuition for chiral string,

X'(r,0) = X'(0,7 + o)
Namely, it is fixed in space and thus hardly interacts with one another.

— Our BRST charge formula can be extended to a generic (n, n) non-Riemannian background,
to include n pairs of chiral 8, i pairs of anti-chiral 537, and ordinary (left-right combined)
D—n—n number of x*. The central charges should be

c.yr =D+ (n—n)—26 (bosonic string), cLyr =Dx(n—n)—10 (superstring)

Necessarily we require n = nand D = 26 or D = 10, which might enlarge the string theory
landscape far beyond the Riemannian paradigm.
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Epilogue

— The conventional (or Riemannian) closed string effective action containing a tachyon,
/ﬁxwiﬁ4¢h+4m¢W¢—%mmﬂ““fﬁ%@—@J&T+gﬂq+0Uﬂ
can be formulated as a DFT coupled to the tachyon,
/é‘”[sm)grﬂggga——}NWOMTGNT+—£%T2+—O(T%]

With the choice of the section, 8+ = 0, the tachyon kinetic term is #+* 3, Td, T which
obviously vanishes upon the maximally non-Riemannian backgrounds, as H** = H*¥ = 0.

The vanishing kinetic term then may eliminate the tachyonic instability: there is no dynamics
for the tachyon to roll down. This agrees with our BRST spectrum analysis and also with a
classical intuition for chiral string,

X'(r,0) = X'(0,7 + o)
Namely, it is fixed in space and thus hardly interacts with one another.

— Our BRST charge formula can be extended to a generic (n, n) non-Riemannian background,
to include n pairs of chiral 8, i pairs of anti-chiral 537, and ordinary (left-right combined)
D—n—n number of x*. The central charges should be

c.yr =D+ (n—n)—26 (bosonic string), c.yr =D+ (n—n)—10 (superstring)

Necessarily we require n = nand D = 26 or D = 10, which might enlarge the string theory
landscape far beyond the Riemannian paradigm. Thank you
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