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Gauge/Gravity duality

What does the string theory tell us ‘gravity’? : gauge/gravity correspondence
Open/closed string dualities

- AdS/CFT correspondence [Maldacena 1997]
- Double copy [Bern, Carrasco, Johansson 2010,2012]

Low energy effective theory of string theory:
- Open string : (super) Yang-Mills theory
- Closed string : (super) gravity

An insight into gravity given by string theory, invisible in point particle theory!



KLT relation

® Double copy relation for tree level = KLT relation
* Tree level closed string and open string scattering amplitudes are related via the
KLT relation [Kawai, Lewellen, Tye 1986]
M,:ree — A:rLee,CnA:Lree

where IC,, is the KLT kernel.

e KLT relation provides the string theory origin of double copy structure.

—

\/_,

—
Gauge Theory 1 Gauge Theory 2

Gravity



® Spectrum (in 4D) :
graviton =2 (p;) = gluon = (p;) ® gluon = (p;)

dilaton

= gluon ** (p;) ® gluon F* (p;)
axion

® The double copy has the potential to be a new way of quantum gravity

(perturbative) quantum gravity = (Yang-Mills)?



Duality groups

e After KK reduction, the theories enjoys various global symmetries
— String/M-theory duality [Hull, Townsend 1994]

¢ Duality groups for GR, half-maximal and maximal SUGRA

G H H*
GL(d) SO(d) SO(1,d —1)
0(d, d) 0) x0d)  O(L,d—1)xO(1,d 1)
SL(5) 50(5) S0(2,3)
Spin(5,5)  Spin(5) x Spin(5) SO(5,C)
Es6) USp(8) USp(4,4)
Eq(r) SU(8) SU*(8)

By, S0(16) SO*(16)



DFT/ExFT

DFT/ExFT
(2, Y M)
“Generalised /
oxidation” /
Split coords, gauge fix Lorentz/ La, — LA“/,"
.

KK reduction
9, =0

n-dim SUGRA

xH

from the review article by Berman, Blair, 2020



Implications

* Tree level scattering amplitude — on-shell, no quantum effects.

Its extension to the level of the classical equations of motion?

® Q: Can solutions of the Einstein field equations be represented by solutions of

the Yang-Mills equations beyond perturbative level?

Solution of GR <= Solution of YM
——

e Graviton h,, is given by the linearized perturbation of the metric

Guv = Nuv + Iy

Recall the spectrum relation. Is it possible to represent h,,, ~ A, A,?



Kerr-Scild ansatz in GR

One way is the so called classical double copy based on Kerr-Schild formalism
in GR [Monteiro, O’Connell, White, 2014]

The Kerr-Schild ansatz is an extension of linear perturbation around a
background metric g.

Einstein equation is nonlinear PDE —- Hard to solve
What is the condition
Einstein equation becomes linear?

Kerr and Schild proposed a metric ansatz which makes Einstein equation a
linear equation [Kerr 1963], [Kerr, Schild 1965] .

Meyers-Perry BH, (A)dS Kerr, (A)dS Kerr-Newman, Black string, branes, Waves

in flat and (A)dS spaces (PP-wave, Kundt wave, Shock wave ) etc.



Kerr-Schild ansatz
Guv = Juv + kpluly

guv © @ background metric satisfying Einstein equation
£,, : null vector
£,9" 0, = £,9" 0, =0

The main advantage of the Kerr-Schild ansatz is that it preserves some features
of the linearized perturbation

g’ =g — kpltte” det(g) = det(g)

Suppose a vacuum Einstein equation, R,. = 0. We get an on-shell constraint

from R, ¢#¢" = 0 <= geodesic equation ¢#v,¢” =0

Using the null and geodesic condition of ¢, the Einstein equation reduces to a

linear equation

- (= 1.
R, =KV, (v(#(@&,)gﬂ) — §Vp(<p€u€u))



Classical double copy in GR

e Consider KS ansatz on a flat background, § = 7

Guv = Nuv + @gugu
¢ |dentify the null vector ¢ and ¢ with gauge field and the biadjoint scala field
[Monteiro, O’Connell, White, 2014]

Ap =l

® Assume that the KS spacetime is stationary (no time dependence) and choose
as® =1 -
Roo = §V ©
Ro; = %3'7 (0i(pt;) — 0;(pls)) = —%9‘751'
where Fi; = 0;A; — 0; A;

® Guv = Nuv + SﬁilAuAV



e Schwarzschild BH in Eddington-Finkelstein coordinate

2GM
g}LV = nl“’ + r E,u‘gu

where

" = (13) P =alr, i=1...3
T
Schwarzschild BH ~ Coulomb potential ® Coulomb potential
e Kerr BH in KS coordinate

_ 2Mr3 1
guv—nuv+muu

where

r2 4+ a?

0. — (1 rr+ay ry—ar z x2+y2
Hr ’r2+a2’r2+a2’r )

Examples



Questions

Some questions will be addressed in this talk:

How can we include Kalb-Ramond field B,,,, and dilaton ¢ in the Kerr-Schild

formalism?
OeO-[TeHes
M-theory generalization?

Classical double copy for non Kerr-Schild type geometries? — not discuss

today (relaxing the null condition consistently)

Kerr-Schild method for DFT and beyond



Why DFT?

DFT has crucial advantages to describe the double copy.
Double copy <= Left-right decomposition of closed string theory
Generalized metric is represented by the coset

0(d, d)
O(d—1,1) x O(1,1 —d)

H—

and this implies there are two local Lorentz groups = {e,™,e,™}

These are related with local Lorentz groups for left-right sectors of closed string
theory. [Arkani-Hamed,Kaplan, 2008], [Hohm, 2011]

nyu + huu — hmﬁ

Cheung and Remmen derived perturbative DFT action (without dilaton and
B,..,) around an arbitrary curved background from Einstein-Hilbert action by

assuming the two local Lorentz groups. [Cheung, Remmen, 2016]



Kerr-Schild ansatz for DFT/ExFT



Field contents

® Manifest under T-duality — O(d, d) tensors

® generalized metric Harn: rank-2 O(d, d) tensor and O(d, d) element
HMNJNPHPQ = JmQ

where Ju is the O(d, d) metric

0 o+,
JuN =
5.0 0

® Parametrization in terms of massless NSNS sector fields, {g, B, ¢} (with an

assumption that g is invertible)

g —g"" B,
HunN = . pﬁ
Bipg” Guv — Bupg” Bow

e DFT scalar d : O(d,d) scalar

67211 _ \/jg€72d>



Chirality

e Generalized metric H™ x induces chirality:

PMy = (5MN —|—'HMN) , PMy = (5MN — 'HMN) )

1
2

N =

e Chirality = double local Lorentz groups
O(1,d—1) x O(1,d — 1)
® The chirality represents the left and right moving sectors.
Supergravity basis : (z*,0), (0,Z,)

o1 - - 1 .
double-copy basis : 5 (" + 2" 2+ 24), 3 (" — 3", 3 — zp)



Kerr-Schild ansatz for generalized metric

® We introduce an ansatz for the generalized metric

Hun = Homn + kp(KuKn + KnKn)

Recall that KS ansatz in GR is given by g.. = nu. + @lul

® K and K are null vectors satisfying the chirality conditions
Kum K]u =0, I{rj\,j K‘w =0,
Poun K" = K, PounEYN = K, KuEM =0,

® We refer this form as Kerr-Schild ansatz for the generalized metric. This ansatz
satisfies the O(d, d) constraint automatically without any approximation or

truncation.



Chirality condition = the Ks and K, are parametrized in terms of the
d-dimensional vectors {* and I*

K= LV By L[
M = —F—= ) M = —= _
V2 \1, V2 \ -,

Null condition = [ and  are null vectors
"gul0 =1",=0, Mg, 00 =1",=0, 1-1#0

More than one pair of null vectors?

It is strictly forbidden in the Lorentzian signature metric! (Theory of quadratic

form)



® Using the parametrization of generalized metric, we have

(7" =G )" + kel

~ K =

v = v — —=1 ll/ 9
Iu m 1+ %Htp(l'l) (ntv)

Buw = B;w + s l[HZV] )

14 Lrp(l-1)
- 1 =\ 2
det g = (det g) (1 + iﬁw(l . l))
® Though the generalised metric H is linear in , g and B are nonlinear.
e |f we identify i and I* and ignore the B field, then it reduces to the

conventional Kerr-Schild ansatz,

g = g"" + kel"l” Guv = Guv — kpluly .



Linearised perturbation of generalised metric

KS ansatz: linearised perturbation is exact.

(generalised) metric is realised by cosets G/H

GL(d)
R: j
G %5 € “50d)
Half maximal (DFT) :  Hun € O(d) x O(d)
Maximal (ExFT) Mun € =
Hy

Number of components of the generalised metric > d.o.f of supergravity fields
0H # {6g,0B}
We need a projection operator Py,n " to maintain the coset structure

SMun = Pun"9sM PQ



Universal form of the KS ansatz

We assume that the generalised coordinate X includes the time direction to

define a null vector.

Kerr-Schild ansatz for GR and ExFT

Mun = Moun + kpPoun"*KpKq

MN

(M) = (Mo

MN
) — IitpP()]\/jNPQKPKQ

and for DFT
Hun = Houn + oPoun” CKpKq
M, and H, are background generalised metrics.
The backgrounds do not have to be flat,
K is null with respect to M, for GR and ExFT and 7 for DFT

)]\4N

Kuv (Mg! Ky=0, KuJ"VKy=0



Nilpotency constraint

However, the null condition on K is not sufficient for the linear structure of the
inverse metric.
To make this so we need to impose an additional condition for the fluctuation
piece Qun
QurQT? =0
where
QuN = SOPOIWNPQKPKQ

Dimension of the maximal null space N (Witt index)
- GR (Lorentzian metric signature) :1 (very powerful )

- DFT and ExFT cases are bigger than 1 (too big)

Nilpotency of @ constrains N — reduced null space N



Known examples

* GR case, the projector is trivial, (PGR) = 6&“53’, thus it reduces to the
usual KS ansatz in GR

Guv = Guv + kK Ky
(g—l)HV _ (g—l)//’“ _ K}(pK“KV
® DFT projection operator
(PDFT)MNPQ = 2P0 " Py

where

1 — 1
Pyn = 3 (Jvun +Hun), Pun= 3 (Tmun — Humn)



Introduce chiral vectors for a given null vector K
Lar = Por K, Ly = Por ™V Kn
Until in this stage, L and L don’t have to be null vectors (L and L are
orthogonal)
Qu~n =¢ (LmLn + LnLa)

The nilpotency condition @ can be rephrased by each chiral vectors are null

vector

The D-dimensional null space reduces to two dimensional subspace, chiral and

antichiral spaces.

We can apply this framework to the heterotic DFT and ExFTs



Equations of Motion and Double Copy



Field equations in GR

* |In GR, equations of motion is written in terms of curvature tensor

1
Ruy — EQMVR =0

® |In Riemannian geometry, Riemann tensor is given by commutator of covariant
derivative
[vm VV]Vp - Ruupo'va

e DFT covariant derivative and curvature?



Field equations in DFT

® Generalized Lie derivative: Recast the diffeomorphism and one-form gauge

transform of B, in an O(D, D) covariant way.

® “Semi” covariant derivative with respect to the gen. diffeomorphism
[Jeon,KL,Park, 2011]

VuVn = 0uVy + CunpV?’
® EoM are given by the generalized curvature tensor and scalar
Run =0, R=0

d-dimensional form:
Ry =0 EoM for metric
Ry =0  EoMforB,,
R = EoM for DFT dilaton



Set up

® For simplicity consider a flat background,

0
Homun = , do = const.
0 Nuv

* One may solve the chirality condition

¢ An on-shell condition from the DFT equations of motion, KX KL R, = 0,
RMOMKPIO, KMaMf(p:O, Kpapf:(), Rpapf:().

Recall that in GR, R, ¢"¢* = geodesic condition, IV ,I* = [*0,l" =0



Equations of motion

In terms of d-dimensional vector indices, the field equations reduces to
O(lul) — 070, (plol) — 078, (plul,) + 0,00 (0l - 1) = 0.

Note that R . is not symmetric tensor:
- symmetric part — eom of ¢

- antisymmetric part — eom of B

It is interesting that the generalized KS ansatz for g,., and B, is not linear in &,

I* and I*, but the field equations are linear in these fields.
General than the usual KS ansatz in GR

Curved background generalization is straightforward.



Classical double copy in KS DFT

® The KLT and BCJ relations indicate that not only the pure Einstein equation, but
also the field equations of entire massless NS-NS sector should be related to
the gauge theory.

e Suppose that the full geometry admits at least one Killing vector £*.

* We can locally choose a coordinate system = = {z*,y} such that the Killing

vector is a constant, £ = 0z" /0y = dy.



Single Copy

Classical double copy is achieved by contracting the constant Killing vector ¢

with the generalized Ricci tensor

Ry = 40 [ 0 (plul) — By (lpl) — By (plul,) } =0

Since R .. is not symmetric tensor, we get three independent equations as

follows:
v K
ERuw = 1 [ 2"0, (‘Pl#) =00, (‘Plp) ]

'Ry = g[apa,,(goz’,,) — 070, (¢l,) ]

Identify 1, and ¢l,, with gauge fields

0,

0,

Ap =l AM = Spl_u
Then "R, and £#R . reduce to a pair of Maxwell equations

8“Fm,=0, 8“FHV:0)



® This shows that the generalized KS type solution can be written in terms of the

solutions of the two independent Maxwell equations.



Extensions



Generalization to heterotic supergravity

® O(D, D) duality group is enhanced to O(D, D + n), where n is the number of
vector multiplet

® Generalised metric is parametrized in terms of the heterotic supergravity fields,
g,B,¢pand A

® Even though the parametrisation of the generalised metric is changed, the form
of the action is the same as the usual DFT. [Hohm, Kwak 2011], [Grana,

Marques 2012]



Kerr-Shcild ansatz for Heterotic DFT

® Heterotic supergravity: relaxed null condition [Cho, Lee 2019]

Hyrx = Homw + o0 (Ky Ky + KgKy),

In terms of the heterotic supergravity fields

g =g + mpl(ul’lf) 7

- K@ 1 K@ 2 - o
= G — — T — ) (I Dl
G = G = gy ! )+4(1+—W(z-1)) (-

B”V:BH”+1+WZl(l[uvl_fA[ual )

- 1 K@
Ao = Ay — e,
H /_1+,mp(l Z)H]

where [ is a null vector, but [ is not.

® |t is possible to couple U(1) gauge fields.



® EoM is still linear!

® The KS double copy is given by
heterotic SUGRA = Maxwell ® Maxwell + scalar
recall that

heterotic string = 10d open superstring ® 26d open bosonic string on 7"'°



Relaxing null condition

* Not all the geometries are Kerr-Schild geometry. Is it possible relaxing the null

condition in KS ansatz? (JNW example)

e New ansatz - partially relaxed KS form in DFT (K, K™ # 0) [Kim, KL,
Monteiro, Nicholson, Veiga,2019]

_ _ 1 .-
Hun = Homn + @(KMKN + KNKM) — 5302K2KMKN ,
d:d()+f7

® We lost all the nice features in KS formalism, but...

~ 2 T
G = Guw — ——2—— 11
122 122 1+%(ll) 123 k]
272
l
guV:§#V+4pl(#lV)+ 904 ",
BHU:BMU+ 10



JNW solution

* JNW geometry is the most general static spherically symmetric solution in
Einstein-dilaton theory

ds® = e** [— (1—%0)ﬁdt2+ (1—7;—0)H (dr2+r(r—r0)dQ§) ,

b
62¢=(1—T—0)T0 , ro = va?+b?,

r
® The line element can be transformed from (¢, r)-coordinate into
(T, R)-coordinate
ds? = —dT?* + dR* + R2AQ3 + VU1,
I=dT +dR, [=dT + Q(R)dR,

e | and [ are not standard Kerr-Schild vectors



® Consider JNW case:

JNW ~ ( left-moving Coulomb ) x (right-moving Coulomb )

B - - (%)




Kerr-Schild Double Copy for M-theory

¢ Introduce a Killing vector £ and assume that
=1, 'k =0
e Contracting ¢ with the EoMs

0° 0y (cplu) — 079, (gala) =0
8>\8[A(<pk',,p]) =0

e double copy for M-theory would be

Maxwell theory ® 2-form gauge theory



Examples



Chiral null model (Horowitz, Tseytlin)

F1-NS5 system

Charged black string solution

Charged BH in Einstein-Maxwell-Dilaton theory
Charged heterotic black string solution

M2-brane & F1/D1 string



® Double copy and DFT shares the same origin

A Speculation

e We may find DFT for those non-gravitational theories

Double copy | Starting theories Refs. ‘ Variants and notes
. o N < 4 possible
DBI : 1(\;[)‘5{1\1\/2 theo [21!)285,32216’ 285} | o also obtained as o — 0 limit
theory Ty Ha of abelian Z-theory
NLSM o restriction to external fermions
Volkov-Akul * —
t}:)eo;); oV o SYM theory (external fermions) 25, BU2H308) from supersymmetric DBI
Special Galileon e NLSM [125} 1285} 30T} | e theory is also characterized by
theory o NLSM 306, 1309] its soft limits
5 [125] 126} 156, | » A < 4 possible
DBI + (S)YM : I\éLil\l\’I{ Jtrh¢ 985, 29R-300, |  also obtained as o’ — 0 limit
theory ®) eory 306, 1310] of semi-abelianized Z-theory
NLSM [125], 126, 156!
DBI + NLSM ° LA L0
theor; s o YM + % theory 285|298+ 300]

Table 6: List of non-gravitational theories constructed as double copies.



Double copy for classical solutions is possible.
Perturbative double copy: generic but messy.

Exact double copy: fully non-linear but not generic.
Double field theory convenient setting for double copy.

Exact double copy for M-theory: KS formalism for SL(5) ExFT.

Conclusion



Much more to explore

e Scattering amplitude computation in the DFT language. Extension double copy

structure to curved backgrounds.
¢ Extension to non-Abelian gauge theory?

¢ Including RR sector, Introducing U(1) gauge fields using Kaluza-Klein reduction,

Gauged supergravity extension via Scherk-Schwarz reduction.
* M-theory extension: Other exceptional field theories (SO(5,5), Es, E7 and Eg)

® Finding the most general solutions in a flat or curved backgrounds and their

physical interpretations. Applications to AdS/CFT?



Thank you



