Stochastic Processes on Complex Networks - Problems

Deok-Sun Lee

ver. 1

Subcritical branching processes with diverging moments

- Let us consider the branching probability $q_{k}= \begin{cases}\kappa \frac{k^{-\gamma}}{\zeta(\gamma-1)} & (k \geq 1) \\ 1-\kappa \frac{\zeta(\gamma)}{\zeta(\gamma-1)} & (k=0)\end{cases}$
- The branching ratio κ can be controlled to change between subcritical critical and supercritical phase.
- Let us consider the subcritical phase with $\Delta=1-\kappa \ll 1$.
- Problem1:

Obtain the tree-size distribution $P(s)$ and the lifetime distribution $\ell(t)$ analytically (and numerically by simulations if time allows) and discuss how their behaviors depend on Δ.

First-return probability and the conditional mean first return time on complex networks

Problem 2:

Obtain the first-return probability $F_{s s}(n)$ at a starting node s and the conditional mean first return time $\tau_{s s}(n)$ in the random walks on scale-free networks with the degree distribution $P_{d}(k) \sim k^{-\gamma}$ and the spectral dimension d_{s}. Discuss how they depend on the network properties of the starting node and the whole network. If time allows, compare the analytic results with numerical simulations.

- The first-return probability's generating function is related to the return probability as $\mathcal{F}_{s s}(z)=1-\frac{1}{\mathcal{P}_{s s}(z)}$
- The singularity of $\mathcal{P}_{s s}(z)$ is related to that of $\mathcal{F}_{s s}(z)$ and in turn to the large- n behaviors of the first-return probability $F_{s s}(n)$.

Conditional mean first passage time

- The probability to reach s from i in n steps : $R_{i s}(n)=\sum_{n^{\prime}=1}^{n} F_{i s}\left(n^{\prime}\right)$
- $\tau_{i s}(n)$: The mean first passage time from s to i of the walkers which reach i in n steps.
- $\tau_{i s}(n)=\frac{\sum_{n^{\prime}=1}^{n} n^{\prime} F_{i s}\left(n^{\prime}\right)}{\sum_{n^{\prime}=1}^{\prime \prime} F_{i s}\left(n^{\prime}\right)}=\frac{\sum_{n^{\prime}=1}^{n} n^{\prime} F_{i s}\left(n^{\prime}\right)}{R_{i s}(n)}$
- $Q_{i s}(n)=R_{i s}(n) \tau_{i s}(n)$
- $\mathcal{Q}_{i s}(z)=\sum_{n=1}^{\infty} \tau_{i s}(n) R_{i s}(n) z^{n}=\sum_{n=1}^{\infty} \sum_{n^{\prime}=1}^{n} n^{\prime} F_{i s}\left(n^{\prime}\right) z^{n}=$ $\sum_{n^{\prime}=1}^{\infty} n^{\prime} F_{i s}\left(n^{\prime}\right) \sum_{n=n^{\prime}}^{\infty} z^{n}=\frac{1}{1-z} \sum_{n=1}^{\infty} n F_{i s}(n) z^{n}=\frac{z}{1-z} \mathcal{F}_{i s}(z)^{\prime}$
- The singularity of $\mathcal{Q}_{i s}(z)$ at $z=1$ informs of the large- n behavior of $R_{i s}(n) \tau_{i s}(n)$, which is proportional to that of $\tau_{i s}(n)$ as $R_{i s}(n)$ converges to a constant 1 or less than 1.
- Ex. 1d lattice: $F_{s s}(z)=1-\sqrt{1-z^{2}}$ and thus $\mathcal{Q}_{s s}(z) \sim(1-z)^{-3 / 2}$ implying $\tau_{\text {is }}(n) \sim n^{1 / 2}$.

Mean number of visited nodes on complex networks

- Let us consider the average of $\left\langle S_{s}(n)\right\rangle$ over the starting node s defined as $\langle S(n)\rangle=\sum_{s} \frac{k_{s}}{2 L}\left\langle S_{s}(n)\right\rangle$

Problem 3:

First derive the relation between the mean number of visited nodes $\langle S(n)\rangle$, averaged over the starting nodes as above, and the return-to-origin probability in the random walks on a network. Then use the result to obtain $\langle S(n)\rangle$ in the random walks on scale-free networks with the degree distribution $P_{d}(k) \sim k^{-\gamma}$ and the spectral dimension d_{s}. If time allows, compare the analytic results with numerical simulations.

SI model on random scale-free networks

Problem 4:

Obtain the behavior of the fraction of infectious individuals as a function of time in the SI model on random scale-free networks and discuss their behaviors in the early and late-time regime with focus on their variations with the degree exponent of the networks

