Hadron Physics (HaPhy) Meeting , 13-14, November, 2020

Photo- and electro-production of vector-mesons off nucleon and nuclei and UPC

Contents

- 1. Photo- and electro-production of vector-mesons off nucleons $[\gamma^{(*)} p \rightarrow V p], V = \phi, \rho, \omega, J/\psi$
- 2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \varphi(1020) {}^{4}\text{He}]$
- 3. Vector-meson production in ultra-peripheral collision (UPC) $[A A \rightarrow A A V]$

In collaboration with Seung-il Nam (PKNU) Tsung-Shung H. Lee (ANL) Yongseok Oh (KNU)

reaction plane

reaction plane

reaction plane

V-meson rest frame

Adair frame

Helicty frame:

in favor of s-channel helicity conservation (SCHC)

Gottfried-Jackson frame:

in favor of t-channel helicity conservation (TCHC)

theoretical framework

photoproduction

- Extending to "the virtual-photon sector" opens the way
 - 1) to tune the hadronic component of the photon,
 - 2) to explore to what extent meson exchange survives,
 - 3) to observe hard-scattering mechanisms, with a second hard scale, "the photon virtuality $-(k_e-k_e)^2=Q^2$ ".

theoretical framework

- We can test which of the two descriptions with "quark" or "hadronic" degrees of freedom applies in the considered kinematical domain.
 2.5 ≤ Q² ≤ 60 GeV² & 35 ≤ W ≤ 180 GeV at H1
 1.0 ≤ Q² ≤ 7.0 GeV² & 3.0 ≤ W ≤ 6.3 GeV at HERMES
- At low photon virtualities $(Q^2 \leq Mv^2)$ and low energies $(W \leq \text{several GeV})$, our hadronic effective model is applicable.

total cross section for vector-meson photoproduction

[Laget, PLB.489.313 (2000)]

- Pomeron exchange (two-gluon exchange) dominates at "high energies".
- Clarifying the role of various meson exchanges at "low energies" is important.

total cross section for vector-meson photoproduction

- Pomeron exchange (two-gluon exchange) dominates at "high energies".
- Clarifying the role of various meson exchanges at "low energies" is important.

differential cross sections

differential cross sections

spin-density matrix elements

$$\begin{split} \rho_{\lambda\lambda'}^{0} &= \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*}, \\ \rho_{\lambda\lambda'}^{1} &= \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*}, \\ \rho_{\lambda\lambda'}^{2} &= \frac{i}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*}, \\ \rho_{\lambda\lambda'}^{3} &= \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*}, \\ N &= \sum |\mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}\lambda_{\gamma}}|^{2} \end{split}$$

Adair frame

,

Helicty frame:

in favor of s-channel helicity conservation (SCHC)

Gottfried-Jackson frame:

in favor of t-channel helicity conservation (TCHC)

spin-density matrix elements

$$\rho_{\lambda\lambda'}^{0} = \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*},$$
$$\rho_{\lambda\lambda'}^{1} = \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*},$$

$$\rho_{\lambda\lambda'}^2 = \frac{\iota}{N} \sum_{\lambda_{\gamma}, \lambda_i, \lambda_f} \lambda_{\gamma} \mathcal{M}_{\lambda_f \lambda; \lambda_i - \lambda_{\gamma}} \mathcal{M}_{\lambda_f \lambda'; \lambda_i \lambda_{\gamma}}^*$$

$$\rho_{\lambda\lambda'}^3 = \frac{1}{N} \sum_{\lambda_{\gamma}, \lambda_i, \lambda_f} \lambda_{\gamma} \mathcal{M}_{\lambda_f \lambda; \lambda_i \lambda_{\gamma}} \mathcal{M}_{\lambda_f \lambda'; \lambda_i \lambda_{\gamma}}^*,$$

$$N=\sum |\mathcal{M}_{\lambda_f\lambda;\lambda_i\lambda_\gamma}|^2$$

$$ho_{00}^0 \propto \left| \mathcal{M}_{\lambda_{\gamma=1},\lambda_{\phi=0}} \right|^2 + \left| \mathcal{M}_{\lambda_{\gamma=-1},\lambda_{\phi=0}} \right|^2$$

 single helicity-flip transition between γ & φ

$$-\mathrm{Im}[\rho_{1-1}^2] \approx \rho_{1-1}^1 = \frac{1}{2} \frac{\sigma^N - \sigma^U}{\sigma^N + \sigma^U}$$

 relative contribution between Natural & Unnatural parity exchanges

Adair frame

Helicty frame: in favor of s-channel helicity conservation (SCHC)

Gottfried-Jackson frame:

in favor of t-channel helicity conservation (TCHC)

• TCHC &SCHC are broken.

unpolarized cross sections

(1a)
$$\gamma^* p \rightarrow \varphi(1020) p$$

[S.H.Kim, S.i.Nam, PRC.101.065201 (2020)]

$$\sigma = \sigma_{\rm T} + \varepsilon \sigma_{\rm L}$$
$$\frac{d\sigma}{d\Phi} = \frac{1}{2\pi} \left(\sigma + \varepsilon \sigma_{\rm TT} \cos 2\Phi + \sqrt{2\varepsilon (1+\varepsilon)} \sigma_{\rm LT} \cos \Phi \right)$$

- The Q² dependence of the cross sections is well described.
- The agreement with the exp. data is good at the real photon limit $Q^2=0$.

[CLAS (Santoro et al.) PRC.78.025210 (2008)]

 Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

[CLAS (Santoro et al.) PRC.78.025210 (2008)]

 Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

- The signs of Pomeron and **meson** contributions are opposite to each other.
- σ_{TT} and σ_{LT} become zero as W and Q² increases, indicating SCHC.

By definition, if SCHC holds, $r_{ij}^{k} = 0$.

By definition, if SCHC holds, $r_{ij}^{k} = 0$.

The relative contributions of different meson exchanges are verified.
Our hadronic approach is very successful for describing the data at Q²=(0-4) GeV², W=(2-5) GeV, t=(0-2) GeV².

- ▶ If SCHC holds, σ_{TT} and σ_{LT} become zero.
- Pomeron > meson-exchange ($\gamma^* p \rightarrow \phi p$) Pomeron < meson-exchange ($\gamma^* p \rightarrow \rho p, \omega p$)

• Parity asymmetry $P \equiv \frac{\sigma_T^N - \sigma_T^U}{\sigma_T^N + \sigma_T^U} = (1 + \varepsilon R) (2r_{1-1}^1 - r_{00}^1)$

[CLAS (Morand et al.) EPJA.24.445 (2005)]

- If SCHC holds, σ_{TT} and σ_{LT} become zero.
- Pomeron > meson-exchange $(\gamma^* p \rightarrow \phi p)$ Pomeron < meson-exchange $(\gamma^* p \rightarrow \rho p, \omega p)$

(1) $\gamma^{(*)} p \rightarrow \phi p$

- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at Q²=(0-4) GeV², W=(2-5) GeV, t=(0-2) GeV².

(2,3) $\gamma^{(*)} p \rightarrow \rho p, \omega p (4) \gamma^{(*)} p \rightarrow J/\psi p$

- ► The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).

(1) $\gamma^{(*)} p \rightarrow \phi p$

- We employed an effective Lagrangian approach combined with a Regge model.
- ► The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at Q²=(0-4) GeV², W=(2-5) GeV, t=(0-2) GeV².

(2,3) $\gamma^{(*)} p \rightarrow \rho p, \omega p$ (4) $\gamma^{(*)} p \rightarrow J/\psi p$

- ► The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).

We can extend these elementary processes to the $\gamma^{(*)} A \rightarrow V A$ processes.

2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \varphi(1020) {}^{4}\text{He}]$

introduction

PHYSICAL REVIEW C 97, 035208 (2018)

First measurement of coherent ϕ -meson photoproduction from ⁴He near threshold

(LEPS Collaboration)

- Coherent photoproduction: "The incident nuclei" primarily remain intact, so the final state consists of "incident nuclei" + "a vector meson".
- The reaction mechanism of the elementary process is investigated using our hadronic effective Lagrangian method:

 $\gamma p \rightarrow \phi p$ [S.H.Kim, S.i.Nam, PRC.100.065208 (2020)]

 $\gamma^* \ p \rightarrow \phi \ p$ [S.H.Kim, S.i.Nam, PRC.101.065201 (2020)]

• The scattering amplitudes are constructed to conserve gauge invariance.

introduction

- We extend the elementary processes to reactions on nuclei targets: $\gamma {}^{4}\text{He} \rightarrow \phi {}^{4}\text{He}$
- For coherent photoproduction on nuclei targets at low energies, the momentum transfer is large:

introduction

- We extend the elementary processes to reactions on nuclei targets: $\gamma {}^{4}\text{He} \rightarrow \phi {}^{4}\text{He}$
- For coherent photoproduction on nuclei targets at low energies, the momentum transfer is large:

 $-t \simeq 0.9 \,[\text{GeV}^2]$ for ϕ production $-t \simeq 3.6 \,[\text{GeV}^2]$ for J/ ψ production Thus the reactions probe the nuclear form factors.

theoretical framework

• We apply a distorted wave <u>impulse approximation</u> (DWIA) within the multiple scattering formulation, <u>which treats the nucleus as a collection of free nucleons.</u>

$$\frac{d\sigma}{d\Omega_{Lab}} = \text{ [Phase factor] } \times |AF_{T}(t)|^{2} \times [\frac{1}{4} \sum_{m_{s},\lambda_{\gamma}} \sum_{m'_{s},\lambda_{V}} | < k\lambda_{V}; p_{f}m'_{s}|T_{\mathbb{P}}|q\lambda_{\gamma}, p_{i}m_{s} > |^{2}]$$

$$\Rightarrow \text{ Factorization approximation}$$

$$f_{T}(t) = \langle \Psi_{T}| \sum_{i=1,A} e^{i\vec{\kappa}\cdot\vec{r}_{i}} |\Psi_{T}\rangle$$

Argonne AV18 (AV) Norfolk-Virginia (NV)

theoretical framework

- ► We employ a Donnachie-Landshoff (DL) model. [NPB.244.322 (1984)]
 - : Pomeron couples to the nucleon like a C=+1 isoscalar photon and its coupling is described in terms of a nucleon isoscalar EM form factor F_N(t).

$$F_{\phi}(t) = \frac{2\mu_0^2}{(1 - t/M_{\phi}^2)(2\mu_0^2 + M_{\phi}^2 - t)}, \quad F_N(t) = \frac{4M_N^2 - a_N^2 t}{(4M_N^2 - t)(1 - t/t_0)^2}$$

- scattering amplitude: $\mathcal{M} = \varepsilon_{\nu}^* \bar{u}_{N'} \mathcal{M}^{\mu\nu} u_N \epsilon_{\mu} \quad \mathcal{M}^{\mu\nu} = -M(s,t) \Gamma^{\mu\nu}$
- transition operator:

$\alpha_P(t)$	$s_P [{ m GeV}^2]$	$s_{\rm th} [{\rm GeV}^2]$	C_P	a_N^2	μ_0^2	$t_0 [{ m GeV}^2]$
1.08 + 0.25t	4	0	3.65	2.8	1.1	0.7

theoretical framework

- The effect of the final state interaction (FSI) is considered.
- We solve the Lippman-Schwinger equation and use a vector-meson dominance.

$$<\vec{k}, \lambda'_{V}m'_{s_{A}}|T_{fsi}(W)|\vec{q}, \lambda_{\gamma}m_{s_{A}} > = \sum_{\lambda_{V},m''_{s_{A}}} \int d\vec{p} <\vec{k}, \lambda'_{V}m'_{s_{A}}|T_{V'N',VN}(W)|\vec{p}\lambda_{V}m''_{s_{A}} > \\ \times \frac{1}{W - E_{V}(\vec{p}) - E_{A}(\vec{p}) + i\epsilon} <\vec{p}, \lambda_{V}m''_{s_{A}}|T_{imp}(W)|\vec{q}, \lambda_{\gamma}m_{s_{A}} >$$

total & differential cross sections

2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \varphi(1020) {}^{4}\text{He}]$

2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \varphi(1020) {}^{4}\text{He}]$

2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \varphi(1020) {}^{4}\text{He}]$

beam asymmetry

 $\gamma p \rightarrow \phi p$

• Polarization observables are useful to shed light on the reaction mechanism.

2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \varphi(1020) {}^{4}\text{He}]$

final state interaction

 The effect of the FSI is small when a vector-meson dominance is considered.

$$\sigma_{\gamma p \to \phi p} = \frac{e}{2\gamma_{\phi}} \sigma_{\phi p \to \phi p}$$

2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \varphi(1020) {}^{4}\text{He}]$

final state interaction

The results will come soon.

 The effect of the FSI is small when a vector-meson dominance is considered.

$$\sigma_{\gamma p \to \phi p} = \frac{e}{2\gamma_{\phi}} \sigma_{\phi p \to \phi p}$$

• We will consider the VN-VN interaction directly with a gluon-exchange model.

1. Photo- and electro-production of vector-mesons off nucleons $[\gamma^{(*)} p \rightarrow V p], V = \phi, \rho, \omega, J/\psi$

We can extend these elementary processes to the $\gamma^{(*)} A \rightarrow V A$ processes.

2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \varphi(1020) {}^{4}\text{He}]$

1. Photo- and electro-production of vector-mesons off nucleons $[\gamma^{(*)} p \rightarrow V p], V = \phi, \rho, \omega, J/\psi$

We can extend these elementary processes to the $\gamma^{(*)} A \rightarrow V A$ processes.

2. Photoproduction of $\phi(1020)$ vector-meson off ⁴He targets $[\gamma {}^{4}\text{He} \rightarrow \phi(1020) {}^{4}\text{He}]$

- Ultra-peripheral collisions (UPCs) involves collisions of relativistic nuclei when the impact parameters are large enough so that there are no hadronic interactions.
- The ions interact electromagnetically, via photonuclear or two-photon interactions.
- The transverse comp.s of the EM waves can be considered as a photon-flux distribution in terms of the equivalent photon approximation (EPA).
- In UPC's, the photons are nearly real, with virtuality $Q^2 < (h/RA)^2$.

 In the collider lab. frame, we consider that an emitted photon inside the left nucleus hits the proton on the right.

 $k_{\gamma}^{\text{lab}} = (\mathbf{k}_{\gamma}, 0, 0, \mathbf{k}_{\gamma}), \ k_{p}^{\text{lab,right}} = (\mathbf{E}_{p}, 0, 0, -\mathbf{k}_{p})$

• We can boost from "the collider lab. frame" to "the γ -p c.m. frame ($k_{\gamma}=k_{p}$)".

			$E_{\gamma} = (W_{\gamma p^2} - M_p^2)/(2M_p)$					
Facility	System	$\sqrt{s_{NN}}$ or $\sqrt{s_{eN}}$	Max. E_{γ}	Max. $W_{\gamma p}$	Max $\sqrt{s_{\gamma\gamma}}$			
RHIC	AuAu	$200 { m GeV}$	$320 {\rm GeV}$	$25~{\rm GeV}$	$6 { m GeV}$			
	pAu	$200 { m GeV}$	$1.5 { m TeV}$	$52~{ m GeV}$	$30~{\rm GeV}$			
	$_{\rm pp}$	$500 { m GeV}$	$20 { m TeV}$	$200~{\rm GeV}$	$150~{\rm GeV}$			
LHC (17)	PbPb	$5.1 { m TeV}$	$250 { m TeV}$	$700~{\rm GeV}$	$170 { m ~GeV}$			
	pPb	$8.16 { m TeV}$	$1.1 \ \mathrm{PeV}$	$1.5 { m TeV}$	$840~{\rm GeV}$			
	pp	$14 { m TeV}$	$16 \ \mathrm{PeV}$	$5.4 { m TeV}$	$4.2 { m TeV}$			
FCC-hh (18)	PbPb	$40 { m TeV}$	13 PeV	$4.9~{\rm TeV}$	$1.2 { m TeV}$			
SPPC (7)	pPb	$57 { m TeV}$	$58 { m PeV}$	$10 { m TeV}$	$6.0~{\rm TeV}$			
	рр	$100 { m TeV}$	$800 \ \mathrm{PeV}$	$39 { m TeV}$	$30 { m TeV}$			
eRHIC (19)	eAu	$89~{\rm GeV}$	$4.0~{\rm TeV}$	$89~{ m GeV}$	$15~{\rm GeV}$			
LHeC (20)	ePb	$820~{\rm GeV}$	$360 { m TeV}$	$820~{\rm GeV}$	$146~{\rm GeV}$			

apabilities of ifferent colliders

ArXiv:2005.01872 [nucl-ex]

- RHIC: The photon energies are well suited for photonuclear interactions involving meson (Reggeon) exchange.
- LHC: The energy frontier for photonuclear & two-photon physics.

- Glauber model [Annu.Rev.Nucl.Part.Sci.2007. 57:205-43] Nucleons at high energies are not deflected due to large momentum. Motions of nucleons are independent of nucleus. Overall cross sections are described in terms of nucleon-nucleon cross sections.
- The emitted photon from a nucleus can have various energies and its distribution is characterized by the photon-flux distribution:

$$\frac{dN_{\gamma}(E_{\gamma})}{dE_{\gamma}} \approx \frac{2Z^{2}\alpha}{\pi E_{\gamma}} \left[\zeta K_{0}(\zeta)K_{1}(\zeta) - \frac{\zeta^{2}}{2} [K_{1}^{2}(\zeta) - K_{0}^{2}(\zeta)] \right], \quad \zeta = \frac{2R_{A}E_{\gamma}}{\gamma}$$

$$\sigma_{AA \to \phi AA} = \int_{0}^{\infty} dE_{\gamma} \frac{dN_{\gamma}(E_{\gamma})}{dE_{\gamma}} \sigma_{\gamma^{*}A \to \phi A}$$
no hadron interaction
if b > 2RA (RA=1.2A^{1/3} fm)

$$\sigma_{\gamma^{*}A \to \phi A}(W_{\gamma p}) = \int d^{2}b \left[1 - \exp[-\sigma_{\gamma^{*}p \to \phi p}(W_{\gamma p}) T_{A}(b)]\right]$$

• With the eikonal Glauber model, we can write the $\gamma A \rightarrow V A$ cross section in terms of the elementary $\gamma p \rightarrow V p$ reaction process.

3. Vector-meson production in ultra-peripheral collision (UPC) $[A A \rightarrow A A V]$

$$\sigma_{\gamma^*A \to \phi A}(W_{\gamma p}) = \int d^2 \boldsymbol{b} \left[1 - \exp[-\sigma_{\gamma^*p \to \phi p}(W_{\gamma p}) T_A(\boldsymbol{b})]\right]$$

$$T_A(\boldsymbol{b}) = \int_{-\infty}^{\infty} dz \rho_A(\sqrt{|\boldsymbol{b}|^2 + z^2})$$

 "Nuclear shape function" describes the transverse reaction probability at b.

$$\rho_A(s) = \frac{\rho_0 \left[1 + c \left(s/R_A\right)^2\right]}{1 + \exp[(s - R_A)/d]}$$

"Woods-Saxon density" is normalized by

$$A = \int dz \, d^2 \mathbf{b} \, \rho_A(\sqrt{|\mathbf{b}|^2 + z^2}) = 2\pi \int_{-\infty}^{\infty} dz \int_0^{\infty} b \, db \, \rho_A(\sqrt{b^2 + z^2})$$

3. Vector-meson production in ultra-peripheral collision (UPC) $[A A \rightarrow A A V]$

$$\sigma_{\gamma^*A \to \phi A}(W_{\gamma p}) = \int d^2 \boldsymbol{b} \left[1 - \exp[-\sigma_{\gamma^*p \to \phi p}(W_{\gamma p}) T_A(\boldsymbol{b})]\right]$$

$$T_A(\boldsymbol{b}) = \int_{-\infty}^{\infty} dz \rho_A(\sqrt{|\boldsymbol{b}|^2 + z^2})$$

 "Nuclear shape function" describes the transverse reaction probability at b.

$$\rho_A(s) = \frac{\rho_0 \left[1 + c \left(s/R_A\right)^2\right]}{1 + \exp[(s - R_A)/d]}$$

"Woods-Saxon density" is normalized by

$$A = \int dz \, d^2 \mathbf{b} \, \rho_A(\sqrt{|\mathbf{b}|^2 + z^2}) = 2\pi \int_{-\infty}^{\infty} dz \int_0^{\infty} b \, db \, \rho_A(\sqrt{b^2 + z^2})$$

inputs:

Nucleussxt	A	Z_A	R_A [fm]	$d \; [fm]$	$\rho_0 [{\rm fm}^{-3}]$	c
He	4	2	1.01	0.327	0.2381	0.445
Cu	63	29	4.21	0.586	0.1701	0
Au	197	79	6.38	0.535	0.1693	0
$^{\rm Pb}$	208	82	6.62	0.549	$\begin{array}{c} 0.2381 \\ 0.1701 \\ 0.1693 \\ 0.1600 \end{array}$	0

Summary

- 1. Photo- and electro-production of vector-mesons off nucleons
- (1) $\gamma^{(*)} p \rightarrow \phi p$ [S.H.Kim, S.i.Nam] PRC.100.065208 (2019) PRC.101.065201 (2020)
- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at Q²=(0-4) GeV², W=(2-5) GeV, t=(0-2) GeV².

(2,3) $\gamma^{(*)} p \rightarrow \rho p, \omega p (4) \gamma^{(*)} p \rightarrow J/\psi p$

- The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).

- 1. Photo- and electro-production of vector-mesons off nucleons
- (1) $\gamma^{(*)} p \rightarrow \phi p$ [S.H.Kim, S.i.Nam] PRC.100.065208 (2019) PRC.101.065201 (2020)
- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at Q²=(0-4) GeV², W=(2-5) GeV, t=(0-2) GeV².

(2,3) $\gamma^{(*)} p \rightarrow \rho p, \omega p$ (4) $\gamma^{(*)} p \rightarrow J/\psi p$

- The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).
- 2. Photoproduction of $\varphi(1020)$ vector-meson off ⁴He targets [γ ⁴He $\rightarrow \varphi$ ⁴He]
- A distorted-wave impulse approximation within the multiple scattering formulation is used to analyze the low-energy LEPS data.
- Planning to extend to $\gamma^{(*)} A \rightarrow V [\phi, J/\psi, \Upsilon(1S)] A, [A = {}^{2}H, {}^{12}C, ...]$

- 1. Photo- and electro-production of vector-mesons off nucleons
- (1) $\gamma^{(*)} p \rightarrow \phi p$ [S.H.Kim, S.i.Nam] PRC.100.065208 (2019) PRC.101.065201 (2020)
- We employed an effective Lagrangian approach combined with a Regge model.
- The role of Pomeron- and meson-contributions is clearly verified.
- Our hadronic approach is very successful for describing the data at Q²=(0-4) GeV², W=(2-5) GeV, t=(0-2) GeV².

(2,3) $\gamma^{(*)} p \rightarrow \rho p, \omega p$ (4) $\gamma^{(*)} p \rightarrow J/\psi p$

- The theoretical analyses are very rare.
- Will be measured at JLab and EIC (Electron-Ion Collider).
- 2. Photoproduction of $\phi(1020)$ vector-meson off ⁴He targets [γ ⁴He $\rightarrow \phi$ ⁴He]
- A distorted-wave impulse approximation within the multiple scattering formulation is used to analyze the low-energy LEPS data.
- Planning to extend to $\gamma^{(*)} A \rightarrow V [\phi, J/\psi, \Upsilon(1S)] A, [A = {}^{2}H, {}^{12}C, ...]$
- 3. Vector-meson production in ultra-peripheral collision (UPC) [A A → A A V]
 The elementary process can be used to the UPC with a Glauber model.

Thank you very much for your attention