TTbar deformed 1d Bose gas

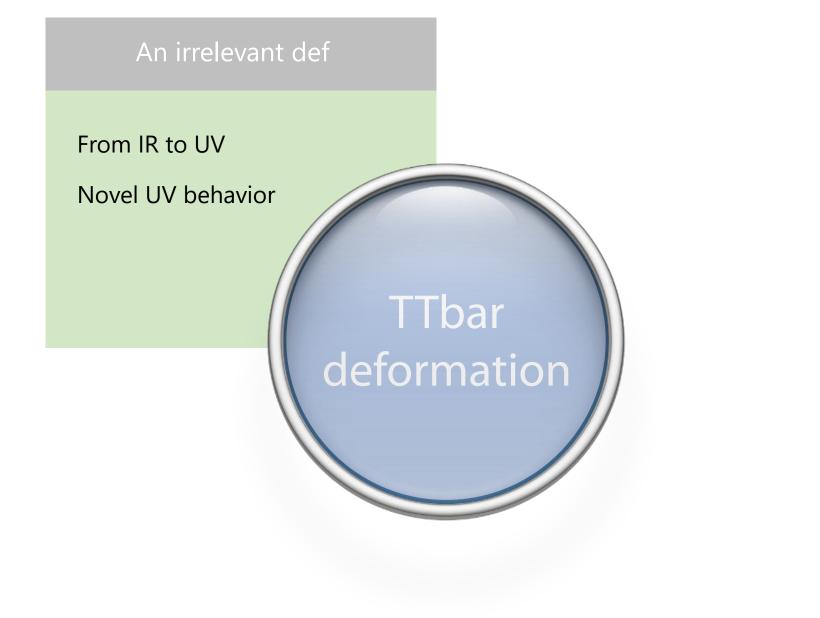
Yunfeng Jiang 江云峰 CERN

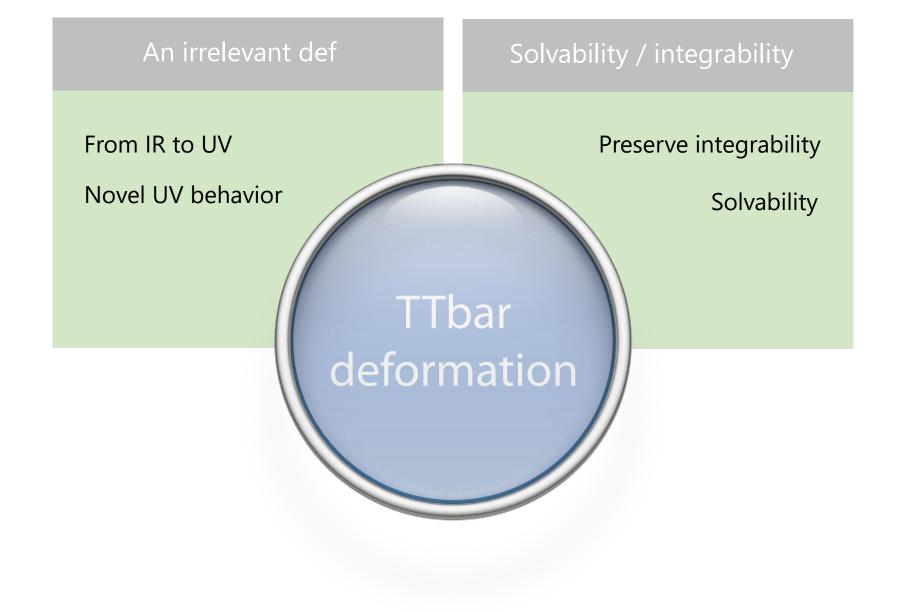
@APCPT, Pohang, Korea 2020-11-10

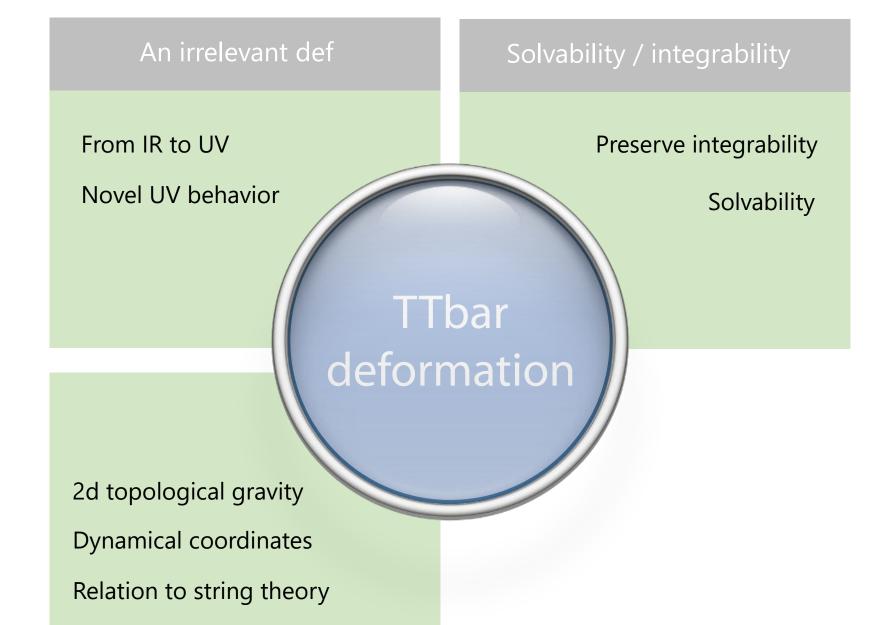
Based on the works

Y.Jiang, arXiv: **2011.00637**

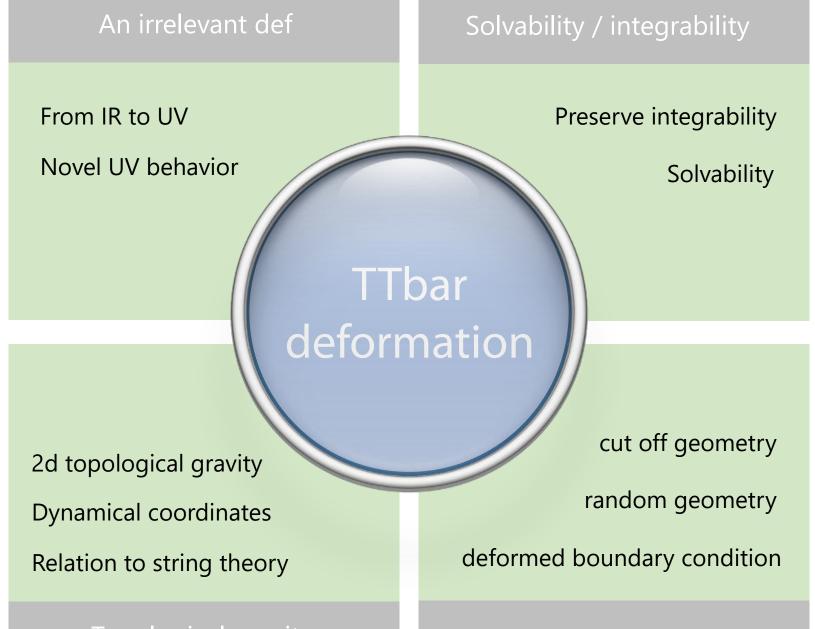
B.Pozsgay, Y. Jiang, G. Takacs, arXiv: 1911.11118







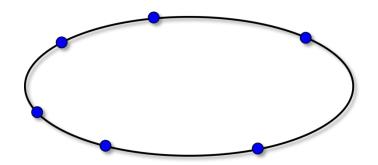
Topological gravity



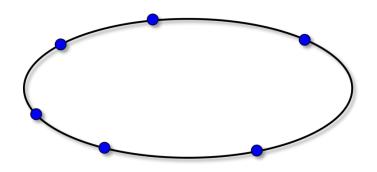
Topological gravity

AdS/CFT correspondence

Particles moving in 1d



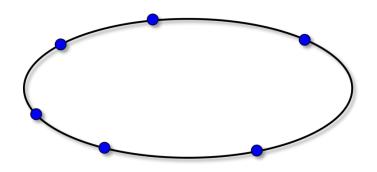
Particles moving in 1d



Hamiltonian

$$H = -\frac{\hbar^2}{2m} \sum_{k=1}^N \frac{\partial^2}{\partial x_i^2} + V(x_1, \dots, x_N)$$

Particles moving in 1d

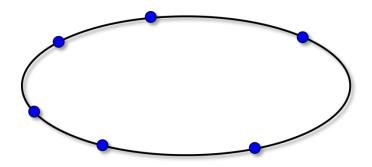


Hamiltonian

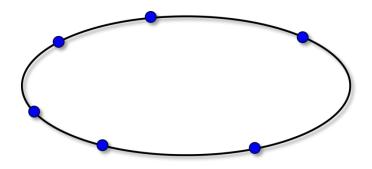
$$H = -\frac{\hbar^2}{2m} \sum_{k=1}^N \frac{\partial^2}{\partial x_i^2} + V(x_1, \dots, x_N)$$

Question Can we TTbar deform it ? How ?

Why do we want to do that ?



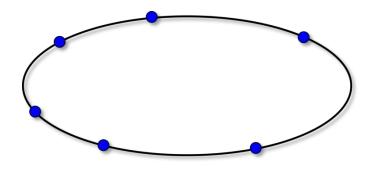
Why do we want to do that ?



Pure curiosity

Can define such deformations for such kind of model ?

Why do we want to do that?



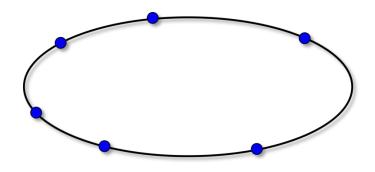
Pure curiosity

Can define such deformations for such kind of model ?

Learn about QFT

Share same features TTbar for relativistic QFT, but in a simpler set-up.

Why do we want to do that?



Pure curiosity

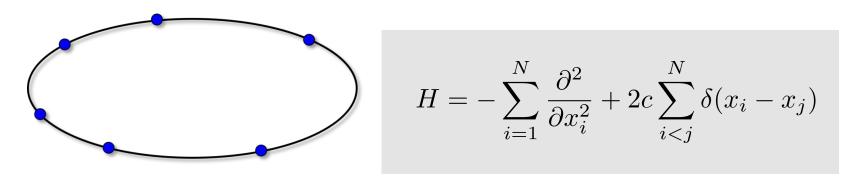
Can define such deformations for such kind of model ?

Learn about QFT

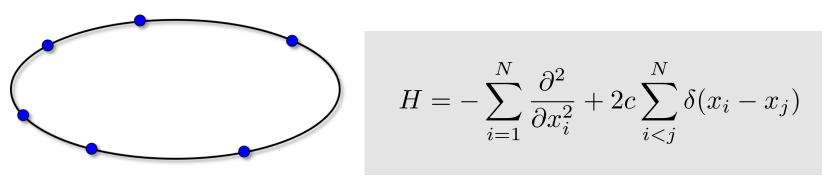
Share same features TTbar for relativistic QFT, but in a simpler set-up.

Integrability

A novel type of integrable model that can be interesting

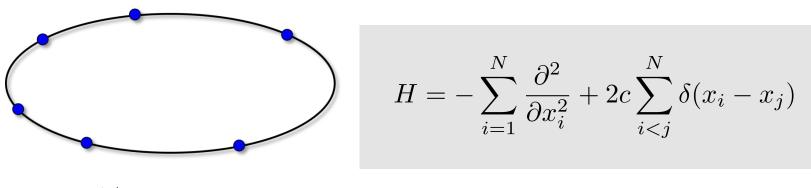


1d Bose gas



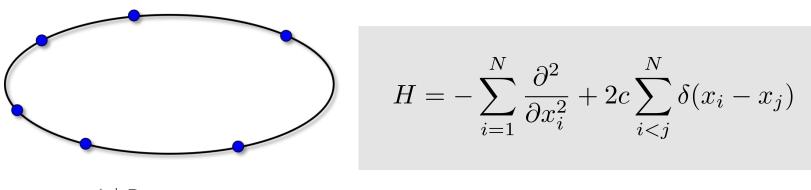
1d Bose gas

• An integrable model (Toda, Cologero-Sutherland...)



1d Bose gas

- An integrable model (Toda, Cologero-Sutherland...)
- Related to other systems (XXZ chain, Sinh-Gordon)



1d Bose gas

- An integrable model (Toda, Cologero-Sutherland...)
- Related to other systems (XXZ chain, Sinh-Gordon)
- Realized experimentally by cold atom

II. Bilinear deformations

TTbar deformation

TTbar deformation

Definition for QFT

$$\frac{d}{d\lambda}S_{\lambda} = \int d^2x \det\left(T_{\mu\nu}\right)$$

$$\frac{d}{d\lambda}S_{\lambda} = \int d^2x \det\left(T_{\mu\nu}\right)$$

Task Generalize it to Bose gas & spin chains

$$\frac{d}{d\lambda}S_{\lambda} = \int d^2x \det\left(T_{\mu\nu}\right)$$

Task Generalize it to Bose gas & spin chains

Problem 1

Actions and path integrals are less common in spin chains and Bose gas

$$\frac{d}{d\lambda}S_{\lambda} = \int d^2x \det\left(T_{\mu\nu}\right)$$

Task Generalize it to Bose gas & spin chains

Problem 1

Actions and path integrals are less common in spin chains and Bose gas

Problem 2

We do not have local stress energy tensor for such systems

$$\frac{d}{d\lambda}S_{\lambda} = \int d^2x \det\left(T_{\mu\nu}\right)$$

Task Generalize it to Bose gas & spin chains

Problem 1

Actions and path integrals are less common in spin chains and Bose gas

Problem 2

We do not have local stress energy tensor for such systems

Hamiltonian formalism

$$\frac{d}{d\lambda}S_{\lambda} = \int d^2x \det\left(T_{\mu\nu}\right)$$

Task Generalize it to Bose gas & spin chains

Problem 1

Actions and path integrals are less common in spin chains and Bose gas

Hamiltonian formalism

Problem 2

We do not have local stress energy tensor for such systems

Bilinear deformation

Two conserved currents

$$J^{a} = (\hat{q}^{a}, j^{a}) \qquad a = 1, 2$$
$$\partial_{t}\hat{q}^{a} + \partial_{x}j^{a} = 0$$

Two conserved currents

 $J^{a} = (\hat{q}^{a}, j^{a}) \qquad a = 1, 2$ $\partial_{t}\hat{q}^{a} + \partial_{x}j^{a} = 0$

2

Make anti-symmetric combination

$$O_{JJ}(x,t) = \epsilon_{ab} J^a J^b(x,t)$$

Two conserved currents

 $J^{a} = (\hat{q}^{a}, j^{a}) \qquad a = 1, 2$ $\partial_{t}\hat{q}^{a} + \partial_{x}j^{a} = 0$

Make anti-symmetric combination

$$O_{JJ}(x,t) = \epsilon_{ab} J^a J^b(x,t)$$

Specialize to **TTbar deformation**

$$\det T_{ab} = \epsilon_{ab} T^{1a} T^{2b} \begin{bmatrix} T^{1a} = (\hat{h}(x), j_H(x)) & \text{Energy density} \\ T^{2a} = (\hat{p}(x), j_P(x)) & \text{Momentum density} \end{bmatrix}$$

Two conserved currents

 $J^{a} = (\hat{q}^{a}, j^{a}) \qquad a = 1, 2$ $\partial_{t}\hat{q}^{a} + \partial_{x}j^{a} = 0$

Make anti-symmetric combination

$$O_{JJ}(x,t) = \epsilon_{ab} J^a J^b(x,t)$$

2

Specialize to **TTbar deformation**

$$\det T_{ab}(x) = \hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)$$

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Example

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Define it for spin chains ?

$$H = \sum_{k} \hat{h}(k)$$

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Define it for spin chains ?

$$H = \sum_{k} \hat{h}(k)$$

How to find **current densities** ?

Example

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Example Define it for spin chains ?

$$H = \sum_{k} \hat{h}(k)$$

How to find **current densities** ?

$$\partial_t \hat{q}(x) = i[H, \hat{q}(x)] = -\partial_x j(x)$$

Example

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Define it for spin chains ?

$$H = \sum_{k} \hat{h}(k)$$

Comment It is important to have the **notion of densities**

Example

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Define it for spin chains ?

$$H = \sum_{k} \hat{h}(k)$$

Comment It is important to have the **notion of densities**

For spin chains, **no momentum density** $P = \log U$

Example

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Define it for spin chains ?

$$H = \sum_{k} \hat{h}(k)$$

Comment It is important to have the **notion of densities**

For spin chains, **no momentum density** $P = \log U$

Cannot define TTbar for spin chain, but other bilinear deformations

Example

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Define it for spin chains ?

$$H = \sum_{k} \hat{h}(k)$$

Comment It is important to have the **notion of densities**

For spin chains, **no momentum density** $P = \log U$

Related to the **discrete** nature of spin chains

$$\frac{d}{d\lambda}H_{\lambda} = \int [\hat{h}(x)j_P(x) - \hat{p}(x)j_H(x)]dx$$

Define it for spin chains ?

$$H = \sum_{k} \hat{h}(k)$$

Comment It is important to have the **notion of densities**

For spin chains, **no momentum density** $P = \log U$

We can define **TTbar for 1d Bose gas**

Example

One can prove that [Zamolodchikov 2004] [Cardy 2018]

$$\langle n|O_{JJ}|n\rangle = \epsilon_{ab}\langle n|J^a|n\rangle\langle n|J^b|n\rangle$$

One can prove that [Zamolodchikov 2004] [Cardy 2018]

$$\langle n|O_{JJ}|n\rangle = \epsilon_{ab}\langle n|J^a|n\rangle\langle n|J^b|n\rangle$$

The proof relies on [Pozsgay, Jiang, Takacs 2019]

- Translational invariance (lattice version also)
- Conservation of current

One can prove that [Zamolodchikov 2004] [Cardy 2018]

$$\langle n|O_{JJ}|n\rangle = \epsilon_{ab}\langle n|J^a|n\rangle\langle n|J^b|n\rangle$$

The proof relies on [Pozsgay, Jiang, Takacs 2019]

- Translational invariance (lattice version also)
- Conservation of current

Flow equation for spectrum

$$\frac{d}{d\lambda}E_n = Q_a \langle n|j_b|n\rangle - Q_b \langle n|j_a|n\rangle$$

Charge densities

Current densities

Charge densities

• Easy to find

$$\langle n|q_a|n\rangle = \frac{Q_a}{R}$$

Current densities

Charge densities

• Easy to find

$$\langle n|q_a|n\rangle = \frac{Q_a}{R}$$

• Valid for any system

Current densities

Charge densities

• Easy to find

$$\langle n|q_a|n\rangle = \frac{Q_a}{R}$$

• Valid for any system

Current densities

• Not known in general

Charge densities

• Easy to find

$$\langle n|q_a|n\rangle = \frac{Q_a}{R}$$

• Valid for any system

Current densities

- Not known in general
- For relativistic QFT

 $\langle n|j_H|n\rangle = P_n$ $\langle n|j_P|n\rangle = \partial_R E_n$

Charge densities

• Easy to find

$$\langle n|q_a|n\rangle = \frac{Q_a}{R}$$

• Valid for any system

Current densities

- Not known in general
- For relativistic QFT

 $\langle n|j_H|n\rangle = P_n$ $\langle n|j_P|n\rangle = \partial_R E_n$

• Integrable systems

Charge densities

• Easy to find

$$\langle n|q_a|n\rangle = \frac{Q_a}{R}$$

• Valid for any system

Current densities

- Not known in general
- For relativistic QFT

 $\langle n|j_H|n\rangle = P_n$ $\langle n|j_P|n\rangle = \partial_R E_n$

Integrable systems

For **integrable models**, flow equation can be written down and solved.

and the local division of the

Once upon a time, people try to solve planar *N*=4 SYM by **integrability**

Once upon a time, people try to solve planar *N*=4 SYM by **integrability**

The dilatation operator is an **integrable**, **long-range** interacting spin chain

Once upon a time, people try to solve planar *N*=4 SYM by **integrability**

The dilatation operator is an **integrable**, **long-range** interacting spin chain

Bargheer, Beisert, Loebbert **classified** integrable long-range deformations for spin chains [Bargheer, Beisert, Loebbert 2010]

Once upon a time, people try to solve planar *N*=4 SYM by **integrability**

The dilatation operator is an **integrable**, **long-range** interacting spin chain

Bargheer, Beisert, Loebbert **classified** integrable long-range deformations for spin chains [Bargheer, Beisert, Loebbert 2010]

There's a class called **bilocal deformation**, is tightly related to the **bilinear deformation**.

Once upon a time, people try to solve planar *N*=4 SYM by **integrability**

The dilatation operator is an **integrable**, **long-range** interacting spin chain

Bargheer, Beisert, Loebbert **classified** integrable long-range deformations for spin chains [Bargheer, Beisert, Loebbert 2010]

There's a class called **bilocal deformation**, is tightly related to the **bilinear deformation**.

BBL construction can be generalized to Bose gas

Bilocal def.

• Two conserved charges

$$J^a = (\hat{q}^a, j^a)$$

Bilocal def.

• Two conserved charges

$$J^a = (\hat{q}^a, j^a)$$

• Two conserved charges

 $J^a = (\hat{q}^a, j^a)$

• Construct an operator

 $O_{JJ}(x,t) = \epsilon_{ab} J^a J^b(x,t)$

Bilocal def.

• Two conserved charges

$$J^a = (\hat{q}^a, j^a)$$

• Construct an operator

$$X_{JJ} = \int_{x < y} \hat{q}^a(x) \hat{q}^b(y) dx dy$$

• Two conserved charges

 $J^a = (\hat{q}^a, j^a)$

• Construct an operator

$$O_{JJ}(x,t) = \epsilon_{ab} J^a J^b(x,t)$$

Define deformation

$$\frac{d}{d\lambda}H_{\lambda} = \int O_{JJ}(x)dx$$

Bilocal def.

• Two conserved charges

$$J^a = (\hat{q}^a, j^a)$$

• Construct an operator

$$X_{JJ} = \int_{x < y} \hat{q}^a(x) \hat{q}^b(y) dx dy$$

Define deformation

$$\frac{d}{d\lambda}H_{\lambda} = i[X_{JJ}, H_{\lambda}]$$

Two conserved charges

 $J^a = (\hat{q}^a, j^a)$

Construct an operator

 $O_{JJ}(x,t) = \epsilon_{ab} J^a J^b(x,t)$

Define deformation

Theorem

$$\frac{d}{d\lambda}H_{\lambda} = \int O_{JJ}(x)dx$$

Bilocal def.

• Two conserved charges

$$J^a = (\hat{q}^a, j^a)$$

• Construct an operator

$$X_{JJ} = \int_{x < y} \hat{q}^a(x) \hat{q}^b(y) dx dy$$

Define deformation

$$\frac{d}{d\lambda}H_{\lambda} = i[X_{JJ}, H_{\lambda}]$$

$$i[X_{JJ}, H] = \int_0^R O_{JJ} dx - [\hat{Q}_1 j_2(0) - \hat{Q}_2 j_1(0)]$$

Two conserved charges

 $J^a = (\hat{q}^a, j^a)$

Construct an operator

 $O_{JJ}(x,t) = \epsilon_{ab} J^a J^b(x,t)$

Define deformation

Theorem

$$\frac{d}{d\lambda}H_{\lambda} = \int O_{JJ}(x)dx$$

Bilocal def.

• Two conserved charges

$$J^a = (\hat{q}^a, j^a)$$

• Construct an operator

$$X_{JJ} = \int_{x < y} \hat{q}^a(x) \hat{q}^b(y) dx dy$$

Define deformation

$$\frac{d}{d\lambda}H_{\lambda} = i[X_{JJ}, H_{\lambda}]$$

$$i[X_{JJ}, H] = \int_0^R O_{JJ} dx - [\hat{Q}_1 j_2(0) - \hat{Q}_2 j_1(0)]$$

Two conserved charges

 $J^a = (\hat{q}^a, j^a)$

Construct an operator

 $O_{JJ}(x,t) = \epsilon_{ab} J^a J^b(x,t)$

Define deformation

$$\frac{d}{d\lambda}H_{\lambda} = \int O_{JJ}(x)dx$$

Bilocal def.

• Two conserved charges

$$J^a = (\hat{q}^a, j^a)$$

• Construct an operator

$$X_{JJ} = \int_{x < y} \hat{q}^a(x) \hat{q}^b(y) dx dy$$

Define deformation

$$\frac{d}{d\lambda}H_{\lambda} = i[X_{JJ}, H_{\lambda}]$$

Theorem

The two deformations are **the same** in **infinite volume**.

Consider an algebra

$$[Q_a, Q_b] = f_{abc}Q_c$$

Consider an algebra

[Bargheer, Beisert, Loebbert 2010]

$$[Q_a, Q_b] = f_{abc}Q_c$$

Under deformation $Q_a \mapsto Q_a(\lambda)$

Consider an algebra

[Bargheer, Beisert, Loebbert 2010]

$$[Q_a, Q_b] = f_{abc}Q_c$$

Under deformation $Q_a \mapsto Q_a(\lambda)$ Bilocal deformation **preserves algebra**

$$[Q_a(\lambda), Q_b(\lambda)] = f_{abc}Q_c(\lambda)$$

Consider an algebra

[Bargheer, Beisert, Loebbert 2010]

$$[Q_a, Q_b] = f_{abc}Q_c$$

Under deformation $Q_a \mapsto Q_a(\lambda)$ Bilocal deformation **preserves algebra**

$$[Q_a(\lambda), Q_b(\lambda)] = f_{abc}Q_c(\lambda)$$

In particular, it **preserves integrability**

Bethe ansatz

1

Eigenstates

N-particle state constructed by Bethe ansatz

 $|\{u_1, u_2, \ldots, u_N\}\rangle$

Eigenstates

N-particle state constructed by Bethe ansatz

 $|\{u_1, u_2, \ldots, u_N\}\rangle$

Dispersion relations

For relativistic QFT

 $e(u) = m \cosh u$ $p(u) = m \sinh u$

Eigenstates

N-particle state constructed by Bethe ansatz

 $|\{u_1, u_2, \ldots, u_N\}\rangle$

Dispersion relations

For Bose gas

$$e(u) = u^2 \qquad \qquad p(u) = u$$

Eigenstates

N-particle state constructed by Bethe ansatz

 $|\{u_1, u_2, \ldots, u_N\}\rangle$

Dispersion relations

For Bose gas

$$e(u) = u^2 \qquad \qquad p(u) = u$$

Bethe equations

$$e^{ip(u_j)R} \prod_{k \neq j}^N S(u_j, u_k) = 1$$

Under bilinear deformation

$$S(u,v) \mapsto S(u,v) \times e^{-i\lambda[h_a(u)h_b(v) - h_b(u)h_a(v)]}$$

Under bilinear deformation

$$S(u, v) \mapsto S(u, v) \times e^{-i\lambda[h_a(u)h_b(v) - h_b(u)h_a(v)]}$$

CDD-like factors

Under bilinear deformation

$$S(u, v) \mapsto S(u, v) \times e^{-i\lambda[h_a(u)h_b(v) - h_b(u)h_a(v)]}$$

CDD-like factors

 $h_a(u)$ related to **charges** of a single particle

$$Q_a |\mathbf{u}_N\rangle = \sum_{j=1}^N h_a(u_j) |\mathbf{u}_N\rangle$$

Under bilinear deformation

$$S(u, v) \mapsto S(u, v) \times e^{-i\lambda[h_a(u)h_b(v) - h_b(u)h_a(v)]}$$

CDD-like factors

 $h_a(u)$ related to **charges** of a single particle

$$Q_a |\mathbf{u}_N\rangle = \sum_{j=1}^N h_a(u_j) |\mathbf{u}_N\rangle$$

This modifies Bethe equations, takes into account **finite-size effects**.

III. Finite size spectrum

Integrable models [Infinite conserved charges]

$$\{Q\} = \{Q_0, Q_1, Q_2, \ldots\}$$

Integrable models [Infinite conserved charges]

$$\{Q\} = \{Q_0, Q_1, Q_2, \ldots\}$$

The **first three** are universal

$$egin{aligned} Q_0 &= \hat{N} & ext{ particle number} \ Q_1 &= \hat{P} & ext{ momentum} \ Q_2 &= \hat{H} & ext{ energy} \end{aligned}$$

Integrable models [Infinite conserved charges]

$$\{Q\} = \{Q_0, Q_1, Q_2, \ldots\}$$

The **first three** are universal

$$egin{aligned} Q_0 &= \hat{N} & ext{ particle number} \ Q_1 &= \hat{P} & ext{ momentum} \ Q_2 &= \hat{H} & ext{ energy} \end{aligned}$$

Infinite bilinear deformations

$$O_{a,b} = [Q_a Q_b]$$

Integrable models [Infinite conserved charges]

$$\{Q\} = \{Q_0, Q_1, Q_2, \ldots\}$$

The **first three** are universal

$$egin{aligned} Q_0 &= \hat{N} & ext{ particle number} \ Q_1 &= \hat{P} & ext{ momentum} \ Q_2 &= \hat{H} & ext{ energy} \end{aligned}$$

TTbar deformation [Next-to-simplest]

 $T\bar{T} = O_{1,2}$

Integrable models [Infinite conserved charges]

$$\{Q\} = \{Q_0, Q_1, Q_2, \ldots\}$$

The **first three** are universal

$$egin{aligned} Q_0 &= \hat{N} & ext{ particle number} \ Q_1 &= \hat{P} & ext{ momentum} \ Q_2 &= \hat{H} & ext{ energy} \end{aligned}$$

What about **the simplest** one ?

see also [Cardy and Doyon 2020]

$$O_{0,1} = [\hat{N}\hat{P}]$$

S-matrix of Lieb-Liniger model

$$S_{\rm LL}(u,v) = \frac{u-v-ic}{u-v+ic}$$

S-matrix of Lieb-Liniger model

$$S_{\rm LL}(u,v) = \frac{u-v-ic}{u-v+ic}$$

Phase shift

$$\theta(u, v) = -i \log S(u, v)$$

S-matrix of Lieb-Liniger model

$$S_{\rm LL}(u,v) = \frac{u-v-ic}{u-v+ic}$$

Phase shift

$$\theta(u, v) = -i \log S(u, v)$$

Consider the free boson limit $\ c
ightarrow 0$

$$\lim_{c \to 0} \theta(u, v) = -\pi \operatorname{sgn}(u - v)$$

Recall

 $S(u,v) \mapsto S(u,v) \times e^{-i\lambda[h_a(u)h_b(v) - h_b(u)h_a(v)]}$

Recall

$$S(u,v) \mapsto S(u,v) \times e^{-i\lambda[h_a(u)h_b(v) - h_b(u)h_a(v)]}$$

with $O_{0,1}$

$$h_0(u) = 1 \qquad \qquad h_1(u) = u$$

Recall

$$S(u,v) \mapsto S(u,v) \times e^{-i\lambda[h_a(u)h_b(v) - h_b(u)h_a(v)]}$$

with $O_{0,1}$

$$h_0(u) = 1 \qquad \qquad h_1(u) = u$$

We find

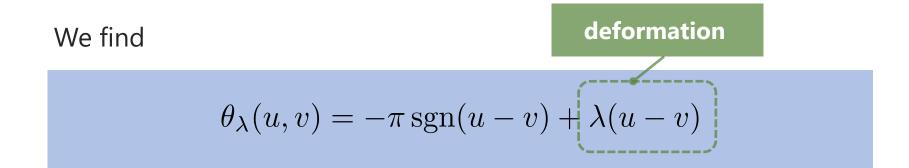
$$\theta_{\lambda}(u,v) = -\pi \operatorname{sgn}(u-v) + \lambda(u-v)$$

Recall

$$S(u,v) \mapsto S(u,v) \times e^{-i\lambda[h_a(u)h_b(v) - h_b(u)h_a(v)]}$$

with $O_{0,1}$

$$h_0(u) = 1 \qquad \qquad h_1(u) = u$$



$$H_{\rm HR} = -\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2} + \sum_{i< j}^{N} v(x_i - x_j) \qquad v(x) = \begin{cases} \infty & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}$$

Describes a gas of hard rods with length a > 0

$$H_{\rm HR} = -\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2} + \sum_{i< j}^{N} v(x_i - x_j) \qquad v(x) = \begin{cases} \infty & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}$$

Describes a gas of hard rods with length a > 0

A known **integrable model**, with phase shift [Sutherland 1971]

$$\theta_{\rm HR}(u,v) = -\pi \operatorname{sgn}(u-v) - a(u-v)$$

$$H_{\rm HR} = -\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2} + \sum_{i< j}^{N} v(x_i - x_j) \qquad v(x) = \begin{cases} \infty & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}$$

Describes a gas of hard rods with length a > 0

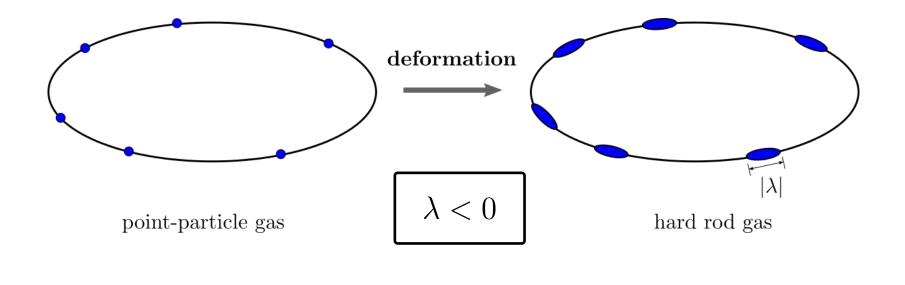
A known **integrable model**, with phase shift [Sutherland 1971]

$$\theta_{\rm HR}(u,v) = -\pi \operatorname{sgn}(u-v) - a(u-v)$$

Compare to $O_{0,1}$ deformation

$$\theta_{\lambda}(u,v) = -\pi \operatorname{sgn}(u-v) + \lambda(u-v)$$

see also [Cardy and Doyon 2020]



The deformation changes length of the ring by $|\lambda|N$

$\lambda > 0$	Length is increased
$\lambda < 0$	Length is decreased

$$\partial_{\lambda} E_N = N \partial_R E_N - P_N \langle \mathbf{u}_N | j_{\hat{N}} | \mathbf{u}_N \rangle$$

$$\partial_{\lambda} E_N = N \partial_R E_N - P_N \langle \mathbf{u}_N | j_{\hat{N}} | \mathbf{u}_N \rangle$$

Zero-momentum sector

$$\partial_{\lambda} E_N = N \partial_R E_N$$

$$\partial_{\lambda} E_N = N \partial_R E_N - P_N \langle \mathbf{u}_N | j_{\hat{N}} | \mathbf{u}_N \rangle$$

Zero-momentum sector

$$\partial_{\lambda} E_N = N \partial_R E_N$$

General solution

$$E_N(R,\lambda) = E_N(R + \lambda N, 0)$$

$$\partial_{\lambda} E_N = N \partial_R E_N - P_N \langle \mathbf{u}_N | j_{\hat{N}} | \mathbf{u}_N \rangle$$

Zero-momentum sector

$$\partial_{\lambda} E_N = N \partial_R E_N$$

General solution

$$E_N(R,\lambda) = E_N(R + \lambda N, 0)$$

- For $\lambda>0\,$, the spectrum is well-defined.
- For $\lambda < 0\;$, there is a critical value $\lambda_c = -R/N\;$

TTbar deformation

Flow equation

$$\partial_{\lambda} E_N = E_N \partial_R E_N - P_N \langle \mathbf{u}_N | j_H | \mathbf{u}_N \rangle$$

Flow equation

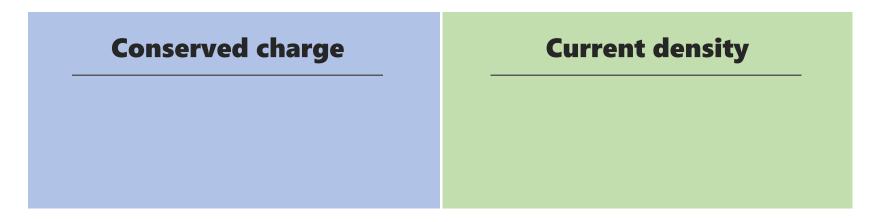
$$\partial_{\lambda} E_N = E_N \partial_R E_N - P_N \langle \mathbf{u}_N | j_H | \mathbf{u}_N \rangle$$

Mean value of currents

Flow equation

$$\partial_{\lambda} E_N = E_N \partial_R E_N - P_N \langle \mathbf{u}_N | j_H | \mathbf{u}_N \rangle$$

Mean value of currents



Flow equation

$$\partial_{\lambda} E_N = E_N \partial_R E_N - P_N \langle \mathbf{u}_N | j_H | \mathbf{u}_N \rangle$$

Mean value of currents

Conserved charge

$$Q_a |\mathbf{u}_N\rangle = \sum_{j=1}^N h_a(u_j) |\mathbf{u}_N\rangle$$

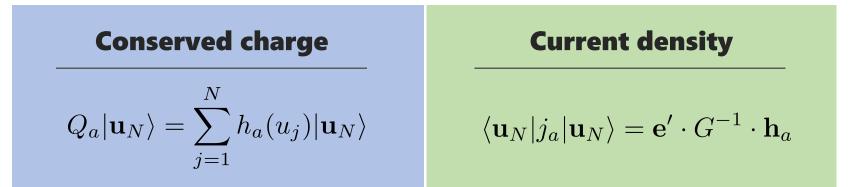
Current density

$$\langle \mathbf{u}_N | j_a | \mathbf{u}_N \rangle = \mathbf{e}' \cdot G^{-1} \cdot \mathbf{h}_a$$

Flow equation

$$\partial_{\lambda} E_N = E_N \partial_R E_N - P_N \langle \mathbf{u}_N | j_H | \mathbf{u}_N \rangle$$

Mean value of currents



where e'(u) = de(u)/du and G_{jk} is the Gaudin matrix

Deformed spectrum Zero momentum sector

Zero momentum sector

Flow equation

$$\partial_{\lambda} E_N = E_N \partial_R E_N$$

Zero momentum sector

Flow equation

Compare to

$$\partial_{\lambda} E_N = N \partial_R E_N$$

$$\partial_{\lambda} E_N = E_N \partial_R E_N$$

Zero momentum sector

Flow equation

Compare to $\partial_{\lambda} E_N = N \partial_R E_N$

$$\partial_{\lambda} E_N = E_N \partial_R E_N$$

The inviscid Burgers' equation, solved by

$$E_N(R,\lambda) = E_N(R + \lambda E_N, 0)$$

Zero momentum sector

Flow equation

Compare to $\partial_{\lambda} E_N = N \partial_R E_N$

$$\partial_{\lambda} E_N = E_N \partial_R E_N$$

The inviscid **Burgers' equation**, solved by

$$E_N(R,\lambda) = E_N(R + \lambda E_N, 0)$$

If we know $E_N(R,0)$, this gives an **algebraic equation**

 $\mbox{Free fermion limit} \quad c \to \infty \quad \theta(u,v) = 0 \label{eq:eq:entropy}$

Bethe equations

$$u_j R = 2\pi I_j, \qquad j = 1, \cdots, N$$

Bethe equations

$$u_j R = 2\pi I_j, \qquad j = 1, \cdots, N$$

$$E_N(R,0) = \frac{\alpha_N}{R^2} \qquad \qquad \alpha_N = \sum_{j=1}^N (2\pi I_j)^2$$

Bethe equations

$$u_j R = 2\pi I_j, \qquad j = 1, \cdots, N$$

$$E_N(R,0) = \frac{\alpha_N}{R^2} \qquad \qquad \alpha_N = \sum_{j=1}^N (2\pi I_j)^2$$

Spectrum given by solution of

$$x = \frac{\alpha_N}{(R + \lambda x)^2}$$

Bethe equations

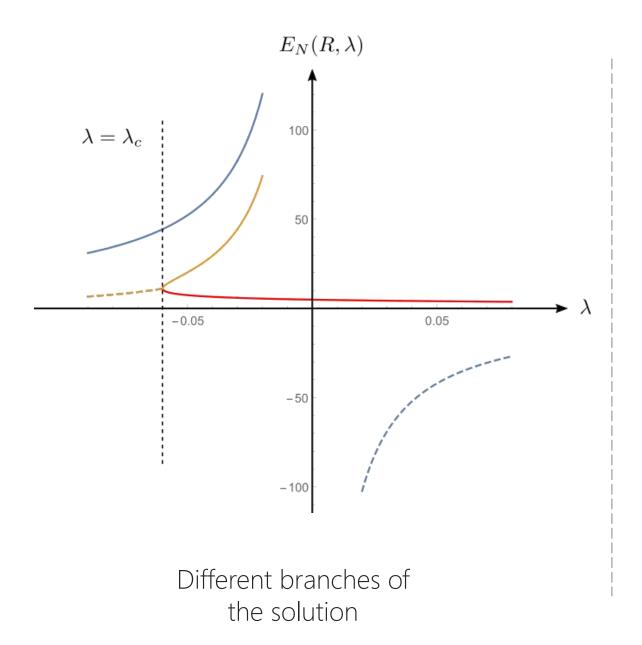
$$u_j R = 2\pi I_j, \qquad j = 1, \cdots, N$$

$$E_N(R,0) = \frac{\alpha_N}{R^2}$$
 $\alpha_N = \sum_{j=1}^N (2\pi I_j)^2$

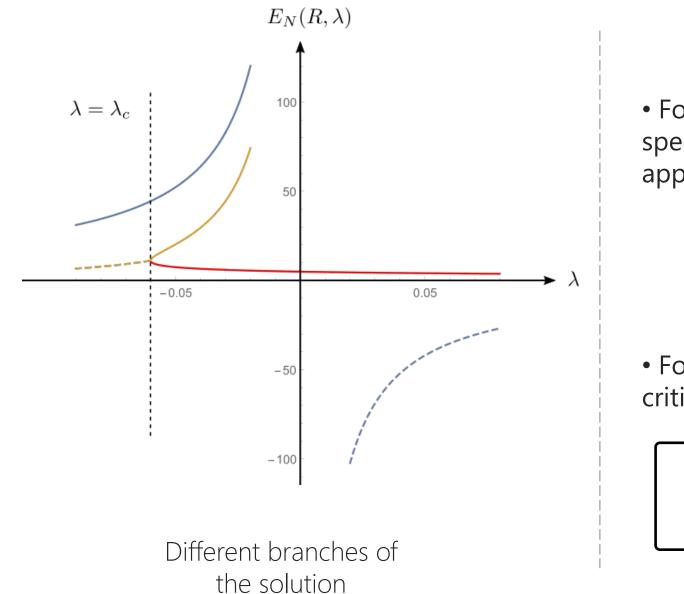
Spectrum given by solution of

$$x = \frac{\alpha_N}{(R + \lambda x)^2}$$

A cubic equation, solution with several branches



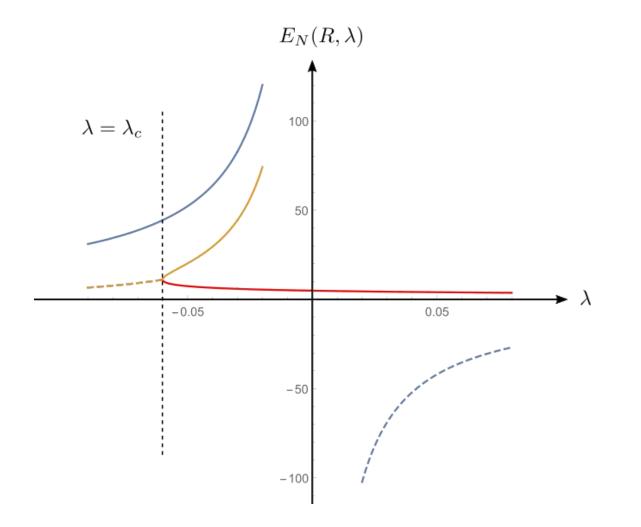
 \bullet For $\lambda>0$, deformed spectrum well-defined, approaches to zero

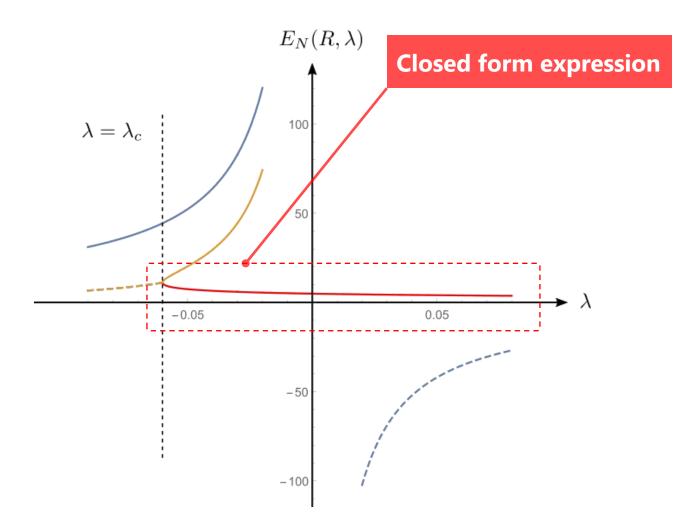


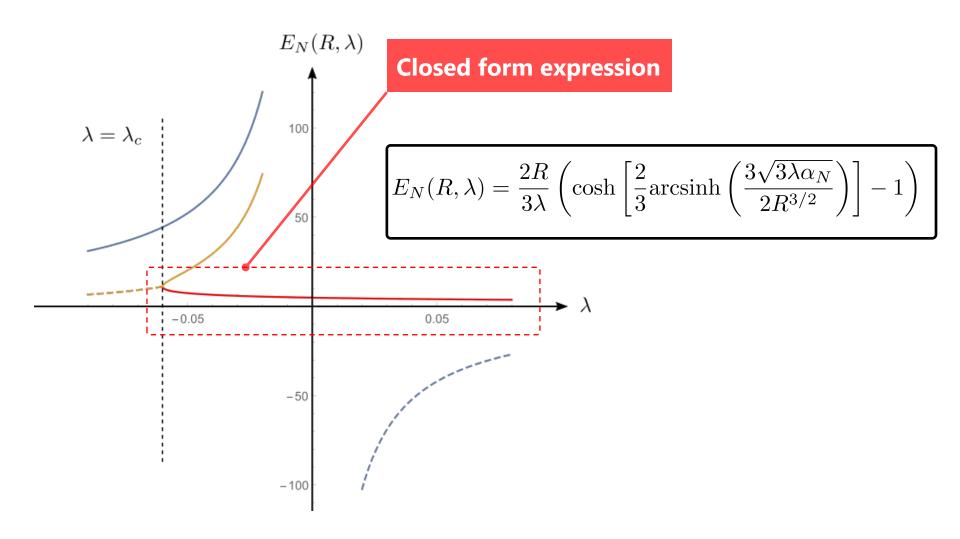
 \bullet For $\lambda>0$, deformed spectrum well-defined, approaches to zero

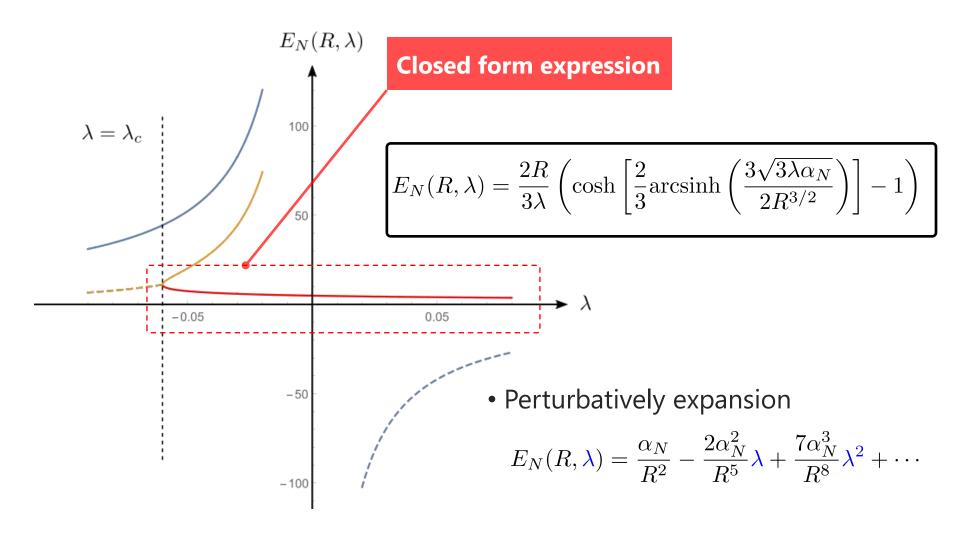
 \bullet For $\lambda < 0$, there is a critical value at

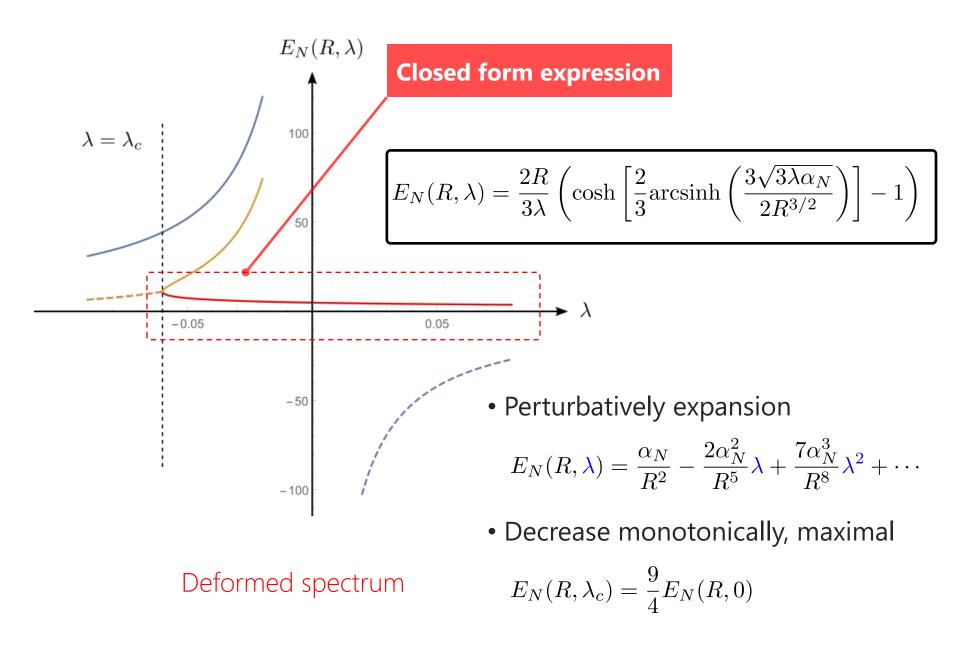
$$\lambda_c = -\frac{4R^3}{27\alpha_N}$$

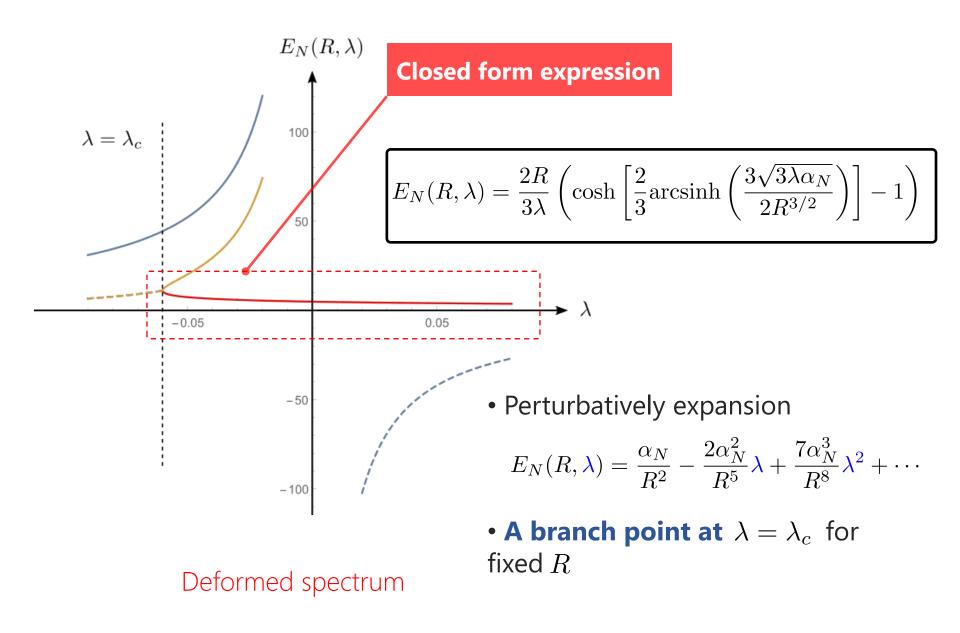












For fixed $\lambda < 0$, we must have $R \geq R_c$

$$R_c(\lambda) = 3\left(\frac{|\lambda|\alpha_N}{4}\right)^{1/3}$$

For fixed $\lambda < 0$, we must have $R \geq R_c$

$$R_c(\lambda) = 3\left(\frac{|\lambda|\alpha_N}{4}\right)^{1/3}$$

A break down of UV physics !

For fixed $\lambda < 0$, we must have $R \geq R_c$

$$R_c(\lambda) = 3\left(\frac{|\lambda|\alpha_N}{4}\right)^{1/3}$$

A break down of UV physics !

Comments

For fixed $\lambda < 0$, we must have $R \ge R_c$

$$R_c(\lambda) = 3\left(\frac{|\lambda|\alpha_N}{4}\right)^{1/3}$$

A break down of UV physics !

Comments

The same behavior as deformed QFT

For fixed $\lambda < 0$, we must have $R \geq R_c$

$$R_c(\lambda) = 3\left(\frac{|\lambda|\alpha_N}{4}\right)^{1/3}$$

A break down of UV physics !

Comments

- The same behavior as deformed QFT
- Consistent with shock formation of Burgers' equation

For fixed $\lambda < 0$, we must have $R \geq R_c$

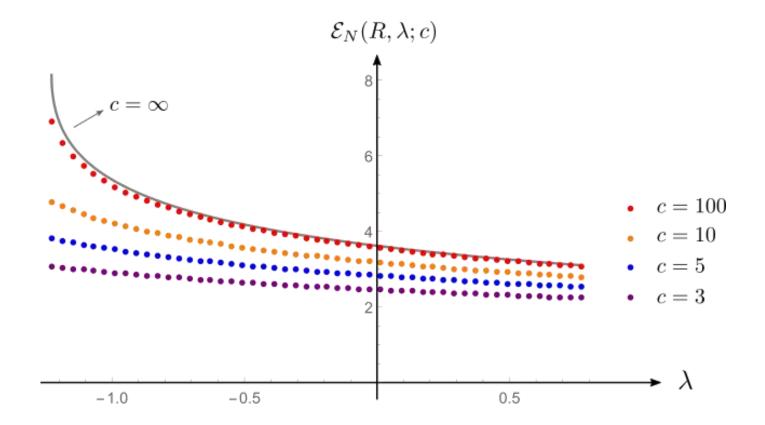
$$R_c(\lambda) = 3\left(\frac{|\lambda|\alpha_N}{4}\right)^{1/3}$$

A break down of UV physics !

Comments

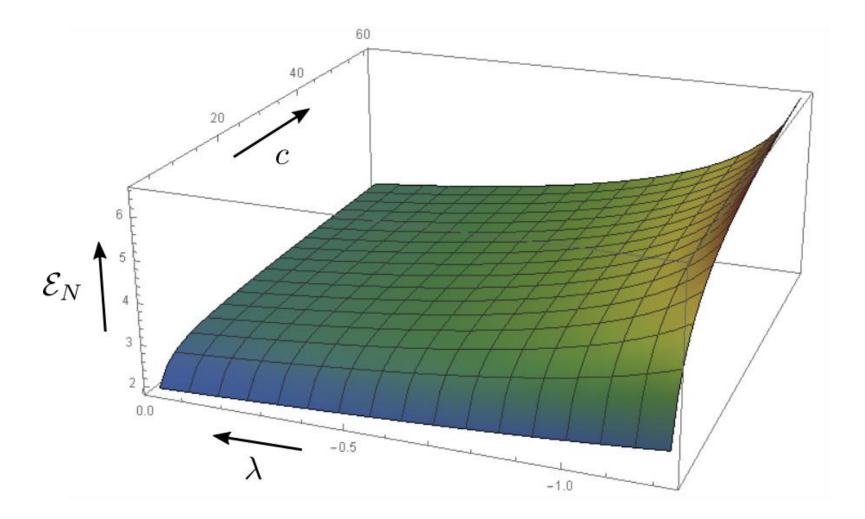
- The same behavior as deformed QFT
- Consistent with shock formation of Burgers' equation
- Can be explained with the generalized hard rod picture

Away from free fermion point



Find spectrum numerically. Qualitatively the same.

A 3D plot for the deformed spectrum



III. Thermodynamics

1

Pseudo-energy

TBA = Thermodynamic + Bethe ansatz

Central quantity : $\varepsilon(u)$

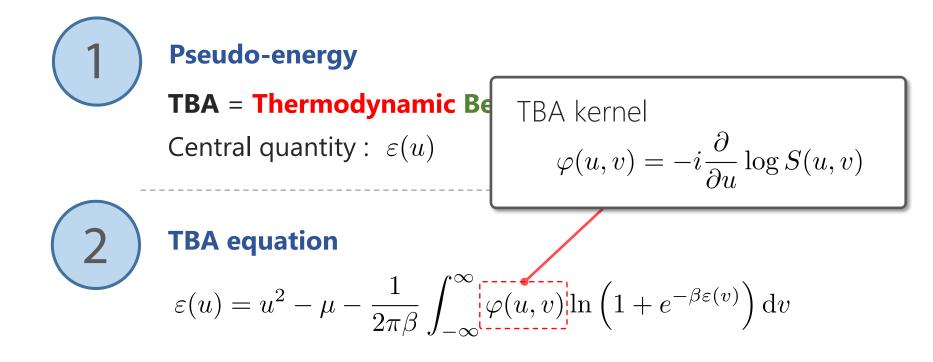
Pseudo-energy

TBA = Thermodynamic + Bethe ansatz

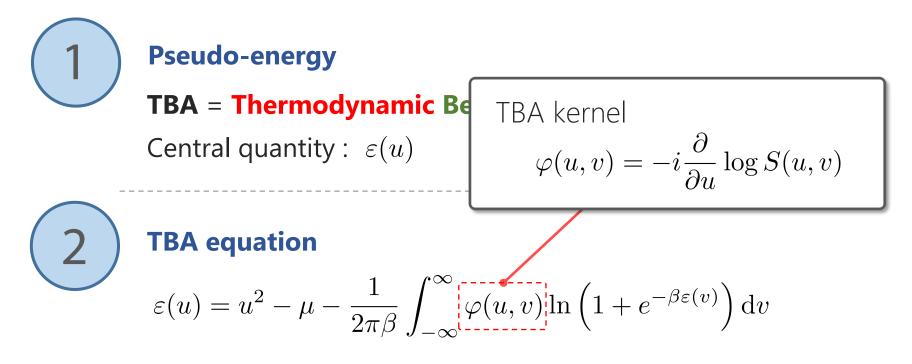
Central quantity : $\varepsilon(u)$

TBA equation

$$\varepsilon(u) = u^2 - \mu - \frac{1}{2\pi\beta} \int_{-\infty}^{\infty} \varphi(u, v) \ln\left(1 + e^{-\beta\varepsilon(v)}\right) dv$$



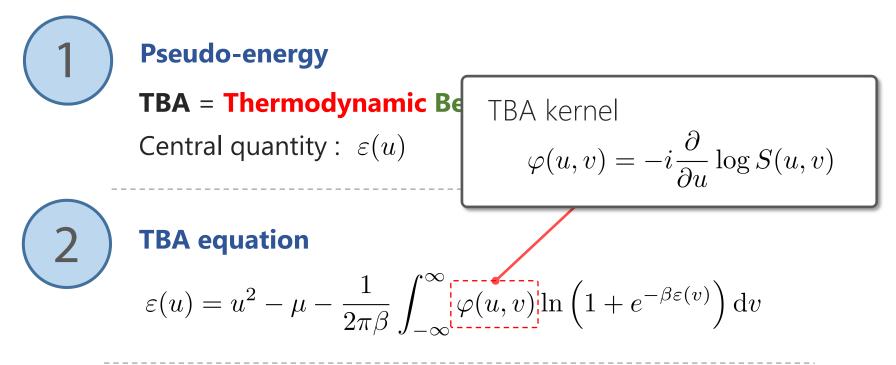
TBA in one slide



Thermal quantities

Free energy
$$F = N\mu - \frac{R}{2\pi\beta} \int_{-\infty}^{\infty} \ln\left(1 + e^{-\beta\varepsilon(u)}\right) du$$

TBA in one slide



Thermal quantities

Pressure
$$P = \frac{1}{2\pi\beta} \int_{-\infty}^{\infty} \ln\left(1 + e^{-\beta\varepsilon(u)}\right) du$$

TTbar deformation changes TBA kernel

$$\varphi_{\lambda}(u,v) = \varphi(u,v) - \lambda(2uv - v^2)$$

TTbar deformation changes TBA kernel

$$\varphi_{\lambda}(u,v) = \varphi(u,v) - \lambda(2uv - v^2)$$

Free fermion limit

$$\varphi_{\lambda}(u,v) = -\lambda(2uv - v^2)$$

TTbar deformation changes TBA kernel

$$\varphi_{\lambda}(u,v) = \varphi(u,v) - \lambda(2uv - v^2)$$

Free fermion limit

$$\varphi_{\lambda}(u,v) = -\lambda(2uv - v^2)$$

Deformed TBA equation

$$\varepsilon(u) = u^2 - \mu + \frac{\lambda}{2\pi\beta} \int_{-\infty}^{\infty} (2uv - v^2) \ln\left(1 + e^{-\beta\varepsilon(u)}\right)$$

TTbar deformation changes TBA kernel

$$\varphi_{\lambda}(u,v) = \varphi(u,v) - \lambda(2uv - v^2)$$

Free fermion limit

$$\varphi_{\lambda}(u,v) = -\lambda(2uv - v^2)$$

Deformed TBA equation

$$\varepsilon(u) = u^2 - \mu + \frac{\lambda}{2\pi\beta} \int_{-\infty}^{\infty} (2uv - v^2) \ln\left(1 + e^{-\beta\varepsilon(u)}\right)$$

Degenerate kernel, can be **solved analytically**

Analytical solution for pseudo-energy

$$\varepsilon(u) = u^2 - \mu + \lambda(2u G_1 - G_2)$$

Analytical solution for pseudo-energy

$$\varepsilon(u) = u^2 - \mu + \lambda(2u G_1 - G_2)$$

The quantities G_k satisfy self-consistency relations

$$G_k = \frac{1}{2\pi\beta} \int_{-\infty}^{\infty} u^k \ln\left(1 + e^{-\beta(u^2 - \mu + 2\lambda G_1 u - \lambda G_2)}\right) du$$

Analytical solution for pseudo-energy

$$\varepsilon(u) = u^2 - \mu + \lambda(2u G_1 - G_2)$$

The quantities G_k satisfy self-consistency relations

$$G_k = \frac{1}{2\pi\beta} \int_{-\infty}^{\infty} u^k \ln\left(1 + e^{-\beta(u^2 - \mu + 2\lambda G_1 u - \lambda G_2)}\right) du$$

We can show that $G_1 = 0$

$$G_2 = \frac{1}{2\pi\beta} \int_{-\infty}^{\infty} u^2 \ln\left(1 + e^{-\beta(u^2 - \mu - \lambda G_2)}\right) du$$

Conclusion TTbar deformation **shifts chemical potential**.

$$\varepsilon_{\lambda}(u,\mu) = \varepsilon_0(u,\mu + \lambda G_2)$$

Conclusion TTbar deformation **shifts chemical potential**.

$$\varepsilon_{\lambda}(u,\mu) = \varepsilon_0(u,\mu+\lambda G_2)$$

The shift is determined by a **self-consistency relation**

$$G_2 = \frac{1}{2\pi\beta} \int_{-\infty}^{\infty} u^2 \ln\left(1 + e^{-\beta(u^2 - \mu - \lambda G_2)}\right) du$$

Conclusion TTbar deformation **shifts chemical potential**.

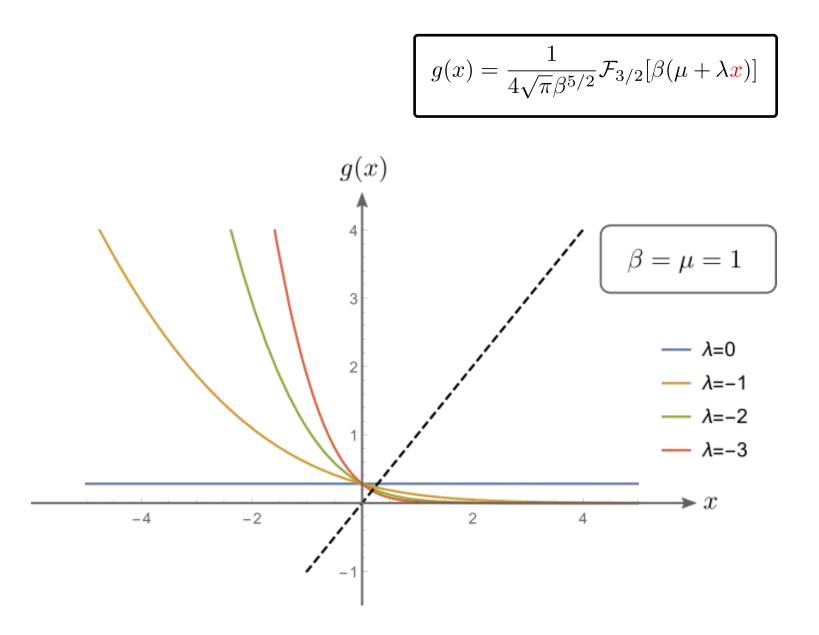
$$\varepsilon_{\lambda}(u,\mu) = \varepsilon_0(u,\mu+\lambda G_2)$$

The shift is determined by a **self-consistency relation**

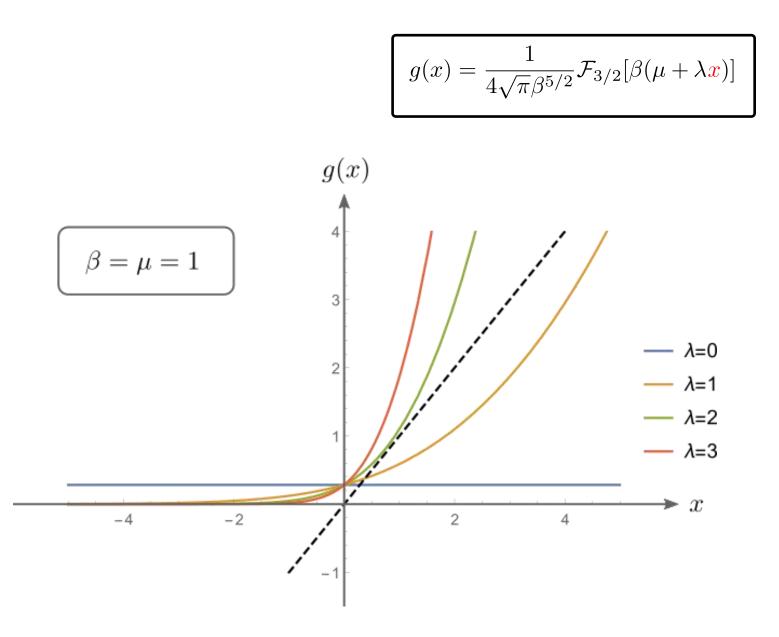
$$G_2 = \frac{1}{2\pi\beta} \int_{-\infty}^{\infty} u^2 \ln\left(1 + e^{-\beta(u^2 - \mu - \lambda G_2)}\right) du$$

A transcendental equation

$$G_2 = \frac{1}{4\sqrt{\pi}\beta^{5/2}} \mathcal{F}_{3/2} \left[\beta(\mu + \lambda G_2)\right]$$
$$\mathcal{F}_s(\eta) = -\text{Li}_{s+1}(-e^{\eta})$$



 $\lambda < 0$ For negative sign, there's always a real solution



 $\lambda > 0$ For positive sign, there's a critical value

More analytic study

Self-consistency relation can be written

$$G_{2} = \frac{2}{3\pi} \int_{-\infty}^{\infty} \frac{u^{4}}{1 + e^{\beta(u^{2} - \mu - \lambda G_{2})}} du$$

More analytic study

Self-consistency relation can be written

$$G_{2} = \frac{2}{3\pi} \int_{-\infty}^{\infty} \frac{u^{4}}{1 + e^{\beta(u^{2} - \mu - \lambda G_{2})}} du$$

Classical limit [low density, high temperature]

$$G_2 = \frac{2}{3\pi} \int_{-\infty}^{\infty} u^4 e^{-\beta(u^2 - \mu - \lambda G_2)} \mathrm{d}u$$

More analytic study

Self-consistency relation can be written

$$G_{2} = \frac{2}{3\pi} \int_{-\infty}^{\infty} \frac{u^{4}}{1 + e^{\beta(u^{2} - \mu - \lambda G_{2})}} du$$

Classical limit [low density, high temperature]

$$G_2 = \frac{2}{3\pi} \int_{-\infty}^{\infty} u^4 e^{-\beta(u^2 - \mu - \lambda G_2)} \mathrm{d}u$$

Define $W = -\beta \lambda G_2$

$$We^W = z$$
 $z = -\frac{e^{\beta\mu}\lambda}{2\sqrt{\pi}\beta^{3/2}}$

$$We^W = z$$
 $z = -\frac{e^{\beta\mu}\lambda}{2\sqrt{\pi}\beta^{3/2}}$

$$We^W = z$$
 $z = -\frac{e^{\beta\mu}\lambda}{2\sqrt{\pi}\beta^{3/2}}$

Real solution only exist for

$$z \ge -e^{-1}$$

$$We^W = z$$
 $z = -\frac{e^{eta\mu\lambda}}{2\sqrt{\pi}eta^{3/2}}$

Real solution only exist for

$$z \ge -e^{-1}$$

For fixed β and μ , this implies

$$\lambda \le \lambda_c(\beta,\mu) = 2\sqrt{\pi}\beta^{3/2}e^{-\beta\mu-1}$$

$$We^W = z$$
 $z = -\frac{e^{\beta\mu}\lambda}{2\sqrt{\pi}\beta^{3/2}}$

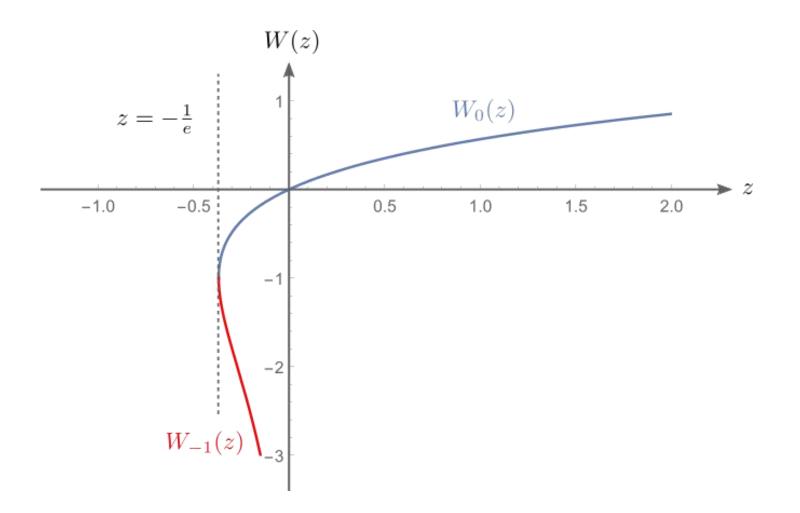
Real solution only exist for

$$z \ge -e^{-1}$$

For fixed β and μ , this implies

$$\lambda \le \lambda_c(\beta,\mu) = 2\sqrt{\pi}\beta^{3/2}e^{-\beta\mu-1}$$

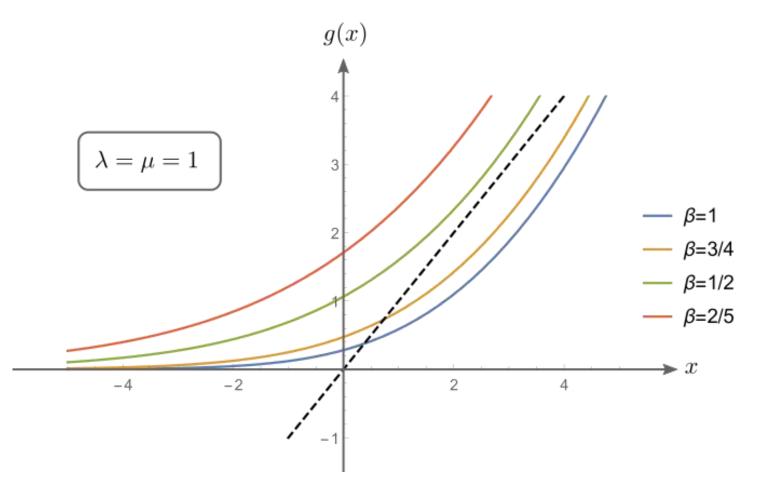
There exisit an **upper bound** for deformation parameter !



Plot for Lambert's W-function

Alternative explanation

For fixed $\lambda, \mu > 0$



An **upper bound for temperature**, the Hagedorn behavior

Conclusions

We can define **TTbar deformation for the Bose gas** as a special case of integrable bilinear deformation.

The deformation changes the **size of the particle**, or length of the system.

For finite volume spectrum, there is a **critical value for the negative sign** of the deformation parameter.

For thermodynamics, the TTbar deformation shifts the chemical potential. There's an **upper bound in temperature.**

Outlook

Other quantities

Compute correlation functions and other possible quantities

Other interpretations

Can we have an interpretation from non-relativistic gravity

Relation to other models

Bethe / gauge duality, attractive regime and matrix model