Photo－and electro－production of vector－mesons off nucleon and nuclei and UPC

Sang－Ho Kim（金相鎬）
Pukyong National University（PKNU）

Contents

1．Photo－and electro－production of vector－mesons off nucleons $\left[\gamma^{(*)} p \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi$
2．Photoproduction of $\varphi(1020)$ vector－meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$
3．Vector－meson production in ultra－peripheral collision（UPC） $[A A \rightarrow A B V]$

In collaboration with Seung－il Nam（PKNU） Tsung－Shung H．Lee（ANL） Yongseok Oh（KNU）

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{(*)} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

reaction plane

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{* *} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

reaction plane

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left.\left[\gamma^{*}\right) \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

reaction plane

- V-meson rest frame

Adair frame
Helicty frame:
in favor of s-channel helicity conservation (SCHC)
Gottfried-Jackson frame:
in favor of t -channel helicity conservation (TCHC)

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{(*)} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

theoretical framework

photoproduction

$$
\mathrm{Q}^{2}=0<--->\operatorname{low} \mathrm{Q}^{2} \ll----\gg{\text { high } \mathrm{Q}^{2}}^{2}
$$

t-channel Regge
trajectory exchange
:---:

- Extending to "the virtual-photon sector" opens the way

1) to tune the hadronic component of the photon,
2) to explore to what extent meson exchange survives,
3) to observe hard-scattering mechanisms, with a second hard scale, "the photon virtuality $-(\mathrm{ke}-\mathrm{ke})^{2}=\mathrm{Q}^{2}$ ".
1. Photo- and electro-production of vector-mesons off nucleons

$$
\left.\left[\gamma^{*}\right) \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

theoretical framework

[Kinematical range covered by vector meson electoproduction experiments]

Feynman diagrams

- We can test which of the two descriptions - with "quark" or "hadronic" degrees of freedom - applies in the considered kinematical domain. $2.5 \lesssim \mathrm{Q}^{2} \lesssim 60 \mathrm{GeV}^{2} \& 35 \lesssim \mathrm{~W} \leqslant 180 \mathrm{GeV}$ at H 1 $1.0 \lesssim \mathrm{Q}^{2} \lesssim 7.0 \mathrm{GeV}^{2} \& 3.0 \lesssim \mathrm{~W} \lesssim 6.3 \mathrm{GeV}$ at HERMES
- At low photon virtualities $\left(\mathrm{Q}^{2} \lesssim \mathrm{Mv}^{2}\right)$ and low energies ($\mathrm{W} \lesssim$ several GeV), our hadronic effective model is applicable.

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left.\left[\gamma^{*}\right) \mathrm{p} \rightarrow \mathrm{~V} \mathrm{p}\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

total cross section for vector-meson photoproduction

[Laget, PLB. 489.313 (2000)]

- Pomeron exchange (two-gluon exchange) dominates at "high energies".
- Clarifying the role of various meson exchanges at "low energies" is important.

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{(*)} \mathrm{p} \rightarrow \mathrm{~V} \mathrm{p}\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

total cross section for vector-meson photoproduction

- Pomeron exchange (two-gluon exchange) dominates at "high energies".
- Clarifying the role of various meson exchanges at "low energies" is important.

1-1. Photo- and electro-production of vector-mesons off nucleons

$$
[\gamma \mathrm{p} \rightarrow \mathrm{~V} p], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

differential cross sections

[S.H.Kim, S.i.Nam, PRC.100.065208 (2019)]

Pomeron
Born
total

1-1. Photo- and electro-production of vector-mesons off nucleons $[\gamma \mathrm{p} \rightarrow \mathrm{V} p], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi$

differential cross sections
[S.H.Kim, S.i.Nam, PRC.100.065208 (2019)]

Pomeron
Born

total

[Dey
(CLAS), PRC. 89.
055208 (2014)]

1-1. Photo- and electro-production of vector-mesons off nucleons

$$
[\gamma \mathrm{p} \rightarrow \mathrm{~V} p], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

spin-density matrix elements

$$
\begin{aligned}
& \rho_{\lambda_{\lambda^{\prime}}}^{0}=\frac{1}{N} \sum_{\lambda_{r}, \lambda_{i}, \lambda_{F}} \mathcal{M}_{\lambda_{j} \rho_{j} ; \lambda_{1} \lambda_{\nu}} \mathcal{M}_{\lambda_{\rho}, \lambda_{j} ; \lambda_{i} \lambda_{y}}^{*},
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{\lambda_{\lambda^{\prime}}}^{2}=\frac{i}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}, \lambda_{f} \lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}, \lambda_{i}, \lambda_{i} \lambda_{\gamma}}^{*}, \\
& \rho_{\lambda_{\lambda} \lambda^{\prime}}^{3}=\frac{1}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f} \lambda_{i}, \lambda_{1} \lambda_{\gamma}} \mathcal{M}_{\lambda_{f}, \lambda_{i} ; \lambda_{i} \lambda_{\gamma}}^{*}, \\
& N=\sum\left|\mathcal{M}_{\lambda_{f} \lambda_{i} \lambda_{i} \lambda_{\gamma}}\right|^{2}
\end{aligned}
$$

Adair frame

Helicty frame:
in favor of s-channel helicity conservation (SCHC)
Gottfried-Jackson frame:
in favor of t-channel helicity conservation (TCHC)

1-1. Photo- and electro-production of vector-mesons off nucleons

$$
[\gamma \mathrm{p} \rightarrow \mathrm{~V} p], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

spin-density matrix elements

$$
\begin{aligned}
& \rho_{\lambda_{\lambda}}^{0}=\frac{1}{N} \sum_{\lambda_{\nu}, \lambda_{i}, \lambda_{j}} \mathcal{M}_{\lambda_{j} \lambda_{i} ; i_{i} \lambda_{\nu}} \mathcal{M}_{\lambda_{j}, \lambda_{i}, \lambda_{i} \lambda_{y}}^{*}, \\
& \rho_{\lambda_{\lambda^{\prime}}}^{1}=\frac{1}{N} \sum_{\lambda_{y}, \lambda_{i}, \lambda_{f}} \mathcal{M}_{\lambda_{f} \lambda_{i} ; \lambda_{i}-\lambda_{y}} \mathcal{M}_{\lambda_{f}, \lambda_{i}, \lambda_{i} \lambda_{\nu}}^{*}, \\
& \rho_{\lambda_{\lambda^{\prime}}}^{2}=\frac{i}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{j}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}, \lambda_{f} \lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}, \lambda_{j}, \lambda_{1} \lambda_{\gamma}}^{*}, \\
& \rho_{\lambda_{\lambda} \lambda^{\prime}}^{3}=\frac{1}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f} \lambda_{i}, \lambda_{1} \lambda_{\gamma}} \mathcal{M}_{\lambda_{f} \lambda^{\prime} ; \lambda_{1} \lambda_{\gamma}}^{*}, \\
& N=\sum\left|\mathcal{M}_{\lambda_{f} \lambda_{i} \lambda_{1} \lambda_{\gamma}}\right|^{2}
\end{aligned}
$$

$$
\rho_{00}^{0} \propto\left|\mathcal{M}_{\lambda_{y=1}, \lambda_{\phi=0}}\right|^{2}+\left|\mathcal{M}_{\lambda_{y=-1}, \lambda_{\phi=0}}\right|^{2}
$$

- single helicity-flip transition between $\gamma \& \varphi$

$$
-\operatorname{Im}\left[\rho_{1-1}^{2}\right] \approx \rho_{1-1}^{1}=\frac{1}{2} \frac{\sigma^{N}-\sigma^{U}}{\sigma^{N}+\sigma^{U}}
$$

- relative contribution between Natural \& Unnatural parity exchanges

Adair frame

Helicty frame:
in favor of s-channel helicity conservation (SCHC)
Gottfried-Jackson frame:
in favor of t -channel helicity conservation (TCHC)

1-1. Photo- and electro-production of vector-mesons off nucleons $[\gamma \mathrm{p} \rightarrow \mathrm{V} p], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi$

- TCHC \&SCHC are broken.

1-1. Photo- and electro-production of vector-mesons off nucleons $[\gamma \mathrm{p} \rightarrow \mathrm{V} p], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi$

1-1. Photo- and electro-production of vector-mesons off nucleons
$[\gamma \mathrm{p} \rightarrow \mathrm{V} p], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi$

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

unpolarized cross sections

$$
\text { (1a) } \gamma^{*} p \rightarrow \varphi(1020) p
$$

$$
\begin{aligned}
\sigma & =\sigma_{\mathrm{T}}+\varepsilon \sigma_{\mathrm{L}} \\
\frac{d \sigma}{d \Phi} & =\frac{1}{2 \pi}\left(\sigma+\varepsilon \sigma_{\mathrm{TT}} \cos 2 \Phi+\sqrt{2 \varepsilon(1+\varepsilon)} \sigma_{\mathrm{LT}} \cos \Phi\right.
\end{aligned}
$$

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

unpolarized cross sections

(1a) $\gamma^{*} p \rightarrow \varphi(1020) p$
[S.H.Kim, S.i.Nam,
PRC.101.065201 (2020)]

[Cornell (Dixon et al.) PRL.39.516 (1977)]

$$
\begin{aligned}
\sigma & =\sigma_{\mathrm{T}}+\varepsilon \sigma_{\mathrm{L}} \\
\frac{d \sigma}{d \Phi} & =\frac{1}{2 \pi}\left(\sigma+\varepsilon \sigma_{\mathrm{TT}} \cos 2 \Phi+\sqrt{2 \varepsilon(1+\varepsilon)} \sigma_{\mathrm{LT}} \cos \Phi\right.
\end{aligned}
$$

$$
\begin{array}{|c:c|c}
\hline \text { Pomeron } & \text { PS }(\pi, \eta) \text { total } \\
\hline S(a 0, f 0) & A V(f 1)
\end{array}
$$

- The Q^{2} dependence of the cross sections is well described.
- The agreement with the exp. data is good at the real photon limit $\mathrm{Q}^{2}=0$.

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

T-L separated differential cross sections

[CLAS (Santoro et al.) PRC.78.025210 (2008)]

- Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

T-L separated differential cross sections

(1b) $\gamma^{*} p \rightarrow \varphi(1020) p$
[S.H.Kim, S.i.Nam,
PRC.101.065201 (2020)]

Pomeron
S (a0,fo)
$\operatorname{PS}(\pi, \eta)$
$\operatorname{AV}\left(\mathrm{f}_{1}\right)$
total
[CLAS (Santoro et al.) PRC.78.025210 (2008)]

- Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

T-L separated differential cross sections

(1c) $\gamma^{*} p \rightarrow \varphi(1020) p$
[S.H.Kim, S.i.Nam,
PRC.101.065201 (2020)]
[CLAS (Santoro et al.) PRC.78.025210 (2008)]

- The signs of Pomeron and meson contributions are opposite to each other.
- $\sigma_{\text {тт }}$ and $\sigma_{\text {Lт }}$ become zero as W and Q^{2} increases, indicating SCHC.

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

spin-density matrix elements ($\mathrm{rk}_{\mathrm{k}}^{\mathrm{ij}}$)

$$
\text { (1d) } \gamma^{*} p \rightarrow \varphi(1020) p
$$

$$
\begin{aligned}
r_{i j}^{04} & =\frac{\rho_{i j}^{0}+\varepsilon R \rho_{i j}^{4}}{1+\varepsilon R} \\
r_{i j}^{\alpha} & =\frac{\rho_{i j}^{\alpha}}{1+\varepsilon R}, \quad \text { for } \alpha=(0-3), \\
r_{i j}^{\alpha} & =\sqrt{R} \frac{\rho_{i j}^{\alpha}}{1+\varepsilon R}, \quad \text { for } \alpha=(5-8)
\end{aligned}
$$

By definition, if SCHC holds, $\mathrm{rij}_{\mathrm{ij}}{ }^{\mathrm{K}}=0$.

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

spin-density matrix elements ($\mathrm{rk}^{\mathrm{ij}}$)

$$
\text { (1d) } \gamma^{*} p \rightarrow \varphi(1020) p
$$

$$
r_{i j}^{04}=\frac{\rho_{i j}^{0}+\varepsilon R \rho_{i j}^{4}}{1+\varepsilon R}
$$

$$
r_{i j}^{\alpha}=\frac{\rho_{i j}^{\alpha}}{1+\varepsilon R}, \quad \text { for } \alpha=(0-3)
$$

$$
r_{i j}^{\alpha}=\sqrt{R} \frac{\rho_{i j}^{\alpha}}{1+\varepsilon R}, \quad \text { for } \alpha=(5-8)
$$

By definition, if SCHC holds, $\mathrm{rij}_{\mathrm{ij}}{ }^{\mathrm{K}}=0$.

- The relative contributions of different meson exchanges are verified.
- Our hadronic approach is very successful for describing the data at $\mathrm{Q}^{2}=(0-4) \mathrm{GeV}^{2}, \mathrm{~W}=(2-5) \mathrm{GeV}, \mathrm{t}=(0-2) \mathrm{GeV}^{2}$.

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

T-L separated differential cross sections

[CLAS (Morrow et al.) EPJA.39.5 (2009)]

$$
\begin{aligned}
& \frac{1}{\mathcal{N}} \frac{d \sigma_{\mathrm{T}}}{d t}=\frac{1}{2} \sum_{\lambda_{\gamma}= \pm 1} \overline{\left|\mathcal{M}^{\left(\lambda_{\gamma}\right)}\right|^{2}} \\
& \frac{1}{\mathcal{N}} \frac{d \sigma_{\mathrm{L}}}{d t}=\overline{\left|\mathcal{M}^{\left(\lambda_{\gamma}=0\right)}\right|^{2}} \\
& \frac{1}{\mathcal{N}} \frac{d \sigma_{\mathrm{TT}}}{d t}=-\frac{1}{2} \sum_{\lambda_{\gamma}= \pm 1} \overline{\mathcal{M}^{\left(\lambda_{\gamma}\right)} \mathcal{M}^{\left(-\lambda_{\gamma}\right)^{*}}} \\
& \frac{1}{\mathcal{N}} \frac{d \sigma_{\mathrm{LT}}}{d t}=-\frac{1}{2 \sqrt{2}} \sum_{\lambda_{\gamma}= \pm 1} \lambda_{\gamma}\left(\overline{\mathcal{M}^{(0)} \mathcal{M}^{\left(\lambda_{\gamma}\right)^{*}}}\right. \\
&\left.+\overline{\mathcal{M}^{\left(\lambda_{\gamma}\right)} \mathcal{M}^{(0)^{*}}}\right) \\
& \mathcal{N}=\left[32 \pi\left(W^{2}-M_{N}^{2}\right) W k\right]^{-1}
\end{aligned}
$$

- If SCHC holds, ott and olt become zero.
- Pomeron > meson-exchange ($\gamma^{*} \mathrm{p} \rightarrow \varphi \mathrm{p}$) Pomeron < meson-exchange $\left(\gamma^{*} \mathrm{p} \rightarrow \rho \mathrm{p}, \omega \mathrm{p}\right)$

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

spin-density matrix elements ($\mathrm{rk}^{\mathrm{ij}}$)

[CLAS (Morrow et al.) EPJA. 39.5 (2009)]

- Parity asymmery $\quad P \equiv \frac{\sigma_{T}^{N}-\sigma_{T}^{U}}{\sigma_{T}^{N}+\sigma_{T}^{U}}=(1+\varepsilon R)\left(2 r_{1-1}^{1}-r_{00}^{1}\right)$

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

T-L separated differential cross sections

Regge-based model
[Laget, PRD70.054023 (2004)]

$$
\begin{array}{|ll}
\bullet & \sigma_{\mathrm{TL}} \\
\circ & \sigma_{\mathrm{TT}} \\
\hline
\end{array}
$$

- If SCHC holds, σ тt and $\sigma_{\text {Lt }}$ become zero.
- Pomeron > meson-exchange ($\gamma^{*} p \rightarrow \varphi p$) Pomeron < meson-exchange $\left(\gamma^{*} \mathrm{p} \rightarrow \rho \mathrm{p}, \omega \mathrm{p}\right)$

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

1-2. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{*} \mathrm{p} \rightarrow \mathrm{~V} p\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

spin-density matrix elements $\left(\mathrm{rk}^{\mathrm{ij}}\right)$

(3b) $\gamma^{*} \mathrm{p} \rightarrow \omega(782) \mathrm{p}$

$$
\begin{aligned}
r_{i j}^{04} & =\frac{\rho_{i j}^{0}+\varepsilon R \rho_{i j}^{4}}{1+\varepsilon R} \\
r_{i j}^{\alpha} & =\frac{\rho_{i j}^{\alpha}}{1+\varepsilon R}, \quad \text { for } \alpha=(0-3), \\
r_{i j}^{\alpha} & =\sqrt{R} \frac{\rho_{i j}^{\alpha}}{1+\varepsilon R}, \quad \text { for } \alpha=(5-8)
\end{aligned}
$$

- $r_{00}^{04}, \operatorname{Re}_{10}^{04}, r_{1-1}^{04}, r_{00}^{1}, r_{11}^{1}, \operatorname{Re} r_{10}^{1}, r_{1-1}^{1-}, \operatorname{Im} r_{10}^{2}$,
$\operatorname{Im} r_{1-1}^{2}, r_{00}^{5}, r_{11}^{5}, \operatorname{Re} r_{10}^{5}, r_{1-1}^{5}, \operatorname{Im} r_{10}^{6}, \operatorname{Im} r_{1-1}^{6}$
- SCHC holds, if $\mathrm{rij}^{\mathrm{k}}=0$. It seems that SCHC is broken.

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{* *} \mathrm{p} \rightarrow \mathrm{~V} \mathrm{p}\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

(1) $\gamma^{(*)} p \rightarrow \varphi p$

- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at $\mathrm{Q}^{2}=(0-4) \mathrm{GeV}^{2}, \mathrm{~W}=(2-5) \mathrm{GeV}, \mathrm{t}=(0-2) \mathrm{GeV}^{2}$.
$(2,3) \gamma^{(*)} \mathrm{p} \rightarrow \rho \mathrm{p}, \omega \mathrm{p}(4) \gamma^{(*)} \mathrm{p} \rightarrow \mathrm{J} / \psi \mathrm{p}$
- The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{* *} \mathrm{p} \rightarrow \mathrm{~V} \mathrm{p}\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

(1) $\gamma^{(*)} p \rightarrow \varphi p$

- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at $\mathrm{Q}^{2}=(0-4) \mathrm{GeV}^{2}, \mathrm{~W}=(2-5) \mathrm{GeV}, \mathrm{t}=(0-2) \mathrm{GeV}^{2}$.
$(2,3) \gamma^{(*)} \mathrm{p} \rightarrow \rho \mathrm{p}, \omega \mathrm{p}(4) \gamma^{(*)} \mathrm{p} \rightarrow \mathrm{J} / \psi \mathrm{p}$
- The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).

We can extend these elementary processes
to the $\gamma^{(*)} \mathrm{A} \rightarrow \mathrm{V}$ A processes.
2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$
2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$
introduction
PHYSICAL REVIEW C 97, 035208 (2018)
First measurement of coherent $\boldsymbol{\phi}$-meson photoproduction from ${ }^{4} \mathrm{He}$ near threshold (LEPS Collaboration)

- Coherent photoproduction: "The incident nuclei" primarily remain intact, so the final state consists of "incident nuclei" + "a vector meson".
- The reaction mechanism of the elementary process is investigated using our hadronic effective Lagrangian method:

$\gamma^{*} \mathrm{p} \rightarrow \varphi \mathrm{p}$ [S.H.Kim, S.i.Nam, PRC.101.065201 (2020)]

- The scattering amplitudes are constructed to conserve gauge invariance.

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$

introduction

- We extend the elementary processes to reactions on nuclei targets: $\gamma^{4} \mathrm{He} \rightarrow \varphi{ }^{4} \mathrm{He}$
- For coherent photoproduction on nuclei targets at low energies, the momentum transfer is large:
$-\mathrm{t} \simeq 0.9\left[\mathrm{GeV}^{2}\right]$ for φ production $-\mathrm{t} \simeq 3.6\left[\mathrm{GeV}^{2}\right]$ for J / ψ production Thus the reactions probe the nuclear form factors.

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$

introduction

- We extend the elementary processes to reactions on nuclei targets: $\gamma^{4} \mathrm{He} \rightarrow \varphi{ }^{4} \mathrm{He}$
- For coherent photoproduction on nuclei targets at low energies, the momentum transfer is large:
$-\mathrm{t} \simeq 0.9\left[\mathrm{GeV}^{2}\right]$ for φ production $-\mathrm{t} \simeq 3.6\left[\mathrm{GeV}^{2}\right]$ for J / ψ production Thus the reactions probe the nuclear form factors.

[Camsonne (JLab Hall A), PRL.119.162501 (2017)]

[Camsonne (JLab Hall A), PRL.112.132503 (2014)]

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$

theoretical framework

- We apply a distorted wave impulse approximation (DWIA) within the multiple scattering formulation, which treats the nucleus as a collection of free nucleons.

$$
\frac{d \sigma}{d \Omega_{L a b}}=[\text { Phase factor }] \times\left|A F_{T}(t)\right|^{2} \times\left[\frac{1}{4} \sum_{m_{s}, \lambda_{\gamma}} \sum_{m_{s}^{\prime}, \lambda_{V}}\left|<k \lambda_{V} ; p_{f} m_{s}^{\prime}\right| T_{\mathbb{P}}\left|q \lambda_{\gamma}, p_{i} m_{s}>\right|^{2}\right]
$$

- Factorization approximation

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$

theoretical framework

- We employ a Donnachie-Landshoff (DL) model.
[NPB.244.322 (1984)]
: Pomeron couples to the nucleon like a $\mathrm{C}=+1$ isoscalar photon and its coupling is described in terms of a nucleon isoscalar EM form factor $\mathrm{FN}_{\mathrm{N}}(\mathrm{t})$.

$$
F_{\phi}(t)=\frac{2 \mu_{0}^{2}}{\left(1-t / M_{\phi}^{2}\right)\left(2 \mu_{0}^{2}+M_{\phi}^{2}-t\right)}, \quad F_{N}(t)=\frac{4 M_{N}^{2}-a_{N}^{2} t}{\left(4 M_{N}^{2}-t\right)\left(1-t / t_{0}\right)^{2}}
$$

- scattering amplitude: $\mathcal{M}=\varepsilon_{\nu}^{*} \bar{u}_{N^{\prime}} \mathcal{M}^{\mu \nu} u_{N} \epsilon_{\mu} \quad \mathcal{M}^{\mu \nu}=-M(s, t) \Gamma^{\mu \nu}$
- transition operator:
$\Gamma^{\mu \nu}=\not k_{1}\left(g^{\mu \nu}-\frac{k_{2}^{\mu} k_{2}^{\nu}}{k_{2}^{2}}\right)-\gamma^{\mu}\left(k_{1}^{\nu}-\frac{k_{1} \cdot k_{2} k_{2}^{\nu}}{k_{2}^{2}}\right)-\left[k_{2}^{\mu}-\frac{k_{1} \cdot k_{2}\left(p_{1}^{\mu}+p_{2}^{\mu}\right)}{k_{1} \cdot\left(p_{1}+p_{2}\right)}\right]\left(\gamma^{\nu}-\frac{k_{2} k_{2}^{\nu}}{k_{2}^{2}}\right)$
- scalar function: $\quad M(s, t)=C_{P} F_{1}(t) F_{2}(t) \frac{1}{s}\left(\frac{s-s_{\mathrm{th}}}{s_{P}}\right)^{\alpha_{P}(t)} \exp \left[-\frac{i \pi}{2} \alpha_{P}(t)\right]$

$\alpha_{P}(t)$	$s_{P}\left[\mathrm{GeV}^{2}\right]$	$s_{\mathrm{th}}\left[\mathrm{GeV}^{2}\right]$	C_{P}	a_{N}^{2}	μ_{0}^{2}	$t_{0}\left[\mathrm{GeV}^{2}\right]$
$1.08+0.25 \mathrm{t}$	4	0	3.65	2.8	1.1	0.7

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right.$]

theoretical framework

- The effect of the final state interaction (FSI) is considered.
- We solve the Lippman-Schwinger equation and use a vector-meson dominance.

$$
\begin{aligned}
<\vec{k}, \lambda_{V}^{\prime} m_{s_{A}}^{\prime}\left|T_{f s i}(W)\right| \vec{q}, \lambda_{\gamma} m_{s_{A}}>= & \sum_{\lambda_{V}, m_{s_{A}}^{\prime \prime}} \int d \vec{p}<\vec{k}, \lambda_{V}^{\prime} m_{s_{A}}^{\prime}\left|T_{V^{\prime} N^{\prime}, V N}(W)\right| \vec{p} \lambda_{V} m_{s_{A}}^{\prime \prime}> \\
& \times \frac{1}{W-E_{V}(\vec{p})-E_{A}(\vec{p})+i \epsilon}<\vec{p}, \lambda_{V} m_{s_{A}}^{\prime \prime}\left|T_{i m p}(W)\right| \vec{q}, \lambda_{\gamma} m_{s_{A}}>
\end{aligned}
$$

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right.$]
total \& differential cross sections

preliminary

3. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$

4. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$

5. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$

beam asymmetry

- Polarization observables are useful to shed light on the reaction mechanism.

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$
final state interaction

- The effect of the FSI is small when a vector-meson dominance is considered.

$$
\sigma_{\gamma p \rightarrow \phi p}=\frac{e}{2 \gamma_{\phi}} \sigma_{\phi p \rightarrow \phi p}
$$

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$
final state interaction

The results will come soon.

- The effect of the FSI is small when a vector-meson dominance is considered.

$$
\sigma_{\gamma p \rightarrow \phi p}=\frac{e}{2 \gamma_{\phi}} \sigma_{\phi p \rightarrow \phi p}
$$

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{* *} \mathrm{p} \rightarrow \mathrm{~V} \mathrm{p}\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

We can extend these elementary processes to the $\gamma^{(*)} \mathrm{A} \rightarrow \mathrm{V}$ A processes.
2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$

1. Photo- and electro-production of vector-mesons off nucleons

$$
\left[\gamma^{* *} \mathrm{p} \rightarrow \mathrm{~V} \mathrm{p}\right], \mathrm{V}=\varphi, \rho, \omega, \mathrm{J} / \psi
$$

We can extend these elementary processes to the $\gamma^{(*)} \mathrm{A} \rightarrow \mathrm{V}$ A processes.
2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi(1020){ }^{4} \mathrm{He}\right]$
3. Vector-meson production in ultra-peripheral collision (UPC) $[\mathrm{A} \mathrm{A} \rightarrow$ A A V]
3. Vector-meson production in ultra-peripheral collision (UPC) $[\mathrm{A} \mathrm{A} \rightarrow$ A A V]

- Ultra-peripheral collisions (UPCs) involves collisions of relativistic nuclei when the impact parameters are large enough so that there are no hadronic interactions.
- The ions interact electromagnetically, via photonuclear or two-photon interactions.
- The transverse comp.s of the EM waves can be considered as a photon-flux distribution in terms of the equivalent photon approximation (EPA).
- In UPC's, the photons are nearly real, with virtuality $\mathrm{Q}^{2}<(\mathrm{H} / \mathrm{RA})^{2}$.
[collider lab. frame]
no hadron interaction if $b>2 R A$

$$
\gamma_{L}=\frac{1}{\sqrt{1-\frac{\mathrm{k}_{p}^{2}}{\mathrm{E}_{p}}}}=\frac{\mathrm{E}_{p}}{M_{N}}=\frac{\sqrt{s_{N N}}}{2 M_{N}}
$$

[nucleustarget (nt) frame]
3. Vector-meson production in ultra-peripheral collision (UPC) [A A \rightarrow A A V]

- In the collider lab. frame, we consider that an emitted photon inside the left nucleus hits the proton on the right.

$$
k_{\gamma}^{\text {lab }}=\left(\mathrm{k}_{\gamma}, 0,0, \mathrm{k}_{\gamma}\right), \quad k_{p}^{\text {lab,right }}=\left(\mathrm{E}_{p}, 0,0,-\mathrm{k}_{p}\right)
$$

- We can boost from "the collider lab. frame" to "the γ-p c.m. frame (k $\gamma=\mathrm{kp}$)".

3. Vector-meson production in ultra-peripheral collision (UPC) [A A \rightarrow A A V]

Facility	System	$\sqrt{s_{N N}}$ or $\sqrt{s_{e N}}$	Max. E_{γ}	Max. $W_{\gamma p}$	Max $\sqrt{s_{\gamma \gamma}}$
RHIC	AuAu	200 GeV	320 GeV	25 GeV	6 GeV
	pAu	200 GeV	1.5 TeV	52 GeV	30 GeV
	pp	500 GeV	20 TeV	200 GeV	150 GeV
LHC (17)	PbPb	5.1 TeV	250 TeV	700 GeV	170 GeV
	pPb	8.16 TeV	1.1 PeV	1.5 TeV	840 GeV
	pp	14 TeV	16 PeV	5.4 TeV	4.2 TeV
FCC-hh (18)	PbPb	40 TeV	13 PeV	4.9 TeV	1.2 TeV
SPPC (7)	pPb	57 TeV	58 PeV	10 TeV	6.0 TeV
	pp	100 TeV	800 PeV	39 TeV	30 TeV
eRHIC (19)	eAu	89 GeV	4.0 TeV	89 GeV	15 GeV
LHeC (20)	ePb	820 GeV	360 TeV	820 GeV	146 GeV

capabilities of different colliders

ArXiv:2005.01872
[nucl-ex]

- RHIC: The photon energies are well suited for photonuclear interactions involving meson (Reggeon) exchange.
- LHC: The energy frontier for photonuclear \& two-photon physics.

3. Vector-meson production in ultra-peripheral collision (UPC)

$$
[\mathrm{A} \mathrm{~A} \rightarrow \mathrm{~A} \mathrm{~A} \mathrm{V]}
$$

- Glauber model [Annu.Rev.Nucl.Part.Sci. 2007. 57:205-43]

Nucleons at high energies are not deflected due to large momentum.
Motions of nucleons are independent of nucleus.
Overall cross sections are described in terms of nucleon-nucleon cross sections.

- The emitted photon from a nucleus can have various energies and its distribution is characterized by the photon-flux distribution:

$$
\begin{array}{ll}
\frac{d N_{\gamma}\left(E_{\gamma}\right)}{d E_{\gamma}} \approx \frac{2 Z^{2} \alpha}{\pi E_{\gamma}}\left[\zeta K_{0}(\zeta) K_{1}(\zeta)-\frac{\zeta^{2}}{2}\left[K_{1}^{2}(\zeta)-K_{0}^{2}(\zeta)\right]\right], & \zeta=\frac{2 R_{A} E_{\gamma}}{\gamma} \\
\sigma_{A A \rightarrow \phi A A}=\int_{0}^{\infty} d E_{\gamma} \frac{d N_{\gamma}\left(E_{\gamma}\right)}{d E_{\gamma}} \sigma_{\gamma^{*} A \rightarrow \phi A} & \begin{array}{l}
\text { no hadron interaction } \\
\text { if } \mathrm{b}>2 R \mathrm{RA}\left(\text { RA }=1.2 \mathrm{~A}^{1 / 3} \mathrm{fm}\right)
\end{array} \\
\sigma_{\gamma^{*} A \rightarrow \phi A}\left(W_{\gamma p}\right)=\int d^{2} \boldsymbol{b}\left[1-\exp \left[-\sigma_{\gamma^{*} p \rightarrow \phi p}\left(W_{\gamma p}\right) T_{A}(\boldsymbol{b})\right]\right]
\end{array}
$$

- With the eikonal Glauber model, we can write the $\gamma \mathrm{A} \rightarrow \mathrm{V}$ A cross section in terms of the elementary $\gamma \mathrm{p} \rightarrow \mathrm{V}$ p reaction process.

3. Vector-meson production in ultra-peripheral collision (UPC) [A A \rightarrow A A V]

$$
\sigma_{\gamma^{*} A \rightarrow \phi A}\left(W_{\gamma p}\right)=\int d^{2} \boldsymbol{b}\left[1-\exp \left[-\sigma_{\gamma^{*} p \rightarrow \phi p}\left(W_{\gamma p}\right) T_{A}(\boldsymbol{b})\right]\right]
$$

$$
T_{A}(\boldsymbol{b})=\int_{-\infty}^{\infty} d z \rho_{A}\left(\sqrt{|\boldsymbol{b}|^{2}+z^{2}}\right)
$$

- "Nuclear shape function" describes the transverse reaction probability at \mathbf{b}.

$$
\rho_{A}(s)=\frac{\rho_{0}\left[1+c\left(s / R_{A}\right)^{2}\right]}{1+\exp \left[\left(s-R_{A}\right) / d\right]}
$$

- "Woods-Saxon density" is normalized by

$$
A=\int d z d^{2} \boldsymbol{b} \rho_{A}\left(\sqrt{|\boldsymbol{b}|^{2}+z^{2}}\right)=2 \pi \int_{-\infty}^{\infty} d z \int_{0}^{\infty} b d b \rho_{A}\left(\sqrt{b^{2}+z^{2}}\right)
$$

3. Vector-meson production in ultra-peripheral collision (UPC) [A A \rightarrow A A V]

$$
\sigma_{\gamma^{*} A \rightarrow \phi A}\left(W_{\gamma p}\right)=\int d^{2} \boldsymbol{b}\left[1-\exp \left[-\sigma_{\gamma^{*} p \rightarrow \phi p}\left(W_{\gamma p}\right) T_{A}(\boldsymbol{b})\right]\right]
$$

$$
T_{A}(\boldsymbol{b})=\int_{-\infty}^{\infty} d z \rho_{A}\left(\sqrt{|\boldsymbol{b}|^{2}+z^{2}}\right)
$$

- "Nuclear shape function" describes the transverse reaction probability at \mathbf{b}.

$$
\rho_{A}(s)=\frac{\rho_{0}\left[1+c\left(s / R_{A}\right)^{2}\right]}{1+\exp \left[\left(s-R_{A}\right) / d\right]}
$$

- "Woods-Saxon density" is normalized by

$$
A=\int d z d^{2} \boldsymbol{b} \rho_{A}\left(\sqrt{|\boldsymbol{b}|^{2}+z^{2}}\right)=2 \pi \int_{-\infty}^{\infty} d z \int_{0}^{\infty} b d b \rho_{A}\left(\sqrt{b^{2}+z^{2}}\right)
$$

- inputs:

Nucleussxt	A	Z_{A}	$R_{A}[\mathrm{fm}]$	$d[\mathrm{fm}]$	$\rho_{0}\left[\mathrm{fm}^{-3}\right]$	c
He	4	2	1.01	0.327	0.2381	0.445
Cu	63	29	4.21	0.586	0.1701	0
Au	197	79	6.38	0.535	0.1693	0
Pb	208	82	6.62	0.549	0.1600	0

3. Vector-meson production in ultra-peripheral collision (UPC) [A A \rightarrow A A V]

- Woods-Saxon density profiles ($\rho \mathrm{A}$)

- Transverse shape functions (TA)
$T_{A}\left[\mathrm{fm}^{-2}\right]$
(20)

3. Vector-meson production in ultra-peripheral collision (UPC) [A A \rightarrow A A V]

- Woods-Saxon density profiles ($\rho \mathrm{A}$)

$A=197$ (Au gold)

- Transverse shape functions (TA)

$$
\frac{d \sigma_{A A \rightarrow \phi A A}}{d y}=
$$

$$
N_{\gamma}(y) \sigma_{\gamma^{*} A \rightarrow \phi A}(y)+N_{\gamma}(-y) \sigma_{\gamma^{*} A \rightarrow \phi A}(-y)
$$

very preliminary !!!

Summary

1. Photo- and electro-production of vector-mesons off nucleons
(1) $\gamma^{(*)} \mathrm{p} \rightarrow \varphi \mathrm{p}[$ S. H. Kim, s.i.Nam] \bullet PRC. 100.065208 (2019) \bullet PRC. 101.065201 (2020)

- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at $\mathrm{Q}^{2}=(0-4) \mathrm{GeV}^{2}, \mathrm{~W}=(2-5) \mathrm{GeV}, \mathrm{t}=(0-2) \mathrm{GeV}^{2}$.
$(2,3) \gamma^{(*)} \mathrm{p} \rightarrow \rho \mathrm{p}, \omega \mathrm{p}(4) \gamma^{(*)} \mathrm{p} \rightarrow \mathrm{J} / \psi \mathrm{p}$
- The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).

1. Photo- and electro-production of vector-mesons off nucleons
(1) $\gamma^{(*)} \mathrm{p} \rightarrow \varphi \mathrm{p}[\mathrm{S} . \mathrm{H} . \mathrm{Kim}, \mathrm{S.I} . \mathrm{Nam}] \bullet$ PRC. 100.065208 (2019) \bullet PRC. 101.065201 (2020)

- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at $\mathrm{Q}^{2}=(0-4) \mathrm{GeV}^{2}, \mathrm{~W}=(2-5) \mathrm{GeV}, \mathrm{t}=(0-2) \mathrm{GeV}^{2}$.
$(2,3) \gamma^{(*)} \mathrm{p} \rightarrow \rho \mathrm{p}, \omega \mathrm{p}(4) \gamma^{(*)} \mathrm{p} \rightarrow \mathrm{J} / \psi \mathrm{p}$
- The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma{ }^{4} \mathrm{He} \rightarrow \varphi^{4} \mathrm{He}\right]$

- A distorted-wave impulse approximation within the multiple scattering formulation is used to analyze the low-energy LEPS data.
- Planning to extend to $\gamma^{(*)} \mathrm{A} \rightarrow \mathrm{V}[\varphi, \mathrm{J} / \psi, \mathrm{\Upsilon}(1 \mathrm{~S})] \mathrm{A},\left[\mathrm{A}={ }^{2} \mathrm{H},{ }^{12} \mathrm{C}, \ldots\right]$

1. Photo- and electro-production of vector-mesons off nucleons
(1) $\gamma^{(*)} \mathrm{p} \rightarrow \varphi \mathrm{p}[$ S.t. K.Kim, S.i.Nam] \bullet PRC. 100.065208 (2019) \bullet PRC. 101.065201 (2020)

- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at $\mathrm{Q}^{2}=(0-4) \mathrm{GeV}^{2}, \mathrm{~W}=(2-5) \mathrm{GeV}, \mathrm{t}=(0-2) \mathrm{GeV}^{2}$.
$(2,3) \gamma^{(*)} \mathrm{p} \rightarrow \rho \mathrm{p}, \omega \mathrm{p}(4) \gamma^{(*)} \mathrm{p} \rightarrow \mathrm{J} / \psi \mathrm{p}$
- The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).

2. Photoproduction of $\varphi(1020)$ vector-meson off ${ }^{4} \mathrm{He}$ targets $\left[\gamma^{4} \mathrm{He} \rightarrow \varphi^{4} \mathrm{He}\right]$

- A distorted-wave impulse approximation within the multiple scattering formulation is used to analyze the low-energy LEPS data.
- Planning to extend to $\gamma^{(*)} \mathrm{A} \rightarrow \mathrm{V}[\varphi, \mathrm{J} / \psi, \mathrm{\Upsilon}(1 \mathrm{~S})] \mathrm{A},\left[\mathrm{A}={ }^{2} \mathrm{H},{ }^{12} \mathrm{C}, \ldots\right]$

3. Vector-meson production in ultra-peripheral collision (UPC) [A A \rightarrow A A V]

- The elementary process can be used to the UPC with a Glauber model.

Thank you very much for your attention

