TTbar deformed 1d Bose gas

Yunfeng Jiang 江云峰
 CERN

＠APCPT，Pohang，Korea

2020－11－10

Based on the works

Y.Jiang, arXiv: 2011.00637
B.Pozsgay, Y. Jiang, G. Takacs, arXiv: 1911.11118

An irrelevant def

From IR to UV
Novel UV behavior

TTbar
 deformation

An irrelevant def

Solvability / integrability

From IR to UV
Novel UV behavior
Preserve integrability
Solvability

An irrelevant def

Solvability / integrability

Topological gravity

An irrelevant def

Solvability / integrability

The question

The question

Particles moving in 1d

The question

Particles moving in 1d

Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{k=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+V\left(x_{1}, \ldots, x_{N}\right)
$$

The question

Particles moving in 1d

Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{k=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+V\left(x_{1}, \ldots, x_{N}\right)
$$

Question Can we TTbar deform it ? How ?

Why do we want to do that ?

Why do we want to do that ?

Pure curiosity

Can define such deformations for such kind of model?

Why do we want to do that ?

Pure curiosity

Can define such deformations for such kind of model?

Learn about QFT

Share same features
TTbar for relativistic QFT,
but in a simpler set-up.

Why do we want to do that ?

Pure curiosity

Can define such deformations for such kind of model?

Learn about QFT

Share same features
TTbar for relativistic QFT, but in a simpler set-up.

Integrability

A novel type of integrable model that can be interesting

The Lieb-Liniger model

$$
H=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+2 c \sum_{i<j}^{N} \delta\left(x_{i}-x_{j}\right)
$$

1d Bose gas

The Lieb-Liniger model

$$
H=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+2 c \sum_{i<j}^{N} \delta\left(x_{i}-x_{j}\right)
$$

1d Bose gas

- An integrable model (Toda, Cologero-Sutherland...)

The Lieb-Liniger model

$$
H=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+2 c \sum_{i<j}^{N} \delta\left(x_{i}-x_{j}\right)
$$

1d Bose gas

- An integrable model (Toda, Cologero-Sutherland...)
- Related to other systems (XXZ chain,,Sinh-Gordon)

The Lieb-Liniger model

$$
H=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+2 c \sum_{i<j}^{N} \delta\left(x_{i}-x_{j}\right)
$$

1d Bose gas

- An integrable model (Toda, Cologero-Sutherland...)
- Related to other systems (XXZ chain, Sinh-Gordon)
- Realized experimentally by cold atom

II. Bilinear deformations

TTbar deformation

TTbar deformation

Definition for QFT

$$
\frac{d}{d \lambda} S_{\lambda}=\int d^{2} x \operatorname{det}\left(T_{\mu \nu}\right)
$$

TTbar deformation

Definition for QFT

$$
\frac{d}{d \lambda} S_{\lambda}=\int d^{2} x \operatorname{det}\left(T_{\mu \nu}\right)
$$

Task Generalize it to Bose gas \& spin chains

TTbar deformation

Definition for QFT

$$
\frac{d}{d \lambda} S_{\lambda}=\int d^{2} x \operatorname{det}\left(T_{\mu \nu}\right)
$$

Task Generalize it to Bose gas \& spin chains

Problem 1

Actions and path integrals are less common in spin chains and Bose gas

TTbar deformation

Definition for QFT

$$
\frac{d}{d \lambda} S_{\lambda}=\int d^{2} x \operatorname{det}\left(T_{\mu \nu}\right)
$$

Task Generalize it to Bose gas \& spin chains

Problem 1

Actions and path integrals are less common in spin chains and Bose gas

Problem 2

We do not have local stress energy tensor for such
systems

TTbar deformation

Definition for QFT

$$
\frac{d}{d \lambda} S_{\lambda}=\int d^{2} x \operatorname{det}\left(T_{\mu \nu}\right)
$$

Task Generalize it to Bose gas \& spin chains

Problem 1

Actions and path integrals are less common in spin chains and Bose gas

Problem 2

We do not have local stress energy tensor for such
systems

Hamiltonian formalism

TTbar deformation

Definition for QFT

$$
\frac{d}{d \lambda} S_{\lambda}=\int d^{2} x \operatorname{det}\left(T_{\mu \nu}\right)
$$

Task Generalize it to Bose gas \& spin chains

Problem 1

Actions and path integrals are less common in spin chains and Bose gas

Hamiltonian formalism

Problem 2

We do not have local stress energy tensor for such systems

Bilinear deformation

Bilinear deformation

Bilinear deformation

Two conserved currents

$$
\begin{aligned}
& J^{a}=\left(\hat{q}^{a}, j^{a}\right) \quad a=1,2 \\
& \partial_{t} \hat{q}^{a}+\partial_{x} j^{a}=0
\end{aligned}
$$

Bilinear deformation

Two conserved currents

$$
\begin{aligned}
& J^{a}=\left(\hat{q}^{a}, j^{a}\right) \quad a=1,2 \\
& \partial_{t} \hat{q}^{a}+\partial_{x} j^{a}=0
\end{aligned}
$$

Make anti-symmetric combination

$$
O_{J J}(x, t)=\epsilon_{a b} J^{a} J^{b}(x, t)
$$

Bilinear deformation

Two conserved currents

$$
\begin{aligned}
& J^{a}=\left(\hat{q}^{a}, j^{a}\right) \quad a=1,2 \\
& \partial_{t} \hat{q}^{a}+\partial_{x} j^{a}=0
\end{aligned}
$$

2
Make anti-symmetric combination

$$
O_{J J}(x, t)=\epsilon_{a b} J^{a} J^{b}(x, t)
$$

Specialize to TTbar deformation

$$
\operatorname{det} T_{a b}=\epsilon_{a b} T^{1 a} T^{2 b} \left\lvert\, \begin{aligned}
& T^{1 a}=\left(\hat{h}(x), j_{H}(x)\right) \text { Energy density } \\
& T^{2 a}=\left(\hat{p}(x), j_{P}(x)\right) \text { Momentum density }
\end{aligned}\right.
$$

Bilinear deformation

Two conserved currents

$$
\begin{aligned}
& J^{a}=\left(\hat{q}^{a}, j^{a}\right) \quad a=1,2 \\
& \partial_{t} \hat{q}^{a}+\partial_{x} j^{a}=0
\end{aligned}
$$

2
Make anti-symmetric combination

$$
O_{J J}(x, t)=\epsilon_{a b} J^{a} J^{b}(x, t)
$$

Specialize to TTbar deformation

$$
\operatorname{det} T_{a b}(x)=\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)
$$

TTbar deformation for general system

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

ヨxample Define it for spin chains?

$$
H=\sum_{k} \hat{h}(k)
$$

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

=xample Define it for spin chains?

$$
H=\sum_{k} \hat{h}(k)
$$

How to find current densities ?

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

=xample Define it for spin chains?

$$
H=\sum_{k} \hat{h}(k)
$$

How to find current densities ?

$$
\partial_{t} \hat{q}(x)=i[H, \hat{q}(x)]=-\partial_{x} j(x)
$$

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

ヨxample Define it for spin chains?

$$
H=\sum_{k} \hat{h}(k)
$$

Comment It is important to have the notion of densities

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

ヨxample Define it for spin chains?

$$
H=\sum_{k} \hat{h}(k)
$$

Comment It is important to have the notion of densities
For spin chains, no momentum density $P=\log U$

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

ヨxample Define it for spin chains?

$$
H=\sum_{k} \hat{h}(k)
$$

Comment It is important to have the notion of densities
For spin chains, no momentum density $P=\log U$
Cannot define TTbar for spin chain, but other bilinear deformations

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

ヨxample Define it for spin chains?

$$
H=\sum_{k} \hat{h}(k)
$$

Comment It is important to have the notion of densities
For spin chains, no momentum density $P=\log U$
Related to the discrete nature of spin chains

TTbar deformation for general system

$$
\frac{d}{d \lambda} H_{\lambda}=\int\left[\hat{h}(x) j_{P}(x)-\hat{p}(x) j_{H}(x)\right] d x
$$

ヨxample Define it for spin chains?

$$
H=\sum_{k} \hat{h}(k)
$$

Comment It is important to have the notion of densities
For spin chains, no momentum density $P=\log U$
We can define TTbar for 1d Bose gas

Factorization property

Factorization property

One can prove that [Zamolodchikov 2004] [Cardy 2018]

$$
\langle n| O_{J J}|n\rangle=\epsilon_{a b}\langle n| J^{a}|n\rangle\langle n| J^{b}|n\rangle
$$

Factorization property

One can prove that [Zamolodchikov 2004] [Cardy 2018]

$$
\langle n| O_{J J}|n\rangle=\epsilon_{a b}\langle n| J^{a}|n\rangle\langle n| J^{b}|n\rangle
$$

The proof relies on [Pozsgay, Jiang, Takacs 2019]

- Translational invariance (lattice version also)
- Conservation of current

Factorization property

One can prove that [Zamolodchikov 2004] [Cardy 2018]

$$
\langle n| O_{J J}|n\rangle=\epsilon_{a b}\langle n| J^{a}|n\rangle\langle n| J^{b}|n\rangle
$$

The proof relies on [Pozsgay, Jiang, Takacs 2019]

- Translational invariance (lattice version also)
- Conservation of current

Flow equation for spectrum

$$
\frac{d}{d \lambda} E_{n}=Q_{a}\langle n| j_{b}|n\rangle-Q_{b}\langle n| j_{a}|n\rangle
$$

Mean values

Charge densities

Mean values

Charge densities

Current densities

- Easy to find

$$
\langle n| q_{a}|n\rangle=\frac{Q_{a}}{R}
$$

Mean values

Charge densities

Current densities

- Easy to find

$$
\langle n| q_{a}|n\rangle=\frac{Q_{a}}{R}
$$

- Valid for any system

Mean values

Charge densities

Current densities

- Easy to find

$$
\langle n| q_{a}|n\rangle=\frac{Q_{a}}{R}
$$

- Valid for any system
- Not known in general

Mean values

Charge densities

Current densities

- Easy to find

$$
\langle n| q_{a}|n\rangle=\frac{Q_{a}}{R}
$$

- Valid for any system
- Not known in general
- For relativistic QFT

$$
\begin{aligned}
& \langle n| j_{H}|n\rangle=P_{n} \\
& \langle n| j_{P}|n\rangle=\partial_{R} E_{n}
\end{aligned}
$$

Mean values

Charge densities

Current densities

- Easy to find

$$
\langle n| q_{a}|n\rangle=\frac{Q_{a}}{R}
$$

- Valid for any system
- Not known in general
- For relativistic QFT

$$
\begin{aligned}
& \langle n| j_{H}|n\rangle=P_{n} \\
& \langle n| j_{P}|n\rangle=\partial_{R} E_{n}
\end{aligned}
$$

- Integrable systems

Mean values

Charge densities

Current densities

- Easy to find

$$
\langle n| q_{a}|n\rangle=\frac{Q_{a}}{R}
$$

- Valid for any system
- Not known in general
- For relativistic QFT

$$
\begin{aligned}
& \langle n| j_{H}|n\rangle=P_{n} \\
& \langle n| j_{P}|n\rangle=\partial_{R} E_{n}
\end{aligned}
$$

- Integrable systems

For integrable models, flow equation can be written down and solved.

A historical remark

Once upon a time, people try to solve planar $N=4$ SYM by integrability

The dilatation operator is an integrable, long-range interacting spin chain

Bargheer, Beisert, Loebbert classified integrable long-range deformations for spin chains
[Bargheer, Beisert, Loebbert 2010]
There's a class called bilocal deformation, is tightly related to the bilinear deformation.

A historical remark

Once upon a time, people try to solve planar $N=4$ SYM by integrability

The dilatation operator is an integrable, long-range interacting spin chain

Bargheer, Beisert, Loebbert classified integrable long-range deformations for spin chains
[Bargheer, Beisert, Loebbert 2010]
There's a class called bilocal deformation, is tightly related to the bilinear deformation.

BBL construction can be generalized to Bose gas

Bilinear def.

Bilocal def.

- Two conserved charges
- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

Bilinear def.

Bilocal def.

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
O_{J J}(x, t)=\epsilon_{a b} J^{a} J^{b}(x, t)
$$

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
X_{J J}=\int_{x<y} \hat{q}^{a}(x) \hat{q}^{b}(y) d x d y
$$

Bilinear def.

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
O_{J J}(x, t)=\epsilon_{a b} J^{a} J^{b}(x, t)
$$

- Define deformation

$$
\frac{d}{d \lambda} H_{\lambda}=\int O_{J J}(x) d x
$$

Bilocal def.

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
X_{J J}=\int_{x<y} \hat{q}^{a}(x) \hat{q}^{b}(y) d x d y
$$

- Define deformation

$$
\frac{d}{d \lambda} H_{\lambda}=i\left[X_{J J}, H_{\lambda}\right]
$$

Bilinear def.

Bilocal def.

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
O_{J J}(x, t)=\epsilon_{a b} J^{a} J^{b}(x, t)
$$

- Define deformation

$$
\frac{d}{d \lambda} H_{\lambda}=\int O_{J J}(x) d x
$$

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
X_{J J}=\int_{x<y} \hat{q}^{a}(x) \hat{q}^{b}(y) d x d y
$$

- Define deformation

$$
\frac{d}{d \lambda} H_{\lambda}=i\left[X_{J J}, H_{\lambda}\right]
$$

$$
i\left[X_{J J}, H\right]=\int_{0}^{R} O_{J J} d x-\left[\hat{Q}_{1} j_{2}(0)-\hat{Q}_{2} j_{1}(0)\right]
$$

Bilinear def.

Bilocal def.

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
O_{J J}(x, t)=\epsilon_{a b} J^{a} J^{b}(x, t)
$$

- Define deformation

$$
\frac{d}{d \lambda} H_{\lambda}=\int O_{J J}(x) d x
$$

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
X_{J J}=\int_{x<y} \hat{q}^{a}(x) \hat{q}^{b}(y) d x d y
$$

- Define deformation

$$
\frac{d}{d \lambda} H_{\lambda}=i\left[X_{J J}, H_{\lambda}\right]
$$

$$
i\left[X_{J J}, H\right]=\int_{0}^{R} O_{J J} d x_{1}\left[\hat{Q}_{1} j_{2}(0)-\hat{Q}_{2} j_{1}(0)\right]
$$

Bilinear def.

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
O_{J J}(x, t)=\epsilon_{a b} J^{a} J^{b}(x, t)
$$

- Define deformation

$$
\frac{d}{d \lambda} H_{\lambda}=\int O_{J J}(x) d x
$$

Bilocal def.

- Two conserved charges

$$
J^{a}=\left(\hat{q}^{a}, j^{a}\right)
$$

- Construct an operator

$$
X_{J J}=\int_{x<y} \hat{q}^{a}(x) \hat{q}^{b}(y) d x d y
$$

- Define deformation

$$
\frac{d}{d \lambda} H_{\lambda}=i\left[X_{J J}, H_{\lambda}\right]
$$

Integrable deformations

Integrable deformations

Consider an algebra

$$
\left[Q_{a}, Q_{b}\right]=f_{a b c} Q_{c}
$$

Integrable deformations

Consider an algebra

$$
\left[Q_{a}, Q_{b}\right]=f_{a b c} Q_{c}
$$

Under deformation $\quad Q_{a} \mapsto Q_{a}(\lambda)$

Integrable deformations

Consider an algebra

$$
\left[Q_{a}, Q_{b}\right]=f_{a b c} Q_{c}
$$

Under deformation $\quad Q_{a} \mapsto Q_{a}(\lambda)$
Bilocal deformation preserves algebra

$$
\left[Q_{a}(\lambda), Q_{b}(\lambda)\right]=f_{a b c} Q_{c}(\lambda)
$$

Integrable deformations

Consider an algebra

$$
\left[Q_{a}, Q_{b}\right]=f_{a b c} Q_{c}
$$

Under deformation $\quad Q_{a} \mapsto Q_{a}(\lambda)$
Bilocal deformation preserves algebra

$$
\left[Q_{a}(\lambda), Q_{b}(\lambda)\right]=f_{a b c} Q_{c}(\lambda)
$$

In particular, it preserves integrability

Bethe ansatz

Bethe ansatz

Eigenstates
N -particle state constructed by Bethe ansatz

$$
\left|\left\{u_{1}, u_{2}, \ldots, u_{N}\right\}\right\rangle
$$

Bethe ansatz

Eigenstates
N -particle state constructed by Bethe ansatz

$$
\left|\left\{u_{1}, u_{2}, \ldots, u_{N}\right\}\right\rangle
$$

Dispersion relations
For relativistic QFT

$$
e(u)=m \cosh u \quad p(u)=m \sinh u
$$

Bethe ansatz

Eigenstates
N -particle state constructed by Bethe ansatz

$$
\left|\left\{u_{1}, u_{2}, \ldots, u_{N}\right\}\right\rangle
$$

Dispersion relations
For Bose gas

$$
e(u)=u^{2} \quad p(u)=u
$$

Bethe ansatz

Eigenstates
N -particle state constructed by Bethe ansatz

$$
\left|\left\{u_{1}, u_{2}, \ldots, u_{N}\right\}\right\rangle
$$

2
Dispersion relations
For Bose gas

$$
e(u)=u^{2} \quad p(u)=u
$$

3

Bethe equations

$$
e^{i p\left(u_{j}\right) R} \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right)=1
$$

S-matrix deformation

S-matrix deformation

Under bilinear deformation

$$
S(u, v) \mapsto S(u, v) \times e^{-i \lambda\left[h_{a}(u) h_{b}(v)-h_{b}(u) h_{a}(v)\right]}
$$

S-matrix deformation

Under bilinear deformation

S-matrix deformation

Under bilinear deformation
$h_{a}(u)$ related to charges of a single particle

$$
Q_{a}\left|\mathbf{u}_{N}\right\rangle=\sum_{j=1}^{N} h_{a}\left(u_{j}\right)\left|\mathbf{u}_{N}\right\rangle
$$

S-matrix deformation

Under bilinear deformation
$h_{a}(u)$ related to charges of a single particle

$$
Q_{a}\left|\mathbf{u}_{N}\right\rangle=\sum_{j=1}^{N} h_{a}\left(u_{j}\right)\left|\mathbf{u}_{N}\right\rangle
$$

This modifies Bethe equations, takes into account finite-size effects.
III. Finite size spectrum

A simpler deformation

A simpler deformation

Integrable models [Infinite conserved charges]

$$
\{Q\}=\left\{Q_{0}, Q_{1}, Q_{2}, \ldots\right\}
$$

A simpler deformation

Integrable models [Infinite conserved charges]

$$
\{Q\}=\left\{Q_{0}, Q_{1}, Q_{2}, \ldots\right\}
$$

The first three are universal

$$
\begin{array}{ll}
Q_{0}=\hat{N} & \text { particle number } \\
Q_{1}=\hat{P} & \text { momentum } \\
Q_{2}=\hat{H} & \text { energy }
\end{array}
$$

A simpler deformation

Integrable models [Infinite conserved charges]

$$
\{Q\}=\left\{Q_{0}, Q_{1}, Q_{2}, \ldots\right\}
$$

The first three are universal

$$
\begin{array}{ll}
Q_{0}=\hat{N} & \text { particle number } \\
Q_{1}=\hat{P} & \text { momentum } \\
Q_{2}=\hat{H} & \text { energy }
\end{array}
$$

Infinite bilinear deformations

$$
O_{a, b}=\left[Q_{a} Q_{b}\right]
$$

A simpler deformation

Integrable models [Infinite conserved charges]

$$
\{Q\}=\left\{Q_{0}, Q_{1}, Q_{2}, \ldots\right\}
$$

The first three are universal

$$
\begin{array}{ll}
Q_{0}=\hat{N} & \text { particle number } \\
Q_{1}=\hat{P} & \text { momentum } \\
Q_{2}=\hat{H} & \text { energy }
\end{array}
$$

TTbar deformation [Next-to-simplest]

$$
T \bar{T}=O_{1,2}
$$

A simpler deformation

Integrable models [Infinite conserved charges]

$$
\{Q\}=\left\{Q_{0}, Q_{1}, Q_{2}, \ldots\right\}
$$

The first three are universal

$$
\begin{array}{ll}
Q_{0}=\hat{N} & \text { particle number } \\
Q_{1}=\hat{P} & \text { momentum } \\
Q_{2}=\hat{H} & \text { energy }
\end{array}
$$

What about the simplest one?
see also [Cardy and Doyon 2020]

$$
O_{0,1}=[\hat{N} \hat{P}]
$$

S-matrix of LL model

S-matrix of LL model

S-matrix of Lieb-Liniger model

$$
S_{\mathrm{LL}}(u, v)=\frac{u-v-i c}{u-v+i c}
$$

S-matrix of LL model

S-matrix of Lieb-Liniger model

$$
S_{\mathrm{LL}}(u, v)=\frac{u-v-i c}{u-v+i c}
$$

Phase shift

$$
\theta(u, v)=-i \log S(u, v)
$$

S-matrix of LL model

S-matrix of Lieb-Liniger model

$$
S_{\mathrm{LL}}(u, v)=\frac{u-v-i c}{u-v+i c}
$$

Phase shift

$$
\theta(u, v)=-i \log S(u, v)
$$

Consider the free boson limit $c \rightarrow 0$

$$
\lim _{c \rightarrow 0} \theta(u, v)=-\pi \operatorname{sgn}(u-v)
$$

Hardcore deformation

Hardcore deformation

Recall

$$
S(u, v) \mapsto S(u, v) \times e^{-i \lambda\left[h_{a}(u) h_{b}(v)-h_{b}(u) h_{a}(v)\right]}
$$

Hardcore deformation

Recall

$$
S(u, v) \mapsto S(u, v) \times e^{-i \lambda\left[h_{a}(u) h_{b}(v)-h_{b}(u) h_{a}(v)\right]}
$$

with $O_{0,1}$

$$
h_{0}(u)=1 \quad h_{1}(u)=u
$$

Hardcore deformation

Recall

$$
S(u, v) \mapsto S(u, v) \times e^{-i \lambda\left[h_{a}(u) h_{b}(v)-h_{b}(u) h_{a}(v)\right]}
$$

with $O_{0,1}$

$$
h_{0}(u)=1 \quad h_{1}(u)=u
$$

We find

$$
\theta_{\lambda}(u, v)=-\pi \operatorname{sgn}(u-v)+\lambda(u-v)
$$

Hardcore deformation

Recall

$$
S(u, v) \mapsto S(u, v) \times e^{-i \lambda\left[h_{a}(u) h_{b}(v)-h_{b}(u) h_{a}(v)\right]}
$$

with $O_{0,1}$

$$
h_{0}(u)=1 \quad h_{1}(u)=u
$$

We find

$$
\theta_{\lambda}(u, v)=-\pi \operatorname{sgn}(u-v)+\lambda(u-v)
$$

The hard rod gas

The hard rod gas

$$
H_{\mathrm{HR}}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{i<j}^{N} v\left(x_{i}-x_{j}\right) \quad v(x)=\left\{\begin{array}{cc}
\infty & \text { for }|x|<a \\
0 & \text { for }|x|>a
\end{array}\right.
$$

Describes a gas of hard rods with length $a>0$

The hard rod gas

$$
H_{\mathrm{HR}}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{i<j}^{N} v\left(x_{i}-x_{j}\right) \quad v(x)=\left\{\begin{array}{cc}
\infty & \text { for }|x|<a \\
0 & \text { for }|x|>a
\end{array}\right.
$$

Describes a gas of hard rods with length $a>0$
A known integrable model, with phase shift

$$
\theta_{\mathrm{HR}}(u, v)=-\pi \operatorname{sgn}(u-v)-a(u-v)
$$

The hard rod gas

$$
H_{\mathrm{HR}}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{i<j}^{N} v\left(x_{i}-x_{j}\right) \quad v(x)= \begin{cases}\infty & \text { for }|x|<a \\ 0 & \text { for }|x|>a\end{cases}
$$

Describes a gas of hard rods with length $a>0$
A known integrable model, with phase shift

$$
\theta_{\mathrm{HR}}(u, v)=-\pi \operatorname{sgn}(u-v)-a(u-v)
$$

Compare to $O_{0,1}$ deformation

$$
\theta_{\lambda}(u, v)=-\pi \operatorname{sgn}(u-v)+\lambda(u-v)
$$

The deformation changes length of the ring by $|\lambda| N$

$$
\lambda>0
$$

Length is increased

$$
\lambda<0
$$

Spectral flow equation

Spectral flow equation

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{\hat{N}}\left|\mathbf{u}_{N}\right\rangle
$$

Spectral flow equation

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{\hat{N}}\left|\mathbf{u}_{N}\right\rangle
$$

Zero-momentum sector

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}
$$

Spectral flow equation

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{\hat{N}}\left|\mathbf{u}_{N}\right\rangle
$$

Zero-momentum sector

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}
$$

General solution

$$
E_{N}(R, \lambda)=E_{N}(R+\lambda N, 0)
$$

Spectral flow equation

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{\hat{N}}\left|\mathbf{u}_{N}\right\rangle
$$

Zero-momentum sector

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}
$$

General solution

$$
E_{N}(R, \lambda)=E_{N}(R+\lambda N, 0)
$$

- For $\lambda>0$, the spectrum is well-defined.
- For $\lambda<0$, there is a critical value $\lambda_{c}=-R / N$

TTbar deformation

Flow equation

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{H}\left|\mathbf{u}_{N}\right\rangle
$$

TTbar deformation

Flow equation

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{H}\left|\mathbf{u}_{N}\right\rangle
$$

Mean value of currents

TTbar deformation

Flow equation

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{H}\left|\mathbf{u}_{N}\right\rangle
$$

Mean value of currents

Conserved charge
Current density

TTbar deformation

Flow equation

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{H}\left|\mathbf{u}_{N}\right\rangle
$$

Mean value of currents

Conserved charge

$$
Q_{a}\left|\mathbf{u}_{N}\right\rangle=\sum_{j=1}^{N} h_{a}\left(u_{j}\right)\left|\mathbf{u}_{N}\right\rangle
$$

Current density

$$
\left\langle\mathbf{u}_{N}\right| j_{a}\left|\mathbf{u}_{N}\right\rangle=\mathbf{e}^{\prime} \cdot G^{-1} \cdot \mathbf{h}_{a}
$$

TTbar deformation

Flow equation

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}-P_{N}\left\langle\mathbf{u}_{N}\right| j_{H}\left|\mathbf{u}_{N}\right\rangle
$$

Mean value of currents

Conserved charge

$Q_{a}\left|\mathbf{u}_{N}\right\rangle=\sum_{j=1}^{N} h_{a}\left(u_{j}\right)\left|\mathbf{u}_{N}\right\rangle$

Current density

$$
\left\langle\mathbf{u}_{N}\right| j_{a}\left|\mathbf{u}_{N}\right\rangle=\mathbf{e}^{\prime} \cdot G^{-1} \cdot \mathbf{h}_{a}
$$

where $e^{\prime}(u)=d e(u) / d u$ and $G_{j k}$ is the Gaudin matrix

Deformed spectrum
Zero momentum sector

Deformed spectrum
Zero momentum sector
Flow equation

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}
$$

Deformed spectrum

Zero momentum sector

Flow equation

Compare to

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}
$$

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}
$$

Deformed spectrum

Zero momentum sector

Flow equation

Compare to

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}
$$

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}
$$

The inviscid Burgers' equation, solved by

$$
E_{N}(R, \lambda)=E_{N}\left(R+\lambda E_{N}, 0\right)
$$

Deformed spectrum

Zero momentum sector
Compare to
Flow equation

$$
\partial_{\lambda} E_{N}=N \partial_{R} E_{N}
$$

$$
\partial_{\lambda} E_{N}=E_{N} \partial_{R} E_{N}
$$

The inviscid Burgers' equation, solved by

$$
E_{N}(R, \lambda)=E_{N}\left(R+\lambda E_{N}, 0\right)
$$

If we know $E_{N}(R, 0)$, this gives an algebraic equation

Free fermion limit $\quad c \rightarrow \infty \quad \theta(u, v)=0$

Free fermion limit $\quad c \rightarrow \infty \quad \theta(u, v)=0$

Bethe equations

$$
u_{j} R=2 \pi I_{j}, \quad j=1, \cdots, N
$$

Free fermion limit $\quad c \rightarrow \infty \quad \theta(u, v)=0$

Bethe equations

$$
\begin{gathered}
u_{j} R=2 \pi I_{j}, \quad j=1, \cdots, N \\
E_{N}(R, 0)=\frac{\alpha_{N}}{R^{2}}
\end{gathered}
$$

Free fermion limit $\quad c \rightarrow \infty \quad \theta(u, v)=0$

Bethe equations

$$
\begin{gathered}
u_{j} R=2 \pi I_{j}, \quad j=1, \cdots, N \\
E_{N}(R, 0)=\frac{\alpha_{N}}{R^{2}}
\end{gathered}
$$

Spectrum given by solution of

$$
x=\frac{\alpha_{N}}{(R+\lambda x)^{2}}
$$

Free fermion limit $\quad c \rightarrow \infty \quad \theta(u, v)=0$

Bethe equations

$$
u_{j} R=2 \pi I_{j}, \quad j=1, \cdots, N
$$

$$
E_{N}(R, 0)=\frac{\alpha_{N}}{R^{2}}
$$

$$
\alpha_{N}=\sum_{j=1}^{N}\left(2 \pi I_{j}\right)^{2}
$$

Spectrum given by solution of

$$
x=\frac{\alpha_{N}}{(R+\lambda x)^{2}}
$$

A cubic equation, solution with several branches

Different branches of

- For $\lambda>0$, deformed spectrum well-defined, approaches to zero

- For $\lambda>0$, deformed spectrum well-defined, approaches to zero
- For $\lambda<0$, there is a critical value at

$$
\lambda_{c}=-\frac{4 R^{3}}{27 \alpha_{N}}
$$

Different branches of the solution

Deformed spectrum

Deformed spectrum

Deformed spectrum

Deformed spectrum

- Decrease monotonically, maximal

Deformed spectrum

$$
E_{N}\left(R, \lambda_{c}\right)=\frac{9}{4} E_{N}(R, 0)
$$

- A branch point at $\lambda=\lambda_{c}$ for fixed R

An alternative interpretation

An alternative interpretation

For fixed $\lambda<0$, we must have $R \geq R_{c}$

$$
R_{c}(\lambda)=3\left(\frac{|\lambda| \alpha_{N}}{4}\right)^{1 / 3}
$$

An alternative interpretation

For fixed $\lambda<0$, we must have $R \geq R_{c}$

$$
R_{c}(\lambda)=3\left(\frac{|\lambda| \alpha_{N}}{4}\right)^{1 / 3}
$$

A break down of UV physics !

An alternative interpretation

For fixed $\lambda<0$, we must have $R \geq R_{c}$

$$
R_{c}(\lambda)=3\left(\frac{|\lambda| \alpha_{N}}{4}\right)^{1 / 3}
$$

A break down of UV physics !

Comments

An alternative interpretation

For fixed $\lambda<0$, we must have $R \geq R_{c}$

$$
R_{c}(\lambda)=3\left(\frac{|\lambda| \alpha_{N}}{4}\right)^{1 / 3}
$$

A break down of UV physics !

Comments

- The same behavior as deformed QFT

An alternative interpretation

For fixed $\lambda<0$, we must have $R \geq R_{c}$

$$
R_{c}(\lambda)=3\left(\frac{|\lambda| \alpha_{N}}{4}\right)^{1 / 3}
$$

A break down of UV physics !

Comments

- The same behavior as deformed QFT
- Consistent with shock formation of Burgers' equation

An alternative interpretation

For fixed $\lambda<0$, we must have $R \geq R_{c}$

$$
R_{c}(\lambda)=3\left(\frac{|\lambda| \alpha_{N}}{4}\right)^{1 / 3}
$$

A break down of UV physics !

Comments

- The same behavior as deformed QFT
- Consistent with shock formation of Burgers' equation
- Can be explained with the generalized hard rod picture

Away from free fermion point

Find spectrum numerically. Qualitatively the same.

A 3D plot for the deformed spectrum

II. Thermodynamics

TBA in one slide

TBA in one slide

Pseudo-energy

TBA = Thermodynamic + Bethe ansatz
Central quantity : $\varepsilon(u)$

TBA in one slide

Pseudo-energy

TBA = Thermodynamic + Bethe ansatz
Central quantity : $\varepsilon(u)$

TBA equation

$$
\varepsilon(u)=u^{2}-\mu-\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} \varphi(u, v) \ln \left(1+e^{-\beta \varepsilon(v)}\right) \mathrm{d} v
$$

TBA in one slide

Pseudo-energy

TBA = Thermodynamic BG TBA kernel
Central quantity : $\varepsilon(u) \quad \varphi(u, v)=-i \frac{\partial}{\partial u} \log S(u, v)$
TBA equation

$$
\varepsilon(u)=u^{2}-\mu-\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} \varphi(u, v) \ln \left(1+e^{-\beta \varepsilon(v)}\right) \mathrm{d} v
$$

TBA in one slide

Pseudo-energy

TBA = Thermodynamic BE TBA kernel
Central quantity : $\varepsilon(u)$

$$
\varphi(u, v)=-i \frac{\partial}{\partial u} \log S(u, v)
$$

2
TBA equation

$$
\varepsilon(u)=u^{2}-\mu-\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} \varphi(u, v) \ln \left(1+e^{-\beta \varepsilon(v)}\right) \mathrm{d} v
$$

Thermal quantities

Free energy $\quad F=N \mu-\frac{R}{2 \pi \beta} \int_{-\infty}^{\infty} \ln \left(1+e^{-\beta \varepsilon(u)}\right) \mathrm{d} u$

TBA in one slide

Pseudo-energy

TBA = Thermodynamic BG TBA kernel
Central quantity : $\varepsilon(u)$

$$
\varphi(u, v)=-i \frac{\partial}{\partial u} \log S(u, v)
$$

2
TBA equation

$$
\varepsilon(u)=u^{2}-\mu-\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} \varphi(u, v) \ln \left(1+e^{-\beta \varepsilon(v)}\right) \mathrm{d} v
$$

Thermal quantities

Pressure

$$
\mathrm{P}=\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} \ln \left(1+e^{-\beta \varepsilon(u)}\right) \mathrm{d} u
$$

Deformed TBA

Deformed TBA

TTbar deformation changes TBA kernel

$$
\varphi_{\lambda}(u, v)=\varphi(u, v)-\lambda\left(2 u v-v^{2}\right)
$$

Deformed TBA

TTbar deformation changes TBA kernel

$$
\varphi_{\lambda}(u, v)=\varphi(u, v)-\lambda\left(2 u v-v^{2}\right)
$$

Free fermion limit

$$
\varphi_{\lambda}(u, v)=-\lambda\left(2 u v-v^{2}\right)
$$

Deformed TBA

TTbar deformation changes TBA kernel

$$
\varphi_{\lambda}(u, v)=\varphi(u, v)-\lambda\left(2 u v-v^{2}\right)
$$

Free fermion limit

$$
\varphi_{\lambda}(u, v)=-\lambda\left(2 u v-v^{2}\right)
$$

Deformed TBA equation

$$
\varepsilon(u)=u^{2}-\mu+\frac{\lambda}{2 \pi \beta} \int_{-\infty}^{\infty}\left(2 u v-v^{2}\right) \ln \left(1+e^{-\beta \varepsilon(u)}\right)
$$

Deformed TBA

TTbar deformation changes TBA kernel

$$
\varphi_{\lambda}(u, v)=\varphi(u, v)-\lambda\left(2 u v-v^{2}\right)
$$

Free fermion limit

$$
\varphi_{\lambda}(u, v)=-\lambda\left(2 u v-v^{2}\right)
$$

Deformed TBA equation

$$
\varepsilon(u)=u^{2}-\mu+\frac{\lambda}{2 \pi \beta} \int_{-\infty}^{\infty}\left(2 u v-v^{2}\right) \ln \left(1+e^{-\beta \varepsilon(u)}\right)
$$

Degenerate kernel, can be solved analytically

Analytical solution for pseudo-energy

$$
\varepsilon(u)=u^{2}-\mu+\lambda\left(2 u G_{1}-G_{2}\right)
$$

Analytical solution for pseudo-energy

$$
\varepsilon(u)=u^{2}-\mu+\lambda\left(2 u G_{1}-G_{2}\right)
$$

The quantities G_{k} satisfy self-consistency relations

$$
G_{k}=\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} u^{k} \ln \left(1+e^{-\beta\left(u^{2}-\mu+2 \lambda G_{1} u-\lambda G_{2}\right)}\right) \mathrm{d} u
$$

Analytical solution for pseudo-energy

$$
\varepsilon(u)=u^{2}-\mu+\lambda\left(2 u G_{1}-G_{2}\right)
$$

The quantities G_{k} satisfy self-consistency relations

$$
G_{k}=\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} u^{k} \ln \left(1+e^{-\beta\left(u^{2}-\mu+2 \lambda G_{1} u-\lambda G_{2}\right)}\right) \mathrm{d} u
$$

We can show that $G_{1}=0$

$$
G_{2}=\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} u^{2} \ln \left(1+e^{-\beta\left(u^{2}-\mu-\lambda G_{2}\right)}\right) \mathrm{d} u
$$

Conclusion TTbar deformation shifts chemical potential.

$$
\varepsilon_{\lambda}(u, \mu)=\varepsilon_{0}\left(u, \mu+\lambda G_{2}\right)
$$

Conclusion TTbar deformation shifts chemical potential.

$$
\varepsilon_{\lambda}(u, \mu)=\varepsilon_{0}\left(u, \mu+\lambda G_{2}\right)
$$

The shift is determined by a self-consistency relation

$$
G_{2}=\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} u^{2} \ln \left(1+e^{-\beta\left(u^{2}-\mu-\lambda G_{2}\right)}\right) \mathrm{d} u
$$

Conclusion TTbar deformation shifts chemical potential.

$$
\varepsilon_{\lambda}(u, \mu)=\varepsilon_{0}\left(u, \mu+\lambda G_{2}\right)
$$

The shift is determined by a self-consistency relation

$$
G_{2}=\frac{1}{2 \pi \beta} \int_{-\infty}^{\infty} u^{2} \ln \left(1+e^{-\beta\left(u^{2}-\mu-\lambda G_{2}\right)}\right) \mathrm{d} u
$$

A transcendental equation

$$
\begin{aligned}
& G_{2}=\frac{1}{4 \sqrt{\pi} \beta^{5 / 2}} \mathcal{F}_{3 / 2}\left[\beta\left(\mu+\lambda G_{2}\right)\right] \\
& \mathcal{F}_{s}(\eta)=-\operatorname{Li}_{s+1}\left(-e^{\eta}\right)
\end{aligned}
$$

$$
g(x)=\frac{1}{4 \sqrt{\pi} \beta^{5 / 2}} \mathcal{F}_{3 / 2}[\beta(\mu+\lambda x)]
$$

$\lambda<0$ For negative sign, there's always a real solution

$$
g(x)=\frac{1}{4 \sqrt{\pi} \beta^{5 / 2}} \mathcal{F}_{3 / 2}[\beta(\mu+\lambda x)]
$$

$$
g(x)
$$

$$
\beta=\mu=1
$$

- $\lambda=0$
- $\lambda=1$
- $\lambda=2$
- $\lambda=3$
$\lambda>0 \quad$ For positive sign, there's a critical value

More analytic study

Self-consistency relation can be written

$$
G_{2}=\frac{2}{3 \pi} \int_{-\infty}^{\infty} \frac{u^{4}}{1+e^{\beta\left(u^{2}-\mu-\lambda G_{2}\right)}} \mathrm{d} u
$$

More analytic study

Self-consistency relation can be written

$$
G_{2}=\frac{2}{3 \pi} \int_{-\infty}^{\infty} \frac{u^{4}}{1+e^{\beta\left(u^{2}-\mu-\lambda G_{2}\right)}} \mathrm{d} u
$$

Classical limit [low density, high temperature]

$$
G_{2}=\frac{2}{3 \pi} \int_{-\infty}^{\infty} u^{4} e^{-\beta\left(u^{2}-\mu-\lambda G_{2}\right)} \mathrm{d} u
$$

More analytic study

Self-consistency relation can be written

$$
G_{2}=\frac{2}{3 \pi} \int_{-\infty}^{\infty} \frac{u^{4}}{1+e^{\beta\left(u^{2}-\mu-\lambda G_{2}\right)}} \mathrm{d} u
$$

Classical limit [low density, high temperature]

$$
G_{2}=\frac{2}{3 \pi} \int_{-\infty}^{\infty} u^{4} e^{-\beta\left(u^{2}-\mu-\lambda G_{2}\right)} \mathrm{d} u
$$

Define $W=-\beta \lambda G_{2}$

$$
W e^{W}=z \quad z=-\frac{e^{\beta \mu} \lambda}{2 \sqrt{\pi} \beta^{3 / 2}}
$$

$$
W e^{W}=z \quad z=-\frac{e^{\beta \mu} \lambda}{2 \sqrt{\pi} \beta^{3 / 2}}
$$

Can be solved by Lambert's W-function $W(z)$

$$
W e^{W}=z \quad z=-\frac{e^{\beta \mu} \lambda}{2 \sqrt{\pi} \beta^{3 / 2}}
$$

Can be solved by Lambert's W-function $W(z)$
Real solution only exist for

$$
z \geq-e^{-1}
$$

$$
W e^{W}=z \quad z=-\frac{e^{\beta \mu} \lambda}{2 \sqrt{\pi} \beta^{3 / 2}}
$$

Can be solved by Lambert's W-function $W(z)$
Real solution only exist for

$$
z \geq-e^{-1}
$$

For fixed β and μ, this implies

$$
\lambda \leq \lambda_{c}(\beta, \mu)=2 \sqrt{\pi} \beta^{3 / 2} e^{-\beta \mu-1}
$$

$$
W e^{W}=z \quad z=-\frac{e^{\beta \mu} \lambda}{2 \sqrt{\pi} \beta^{3 / 2}}
$$

Can be solved by Lambert's W-function $W(z)$
Real solution only exist for

$$
z \geq-e^{-1}
$$

For fixed β and μ, this implies

$$
\lambda \leq \lambda_{c}(\beta, \mu)=2 \sqrt{\pi} \beta^{3 / 2} e^{-\beta \mu-1}
$$

There exisit an upper bound for deformation parameter !

Plot for Lambert's W-function

Alternative explanation

For fixed $\lambda, \mu>0$

An upper bound for temperature, the Hagedorn behavior

Conclusions

We can define TTbar deformation for the Bose gas as a special case of integrable bilinear deformation.

The deformation changes the size of the particle, or length of the system.

For finite volume spectrum, there is a critical value for the negative sign of the deformation parameter.

For thermodynamics, the TTbar deformation shifts the chemical potential. There's an upper bound in temperature.

Outlook

- Other quantities

Compute correlation functions and other possible quantities

- Other interpretations

Can we have an interpretation from non-relativistic gravity

- Relation to other models

Bethe / gauge duality, attractive regime and matrix model

