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Gauge/Gravity duality

• What does the string theory tell us ‘gravity’? : gauge/gravity correspondence

• Open/closed string dualities

- AdS/CFT correspondence [Maldacena 1997]

- Double copy [Bern, Carrasco, Johansson 2010,2012]

• Low energy effective theory of string theory:

- Open string : (super) Yang-Mills theory

- Closed string : (super) gravity

• An insight into gravity given by string theory, invisible in point particle theory!



KLT relation

• Double copy relation for tree level = KLT relation

• Tree level closed string and open string scattering amplitudes are related via the

KLT relation [Kawai, Lewellen, Tye 1986]

M tree
n = Atree

n KnÃ
tree
n

where Kn is the KLT kernel.

• KLT relation provides the string theory origin of double copy structure.



• Spectrum (in 4D) :

graviton ±2 (pi) = gluon ±1 (pi)⊗ gluon ±1 (pi)

dilaton

axion

!
"

# = gluon ±1 (pi)⊗ gluon ∓1 (pi)

• The double copy has the potential to be a new way of quantum gravity

(perturbative) quantum gravity = (Yang-Mills)2



Duality groups

• After KK reduction, the theories enjoys various global symmetries

→ String/M-theory duality [Hull, Townsend 1994]

• Duality groups for GR, half-maximal and maximal SUGRA

G H H∗

GL(d) SO(d) SO(1, d− 1)

O(d, d) O(d)×O(d) O(1, d− 1)×O(1, d− 1)

SL(5) SO(5) SO(2, 3)

Spin(5, 5) Spin(5)× Spin(5) SO(5,C)

E6(6) USp(8) USp(4, 4)

E7(7) SU(8) SU∗(8)

E8(8) SO(16) SO∗(16)



DFT/ExFT

from the review article by Berman, Blair, 2020



Implications

• Tree level scattering amplitude −→ on-shell, no quantum effects.

Its extension to the level of the classical equations of motion?

• Q: Can solutions of the Einstein field equations be represented by solutions of

the Yang-Mills equations beyond perturbative level?

Solution of GR ⇐⇒$ %& '
?

Solution of YM

• Graviton hµν is given by the linearized perturbation of the metric

gµν = ηµν + hµν

Recall the spectrum relation. Is it possible to represent hµν ∼ AµÃν?



Kerr-Scild ansatz in GR

• One way is the so called classical double copy based on Kerr-Schild formalism

in GR [Monteiro, O’Connell, White, 2014]

• The Kerr-Schild ansatz is an extension of linear perturbation around a

background metric g̃.

• Einstein equation is nonlinear PDE =⇒ Hard to solve

• What is the condition

Einstein equation becomes linear?

• Kerr and Schild proposed a metric ansatz which makes Einstein equation a

linear equation [Kerr 1963], [Kerr, Schild 1965] .

• Meyers-Perry BH, (A)dS Kerr, (A)dS Kerr-Newman, Black string, branes, Waves

in flat and (A)dS spaces (PP-wave, Kundt wave, Shock wave ) etc.



• Kerr-Schild ansatz

gµν = g̃µν + κϕℓµℓν

g̃µν : a background metric satisfying Einstein equation

ℓµ : null vector

ℓµg̃
µνℓν = ℓµg

µνℓν = 0

• The main advantage of the Kerr-Schild ansatz is that it preserves some features

of the linearized perturbation

gµν = g̃µν − κϕℓµℓν , det(g) = det(g̃)

• Suppose a vacuum Einstein equation, Rµν = 0. We get an on-shell constraint

from Rµνℓ
µℓν = 0 ⇐⇒ geodesic equation ℓµ▽µℓ

ν = 0

• Using the null and geodesic condition of ℓ, the Einstein equation reduces to a

linear equation

Rµν = κ▽̃ρ

(
▽̃(µ

)
ϕℓν)ℓ

ρ*− 1

2
▽̃ρ)ϕℓµℓν

*+



Classical double copy in GR

• Consider KS ansatz on a flat background, g̃ = η

gµν = ηµν + ϕℓµℓν

• Identify the null vector ℓ and ϕ with gauge field and the biadjoint scala field

[Monteiro, O’Connell, White, 2014]

Aµ = ϕℓµ

• Assume that the KS spacetime is stationary (no time dependence) and choose

ℓµ as ℓ0 = 1

R00 =
1

2
▽2ϕ

R0i =
1

2
∂j)∂i(ϕℓj)− ∂j(ϕℓi)

*
= −1

2
∂jFij

where Fij = ∂iAj − ∂jAi

• gµν = ηµν + ϕ−1AµAν



Examples

• Schwarzschild BH in Eddington-Finkelstein coordinate

gµν = ηµν +
2GM

r
ℓµℓν

where

ℓµ =

,
1,

xi

r

-
, r2 = xixi, i = 1 . . . 3

Schwarzschild BH ∼ Coulomb potential ⊗ Coulomb potential

• Kerr BH in KS coordinate

gµν = ηµν +
2Mr3

r4 + a2z2
lµlν

where

ℓµ =

,
1,

rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

-
,

x2 + y2

r2 + a2
+

z2

r2
= 1



Questions

• Some questions will be addressed in this talk:

• How can we include Kalb-Ramond field Bµν and dilaton φ in the Kerr-Schild

formalism?

⊗ = ⊕ ⊕ •

• M-theory generalization?

• Classical double copy for non Kerr-Schild type geometries? → not discuss

today (relaxing the null condition consistently)

• Kerr-Schild method for DFT and beyond



Why DFT?

• DFT has crucial advantages to describe the double copy.

• Double copy ⇐⇒ Left-right decomposition of closed string theory

• Generalized metric is represented by the coset

H → O(d, d)

O(d− 1, 1)×O(1, 1− d)

and this implies there are two local Lorentz groups =⇒ {eµm , ēµ
m̄}

• These are related with local Lorentz groups for left-right sectors of closed string

theory. [Arkani-Hamed,Kaplan, 2008], [Hohm, 2011]

ηµν + hµν → hmn̄

• Cheung and Remmen derived perturbative DFT action (without dilaton and

Bµν ) around an arbitrary curved background from Einstein-Hilbert action by

assuming the two local Lorentz groups. [Cheung, Remmen, 2016]



Kerr-Schild ansatz for DFT/ExFT



Field contents

• Manifest under T-duality → O(d, d) tensors

• generalized metric HMN : rank-2 O(d, d) tensor and O(d, d) element

HMNJNPHPQ = JMQ

where JMN is the O(d, d) metric

JMN =

.

/ 0 δµν

δµ
ν 0

0

1

• Parametrization in terms of massless NSNS sector fields, {g,B,φ} (with an

assumption that g is invertible)

HMN =

.

/ gµν −gµρBρν

Bµρg
ρν gµν −Bµρg

ρσBσν

0

1

• DFT scalar d : O(d, d) scalar

e−2d =
√
−ge−2φ



Chirality

• Generalized metric HM
N induces chirality:

PM
N =

1

2

)
δMN +HM

N

*
, P̄M

N =
1

2

)
δMN −HM

N

*
,

• Chirality = double local Lorentz groups

O(1, d− 1)×O(1, d− 1)

• The chirality represents the left and right moving sectors.

Supergravity basis : (xµ, 0), (0, x̃µ)

double-copy basis :
1

2
(xµ + x̃µ, xµ + x̃µ) ,

1

2
(xµ − x̃µ, x̃µ − xµ)



Kerr-Schild ansatz for generalized metric

• We introduce an ansatz for the generalized metric

HMN = H0MN + κϕ
)
KMK̄N + K̄MKN

*

Recall that KS ansatz in GR is given by gµν = ηµν + ϕlµlν

• K and K̄ are null vectors satisfying the chirality conditions

KMKM = 0 , K̄MK̄M = 0 ,

P0MNKN = KM , P̄0MNK̄N = K̄M , KMK̄M = 0 ,

• We refer this form as Kerr-Schild ansatz for the generalized metric. This ansatz

satisfies the O(d, d) constraint automatically without any approximation or

truncation.



• Chirality condition =⇒ the KM and K̄M are parametrized in terms of the

d-dimensional vectors lµ and l̄µ

KM =
1√
2

.

/lµ

lµ

0

1 , K̄M =
1√
2

.

/ l̄µ

−l̄µ

0

1 .

• Null condition =⇒ l and l̄ are null vectors

lµg̃µν l
ν = lµlµ = 0 , l̄µg̃µν l̄

ν = l̄µ l̄µ = 0 , l · l̄ ∕= 0

• More than one pair of null vectors?

• It is strictly forbidden in the Lorentzian signature metric! (Theory of quadratic

form)



• Using the parametrization of generalized metric, we have

(g−1)µν = (g̃−1)µν + κϕl(µ l̄ν) ,

gµν = g̃µν − κϕ

1 + 1
2
κϕ(l · l̄)

l(µ l̄ν) ,

Bµν = B̃µν +
κϕ

1 + 1
2
κϕ(l · l̄)

l[µ l̄ν] ,

det g = (det g̃)
(
1 +

1

2
κϕ(l · l̄)

+−2

• Though the generalised metric H is linear in κ, g and B are nonlinear.

• If we identify lµ and l̄µ and ignore the B field, then it reduces to the

conventional Kerr-Schild ansatz,

gµν = g̃µν + κϕlµlν , gµν = g̃µν − κϕlµlν .



Linearised perturbation of generalised metric

• KS ansatz: linearised perturbation is exact.

• (generalised) metric is realised by cosets G/H

GR : φij ∈ GL(d)

O(d)

Half maximal (DFT) : HMN ∈ O(d, d)

O(d)×O(d)

Maximal (ExFT) MMN ∈
Ed(d)

Hd

• Number of components of the generalised metric > d.o.f of supergravity fields

δH ∕= {δg , δB}

• We need a projection operator PMN
PQ to maintain the coset structure

δMMN = PMN
PQδMPQ



Universal form of the KS ansatz

• We assume that the generalised coordinate XM includes the time direction to

define a null vector.

• Kerr-Schild ansatz for GR and ExFT

MMN = M0MN + κϕP0MN
PQKPKQ

)
M−1*MN

=
)
M−1

0

*MN − κϕP0MN
PQKPKQ

and for DFT

HMN = H0MN + ϕP0MN
PQKPKQ

• M0 and H0 are background generalised metrics.

The backgrounds do not have to be flat,

• K is null with respect to M0 for GR and ExFT and J for DFT

KM

)
M−1

0

*MN
KN = 0 , KMJMNKN = 0



Nilpotency constraint

• However, the null condition on K is not sufficient for the linear structure of the

inverse metric.

• To make this so we need to impose an additional condition for the fluctuation

piece QMN

QMPQ
PQ = 0

where

QMN = ϕP0MN
PQKPKQ

• Dimension of the maximal null space N (Witt index)

- GR (Lorentzian metric signature) :1 (very powerful )

- DFT and ExFT cases are bigger than 1 (too big)

• Nilpotency of Q constrains N → reduced null space N̂



Known examples

• GR case, the projector is trivial,
)
PGR

*
µν

ρσ = δ
(ρ
µ δ

σ)
ν , thus it reduces to the

usual KS ansatz in GR

gµν = g̃µν + κϕKµKν

)
g−1*µν

=
)
g̃−1*µν − κϕKµKν

• DFT projection operator

)
PDFT*

MN
PQ = 2P(M

P P̄N)
Q

where

PMN =
1

2
(JMN +HMN ) , P̄MN =

1

2
(JMN −HMN )



• Introduce chiral vectors for a given null vector KM

LM = P0M
NKN , L̄M = P̄0M

NKN

Until in this stage, L and L̄ don’t have to be null vectors (L and L̄ are

orthogonal)

• QMN = ϕ
)
LM L̄N + LN L̄M

*

• The nilpotency condition Q can be rephrased by each chiral vectors are null

vector

• The D-dimensional null space reduces to two dimensional subspace, chiral and

antichiral spaces.

• We can apply this framework to the heterotic DFT and ExFTs



Equations of Motion and Double Copy



Field equations in GR

• In GR, equations of motion is written in terms of curvature tensor

Rµν − 1

2
gµνR = 0

• In Riemannian geometry, Riemann tensor is given by commutator of covariant

derivative

[▽µ,▽ν ]Vρ = RµνρσV
σ

• DFT covariant derivative and curvature?



Field equations in DFT

• Generalized Lie derivative: Recast the diffeomorphism and one-form gauge

transform of Bµν in an O(D,D) covariant way.

• “Semi” covariant derivative with respect to the gen. diffeomorphism

[Jeon,KL,Park, 2011]

∇MVN = ∂MVN + ΓMNPV
P

• EoM are given by the generalized curvature tensor and scalar

RMN = 0 , R = 0

d-dimensional form:

R(µν) = 0 EoM for metric

R[µν] = 0 EoM forBµν

R = 0 EoM for DFT dilaton



Set up

• For simplicity consider a flat background,

H0MN =

.

/ηµν 0

0 ηµν

0

1 , d0 = const.

• One may solve the chirality condition

KM =
1√
2

.

/lµ

lµ

0

1 , K̄M =
1√
2

.

/ l̄µ

−l̄µ

0

1

• An on-shell condition from the DFT equations of motion, KKK̄LRKL = 0,

K̄M∂MKP = 0 , KM∂MK̄P = 0 , KP ∂P f = 0 , K̄P ∂P f = 0 .

Recall that in GR, Rµνℓ
µℓν =⇒ geodesic condition, lµ∇µl

ν = lµ∂µl
ν = 0



Equations of motion

• In terms of d-dimensional vector indices, the field equations reduces to

□
)
ϕlµ l̄ν

*
− ∂ρ∂µ

)
ϕlρ l̄ν

*
− ∂ρ∂ν

)
ϕlµ l̄ρ

*
+ ∂µ∂ν

)
ϕl · l̄

*
= 0 .

• Note that Rµν is not symmetric tensor:

- symmetric part → eom of g

- antisymmetric part → eom of B

• It is interesting that the generalized KS ansatz for gµν and Bµν is not linear in κ,

lµ and l̄µ, but the field equations are linear in these fields.

• General than the usual KS ansatz in GR

• Curved background generalization is straightforward.



Classical double copy in KS DFT

• The KLT and BCJ relations indicate that not only the pure Einstein equation, but

also the field equations of entire massless NS-NS sector should be related to

the gauge theory.

• Suppose that the full geometry admits at least one Killing vector ξµ.

• We can locally choose a coordinate system xµ = {xi, y} such that the Killing

vector is a constant, ξµ = ∂xµ/∂y = δµy .



Single Copy

• Classical double copy is achieved by contracting the constant Killing vector ξµ

with the generalized Ricci tensor

Rµν =
κ

4
∂ρ

2
∂ρ)ϕlµ l̄ν

*
− ∂µ

)
ϕlρ l̄ν

*
− ∂ν

)
ϕlµ l̄ρ

* 3
= 0

• Since Rµν is not symmetric tensor, we get three independent equations as

follows:
ξνRµν =

κ

4

2
∂ρ∂ρ

)
ϕlµ

*
− ∂ρ∂µ

)
ϕlρ

* 3
= 0 ,

ξµRµν =
κ

4

2
∂ρ∂ρ

)
ϕl̄ν

*
− ∂ρ∂ν

)
ϕl̄ρ

* 3
= 0 ,

• Identify ϕlµ and ϕl̄µ with gauge fields

Aµ = ϕlµ , Āµ = ϕl̄µ

• Then ξνRµν and ξµRµν reduce to a pair of Maxwell equations

∂µFµν = 0 , ∂µF̄µν = 0 ,



• This shows that the generalized KS type solution can be written in terms of the

solutions of the two independent Maxwell equations.



Extensions



Generalization to heterotic supergravity

• O(D,D) duality group is enhanced to O(D,D + n), where n is the number of

vector multiplet

• Generalised metric is parametrized in terms of the heterotic supergravity fields,

g,B,φ and A

• Even though the parametrisation of the generalised metric is changed, the form

of the action is the same as the usual DFT. [Hohm, Kwak 2011], [Grana,

Marques 2012]



Kerr-Shcild ansatz for Heterotic DFT

• Heterotic supergravity: relaxed null condition [Cho, Lee 2019]

HM̂N̂ = H0M̂N̂ + κϕ
)
KM̂K̄N̂ +KN̂K̄M̂

*
,

In terms of the heterotic supergravity fields

gµν = g̃µν + κϕl(µ l̄ν) ,

gµν = g̃µν − κϕ

1 + κϕ
2
(l · l̄)

l(µ l̄ν) +
1

4

( κϕ

1 + κϕ
2
(l · l̄)

+2

(l̄ · l̄)lµlν ,

Bµν = B̃µν +
κϕ

1 + κϕ
2
(l · l̄)

(
l[µ l̄ν] −

4
α′

2
Ã[µ

αlν]jα
+
,

Aµα = Ãµα +
1√
2α′

κϕ

1 + κϕ
2
(l · l̄)

lµjα ,

where l is a null vector, but l̄ is not.

• It is possible to couple U(1) gauge fields.



• EoM is still linear!

• The KS double copy is given by

heterotic SUGRA = Maxwell ⊗ Maxwell + scalar

recall that

heterotic string = 10d open superstring ⊗ 26d open bosonic string on T 16



Relaxing null condition

• Not all the geometries are Kerr-Schild geometry. Is it possible relaxing the null

condition in KS ansatz? (JNW example)

• New ansatz - partially relaxed KS form in DFT (K̄MK̄M ∕= 0) [Kim, KL,

Monteiro, Nicholson, Veiga,2019]

HMN = H0MN + ϕ
)
KMK̄N +KNK̄M

*
− 1

2
ϕ2K̄2KMKN ,

d = d0 + f ,

• We lost all the nice features in KS formalism, but...

gµν = g̃µν − ϕ

1 + ϕ
2
(l · l̄)

l(µ l̄ν) ,

gµν = g̃µν + ϕl(µ l̄ν) +
ϕ2 l̄2

4
lµlν ,

Bµν = B̃µν +
ϕ

1 + ϕ
2
(l · l̄)

l[µ l̄ν]



JNW solution

• JNW geometry is the most general static spherically symmetric solution in

Einstein-dilaton theory

ds2 = e2φ
5
−
(
1− r0

r

+ a
r0 dt2 +

(
1− r0

r

+−a
r0

)
dr2 + r(r − r0) dΩ

2
2

*6
,

e2φ =
(
1− r0

r

+ b
r0 , r0 =

7
a2 + b2 ,

• The line element can be transformed from (t, r)-coordinate into

(T,R)-coordinate

ds2 = −dT 2 + dR2 +R2 dΩ2
2 + V l l̄ ,

l = dT + dR , l̄ = dT + Ω(R) dR ,

• l and l̄ are not standard Kerr-Schild vectors



• Consider JNW case:

JNW ∼ ( left-moving Coulomb )× (right-moving Coulomb )



Kerr-Schild Double Copy for M-theory

• Introduce a Killing vector ξ and assume that

ξµlµ = 1 , ξµkµν = 0

• Contracting ξ with the EoMs

∂σ∂σ

)
ϕlµ

*
− ∂σ∂µ

)
ϕlσ

*
= 0

∂λ∂[λ(ϕkνρ]) = 0

• double copy for M-theory would be

Maxwell theory ⊗ 2-form gauge theory



Examples



• Chiral null model (Horowitz,Tseytlin)

• F1-NS5 system

• Charged black string solution

• Charged BH in Einstein-Maxwell-Dilaton theory

• Charged heterotic black string solution

• M2-brane & F1/D1 string



A Speculation

• Double copy and DFT shares the same origin

• We may find DFT for those non-gravitational theories



Conclusion

• Double copy for classical solutions is possible.

• Perturbative double copy: generic but messy.

• Exact double copy: fully non-linear but not generic.

• Double field theory convenient setting for double copy.

• Exact double copy for M-theory: KS formalism for SL(5) ExFT.



Much more to explore

• Scattering amplitude computation in the DFT language. Extension double copy

structure to curved backgrounds.

• Extension to non-Abelian gauge theory?

• Including RR sector, Introducing U(1) gauge fields using Kaluza-Klein reduction,

Gauged supergravity extension via Scherk-Schwarz reduction.

• M-theory extension: Other exceptional field theories (SO(5, 5), E6, E7 and E8)

• Finding the most general solutions in a flat or curved backgrounds and their

physical interpretations. Applications to AdS/CFT?



Thank you


