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9 M. Boguñá, C. Castellano, and R. Pastor-Satorras, Nature of the Epidemic
Threshold for the Susceptible-Infected-Susceptible Dynamics in Networks,
Phys. Rev. Lett. 111, 068701 (2013); H.-K. Lee, P.-S. Shim, and J.D. Noh,
Comment on “Nature of the Epidemic ...” arXiv:1309.5367 (2013) and Boguñá
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Branching processes Galton-Watson process

Galton-Watson branching process

The problem of extinction of families (1874)

Let q0, q1, q2, . . . be the respective probabilities that a man has 0, 1, 2, . . . sons and
each son have the same probability for sons of his own. What is the probability
that the male line is extinct after r generations, and what is the probability for
any given number of descendants in the maie line in any given generation?

To examine the hypothesis that distinguished families are more likely to die
out than ordinary ones, a first step would be to determine the probability
that an ordinary family will disappear

R.A. Fisher used this model to study the survival of the progeny of a mutant
gene (1922-1930)

The probability of extinction was given by J.F.F. Steffensen (1930) and the
asymptotic form of the probability that the family is still in existence was
determined by A. Kolmogorov (1938).

After 1940, interest in the model increased because of the analogy between
the growth of families and nuclear chain reactions
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Branching processes Galton-Watson process

Definition

The number of individuals in a given generation n : s(n)
s(0) = 1, s(1), s(2), . . . : the number of individuals in the 0−th, first, second, ...

generations

For given s(n), s(n + 1) = k1 + k2 + · · · ks(n) with the number of children k ’s
following independently a branching probability qk

Branching probability qk < 1 for all k = 0, 1, 2, . . . and q0 + q1 < 1

Branching ratio κ = 〈k〉 =
∑

k k qk <∞
A Markov process with the transition probability
P`j = P(s(n + 1) = `|s(n) = j) =∑∞

k1=0

∑∞
k2=0 · · ·

∑∞
kj=0 qk1qk2 · · · qkj δk1+k2+···+kj ,`
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Branching processes Galton-Watson process

Number of individuals in a given generation

Probability to find ` individuals in generation n + 1: P(s(n) = `)

Time evolution P(s(n + 1) = `) =
∑

j P`jP(s(n) = j)

Generating function of P(s(n + 1)): f(n+1)(z) ≡∑` P(s(n + 1) = `)z`

satsfies the recursive relation

f(n+1)(z) = f(n)(f (z)) = f (f(n)(z))

f(n+1)(z) =
∑
`

∑
j P`jP(s(n) = j)z` =

∑
`

∑
j P(s(n) =

j)
∑∞

k1=0

∑∞
k2=0 · · ·

∑∞
kj=0 qk1qk2 · · · qkj

∑
` δk1+k2+···+kj ,`z

` =
∑

j P(s(n) =

j)
(∑

k qkz
k
)j

= f(n) (f (z))

Generating function of the branching probability f (z) =
∑

k qkz
k

f (0) = q0, f (1) = 1, and f (z) is a convex function if q0 + q1 < 1

f(n)(z) = f(n−1)(f (z)) = f(n−2)(f (f (z))) = · · · = f(1)(fn−1(z)) = fn(z) where
fn(z) the n-th iterate of f (z).
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Branching processes Galton-Watson process

Probability of extinction

The probability of extinction in a given generation n : P(s(n) = 0) = fn(0)
fn(0) increases with n :
P(s(n) = 0) = Prob.(s(1) = 0

⋃
s(2) = 0

⋃ · · ·⋃ s(n) = 0)

Extinction probability r = limn→∞ P(s(n) = 0) = limn→∞ fn(0)
Self-consistent equation for r : fn(0) = f (fn−1(0)) →

r = f (r)
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Whether the branching ratio
κ = f ′(1) is larger or smaller than
1 distinguishes whether y = f (z)
meets y = z not only at z = 1 but
also at z < 1.

The extinction probability

r =

{
1 (κ = f ′(1) ≤ 1)
< 1 (κ = f ′(1) > 1)
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Branching processes Galton-Watson process

Instability of the number of individuals

The sequence {s(n)} either goes to ∞ or goes to 0

Theorem

limn→∞ P(s(n) = `) = 0 for given ` = 1, 2, . . .; s(n)→ 0 with probability r and
s(n)→∞ with probability 1− r .

P(s(n + n′) = `|s(n) = `) =

{
qn
′

1 < 1 if q0 = 0

< 1− qn
′

0 < 1 otherwise
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Branching processes Galton-Watson process

Distribution of finite tree size I

The probability that the total number of individuals in a tree grown by a
branching process is equal to s in generation n : Pn(s)

Time (n) evolution of Pn(s):

-634- Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004

Fig. 1. (a) An avalanche triggered at the node 0 (circle)
propagates to the nodes 1, 2, 3, and 4 (squares), and then to
5, 6, and 7 (hexagons). No toppling event occurs at the nodes
1, 3, 5, 6, or 7. No more than the first toppling occurs at the
node 0. (b) The corresponding tree of the avalanche in (a) can
be drawn with three generations (t = 0, 1, 2) depending on
the distance from the node 0, the originator. The avalanche
size is 3, contributed by the nodes, 0, 2, 4, denoted by filled
symbols.

plications as mentioned above.
We consider the avalanche dynamics on networks with

degree distribution pd(k) as follows: (i) At each time
step, a grain is added at a randomly chosen node i. (ii)
If the height at the node i reaches or exceeds a pre-
scribed threshold zi, where we set zi = ki, the degree of
the node i, then it becomes unstable and all the grains at
the node topple to its adjacent nodes; hi ! hi � ki, and
hj = hj + 1, where j is a neighbor node of the node i.
(iii) If this toppling causes any of the adjacent nodes to
be unstable, subsequent topplings follow on those nodes
in parallel until there is no unstable node left. This pro-
cess defines an avalanche. (iv) Repeat (i)–(iii). We con-
centrate on the distribution of (a) the avalanche area A,
i .e., the number of distinct nodes participating in a given
avalanche, (b) the avalanche size S, i .e., the number of
toppling events in a given avalanche, and (c) the dura-
tion T of a given avalanche. The study of the avalanche
dynamics on SF networks has been carried out in [11].
Here, we keep pd(k) more general than the SF behavior
and give more detailed derivation of the results reported
in [11].

Analytic solutions for the avalanche size and dura-
tion distributions can be obtained by applying the the-
ory of multiplicative branching processes [12]. To each
avalanche, one can draw a corresponding tree structure
[See Fig. 1]: The node where the avalanche is triggered
is the originator of the tree and the branches out of that
node correspond to topplings to the neighbors of that
node. As the avalanche proceeds, the tree grows. The
number of branches of each node is not uniform, but is
equal to its own degree. The branching process ends
when no further avalanche proceeds. In the tree struc-
ture, a daughter node born at time t is located away
from the originator by a distance t along the shortest
pathway. In the branching process, it is assumed that
branchings from di↵erent parent nodes occur indepen-
dently. Then one can derive the statistics of tree size

and lifetime analytically [8,13], which can be considered
as that of avalanche size and duration since the avalanche
duration T is equal to the lifetime of the tree minus one,
and the avalanche size S di↵ers from the tree size only by
the number of boundary nodes of the tree, which is rela-
tively small when the overall tree size is very large. The
multiplicative branching process approach has been used
to obtain the mean-field solution for the BTW model in
Euclidean space [8], which is valid above the critical di-
mension dc = 4. The avalanches in complex networks
usually do not form a loop but have tree-structures: Ac-
cording to the numerical simulations the details of which
will be explained later, the probability distributions of
the two quantities A and S behave in a similar fash-
ion and, as another example, the maximum area and
size (Amax, Smax) among avalanches are (5127, 5128),
(12058, 12059) and (19692, 19692) for networks having
the power-law degree distributions with the degree ex-
ponents � = 2.01, 3.0, and 1, respectively. A and S
being almost the same implies that the avalanche struc-
ture can be treated as a tree. From now on, we shall not
distinguish A and S, and use s to represent either A or
S.

The branching probability q(k) that a certain node
generates k branches in the corresponding tree consists
of two factors: One is the probability q1(k) that the node
receiving a grain from one of its neighbors has k degrees
and the other is the probability q2(k) that toppling in-
deed occurs at the node. The probability q1(k) is equal
to the degree distribution of the node at one end of a
randomly chosen edge, i.e., q1(k) = kpd(k)/hki. q2(k)
corresponds to the probability that the node has height
k � 1 at the moment of gaining the grain from one of its
neighbors. If one assumes that there is no typical height
of a node in the inactive state, regardless of its degree
k, then q2(k) = 1/k. Such assumption can be tested
numerically: The plot of the probability q2(k) with nu-
merical simulation data supports q2(k) = 1/k as shown
in Fig. 2. Deviations from 1/k at large k are presumably
due to the finite size e↵ect. Therefore, the branching
probability q(k) can be written as

q(k) = q1(k)q2(k) =
pd(k)

hki for k � 1, (2)

and q(0) = 1 �P1
k=1 q(k).

Independence of branchings from di↵erent parent
nodes assumed in the branching process enables one to
express the tree size distribution p(s) in terms of the
branching probability q(k) as [12,13]

p(s) =

1X

k=0

q(k)

1X

s1=1

1X

s2=1

· · ·
1X

sk=1

kY

i=1

p(si)�Pk
i=1 si,s�1.

(3)

We define the generating functions, P(y) =
P1

s=1 p(s)ys

and Q(!) =
P1

k=0 q(k)!k of the tree size distribution
p(s) and the branching probability q(k), respectively.

Pn(s) =
∑∞

k=0 qk
∏k

j=1 Pn−1(sj)δs1+s2+sk ,s−1,
where k is the number of children of the root and sj is the size of the tree
rooted in the j-th child of the root.
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Branching processes Galton-Watson process

Distribution of finite tree size II

Generating function Fn(z) =
∑∞

s=1 Pn(s)zs satisfies the recursive relation

Fn+1(z) = z f (Fn(z))

with f (z) the generating function of the branching probability.
Fn+1(z) =∑

s

∑∞
k=0 qk

∑∞
s1=1

∑∞
s2=1 · · ·

∑∞
sk=1 Pn(s1)Pn(s2) · · ·Pn(sk)δs1+s2+ss(1),s−1z

s =∑
k qkz (

∑
s Pn(s)z s)k = z f (Fn(z))

Stationary distribution P(s) = limn→∞ Pn(s) and its generating function
F (z) = limn→∞ Fn(z) satisfies

F (z) = z f (F (z))

F (1) =
∑

s P(s) is the probability to find a finite tree and the solution of the
self-consistent equation F (1) = f (F (1)), equal to the extinction probability r .
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Branching processes Galton-Watson process

Asymptotic behavior of the stationary tree-size distribution I

The singular behavior of F (z) can inform of the large-s behavior of P(s).
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The plots of z = F/f (F ) versus F represent the inverse of F (z).

If the derivative dz
dF = f (F )−Ff ′(F )

f (F )2 is zero at F0, then F (z) is singular there:

F0 f
′(F0) = f (F0) and z0 = F0/f (F0)
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Branching processes Galton-Watson process

Asymptotic behavior of the stationary tree-size distribution II

Assuming that f (F ) is analytic for 0 ≤ F < F0, we see that around (F0, z0),

z ' z0 + dz
dF |F0(F−F0)+ 1

2
d2z
dF 2 F0

(F−F0)2 +· · · = z0− 1
2F0

f
′′

(F0)
f (F0)2 (F−F0)2 +· · ·

We are interested in the regime F < F0 :

F (z) ' F0 −
(

2f (F0)2

F0f
′′ (F0)

)1/2
(z0 − z)1/2

Expand F (z) around z = 0 as F (z) =
∑

s P(s)zs to obtain P(s) :
(1− x)1/2 = −∑∞s=0

1
s!

(2s−2)!
22s−1(s−1)!x

s for |x | < 1

F (z) ' F0 +
(

2f (F0)2

F0f
′′ (F0)

)1/2
z

1/2
0

∑∞
s=0

1
s!

(2s−2)!
22s−1(s−1)!

(
z
z0

)s

Using Stirling’s formula s! ' ss
√

2πse−s , we obtain

P(s) '
(

2f (F0)2

F0f
′′ (F0)

)1/2
z

1/2
0 z−s0

1
s!

(2s−2)!
22s−1(s−1)!

'
(

f (F0)

2πf ′′ (F0)

)1/2
z−s0 s−3/2 for s � 1
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Branching processes Galton-Watson process

Subcritical, critical, and supercritical phase
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The location of the singular point (F0, z0) varies depending on the form of f .

Subcritical phase : the branching ratio κ < 1 : z0 > 1 and F0 > 1 : P(s)
decays exponentially P(s) ∼ e−s/s0 with the characteristic scale s0 = 1/ ln z0

Critical phase : κ = 1 : z0 = 1 and F0 = 1 : P(s) is a power-law
P(s) ∼ s−3/2

Supercritical phase : κ > 1 : z0 > 1 and F0 < 1 : P(s) decays exponentially
P(s) ∼ e−s/s0 with the characteristic scale s0 = 1/ ln z0
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Branching processes Galton-Watson process

Discrete Tauberian theorem

Theorem (Discrete Tauberian theorem)
∑∞

n=0 anz
n ∼ (1− z)−ρL

(
1

1−z

)
as z → 1−

⇐⇒
an ∼ nρ−1

Γ(ρ) L(n) as n→∞
if ρ > 0, an monotonic, and L(x) is slowly varying for x large such that
L(λx)/L(x)→ 1 as x →∞.

Proof in W. Feller, An introduction to probability theory and its applications
vol II (John Wiley & Sons, 1957)∑

n n
ρ−1e−αn ∼ α−ρ

∫
dyyρ−1e−y
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Branching processes Galton-Watson process

When the branching ratio is close to 1

z0 and F0 will be close to 1.

Let ∆ ≡ 1− κ. We consider the case of 0 < ∆� 1.

The branching probability generating function behaves around z = 1 as

f (z) = 1 + κ(z − 1) +
f ′′(1)

2
(z − 1)2 + · · · (1)

with κ = f ′(1) if f
′′

(1) = 〈k2〉 is finite. (f (n)(1) = 〈kn〉)
To determine the generating function F (z) of the tree-size distribution P(s)

z = F
f (F ) = 1−(1−F )

1−κ(1−F )+ f ′′(1)
2

(1−F )2+···
' 1−∆(1− F )− f ′′(1)

2 (1− F )2 + · · ·

dz
dF |F0 = 0: F0 ' 1 + ∆

f ′′(1) and z0 = 1 + ∆2

2f ′′(1)

P(s) ∼ s−3/2 e−s/sc with sc = 1/ ln z0 ∼ ∆−2
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Branching processes Galton-Watson process

Lifetime distribution I

Extinction probability at generation n: r(n) = fn(0) = P(s(n) = 0)

Lifetime dsitribution `(n) : the probability that the tree is terminated at
generation n: `(n) = r(n)− r(n − 1)

Recursive relation r(n) = f (r(n − 1))

subcritical or critical phase : r = limn→∞ r(n) = 1

Using the expansion Eq. (1) of f (z) near z = 1, we obtain

r(n) = 1 + κ(r(n − 1)− 1) + f ′′(1)
2 (r(t − 1)− 1)2 + · · ·

Let r̃(n) = 1− r(n), which is small.

If the branching ratio κ is significantly smaller than 1, then
r̃(n) ' κr̃(n − 1) leading to r̃(n) ∼ κn ∼ e−n/nc with nc ∼ 1/| lnκ|
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Branching processes Galton-Watson process

Lifetime distribution II

If the branching ratio is close to 1 (∆ = 1− κ� 1), then

r̃(n) = (1−∆)r̃(n − 1)− f ′′(1)
2 r̃(n − 1)2 + · · · or

dr̃
dn ' −∆r̃ − f

′′
(1)
2 r̃2 + · · ·

leading to r̃(n) ∼ 2∆
f ′′(1)

e−∆n

1−e−∆n ∼
{

∆e−n∆ (n� nc = ∆−1)
1
n (n� nc)

The lifetime distribution `(n) ' −dr̃
dn ∼

{
∆2e−n∆ (n� nc = ∆−1)
1
n2 (n� nc)

At the critical phase (∆ = 0), the lifetime distribution is a power-law
`(n) ∼ n−2.
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Branching processes Sandpile avalanches on complex networks

BTW Sandpile model

Bak-Tang-Wiesenfeld model for sandpile avalanches
1 At each time step, a grain is added at a randomly chosen node i .
2 If the height hi at the node i reaches or exceeds a threshold Hi = ki with ki the

degree of the node i , then it becomes unstable and Hi grains at the node
topple to its nearest neighbors nodes such that hi → hi − Hi and hj → hj + 1
for all neighbor nodes j .

3 If this toppling causes any of the adjacent nodes unstable, subsequent topplings
follow in parallel until there is no unstable node left. This process defines an
avalanche.

4 Repeat 1)-3)

Avalanche size s: the number of toppling events in an avalanche.

The duration of an avalanche n

A cluster of nodes participating in an avalanche can be seen as a tree
generated by a branching process

What is the branching probability qk for the model on a network?
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Branching processes Sandpile avalanches on complex networks

Critical branching process for the BTW sandpile model I

-634- Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004

Fig. 1. (a) An avalanche triggered at the node 0 (circle)
propagates to the nodes 1, 2, 3, and 4 (squares), and then to
5, 6, and 7 (hexagons). No toppling event occurs at the nodes
1, 3, 5, 6, or 7. No more than the first toppling occurs at the
node 0. (b) The corresponding tree of the avalanche in (a) can
be drawn with three generations (t = 0, 1, 2) depending on
the distance from the node 0, the originator. The avalanche
size is 3, contributed by the nodes, 0, 2, 4, denoted by filled
symbols.

plications as mentioned above.
We consider the avalanche dynamics on networks with

degree distribution pd(k) as follows: (i) At each time
step, a grain is added at a randomly chosen node i. (ii)
If the height at the node i reaches or exceeds a pre-
scribed threshold zi, where we set zi = ki, the degree of
the node i, then it becomes unstable and all the grains at
the node topple to its adjacent nodes; hi ! hi � ki, and
hj = hj + 1, where j is a neighbor node of the node i.
(iii) If this toppling causes any of the adjacent nodes to
be unstable, subsequent topplings follow on those nodes
in parallel until there is no unstable node left. This pro-
cess defines an avalanche. (iv) Repeat (i)–(iii). We con-
centrate on the distribution of (a) the avalanche area A,
i .e., the number of distinct nodes participating in a given
avalanche, (b) the avalanche size S, i .e., the number of
toppling events in a given avalanche, and (c) the dura-
tion T of a given avalanche. The study of the avalanche
dynamics on SF networks has been carried out in [11].
Here, we keep pd(k) more general than the SF behavior
and give more detailed derivation of the results reported
in [11].

Analytic solutions for the avalanche size and dura-
tion distributions can be obtained by applying the the-
ory of multiplicative branching processes [12]. To each
avalanche, one can draw a corresponding tree structure
[See Fig. 1]: The node where the avalanche is triggered
is the originator of the tree and the branches out of that
node correspond to topplings to the neighbors of that
node. As the avalanche proceeds, the tree grows. The
number of branches of each node is not uniform, but is
equal to its own degree. The branching process ends
when no further avalanche proceeds. In the tree struc-
ture, a daughter node born at time t is located away
from the originator by a distance t along the shortest
pathway. In the branching process, it is assumed that
branchings from di↵erent parent nodes occur indepen-
dently. Then one can derive the statistics of tree size

and lifetime analytically [8,13], which can be considered
as that of avalanche size and duration since the avalanche
duration T is equal to the lifetime of the tree minus one,
and the avalanche size S di↵ers from the tree size only by
the number of boundary nodes of the tree, which is rela-
tively small when the overall tree size is very large. The
multiplicative branching process approach has been used
to obtain the mean-field solution for the BTW model in
Euclidean space [8], which is valid above the critical di-
mension dc = 4. The avalanches in complex networks
usually do not form a loop but have tree-structures: Ac-
cording to the numerical simulations the details of which
will be explained later, the probability distributions of
the two quantities A and S behave in a similar fash-
ion and, as another example, the maximum area and
size (Amax, Smax) among avalanches are (5127, 5128),
(12058, 12059) and (19692, 19692) for networks having
the power-law degree distributions with the degree ex-
ponents � = 2.01, 3.0, and 1, respectively. A and S
being almost the same implies that the avalanche struc-
ture can be treated as a tree. From now on, we shall not
distinguish A and S, and use s to represent either A or
S.

The branching probability q(k) that a certain node
generates k branches in the corresponding tree consists
of two factors: One is the probability q1(k) that the node
receiving a grain from one of its neighbors has k degrees
and the other is the probability q2(k) that toppling in-
deed occurs at the node. The probability q1(k) is equal
to the degree distribution of the node at one end of a
randomly chosen edge, i.e., q1(k) = kpd(k)/hki. q2(k)
corresponds to the probability that the node has height
k � 1 at the moment of gaining the grain from one of its
neighbors. If one assumes that there is no typical height
of a node in the inactive state, regardless of its degree
k, then q2(k) = 1/k. Such assumption can be tested
numerically: The plot of the probability q2(k) with nu-
merical simulation data supports q2(k) = 1/k as shown
in Fig. 2. Deviations from 1/k at large k are presumably
due to the finite size e↵ect. Therefore, the branching
probability q(k) can be written as

q(k) = q1(k)q2(k) =
pd(k)

hki for k � 1, (2)

and q(0) = 1 �P1
k=1 q(k).

Independence of branchings from di↵erent parent
nodes assumed in the branching process enables one to
express the tree size distribution p(s) in terms of the
branching probability q(k) as [12,13]

p(s) =

1X

k=0

q(k)

1X

s1=1

1X

s2=1

· · ·
1X

sk=1

kY

i=1

p(si)�Pk
i=1 si,s�1.

(3)

We define the generating functions, P(y) =
P1

s=1 p(s)ys

and Q(!) =
P1

k=0 q(k)!k of the tree size distribution
p(s) and the branching probability q(k), respectively.

After receiving a grain from a neighbor node, grains at a node i topple to its
ki neighbor nodes in an avalanche = node i gives birth to ki children in the
corresponding tree

The branching probability qk = q(1)(k) q(2)(k) where q(1)(k) is the
probability that the node (i) receiving a grain has degree k and q(2)(k) is the
probability that toppling indeed occurs.
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Branching processes Sandpile avalanches on complex networks

Critical branching process for the BTW sandpile model II

q(1)(k) = kPd (k)
〈k〉 where Pd(k) is the degree distribution of the substrate

network Pd(k) = N−1
∑N

i=1 δki ,k and the degree ki of node i is given by
ki =

∑
j Aij with Aij the adjacency matrix.

q(2)(k) = 1/k if we assume that the height is uniformly distributed between
0 and k − 1

qk = Pd (k)
〈k〉 for k ≥ 1 and q0 = 1−∑k qk = 1−∑k≥1

Pd (k)
〈k〉 > 0.

Branching ratio κ = 〈k〉 =
∑

k qk =
∑∞

k=1 k
Pd (k)
〈k〉 = 1 (critical branching

processes)

23 / 91



Branching processes Sandpile avalanches on complex networks

Critical branching processes with diverging moments of qk

In scale-free networks with the degree distribution Pd(k) ∼ k−γ , the
generating function f (z) =

∑∞
k=0 qkz

k is singular at z = 1:

Let Pd(k) = k−γ

ζ(γ) for k ≥ 1. Then the branching probability qk = k−γ

ζ(γ−1) for

k ≥ 1 and q0 = 1− ζ(γ)
ζ(γ−1)

The generating function of qk behaves around z = 1 as

f (z = e−α) =
∑∞

k=0 qke
−αk = 1− α + α2

2
ζ(γ−2)
ζ(γ−1) + · · ·+ Γ(1−γ)

ζ(γ−1)α
γ−1

using the Mellin transform (J.E. Robinson, Phys. Rev. 83, 678 (1951) )

f (z = e−α) =
∑∞

n=0
(−)n

n! α
n〈kn〉 =

1− α〈k〉+ 1
2α

2〈k2〉+ · · ·+∑∞n=bγ−1c
(−)n(const.)

n! αnKn−γ+1 with α→ 0,
K →∞ and Kα→∞.

f (z) ' 1− (1− z) + B(γ)
2 (1− z)2 + · · ·A(γ)(1− z)γ−1

with A(γ) = Γ(1−γ)
ζ(γ−1) and B(γ) = ζ(γ−2)

ζ(γ−1) − 1
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Branching processes Sandpile avalanches on complex networks

Avalanche size distribution

Avalanche size distribution P(s)

Its generating function F (z) =
∑

s P(s)zs satisfies the relation

z = F
f (F ) = 1−(1−F )

1−(1−F )+B(γ)
2

(1−F )2+···+A(γ)(1−F )γ−1
'

{
1− B

2 (1− F )2 (γ > 3)
1− A(1− F )γ−1 (2 < γ < 3)

The singular behavior of the generating function F (z) at z = 1 is then given

by 1− F (z) ∼





√
2
B (1− z) (γ > 3)

A−
1

γ−1 (1− z)
1

γ−1 (2 < γ < 3)

Differentiating the singular terms of F (z) with respect to z , one finds the
coefficients to be the tree-size distribution, which is

P(s) ∼
{

s−3/2 (γ > 3)

s−
γ
γ−1 (2 < γ < 3)
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Branching processes Sandpile avalanches on complex networks

Lifetime distribution

Lifetime distribution `(n) = r(n)− r(n − 1) ' dr
dn

Critical phase : The extinction probability r = limn→∞ r(n) = 1

The extinction probability up to generation n, r(n) satisfies

r(n) = 1− (1− r(n− 1)) + B(γ)
2 (1− r(n− 1))2 + · · ·+A(γ)(1− r(n− 1))γ−1

Let r̃(n) = 1− r(n).

r̃(n + 1)− r̃(n) ' dr̃(n)
dn ' −

B(γ)
2 r̃(n)2 + · · · − A(γ)r̃(n)γ−1

r̃(n) ∼
{

n−1 (γ > 3)

n−
1

γ−2 (2 < γ < 3)

`(n) ∼
{

n−2 (γ > 3)

n−
γ−1
γ−2 (2 < γ < 3)
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Random walks
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Random walks Return and reaching

Random walk in discrete space and discrete time

Occupation probability Pij(n) : the probability of being at site i after n steps
starting at site j

Initial condition Pij(0) = δij

Normalization
∑

i Pij(n) = 1

Transition probability (one-step occupation probability) Mij = Pij(1) =
Aij

kj

with Aij = 1 or 0 the adjacency matrix element and kj =
∑

` Aj` the number
of the nearest neighbors (degree) of site j

We are interested in Pis(n)

Time evolution of Pis(n)

Pis(n + 1) =
∑

j MijPjs(n)

Generating function of Pij(n): Pij(z) =
∑∞

n=0 z
nPij(n)

Pis(z) = δis + z
∑

j MijPjs(z)
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Random walks Return and reaching

Recurrence

Pólya (1919)

What is the probability that a given site will be ever visited or the starting site will
be ever revisited?

The probability that a site will be visited or the starting site will be revisited
at least once in the first n steps increases with n. Then what is the
probability in the limit n→∞?

First passage time Tij : The time when a walker arrives at i starting at j .

Reaching or return probability Rij ≡ Prob. (Tij <∞)

Answer (Pólya’s theorem) Rij = 1 for d = 1 or 2 but less than 1 for d = 3

Theorem (Recurrence theorem)

If sites i and j are accessible from each other, i.e., Rij > 0 and Rji > 0, then either
Rii = Rjj = Rij = Rji = 1 or Rii < 1,Rjj < 1,RijRji < 1.
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Random walks Return and reaching

First-passage probability

First passage probability Fij(n) = Prob. (Tij = n) : the probability of arriving
at site i for the first time on the nth step starting at site j .

Fij(0) = 0.

Rij = Prob. (Tij <∞) =
∑∞

n=1 Fij(n), which can be equal to or smaller than
1.

Relation between the occupation probability
and the first-passage probability

Pij(n) = δijδn0 +
∑n

n′=1 Fij(n
′)Pii (n − n′)

j
i

Generating function of Fij(n): Fij(z) =
∑∞

n=0 z
nFij(n)

Rij = Fij(1−) ≡ limz→1− Fij(z)

Pij(z) = δij + Fij(z)Pii (z), leading to

Fij(z) =
Pij (z)−δij
Pii (z)

Mean first-passage time (MFPT) 〈Tij〉 = F ′(1−).
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Recurrent vs transient

Return probability Rii =
∑∞

n=1 Fii (n) = 1− 1
Pii (1−)

recurrent : Rii = 1⇐⇒ Pii (1−) =
∑

n Pii (n)→∞
transient : Rii < 1⇐⇒ Pii (1−) =

∑
n Pii (n) <∞
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Return probability on the 1-dimensional infinite lattice

Transition probability Mij = 1
2δi ,j±1: move to the right or to the left with

probability 1/2.

Time-dependent return probability
Pss(n = 2m) =

(2m
m

) (
1
2

)m (1
2

)m ∼m�1 (πm)−1/2(m! ' mm

em

√
2πm)

Pss(z) =
∑

m

(2m
m

)
4−mz2m = (1− z2)−1/2

First-passage probability
Fss(z) = 1− 1

Pss(z) = 1− (1− z2)1/2

Fss(2m) = 1
m!

dmFss
d(z2)m

|z=0 = 1
2m−1

(2m
m

) (
1
2

)2m ∼m�1
π1/2

2 m−3/2

Return probability Rss = Fss(1−) = 1− 1
Pss(1−) = 1.
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Pss(z) and Pss(z) in 1d
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Reaching probability on the 1-dimensional infinite lattice

Start at s = 0.

Ps0(n + 1) =
∑

s′Mss′Ps′0(n) =
∑

`=−1,1
1
2Ps−`,0(n)

Transition matrix Mij = 1
2δi ,j±1 is diagonalized by the plane wave

Xk = (· · · , e iks , e ik(s+1), · · · )T as M Xk = m(k)Xk with the eigenvalue
m(k) =

∑
`=−1,1

1
2e

i`k = cos k called the structure function of the walk.

Decomposition in terms of the eigenvectors = Discrete Fourier Transform:
P̃k(n) =

∑
s e

iskPs0(n), Ps0(n) = 1
2π

∫ π
−π dk e

−iks P̃k(n).

P̃k(n + 1) = m(k)P̃k(n), P̃k(0) = 1→ P̃k(n) = m(k)n = (cos k)n.

Ps0(z) =
∑∞

n=0
1

2π

∫ π
−π dk e

−iks(cos k)nzn = 1
2π

∫ π
−π dk

e−iks

1−z cos k =

1
2πi

∮
|r |=1 dz

r |s|

r− z
2

(r2+1)
= (1− z)−1/2

{
1−(1−z2)1/2

z

}|s|

Fs0(z) = Ps0(z)
Pss(z) =

{
1−(1−z2)1/2

z

}|s|
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Return probability on the 2-dimensional infinite square lattice

Transition probability M
~r ,~r ′

= 1
4 (δ

~r ,~r ′±x̂ + δ
~r ,~r ′±ŷ ) with the structure function

(eigenvalues) m(~k) =
cos kx+cos ky

2

P̃~k(n) = m(~k)n =
(

cos kx+cos ky
2

)n

Generating function of the occupation probability P~r ,~0(z) =
∑∞

n=0

{∫ π
−π

dkx
2π

∫ π
−π

dky
2π e

−i(kxx+kyy)m(~k)n
}
zn =

∫ π
−π

dkx
2π

∫ π
−π

dky
2π

e−i(kx x+ky y)

1−z cos kx+cos ky
2

Time-dependent return probability
P~r ,~r (z) = 1

2π

∫ π
−π dk

1√
(1− z

2
cos k)2−( z

2
)2

= 2
πK (z) ∼1−z�1

1
π ln[8(1− z)−1]

with the complete elliptic integral of the first kind
K (z) =

∫ 1
0 dx 1

(1−x2)1/2(1−z2x2)1/2

P~r~r (n = 2m) =
(

(m−1/2)!
(−1/2)!m!

)2
∼m�1 (πm)−1

First-passage probability F~r~r (z) = 1− 1
P~r,~r (z) ∼1−z�1 1− π

ln[8(1−z)−1]

Return probability R~r~r = F~r~r (1−) = 1− 1
Pss(1−) = 1.
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Return probability on the 3-dimensional infinite body-centered
cubic lattice

Transition probability
M
~r ,~r ′

= 1
8 (δ

~r ,~r ′+ x̂+ŷ±ẑ
2

+ δ
~r ,~r ′+ x̂−ŷ±ẑ

2
+ δ

~r ,~r ′+−x̂+ŷ±ẑ
2

+ δ
~r ,~r ′+−x̂−ŷ±ẑ

2
) with the

structure function (eigenvalues) m(~k) =
cos kx+cos ky+cos kz

3
Generating function of the occupation probability

P~r ,0(z) =
∫ π
−π

dkx
2π

∫ π
−π

dky
2π

∫ π
−π

dkz
2π

e−i(kx x+ky y+kz z)

1−z cos kx+cos ky +cos kz
3

Time-dependent return probability

P~r~r (z) = 3F2( 1
2 ,

1
2 ,

1
2 ; 1, 1, ; z2)→z→1

(−3/4)!4

4π3 ' 1.3932039 . . . with the
generalized hypergeometric function pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =∑∞

n=0
zn

n!
Γ(a1+n)Γ(a2+n)...Γ(ap+n)Γ(b1)Γ(b2)...Γ(bq)
Γ(a1)Γ(a2)...Γ(ap)Γ(b1+n)Γ(b2+n)...Γ(bq+n)

P~r~r (n = 2m) =
(

(m−1/2)!
(−1/2)!m!

)3
∼m�1 (πm)−3/2

Return probability

P~r~r (z) ∼1−z�1
(−3/4)!4

4π3 − 2
√

2
π (1− z)1/2 → R~r~r = 1− 1

P~r~r(1−)
' 0.282230

First-passage probability

F~r~r (z) = 1− 1
P~r,~r (z) ∼1−z�1 R~r~r − 1

P~r~r (1−)2
2
√

2
π (1− z)1/2

36 / 91



Random walks Return and reaching

Return-to-origin probabilities

3d
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Polya’s theorem

Theorem (Pólya’s theorem)

For the random walks on infinite d-dimensional lattice with finite mean-square
displacement and zero mean displacement per step, the walk is recurrent if d = 1
or d = 2 and transient if d ≥ 3.

Structure function m(~k) =
∑

~r e
i(~r−~r ′)·~kM~r ,~r ′ ' 1− 1

2

∑d
i ,j=1 kikjDij with

Dij =
∑

~r (~r − ~r ′)i (~r − ~r ′)jM~r ,~r ′

P~r~r (z = 1−) = 1
(2π)d

∫
dd~k

1−m(~k)
∼
∫ π

0 dk kd−1

k2

{
→∞ (d ≤ 2)
<∞ (d > 2)
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Effects of dimension: Spectral decomposition I

d-dimensional lattice of lateral length L and the total number of sites Ld

Laplacian matrix L̃~r ,~r ′ = δ~r ,~r ′ −M~r ,~r ′ = δ~r ,~r ′ − 1
2d

∑d
j=1(δ~r ,~r ′+êj + δ~r ,~r ′−êj )

with the eigenvectors 〈~k|~r〉 = φ~r (~k) = L−d/2e i
~k·~r

and the eigenvalues 〈~k|M|~k〉 = µ(~k) = 1− 1
d

∑d
j=1 cos kj

Ex. d = 1:
∑L−1

r ′=0 L̃rr ′f (r ′) = f (r)− f (r−1)+f (r+1)
2 ∼ −1

2
d2f
dr2 and

µ(k) = 1− cos k ∼ 1
2k

2

Wave vector ~k under the periodic boundary condition: ~k = 2π
L (n1, n2, . . . , nd)

with nj = −L/2,−L/2 + 1, . . . ,−1, 0, 1, . . . , L/2− 2, L/2− 1 for L even and
nj = −(L− 1)/2,−(L− 3)/2, . . . ,−1, 0, 1, . . . , (L− 3)/2, (L− 1)/2 for L odd.

Occupation probability P~r~r ′(n) = (Mn)~r~r ′ =
∑

~k
{1− µ(~k)}n 1

Ld
e−i

~k·(~r−~r ′)

Time-dependent return probability

P~r~r (n) = 1
Ld

∑
~k
{1− µ(~k)}n

39 / 91



Random walks Return and reaching

Effects of dimension: Spectral decomposition II

Generating function P~r~r (z) =
∑∞

n=0
1
Ld

∑
~k
{1−µ(~k)}nzn = 1

Ld

∑
~k

1
1−z+zµ(~k)

Spectral density function ρ(µ) = 1
Ld

∑
~k
δ(µ(~k)− µ)

= 1
(2π)d

∫
dd~k δ(1− 1

d

∑d
j=1 cos kj − µ) =

1
2π

∫∞
−∞ dqe iq(1−µ)

(
1

2π

∫ π
−π dk e

−i q
d

cos k
)d

= 1
π

∫∞
0 cos[q(1− µ)]{J0( q

d )}d
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Effects of dimension: Spectral decomposition III

The convergence/divergence of P~r~r (1−) = 1
Ld

∑
~k

1
µ(~k)

=
∫∞

0 dµρ(µ) 1
µ

depends on the small-µ behavior of ρ(µ)

For µ→ 0, µ(~k) ' 1
2d
~k2 and

ρ(µ) = 1
(2π)d

∫
dd~k δ(

~k2

2d − µ) ' dd/2

(2π)d/2
µ

d
2−1

Γ(d/2)

Time-dependent return probability

Singularity of the generating function :

P~r~r (z) =
∫ 2

0
dµρ(µ) 1

1−z+zµ 'z→1

∫ 1−z
0

dµρ(µ) 1
1−z +

∫ 2

1−z dµρ(µ) 1
µ ∼




(1− z)d/2−1 (d < 2)

ln
(

1
1−z

)
(d = 2)

finite constant (d > 2).

P~r~r (n) = 1
(2π)d

∫
dd~k {1− µ(~k)}n =

∫ 2

0
dµρ(µ)(1− µ)n =

(1 + (−1)n)
∫ 1

0
dµρ(µ)(1− µ)n.

For large n, P~r~r (n = 2m) ' 2
∫ 1

0
dµρ(µ) e−µn [Laplace transform of ρ(µ)]
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Effects of dimension: Spectral decomposition IV

The behavior of ρ(µ) for µ→ 0 determines R(n) for n→∞ such that

R(n) '
∫∞

0
dµ d

(2π)d/2
µ

d
2
−1

Γ(d/2)e
−µn ∼ n−

d
2

Tauberian theorem and the singularity of P(z) can be used to obtain the same
result.
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Random walk on a general network

Random walk on a network which is finite and has no translational invariance

How fast and far can a random walker go on a network?

Need to extend the concept of recurrence and transience

A network of N nodes and L links with the adjacency matrix Aij is considered.

Transition probability from a node j to i Mij =
Aij

kj

Occupation probability Pis(n) evolves with time as Pis(n+ 1) =
∑

j MijPjs(n).
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Stationary state on a network

Fundamental theorem of Markov chains - A finite, irreducible, and aperiodic
Markov chain has a unique stationary distribution Pi = limn→∞ Pis(n)

irreducible ∼ consisting of a single strongly-connected component

aperiodic ∼ without a limiting cycle

If Mij = Mji for all i and j , it follows that
∑

j Mij =
∑

j Mji = 1 leading to
Pi = 1/N.

For Mij 6= Mji for some i and j , Pi = ki
2L (as

∑
j
Aij

kj
Pj = ki

2L)

Detailed balance condition MijPj = MjiPi (implying (Mn)ijPj = (Mn)jiPi for
all n ≥ 1)
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Return probability on a finite N = Ld lattice

Time-dependent return probability R(n) ≡ 1
N

∑
s Pss(n) =

1
N

∑
~k
{1− µ(~k)}n = 1

N +
∫
dµρ(µ)(1− µ)n ∼ 1

N + (const.)n−d/2

Characteristic scale nX = N2/d such that

R(n) '
{

n−d/2 (n� nX )
1/N (n� nX )

Generating function
R(z) ≡ 1

N

∑
s Pss(z) = 1

N(1−z) + (const.) + (const.)(1− z)d/2−1 + · · · .
The limit z → 1− for computing the return probability R = R(z = 1−) in the

infinite lattice (N →∞) corresponds to the scaling regime (1− z)N2/d � 1 for

d ≤ 2 and (1− z)N � 1 for d > 2.

Question: Return probability on complex networks?
The eigenvalues of the Laplacian matrix of complex networks are not known.
No translational invariance for complex networks → Pss(n) for a specific
node s can be different fromR(n).
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Spectral dimension of complex networks

Laplacian matrix L̃ij = δij − Aij

kj

If the spectral density function ρ(µ) behaves as ρ(µ) ∼ µds/2−1 for small µ,
the spectral dimension of this network is ds .
How to measure the spectral dimension of an ensemble of networks

1 Determine numerically the small eigenvalues of L̃ and compute ρ(µ) ∼ µds/2−1.
2 Obtain the second-smallest eigenvalue µ2 for different N to estimate ds by the

extreme-value relation
∫ µ2

0
dµρ(µ) ∼ 1/N or µ2 ∼ N−2/ds .

3 Perform the simulation of random walks and obtain
R(n) =

∫
dµρ(µ)e−µn ∼ n−ds/2

Data ds

(u,v) flower network 2 ln(u+v)
ln uv

Yeast ppi 1.30± 0.04
Human ppi 2.0± 0.4

Coauthorship 3.9± 0.4
Internet 4.9± 0.4

Table: Spectral dimension

!see Fig. 4"a#$. Our results for the spectral dimension of the
fractal WF networks "p=0# confirm the previous results ob-
tained in the study of the mean first passage time !23$.

When p=1, the numerical values of ds are somewhat
larger than the theoretical value of 2, in the range of 2–2.2,
and the coefficient "p0!"II## in Eq. "38# seems to deviate from
the numerical result, especially for "u ,v#= "2,3#, as seen in
Fig. 4"b#. These differences come from the finite-size effect.

As the RG transformation is repeated, the parameter p is
renormalized, as seen in Eq. "24# or Fig. 3"a#. When " is
sufficiently small, which is the case here, p approaches the
fixed point p! and is then repelled. The RG transformation is
based on the assumption that p− p! is sufficiently small; thus,
we can derive the recursive relations of the parameters in a
series of p− p!. However, when the system size is finite, only
a finite number of RG transformations can be made and
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FIG. 4. "Color online# Return-to-origin probability Po"t# on WF networks. "a# Plots of Po"t# on the fractal WF networks "p=0#.
Simulation results for "u ,v#= "2,3# and "u ,v#= "5,5# are shown and the lines represent the theoretical prediction in Eq. "38#. "Inset# Plot of
the spectral dimension ds as a function of 2 ln"u+v# / ln"uv#. The values of ds were estimated from Po"t# for "u ,v#= "2,3#, "2,4#, "2,6#, "3,3#,
"3,4#, "3,5#, "3,6#, "4,4#, "4,5#, "4,6#, and "5,5# using the relation Po"t#% t−ds/2. The line represents the analytical prediction
ds=2 ln"u+v# / ln"uv#. "b# Plots of Po"t# on the nonfractal WF networks "p=1# for the same values of u and v. The lines represent the
theoretical predictions in Eq. "38#. "Inset# Plot of the spectral dimension ds as a function of 2 ln"u+v# / ln"uv#. The line represents the
analytical prediction ds=2. "c# Plots of Po"t# / "po!II# on the nonfractal WF networks for p= p! and various values of u and v. All the data
points collapse to t−1 as predicted by Eq. "38#. "Inset# Plot of the fixed point p! as a function of v for u fixed at 2 and 3. This shows that as
v increases, p! approaches 1. "d# Plots of Po"t# for "u ,v#= "3,5# and various values of p. The slopes of the two lines are −ln 8 / ln 15 and −1,
corresponding to the analytical prediction for ds /2 for p=0 and p=1 for "u ,v#= "3,5#. "Inset# Plot of the spectral dimension ds as a function
of p. The results obtained for the fifth and sixth generations are presented. "e# Plots of "1+ p log4 t#Po"t# / Po,th"1# versus t for "u ,v#
= "2,2# and p=0, 0.2, 0.5, 0.8, and 1, where Po,th"1#= po"p+3# / "6 ln 4#. All the data points collapse to t−1 as predicted by Eq. "38#. "f# Plots
of Po"t# on real-world networks. The two lines are the guide for the eye, and the spectral dimensions read from the slope of the log-log plots
of Po"t# are given in the inset.
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Time-dependent return probability of a specific node

Pss(n) 6= R(n) for scale-free
networks having a power-law degree
distribution Pd(k) ∼ k−γ :
Simulations show that Pss(n)
decays slow with n if the degree of s
is large.

In the stationary state, the probability to cross a link is all the same;

MijPjs = 1
kj

kj
2L = 1

2L .

Idea: Can we represent Pss(n) as the ratio of the effective degree k̂s(n) to the total
number of effective links L̂(t) like Pss(n→∞) = ks/(2L) in the stationary state?
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Effective degree I

For given finite n, a walker has crossed some links and not crossed others.

Pis(n) =
∑

j MijPjs(n − 1) = sum of jump probability from the neighbors (j)
to i .

Link accessibility for a link (j → i)

Wij(n) =
MijPjs(n−1)

maxab MabPab(n−1)

Wij(n) is between 0 and 1.
maxab MabPab(n − 1) = that from the first-visited neighbor of s to the starting
node = 〈Ms`P``(n − 2)〉`∈n.n.(s)

Time evolution of link accessibility :

Ws`(n = 2) = 1
ks

1/k`
〈(1/kj )〉j∈n.n.(s)

' 1
ks

increases to Ws`(n→∞) = 1.

Wij(n) increases from 0 to 1 for (j → i) far from s.
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Effective degree II

Effective degree

k̂i (t) =
∑

j AijWij(n) =
∑

j Aij

1
kj
Pjs(n−1)

〈 1
k`
P``(n−2)〉`∈n.n.(s)

increases from 0 or 1 to the full degree ki .

Total number of effective links

2L̂(n) =
∑

i k̂i (n) = 1
〈 1
k`
P``(n−2)〉`∈n.n.(s)

' 〈k〉
R(n−2) ∼

{
n

ds
2 (n� nX )

2L (n� nX )

Occupation probability Pis(n) = k̂(n)

2L̂
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Effective degree III

Time evolution of the effective degree

EFFECTIVE TRAPPING OF RANDOM WALKERS IN . . . PHYSICAL REVIEW E 85, 046110 (2012)

FIG. 2. (Color online) Effective degree k̂s(t) as a function of time
t for different ks in the (2,3) weighted flower network composed
of 11 720 nodes. The slope of the dashed line is ds/[2(γ − 1)] =
ln 2/ ln 6 [11]. The inset shows the plot of the estimated crossover
time tc(s) versus ks in double logarithmic scales, and the slope of the
solid line is 2(γ − 1)/ds = log 6/ log 2.

To obtain κ(t) and eventually pss(t), we consider the
effective degree distribution in the RWs starting from a node s.
We first recall that in the limit t → ∞, the link accessibilities
of each link is constant, and thus the effective degree k̂i(t)
of node i reduces to its degree, the number of connections
to it. Moreover, the probability to reach a node with degree
k following a randomly selected link, which is denoted as
DLN(k), is given as (k/⟨k⟩)D(k). In the early time regime,
however, a RWer does not visit all nodes in the system, but
does some nodes around a starting node. As a result, the
link accessibility of each link is no longer constant 1/L,
but can vary with time. For simplicity, we assume that the
link accessibilities are uniform for the links that have ever
been passed by the RWer, and thus the probability to reach
a node with degree k following a link becomes k1−γ for
the nodes ever visited. This assumption, a simplest way to
study the time-dependent behavior of RWs, is made on the
basis that the wandering pattern of RWs within the region
of the links ever passed is similar to the one over the entire
system in the limit t → ∞. However, since the number of
passed links is partial and increases with time, the proportional
coefficient of DLN(k; t) can differ from that in the limit
t → ∞. We consider a particular case that an RWer starts
from the hub node (i.e., s = h), for which the maximum
effective degree or the cutoff of DLN(k; t) is the effective
degree of the starting node, which is denoted as k̂h(t). The
natural cutoff k̂h(t) of DLN(k; t) is obtained from the relation∫ ∞
k̂h(t) DLN(k; t)dk ∼ k̂h(t)2−γ . Meanwhile, the effective degree

of the hub is given as k̂h(t)/L̂(t). Matching those quantities,
one can obtain that

k̂h(t) ∼ L̂(t)1/(γ−1) ∼
{

tds/2(γ−1) for t ≪ tx,

L1/(γ−1) for t ≫ tx.
(15)

Both k̂h(t) and L̂(t) increase with time and saturate to their
values kh and L at t ≃ tx, respectively. The RTO probability
for the hub behaves as

phh(t) = k̂h(t)

2L̂(t)
∼

{
t−d

(hub)
s /2 for t ≪ tx,

kh

2L
for t ≫ tx,

(16)

where

d (hub)
s = ds

γ − 2
γ − 1

(17)

is called the local spectral dimension of the hub. When ds and
γ are finite, d (hub)

s < ds , and thus the RWer wanders around
the hub for a long time. Particularly, when γ → 2, phh(t) ∼
const., implying that the RWer is effectively trapped at the hub.

Let us return to the general case of an arbitrary starting
node. We know that the effective degree of the starting node
s evolves with time as k̂s(t) ∼ κ(t), independent of s, until it
reaches the value ks . Therefore the behavior of k̂s(t) for t ≪ tx
reduces to the one similar to Eq. (15) as

k̂s(t) ∼
{

tds/2(γ−1) for t ≪ tc(s),
ks for t ≫ tc(s),

(18)

where tc(s) is the crossover time between the early- and
intermediate-time regime, which depends on ks as

tc(s) ∼ k2(γ−1)/ds
s . (19)

From Eqs. (5), (12), and (18), we obtain the RTO probability
pss(t) for an arbitrary starting node s as

pss(t) ∼

⎧
⎪⎨

⎪⎩

t−d
(hub)
s /2 for t ≪ tc(s),

kst
−ds/2 for tc(s) ≪ t ≪ tx,

ks

2L
for t ≫ tx.

(20)

The intermediate time regime, tc(s) ≪ t ≪ tx, disappears
when the starting node is the hub; the crossover time tc reduces
to tx when ks = kh ∼ L1/(γ−1).

III. SIMULATION RESULTS

We check the analytic solution numerically in artificial
scale-free networks as well as a real-world network, the World
Wide Web [12]. The artificial networks are the weighted flower
network [10,11,13,14] and the fractal network introduced
by Song et al. [15]. In both networks, the RTO probability
decays in a power-law manner R(t) ∼ t−ds/2. In the weighted
flower networks, the presence of shortcuts is controlled by a
parameter p = 0 so that the network can be either a fractal or
a nonfractal [11]. In the fractal network model, there are two
parameters m and e which represent the branching number of
each step and the hub-hub attraction probability, respectively.
Those two parameters control the global spectral dimension
and the degree exponent. In our simulations, a RWer starts at
a node s and its trajectories are recorded up to 1000 time steps
to evaluate the specific RTO probability. This simulation is
repeated for all starting nodes and 106 independent RWers.

Figure 2 shows that the effective degree increases with time
in the early time regime, and saturates to a constant value in
the intermediate- and the long-time regime in the weighted
flower networks. The theoretical prediction in the early time
regime in Eq. (18) is represented by the dashed line, which is

046110-3

Simulations : k̂s(n) ∼ nθ for n� nc and k̂s = ks for
n� nc

Local-stationary assumption: Link accessibilities
Wij(n) are uniform for the links that have been
passed → Effective degree distribution of the visited
nodes P̃d(k̂) ∼ k̂1−γ

In case of the starting node being the hub node, the
largest effective degree is that of the starting node
k̂s , which satisfies

∫∞
k̂s

P̃(k̂) ∼ 1/L̂ leading to

k̂s(n) ∼ L̂(n)
1

γ−1 .

Scaling behavior of the effective degree

k̂s(n) ∼
{

n
ds

2(γ−1) (n� nc)
ks (n� nc)

with nc ∼ k
2(γ−1)

ds
s
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Crossover behavior of the return probability

Considering the crossover scale nc ∼ k
2(γ−1)

ds
s for k̂s(n) and nX ∼ L

2
ds ,

Pss(n) ∼





n−
d

(h)
s
2 n� nc

ksn
− ds

2 nc � n� nX
ks
2L n� nX

with the hub spectral dimension d
(h)
s = ds

γ−2
γ−1

S. HWANG, D.-S. LEE, AND B. KAHNG PHYSICAL REVIEW E 85, 046110 (2012)

FIG. 3. (Color online) The RTO probabilities as a function of time
in the scaling form for the (3,5) weighted flower networks (WFNs)
with the long-range connection probability p = 0 (a) and p = 1
(b) and the fractal network (FN) with m = 2 and e = 1 (c), with
m = 2 and e = 0 (d), where m represents the branching number
of each step, and e does the hub-hub attraction probability [15].
The weighted flower networks in (a) are fractal and those in (b) are
nonfractal. The networks with e = 1(e = 0) are fractals (not fractals).
The slopes of dashed lines and the dashed-dotted lines are guidelines
theoretically predicted.

in agreement with numerical data. The crossover time tc(s) is
estimated for different ks and are shown in the inset of Fig. 2.
Again numerical data fit the theoretical prediction well.

The crossover behavior of pss(t) between the early- and
the intermediate-time regime can be described as pss(t) =
k

2−γ
s φ(t/tc(s)) with the scaling function φ(x) behaving as

x−d
(hub)
s /2 for x ≪ 1 and x−ds/2 for x ≫ 1. In Figs. 3(a)–

3(d), the plots of k
γ−2
s pss(t) versus t/k

2(γ−1)/ds
s show data

collapse excellently for different ks , conforming the theoretical
prediction. The data in the long-time regime t ≫ tX are not
presented in Fig. 3, which have been already well understood
and are not the main concern of this work.

For a real-world network, we simulate the RWs for the
World Wide Web, which has the degree exponent γ ≈ 2.2
and the spectral dimension ds ≈ 1.8. In our simulations, we
neglect the direction of each link for simplicity. We plot
the numerical results of pss(t) in the scaling form and find
that the numerical data do show the crossover behavior; the
behavior in the early- and the intermediate-time regimes fit
the theoretical predictions reasonably well, represented by the
dashed and dashed-dotted lines, respectively, in Fig. 4. Since
the World Wide Web contains some degree-degree correlation,
the scaling plot is not as good as that obtained for artificial
networks. Nevertheless, the slow decay ∼t−0.16 behavior
of the specific RTO probability in the early-time regime implies
that a random surfer on the World Wide Web is effectively
trapped at hub pages. This result may be related to why
the PageRank algorithm needs to include random jumps for
efficient searching.

FIG. 4. (Color online) The RTO probabilities in the scaling
form for the World Wide Web. The dashed and dashed-dotted lines
represent theoretical formula pss(t) ∼ t−d

(hub)
s /2 and pss(t) ∼ t−ds/2

with d (hub)
s ≈ 0.33 evaluated by Eq. (17) using the measured values

γ ≈ 2.2 and ds ≈ 1.8.

IV. DISCUSSION

In summary, we have studied the time-dependent behavior
of the RTO probability of RWs in scale-free networks in
relation to information accessibility during random surfing
in the World Wide Web. It was found that the specific RTO
probability pss(t) exhibited the crossover between a slow and
a fast decay behavior. The crossover time increases with the
degree of the starting node. Thus, an RWer starting from a hub
takes a long time to escape from it. This result implies that it is
undesirable for a random surfer to start from a portal site in the
World Wide Web that contains a great number of hyperlinked
pages, and random jumps are needed to escape from it when
the RWer reaches there during travels.
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APPENDIX A: DERIVATION OF THE DENOMINATOR OF
EQ. (10)

To calculate the denominator of Eq. (10) explicitly, we first
present a general framework how to calculate the average of
a general function f (ℓ) in which ℓ is the node index, but
actually the function depends on its degree kℓ in the form of
f̂ (kℓ). Then,

⟨f (ℓ)⟩ℓ∈n.n.(s) ≡ 1
ks

∑

ℓ∈n.n.(s)

f (ℓ) (A1)

≈
∑

k

k

⟨k⟩
D(k)f̂ (k). (A2)

The step from (A1) to (A2) is obtained by using DLN(k)
which is given as k

⟨k⟩D(k). We also remark that the degrees of
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a general function f (ℓ) in which ℓ is the node index, but
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f̂ (kℓ). Then,

⟨f (ℓ)⟩ℓ∈n.n.(s) ≡ 1
ks

∑

ℓ∈n.n.(s)

f (ℓ) (A1)

≈
∑

k

k

⟨k⟩
D(k)f̂ (k). (A2)

The step from (A1) to (A2) is obtained by using DLN(k)
which is given as k

⟨k⟩D(k). We also remark that the degrees of

046110-4

Figure: WWW: γ ' 2.2, ds ' 1.8,

d
(h)
s ' 0.33
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Random walks Random walks on finite heterogeneous networks

Divergence of the generating function Pss(z) around z = 1 I

Return probability for a specific node Fss(1−) = 1− 1
Pss(1−)

The generating function for ε = 1− z → 0,

Pss(z = 1− ε) '∑n Pss(n)e−εn ∼
∫ nc dn n−

d
(h)
s
2 e−εn +

∫ nX
nc

dn ksn
− ds

2 e−εn +
∫∞

dn ks
2Le
−εn

Divergence varies depending on ε, the spectral dimension ds and the hub

spectral dimension d
(h)
s = ds

γ−1
γ−2 :

1 The first integral diverges if min(nc , ε
−1) is infinitely large and d

(h)
s ≤ 2

2 The second integral diverges i) if min(nX , ε
−1) is infinitely large and ds ≤ 2 or

ii) if ds > 2 and ksn
1− ds

2
c is infinitely large.

3 The last integral diverges as ks
2Lε if ε� ks/(2L)

4 d
(h)
s = ds

γ−2
γ−1 = 2 ds

dc
with a critical dimension dc(γ) = 2γ−1

γ−2 .

5 d
(h)
s = 2⇐⇒ ds = dc > 2

6 d
(h)
s < ds .
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Divergence of the generating function Pss(z) around z = 1 II

Characteristic scales εc = n−1
c ∼ k

− 2
ds

(γ−1)
s , εX = n−1

X ∼ L
−2
ds

α = (1− 2
d )(γ − 1), which is smaller than 1 for d < dc

(I) ds < 2:

Pss(z = 1− ε) ∼





ε
d

(h)
s
2
−1 + const. (ε� εc)

ksε
ds
2
−1 + k1−α

s (εX � ε� εc)
ks

2Lε + ksL
2
ds
−1 (ε� εX )

(II) 2 < ds < dc :

Pss(z = 1− ε) ∼





ε
d

(h)
s
2
−1 + const. (ε� εc)

k1−α
s + ksε

ds
2
−1 (εX � ε� εc)

k1−α
s + ks

2Lε (ε∗ � ε� εX )
ks

2Lε + k1−α
s (ε� ε∗)
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Random walks Random walks on finite heterogeneous networks

Divergence of the generating function Pss(z) around z = 1 III

(III) ds > dc :

Pss(z = 1− ε) ∼





(const.) + ε
d

(h)
s
2
−1 (ε� εc)

(const.) + k1−α
s + ksε

ds
2
−1 (εX � ε� εc)

(const.) + k1−α
s + ks

2Lε (ε∗ � ε� εX ))

(const.) + ks
2Lε + k1−α

s (ε∗∗ � ε� ε∗)
ks

2Lε + (const.) + k1−α
s (ε� ε∗∗)

Another characteristic scale n∗ = ε−1
∗ ∼ Lk−αs and n∗∗ = ε−1

∗∗ ∼ L/ks .

(1− z)|z=1− =





εX ∼ L−
2
ds (ds < 2)

ε∗ ∼ kαs /L (2 < ds < dc)
ε∗∗ ∼ ks/L (ds > dc)
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Random walks Random walks on finite heterogeneous networks

Recurrent vs. transient on heterogeneous networks

In the limit N, L→∞ and L/N finite

With no dominant divergence but ks/(2Lε), we consider the walk transient.

Multiple divergence can be observed for the random walks on complex
networks.

(I) ds < 2: the random walk is recurrent for all s in two modes:

1 Trapping : For ε ' εc = k
− 2

d (γ−1)
s , Pss(z = 1−) ∼ k1−α

s with
α = (1− 2

d )(γ − 1) < 0. This diverges for ks infinitely large, i.e., ks = O(Lδ)
with δ > 0.

2 Returning : At ε ' n−1
X = L−

2
ds , Pss(z = 1−) ∼ ksL

2
ds
−1. This one diverges.

(II) 2 < ds < dc : the random walk is recurrent for hub starting nodes by
trapping :

1 Trapping: For ε∗ � ε . εc , Pss(z = 1−) ∼ k1−α
s with 0 < α < 1. This diverges

for hub nodes of degree ks = O(Lδ) with δ > 0.

(III) ds > dc : the random walk is transient for all s. α > 1, No divergence.
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All-to-one (Global) first-passage probability in networks

We consider the first-passage probability from all possible starting nodes to a
specific target node Fm•(n) =

∑
s

ks
2LFms(n)

weight ks/(2L) → first-passage of the random walkers in the stationary state

Using Fms(z) = Pms(z)−δms

Pmm(z) , we find the generating function of Fm•(n)

represented in terms of Pmm(z) as

Fm•(z) = kmz
2L(1−z)

1
Pmm(z)

Fm•(z) = km
2L

(
1− 1

Pmm(z)

)
+
∑

i 6=m
ki
2L
Pmi (z)
Pmm(z) =

km
2L

(
1− 1

Pmm(z)

)
+
∑

i 6=m
km
2L
Pim(z)
Pmm(z) = kmz

2L(1−z)
1

Pmm(z)
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Random walks Random walks on finite heterogeneous networks

Global mean first-passage time in networks

〈Tm〉 = d
dzFm•(z)|z=1−

d
dzFm•(z) = km

2L(1−z)Pmm(z) + 2L km z Pmm(z)−(1−z)P ′mm(z)
{2L (1−z)Pmm(z)}2

Pmm(z) = km
2L (1−z) + (weakly diverging part for z → 1) =⇒

2L(1− z)Pmm(z)→ km and Pmm(z)− (1− z)P ′mm(z) = Pmm(z)− km
2L(1−z)

Pmm(z) = km
2L(1−z) + P∗mm(z) with P∗mm(z) ≡∑n(Pmm(n)− km

2L )

〈Tm〉 = 2L
km
P∗mm(1−) + 1

P∗mm(z = 1−) =





kmL
2
ds
−1 (ds < 2; z = 1− εX )

k1−α
m (2 < ds < dc ; z = 1− ε∗)

const. (ds > dc ; z = 1− ε∗∗)

GMFPT 〈Tm〉 ∼





L
2
ds (ds < 2)

Lk−αm (2 < ds < dc)
Lk−1

m (ds > dc)
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Classification of networks according to the scaling of the GMFPT

Scaling of 〈Tm〉 depends both on the spectral dimension ds and the degree
exponent γ

With small γ (many hubs present), the GMFPT is reduced to L
2
ds � L at the

hub node of the largest degree km ∼ L
1

γ−1 in the networks of
2 < ds < dc = 2γ−1

γ−2 .

the (!, ds) plane in Fig. 1. Note that dðhubÞs ¼ 2 locates at
the boundary between (II) and (III).

In Fig. 2, the plot of logNTm vs logNkm is presented
for various networks, showing different slopes for the net-
works belonging to the different regions (I), (II), and (III).
These slopes are in agreement with the theoretical values
indicated by the dashed lines. Finally, we note that loga-
rithmic corrections to the mean GFPT can appear at the
boundaries between the different regions (I), (II), and (III).

If the target is the hub, then using the relation
kh $ N1=ð!%1Þ, we obtain that

Th $
8
<
:
N2=ds ðI and IIÞ:
Nð!%2Þ=ð!%1Þ ðIIIÞ:

(8)

Thus, the mean travel time is sublinear for (III), that is, a
RWer can reach the hub without visiting all nodes. For the
case where the degree of hub scales as kh $ N1=ð5%!Þ for
2< !< 3, we obtain that

Th $

8
>>><
>>>:

N2=ds ðIÞ;
N½2ð3%!Þþ2ð!%1Þ=ds(=ð5%!Þ ðIIÞ;
Nð4%!Þ=ð5%!Þ ðIIIÞ:

(9)

Next, we solve the long time behavior of the GFPT
distribution FmðtÞ using Eq. (4) and (6), which can be
determined by RmðzÞ for small " ¼ 1% z. To implement
this behavior, we use the approximationRmðz ¼ 1% "Þ ’
Rmð1Þ="þ Rtx

1 ðRmðtÞ % Rmð1ÞÞe%"tdt and determine the
leading behavior of RmðzÞ by comparing different time
scales "%1, tc, and tx. Here RmðzÞ, which depends on the
magnitude of ", is determined as follows:

Rmðz ¼ 1% "Þ % km
2N"

$

8
>>><
>>>:

maxð1; "dðhubÞs =2%1Þ for "c ) " ) 1;

maxð1; km"ds=2%1
c ; km"

ds=2%1Þ for "x ) " ) "c;

maxð1; km"ds=2%1
c ; km"

ds=2%1
x Þ for " ) "x;

(10)

where "c ¼ 1=tcðkmÞ and "x ¼ 1=tx.
Inserting this result forRmðz ¼ 1% "Þ into Eq. (4), one

finds the leading singularity of F mðz ¼ 1% "Þ for small
values of ". Next, applying the Tauberian theorem to
F mðzÞ for each case, we obtain FmðtÞ as listed in Table I.
We note that the prefactor of FmðtÞ in the early-time regime
t ) tcðkmÞ for cases (I) and (II) or t ) #ðIIIÞ for case (III) is
commonly km=ð2LÞ, suggesting that FmðtÞ is proportional
to km=N using N $ L for finite t. This results because a
RWer far from the target cannot reach it within a finite
number of time steps; FmðtÞ for finite t is contributed
mainly by a RWer who is located close to the target

FIG. 2 (color online). Plots of logNTm versus logNkm are
presented. (a) The artificial networks: for the (3,5)-flower model
with ds * 1:54< 2 [26,27] in region (I), Tm is independent of
km. However, for the (1,2)-flower model with ds * 3:17> 2
[26,27] which is smaller than dc * 5:44 and thus in region
(II), Tm decays in a power law manner with the exponent
$ ¼ ð1% 2=dsÞð!% 1Þ, estimated as * 0:23 (dashed line). For
the BA model, ds ¼ 1 [28] in region (III). Tm decays in a power
law manner with an exponent of unity. The similar plots are
drawn for several real-world networks in (b) and (c). For a S.
cerevisiae yeast protein interaction network in (b), we obtain
ds * 1:6< 2. Together with the World Wide Web (c) having
ds * 1:8< 2, the yeast network belongs to Region (I) and Tm is
independent of km. For a human protein interaction network, we
obtain ds * 2:5< dc * 3:5 in region (II), Tm decays following
a power law with $ * 0:43. Finally, for the AS network (b) and
a protein folding network (c), we obtain ds ¼ 1 and thus in
region (III). Tm decays following a power law with an exponent
of unity. All dashed lines are guide lines that were theoretically
predicted and are are close to the numerical data.

FIG. 1 (color online). Classification of networks by the degree
exponent ! and the spectral dimension ds. Three regions are
defined as (I) ds<2, (II) 2<ds<dc where dc¼2ð!%1Þ=
ð!%2Þ, and (III) ds > dc. The networks in different regions
show different scaling behaviors in the mean GFPT as well as
the GFPT distribution.
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Exploration and trapping Mean number of visited nodes

Mean number of visited sites

Start at site s

The number of distinct sites visited in the first n steps of the walk Ss(n)

How fast does Ss(n) grows with n?

Ss(n) =
∑n

n′=0 Ds(n′) with Ds(n) = 1 if the walker arrives at a virgin site
and 0 otherwise.

The mean number of distinct visited sites 〈Ss(n)〉 =
∑n

n′=0〈Ds(n′)〉
〈Ds(n)〉 = Prob.( Ds(n) = 1)

Theorem (Lemma of Dvoretzky and Erdös)

For homogeneous lattice walks, limn→∞〈Ds(n)〉 = 1− R with the return
probability R = Fss(1−) = 1− 1

Pss(1−) .

leading to

〈Ss(n)〉 ∼ (1− R)n for n→∞
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Exploration and trapping Mean number of visited nodes

Relation between 〈Ss(n)〉 and the first-passage probability

The probability to arrive at a virgin site at the nth step:
〈Ds(n)〉 =

∑
i 6=s Fis(n) for n ≥ 1 and Ds(0) = 1.

〈Ss(n)〉 =
∑n

n′=0〈Ds(n
′
)〉 = 1 +

∑
i 6=s

∑n
n′=1 Fis(n′)

Generating function of 〈Ds(n)〉 − δn,0:

Ds(z) =
∑

i 6=s Fis(z) =
∑

i 6=s
Pis(z)
Pii (z) = −1 +

∑
i
Pis(z)
Pii (z)

Generating function of 〈Ss(n)〉 :

Ss(z) = 1
1−z

∑
i
Pis(z)
Pii (z)

Ss(z) =
∑

n〈Ss(n)〉zn =
∑∞

n=0

∑n
n′=0〈Ds(n′)〉zn =

∑∞
n′=0〈D(n′)〉∑∞n=n′ z

n =
∑∞

n′=0〈D(n′)〉 zn
′

1−z = 1
1−z {1 +Ds(z)} =

1
1−z

∑
i
Pis(z)
Pii (z)
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Exploration and trapping Mean number of visited nodes

Mean number of visited sites in the infinite lattice

For homogeneous lattice walks, Pii (z) = Pss(z), leading to
Ds(z) = −1 + 1

(1−z)Pss(z) and Ss(z) = 1
(1−z)2Pss(z)

Singularity of Ss(z) as z → 1?

For homogeneous lattice walks in d dimension,

Pss(z) '





1
1−R (d > 2)

ln
(

1
1−z

)
(d = 2)

(1− z)
d
2
−1 (d < 2)

Ss(z) '





1−R
(1−z)2 (d > 2)

1
(1−z)2 ln( 1

1−z )
(d = 2)

(1− z)−
d
2
−1 (d < 2)

For n→∞, Ss(n) '





(1− R)n (d > 2)
n

ln n (d = 2)

n
d
2 (d < 2)
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Exploration and trapping Survival probability in random walks with traps

The Rosenstock Trapping model

To model the decrease of the uv-light-irradiated luminescence of the crystals
that are first damaged by bombardment with high-energy radiation,
Rosenstock proposed a model that a quantum (particle) of energy perform a
random walk over molecules until it is absorbed by q fraction of ’bad’
molecules that can absorb it or it is emitted as luminescence (1961).

The survival probability φ(n) : the probability the walker makes at least n
steps

φ(n) =
∑∞

s=1(1− q)sProb.(S(n) = s) = 〈(1− q)S(n)〉

which is the generating function of the probability distribution of the number
of distinct visited sites.
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Exploration and trapping Survival probability in random walks with traps

Rosenstock (RS) approximation

A lower bound of the survival probability: φ(n) ≥ (1− q)〈S(n)〉 (Jensen’s
inequality for convex functions)

Rosenstock (RS) approximation :

φRS(n) = (1− q)〈S(n)〉

RS is valid for small q and n : early-time behavior of φ(n) :
Cumulant expansion:

φ(n) = exp
[
ln(1− q)〈S(n)〉+ (ln(1−q))2

2 σ2
S(n) + O((ln(1− q))3)

]
'

(1− q)〈S(n)〉e
(ln(1−q))2

2
σ2
S(n)

d = 1: 〈S(n)〉 ∼ n1/2 → φRS(n) ∼ e−(const.)q n1/2

d = 2: 〈S(n)〉 ∼ n
ln n → φRS(n) ∼ e−(const.)q n

ln n

d = 3: 〈S(n)〉 ' (1− R)n → φRS(n) ∼ e−q(1−R)n
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Exploration and trapping Survival probability in random walks with traps

Mean lifetime

n†: the number of steps on which trapping occurs.

Prob.(n† = n) = φ(n − 1)− φ(n)

Mean lifetime
〈n†〉 =

∑∞
n=0 nProb.(n† = n) =

∑
n n{φ(n − 1)− φ(n)} =

∑∞
n=0 φ(n)

average over walk trajectories and trap realizations

A lower bound : 〈n†〉 ≥∑n(1− q)〈S(n)〉

Rosenstock approximation 〈n†〉 ' 〈n†〉RS =
∑

n(1− q)〈S(n)〉

d = 1: 〈n†〉RS ∼
∫
dn e−q n1/2 ∼ q−2

d = 2: 〈n†〉RS ∼
∫
dn e−q

n
ln n ∼ 1

q ln
(

1
q

)

d = 3: 〈n†〉RS ∼
∫
dn e−q(1−R)n ∼ 1

(1−R)q
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The Rosenstock Trapping model on 1d lattice

Exact mean lifetime in 1d

Probability that the closest traps are ` units away to the left and r units away
to the right of the starting site f (`, r) = q2(1− q)`−1(1− q)r−1

Mean lifetime 〈n†(`, r)〉 = `r for given ` and r
Average over ` and r : 〈n†〉 =

∑∞
`=1

∑∞
r=1 ` r f (`, r) = 1/q2.

Survival probability in 1d
φ(n) =

∑∞
`=1

∑∞
r=1 φ(n; `, r)f (`, r)

The conditional survival probability for large n
φ(n; `, r) ∼ P−`<x<r (n) =

∑
µ>0 e

−µn〈(−`, r)|µ〉〈µ|0〉 ∼ e−µ2n

with µ2 ∝ (`+ r)−2 the smallest positive eigenvalue of the Laplacian L̃
Then we see

φ(n) ∼∑`,r q
2 exp

{
−(const.) n

(`+r)2 − q(`+ r)
}
∼`+r=x

q2
∫
x dx e−(const.) n

x2−q x ∼x∗∼(n/q)1/3 q n1/2 exp(−(const.)q2/3n1/3)
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Exploration and trapping Survival probability in random walks with traps

The long-time behavior of the survival probability:
Donsker-Varadhan (DV) limit I

Theorem (Theorem of Donsker and Varadhan)

For random walks on d-dimensional lattices of N nodes,

limn→∞
1

nd/(d+2) ln〈e−KS(n)〉 = −K 2/(d+2)
(
d+2

2

) (
2a
d

) d
d+2 with the infimum of the

second smallest eigenvalue of the Laplacian matrix µ2 ' aN−2/d

Grassberger and Procaccia’s argument (1982) according to Barkema et al. in PRL
87, 170601 (2001)

Consider rare but large trap-free regions where walkers can survive for a long time.
With increasing time ever larger trap-free regions become dominant; the
probability of finding such regions decreases exponentially with their
d-dimensional volume, but the decay rate of particles moving within such a region
is inversely proportional to the square of its diameter. The optimal choice of this
diameter gives rise to the stretched exponential behavior
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Exploration and trapping Survival probability in random walks with traps

The long-time behavior of the survival probability:
Donsker-Varadhan (DV) limit II

φ(n) = 〈e−KS(n)〉 with e−K the probability that a site is trap-free.

Probability of finding trap-free region of volume V : P(V ) = e−K V

Probability to survive in the region of volume V until the n’th step :
φ(n;V ) =

∑
µ e
−µn〈V |µ〉〈µ|0〉 ∼ e−µ2n with µ2 ' a V−2/d under the

boundary condition φ(n;V ) = 0 on the boundary of V . a is a constant.

φ(n) =
∑

V P(V )φ(n;V ) ∼∑V exp
(
−KV − a n V−2/d

)

valid in the long-time limit
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Exploration and trapping Survival probability in random walks with traps

Crossover from the RS to the DV behaviors I

q small

RS for n small and DV for n large

d = 1: − lnφ(n) ∼
{

q n1/2 (n� n1)

q2/3 n1/3 (n� n1)
= Ψ1d(q2n) with

Ψ1d(x) ∼
{

x1/2 (x � 1)

x1/3 (x � 1)

d = 2: − lnφ(n) ∼
{

q n
ln n (n� n2)

q1/2 n1/2 (n� n2)
= ln nΨ2d(

√
q n/ ln n) with

Ψ2d(x) ∼
{

x2 (x � 1)
x1 (x � 1)
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Crossover from the RS to the DV behaviors II

VOLUME 87, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 22 OCTOBER 2001
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FIG. 3. Collapse of the two-dimensional data: 2 ln!P"c, t#$%
ln"t# is plotted as a function of

p
lt% ln"t# in a double-

logarithmic plot. The solid lines are fits to the data, with slopes
2 and 1. They cross at the point (1.13, 3.5).

attempted Monte Carlo steps per monomer have been dis-
carded (thermalization). Comparing data points with the
average of their left and right neighbors, which were gen-
erated in independent runs, we estimate the relative error
in 2 ln!P"c, t#$ to be 2%.

We now obtain a theoretically justified data collapse
based on the identification of a common scaling variable
for the DV and RS regimes. At short times and small
concentrations, we expect that the polymer configuration
closely resembles a random walk. In the case of two di-
mensions, this means that the number of different sites
visited scales as t% ln"t# [19]. Consequently, we deduce
that the RS behavior in two dimensions is properly de-
scribed by

2 ln!P"c, t#$ & lt% ln"t# . (6)

At long times and large concentrations we expect to ob-
serve the DV behavior:

2 ln!P"c, t#$ & "lt#1%2. (7)

To obtain the proper scaling variable, we equate the right
terms in Eqs. (6) and (7) and obtain

p
lt% ln"t# ! 1; we

can use this as a scaling variable and rewrite Eqs. (6) and
(7) as

2 ln!P"c, t#$
ln"t#

!
∑p

lt
ln"t#

∏2

;

2 ln!P"c, t#$
ln"t#

!

p
lt

ln"t#
.

(8)

Thus we expect that if 2 ln!P"c, t#$% ln"t# is plotted as
a function of

p
lt% ln"t#, the data for all values of trap

concentration c and time t collapse onto a single curve,
with an effective exponent that crosses over from 2 to 1.

In Fig. 3 we have performed this plot, using the same
data as in Fig. 2. Clearly, the data collapse is convincing
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FIG. 4. Location of the crossover probability P"c, t# as a func-
tion of trap concentration c, in two dimensions. The inset shows
the crossover time t as a function of c.

over the whole range of parameters used in our simulation.
A least-squares fit to the left and right data points gives
slopes of 1.98(3) and 1.01(2), consistent with the expected
slopes of 2 and 1 for the RS and DV regimes, respectively.
The numerical estimate of the point where these lines cross
is 2 ln!P"c, t#$% ln"t# ! 3.5 and

p
lt% ln"t# ! 1.13. The

survival probability where the DV regime starts is then
given by 2 ln!P"c, t#$ ! 3.1

p
lt, for a suitable choice of

c and t. The fact that the survival probability at the start
of the DV regime is not a constant explains the wide range
of reported values for this quantity. The apparent depen-
dence of the results on the simulation methods can be un-
derstood because certain simulation methods are especially
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FIG. 5. Collapse of the three-dimensional data: 2t21%3 3
ln!P"c, t#$ is plotted as a function of t2%3l in a double-
logarithmic plot. The solid lines are fits to the data, with slopes
1 and 2%5. They cross at the point (8.5, 6.3).
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Figure: (left) d = 1 (Hughes, 1995) (right) d = 2 (Barkema et al., 2001)
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Exploration and trapping Survival probability in random walks with traps

Trapping in complex networks I

KIttas, Carmi, Havlin, and Argyrakis, EPL 84, 40008 (2008).

Random walk with a number of traps on the largest connected components
of the SF networks generated by the Molloy-Reed algorithm for the degree
m ≤ k ≤ N − 1 with the degree exponent γ.

The survival probability φ(t) at a time t depends on the number of nodes N,
the fraction of traps q, and the mean connectivity 〈k〉 = 2L/N.

Mean-field equation dφ/dt = −(const.)φK/2L with K the total number of

links incident on the trap nodes, leading to φ(t) = φ(0)e−(const.) K
2L
t

Corresponding to the RS approximation: φ(t) ∼ e−q(1−R)t with q = K/(2L).

Simulation results are consistent with the theoretical prediction
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Exploration and trapping Survival probability in random walks with traps

Trapping in complex networks II

Trapping in complex networks

Fig. 1: Trapping in ER networks. (a) Particle density ρ(t) vs. t (measured in Monte Carlo steps). The network parameters are:
N = 10000 and ⟨k⟩= 10. Traps are placed with a concentration c on random nodes of the network. All results are averaged on
at least 5000 runs, each with a different configuration of the network. Solid lines represent fitting with eq. (6) (with the number
of traps n= cN). (b) ρ(t) for fixed trap concentration c= 0.001, average degree ⟨k⟩= 10, and different system sizes. (c) ρ(t) for
fixed trap concentration c= 0.001, system size N = 10000, and different average degrees.

(t≫N⟨k⟩), due to the exponential dependence on t, the
main contribution to the survival probability comes from
configurations in which kn is small, the probability of
which depends on n alone. On the other hand, the prob-
ability that the particle falls into the trap still depends
on the total number of links N⟨k⟩. Thus, the survival
probability depends on both n and N independently.
It can also be seen that particles survive longer as the
network becomes smaller (fig. 1(b)) and sparser (fig. 1(c)).
Even though scale-free networks are highly heteroge-

neous and thus the approximate approach is expected to
yield less accurate results, nevertheless it is still quite
useful. The degree distribution is P (k) =Ck−γ , k!m,
where C is a normalization factor. Thus, for a single trap,

ρ=
∑

k

Ck−γexp [−Atk/(N⟨k⟩)] (SF, one trap). (7)

Since this does not lead to a closed-form formula, we focus
on the case where the degree of the trap k is fixed. We
expect

ρ= exp [−Akt/(N⟨k⟩)] (SF, one trap, fixed k). (8)

Interestingly, simulations show a distinct behavior for
m< 3, and m! 3 (fig. 2). While in the case of m! 3
the simulations agree with the theory (eq. (8)), as is
evident by the collapse of all curves with the same kt ;
for m< 3 the decay of ρ(t) is slower than exponential.
Note that in contrast to ER networks, ρ(t) is larger for the
denser networks (smaller γ). Thus, whereas ER networks
become less robust as links are added, SF networks gain
robustness. This is a fundamental difference between ER
and SF networks revealed by our results.
When the degree of the trap is allowed to vary, we

consider the long-time regime. As in ER networks, the
main contribution comes from configurations in which the
degree of trap is minimal, i.e., k=m. Thus we expect

ρ(t)≈ exp [−Amt/(N⟨k⟩)]
(SF, one trap, random k ,m! 3, t≫N⟨k⟩) (9)

Fig. 2: Trapping in scale-free networks with a single trap on
a node with fixed degree k. (a) Particle density ρ(t) vs. kt, for
SF networks with N = 10000, γ = 2.5, m= 1, 2, and different
trap degrees. (b) Same as (a), but for m= 3 (γ = 2.5, 5). In
this case, all curves collapse, in agreement with eq. (8).

which agrees with simulations (see fig. 3(a)). For SF
networks with many traps, a simple generalization of
eq. (9) (replacing m by nm) is not applicable, and
we report only the numerical results (fig. 3(b)). Here,

40008-p3

Trapping in complex networks

Fig. 1: Trapping in ER networks. (a) Particle density ρ(t) vs. t (measured in Monte Carlo steps). The network parameters are:
N = 10000 and ⟨k⟩= 10. Traps are placed with a concentration c on random nodes of the network. All results are averaged on
at least 5000 runs, each with a different configuration of the network. Solid lines represent fitting with eq. (6) (with the number
of traps n= cN). (b) ρ(t) for fixed trap concentration c= 0.001, average degree ⟨k⟩= 10, and different system sizes. (c) ρ(t) for
fixed trap concentration c= 0.001, system size N = 10000, and different average degrees.

(t≫N⟨k⟩), due to the exponential dependence on t, the
main contribution to the survival probability comes from
configurations in which kn is small, the probability of
which depends on n alone. On the other hand, the prob-
ability that the particle falls into the trap still depends
on the total number of links N⟨k⟩. Thus, the survival
probability depends on both n and N independently.
It can also be seen that particles survive longer as the
network becomes smaller (fig. 1(b)) and sparser (fig. 1(c)).
Even though scale-free networks are highly heteroge-

neous and thus the approximate approach is expected to
yield less accurate results, nevertheless it is still quite
useful. The degree distribution is P (k) =Ck−γ , k!m,
where C is a normalization factor. Thus, for a single trap,

ρ=
∑

k

Ck−γexp [−Atk/(N⟨k⟩)] (SF, one trap). (7)

Since this does not lead to a closed-form formula, we focus
on the case where the degree of the trap k is fixed. We
expect

ρ= exp [−Akt/(N⟨k⟩)] (SF, one trap, fixed k). (8)

Interestingly, simulations show a distinct behavior for
m< 3, and m! 3 (fig. 2). While in the case of m! 3
the simulations agree with the theory (eq. (8)), as is
evident by the collapse of all curves with the same kt ;
for m< 3 the decay of ρ(t) is slower than exponential.
Note that in contrast to ER networks, ρ(t) is larger for the
denser networks (smaller γ). Thus, whereas ER networks
become less robust as links are added, SF networks gain
robustness. This is a fundamental difference between ER
and SF networks revealed by our results.
When the degree of the trap is allowed to vary, we

consider the long-time regime. As in ER networks, the
main contribution comes from configurations in which the
degree of trap is minimal, i.e., k=m. Thus we expect

ρ(t)≈ exp [−Amt/(N⟨k⟩)]
(SF, one trap, random k ,m! 3, t≫N⟨k⟩) (9)

Fig. 2: Trapping in scale-free networks with a single trap on
a node with fixed degree k. (a) Particle density ρ(t) vs. kt, for
SF networks with N = 10000, γ = 2.5, m= 1, 2, and different
trap degrees. (b) Same as (a), but for m= 3 (γ = 2.5, 5). In
this case, all curves collapse, in agreement with eq. (8).

which agrees with simulations (see fig. 3(a)). For SF
networks with many traps, a simple generalization of
eq. (9) (replacing m by nm) is not applicable, and
we report only the numerical results (fig. 3(b)). Here,
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Figure: (left) φ(t) for N = 104, γ = 2.5,m = 3 and 5 and a single trap on a node of
degree k. (b) same as (a) but with m = 1 and 2.
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Epidemic spreading Heterogeneous mean-field approach

Epidemic models

An individual is in one of three states X = susceptible (S), infectious (I ),
and recovered (R).

A population of N individuals is divided into different classes depending on
the stage of the disease:

S , I , R may denote the number of individuals in the corresponding states and
S + I + R = N.

1) spontaneous transition from a state to another such as I → R or I → S
2) Contagion of a susceptible individual in interaction with an infectious one
S + I → 2I

SI model: S and I only: S + I → 2I with the infection rate λ only

SIS model: S and I only: S + I → 2I with rate λ and I → S with rate µ

SIR model: S, I, and R: S + I → 2I with rate λ, I → R with rate µ
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Epidemic spreading Heterogeneous mean-field approach

Evolution of the number of susceptible, infectious, and recovered
individuals I

The state of an individual j at time t : xj(t)

We are interested in the ensemble-averaged fraction of each class of
individuals: X (t) = 〈∑N

j=1 δxj (t),X 〉 with X = S , I ,R.

The probability of an individual j to be in state X at time t :

P
(X )
j (t) = 〈δxj (t),X 〉

Transition rate of an individual j in a state X to Y at time t: W
(X→Y )
j (t)

SI model:

dI (t)
dt =

∑N
j=1 P

(S)
j (t)W

(S→I )
j (t), S(t) = N − I (t).

SIS model:

dI (t)
dt =

∑N
j=1

{
P

(S)
j (t)W

(S→I )
j (t)− P

(I )
j (t)W

(I→S)
j (t)

}
, S(t) = N − I (t)
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Epidemic spreading Heterogeneous mean-field approach

Evolution of the number of susceptible, infectious, and recovered
individuals II

SIR model:

dI (t)
dt =

∑N
j=1

{
P

(S)
j (t)W

(S→I )
j (t)− P

(I )
j (t)W

(I→R)
j (t)

}
,

dS(t)
dt = −∑N

j=1 P
(S)
j (t)W

(S→I )
j (t),

dR(t)
dt =

∑N
j=1 P

(I )
j (t)W

(I→R)
j (t)

Transition rates
W

(S→I )
j (t) = P

(S)
j (t)−1

∑
xj1 ,xj2 ,...,xjk

P
(xj=S ,xj1 ,xj2 ,...,xjk )

j (t)λ
∑k

`=1 δxj` ,I with

Aj j` = 1 for ` = 1, 2, . . . , k ,

W
(I→S)
j (t) = µ,

W
(I→R)
j (t) = µ
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Epidemic spreading Heterogeneous mean-field approach

Mean-field approach

Homogeneous network: all nodes have k neighbors

Assumptions:
1 Assume no fluctuations from node to node: all nodes are statistically

equivalent: P
(X )
j (t) = P(X )(t) = X (t)

N : i(t) = I (t)
N , s(t) = S(t)

N , r(t) = R(t)
N

2 Assume no dynamical correlations between the states of different nodes:

P
(xj=S,xj1 ,xj2 ,...,xjk )

j (t) = P
(S)
j (t)

∏k
`=1 P

(xj` )

j`
(t)

Then the transition rates are represented as

W
(S→I )
j (t) = λ

∑N
`=1 Aj`

(∑
X P

(X )
` δX ,I

)
= λ

∑N
`=1 Aj`P

(I )
` = λ kj

I (t)
N = λ kj i(t)
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the mean-field approach I

SI model:

di(t)
dt = s(t)λ k i(t) = λ k i(t){1− i(t)} → i(t) = i(0)et/τ

1+i(0)(et/τ−1)
with τ = 1/k

λ

SIS model:

di(t)
dt = s(t)λ k i(t)− µ i(t) = (λ k − µ) i(t)− λ k i(t)2 → i(t) = B

1+( B
i(0)
−1)e−t/τ

with τ−1 = λ k − µ and B = 1
τ λ k = 1− µ

λk

Epidemic threshold: τ > 0(τ < 0) if the infection rate λ k is larger (smaller)
than the recovery rate µ.

Long-time limit (t/|τ | → ∞): i(∞) =

{
B = 1− µ

λk (λ k > µ)
0 (λk < µ)

Early-time regime (t/τ → 0), i(t) ' i(0)
{

1 + t
(

1
τ − λ k i(0)

)}

Case of τ = 0: i(t) = i(0)
1+i(0)λ k t
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the mean-field approach II

SIR model:

di(t)
dt = λ k s(t) i(t)− µ i(t).

Epidemic threshold: As s(t) ' 1 initially, whether λk is larger or smaller than µ
determines the early-time spread of the considered disease.
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Epidemic spreading Heterogeneous mean-field approach

Heterogeneous mean-field approach

Nodes have varying numbers of neighbors k in scale-free networks.

Assumptions:
1 No structural or dynamical fluctuations in the set of nodes with the same

degree : all nodes with the same degree are statistically equivalent:

P
(X )
j (t) = P

(X )
kj=k(t) = Xk (t)

Nk
: ik(t) = Ik (t)

Nk
, sk(t) = Sk (t)

Nk
, rk(t) = Rk (t)

Nk
with Nk

the number of nodes of degree k
2 No dynamical correlations between the states of different nodes:

P
(xj=S,xj1 ,xj2 ,...,xjk )

j (t) = P
(S)
j (t)

∏k
`=1 P

(xj` )

j`
(t) = P

(S)
kj

(t)
∏k
`=1 P

(xj` )

kj`
(t)

Then the transition rates are represented as

W
(S→I )
j (t) = λ

∑N
`=1 Aj`

(∑
X P

(X )
` δX ,I

)
= λ

∑N
`=1 Aj`P

(I )
` = λkjΘkj (t) with

Θkj (t) = k−1
j

∑N
`=1 Aj`P

(I )
` (t) =

∑
k ′ P(k ′|kj)P(I )

k ′ =
∑

k ′ P(k ′|kj)ik ′(t) with

P(k ′|k) =

∑n
`=1 δk`,k

∑N
`′=1 A``′δk`′ ,k

′∑n
`=1 δk`,k

∑N
`′=1 A``′

No degree-degree correlations assumed → A``′ =
k`k`′

2L → P(k ′|k) = k ′Pd (k ′)
〈k〉

80 / 91



Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SI model in the heterogeneous mean-field
approach

SI model :

dik (t)
dt = sk(t)λ k Θk(t) = λ k {1− ik(t)}Θk(t) with

Θk(t) = Θ(t) =
∑

k ′
k ′Pd (k ′)
〈k〉 ik ′(t)

Early-time regime (i(t)� 1) : dik (t)
dt = λ kΘ(t) with

dΘ(t)
dt =

∑
k ′

k ′Pd (k ′)
〈k〉

dik′ (t)
dt =

∑
k ′

k ′Pd (k ′)
〈k〉 λk ′Θ(t) = λ 〈k

2〉
〈k〉 Θ(t)

The probability of a neighbor to be infected Θ(t) = i(0)et/τ with the

characteristic time scale τ = 〈k〉/〈k2〉
λ increases with time exponentially in the

initial stage
Growth time scale τ is related to the network heterogeneity such that τ goes to
zero (fast spread of infection) in strongly heterogeneous networks.

ik(t) = ik(0)
{

1 + k〈k〉
〈k2〉 (e

t/τ − 1)
}

i(t) =
∑

k ik(t) = i(0)
{

1 + 〈k〉2
〈k2〉 (e

t/τ − 1)
}

81 / 91



Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIS model in the heterogeneous mean-field
approach I

SIS model:

dik (t)
dt = sk(t)λ k Θ(t)− µ ik(t) = λ k (1− ik(t)) Θ(t)− µ ik(t) with

Θk(t) = Θ(t) =
∑

k ′
k ′Pd (k ′)
〈k〉 ik ′(t)

Early-time regime (i(t)� 1) : dik (t)
dt = λ kΘ(t)− µ ik(t)

dΘ(t)
dt =

∑
k ′

k ′Pd (k ′)
〈k〉

dik′ (t)
dt =

∑
k ′

k ′Pd (k ′)
〈k〉 {λk ′Θ(t)− µ ik ′(t)} ={

λ 〈k
2〉
〈k〉 − µ

}
Θ(t)

Epidemic threshold : Θ(t) = i(0)et/τ with τ = 〈k〉/〈k2〉
λ−λc

with λc = µ 〈k〉〈k2〉
For λ > λc(λ < λc), local infection may spread (decay) exponentially.
The epidemic threshold λc becomes zero for γ < 3.

Long-time limit (ik(t) = const.) : dik (t)
dt = λ k(1− ik)Θ− µ ik = 0 →

ik = λ k Θ
µ+λ k Θ →
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIS model in the heterogeneous mean-field
approach II

Self-consistent equation

Θ =
∑

k

kPd(k)

〈k〉
λ k Θ

µ+ λ k Θ
(2)

A non-zero solution for Θ exists when the right-hand-side, which increases with
Θ as a function of Θ from 0 to a constant smaller than 1, has its derivative
larger than 1 at Θ = 0.
Let y(Θ) be the right-hand-side of Eq. (2)

For Θkmax � 1, y(Θ) ' λ
µ
〈k2〉
〈k〉 Θ {1 + O(kmaxΘ)}, which shows that the

threshold distinguishing Θ > 0 and Θ = 0 is equal to λc = µ〈k〉/〈k2〉.
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIS model in the heterogeneous mean-field
approach III

The behavior of Θ as a function of λ close to λc can be obtained by analyzing
the behavior of y(Θ) for Θ� 1 and kmaxΘ� 1, which is

y(Θ) ∼





λ
λc

Θ− 〈k
3〉
〈k〉

(
λ
µ

)2

Θ2 + · · · (γ > 4)

λ
λc

Θ− (const.)
(
λ
µ

)γ−2

Θγ−2 (3 < γ < 4)

const.
(
λ
µ

)γ−2

Θγ−2 (2 < γ < 3)

leading to

i(t) ∼ Θ ∼





λ− λc (γ > 4)

(λ− λc)
1

γ−3 (3 < γ < 4)

λ
1

3−γ (2 < γ < 3)
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIR model in the heterogeneous
mean-field approach I

SIR model:

dik (t)
dt = sk(t)λ k Θ(t)− µ ik(t)

dsk (t)
dt = −λ k sk(t)Θ(t)

drk (t)
dt = µ ik(t) with Θk(t) = Θ(t) =

∑
k ′

k ′Pd (k ′)
〈k〉 ik ′(t)

sk(t) = e−λ k φ(t) with

φ(t) =
∫ t

0 dt ′Θ(t ′) =
∑

k
kPd (k)
〈k〉

∫ t
0 dt ′ ik(t ′) = µ−1

∑
k

kPd (k)
〈k〉 rk(t)

Initial condition: ik(0)→ 0, sk(0) ' 1, rk(0) = 0.

Early-time regime (i(t)� 1, r(t)� 1): same as in the SIS model

characterized by the same epidemic threshold λc = µ 〈k〉〈k2〉

Long-time limit: ik(∞)→ 0, sk(∞) + rk(∞) = 1,
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIR model in the heterogeneous
mean-field approach II

Self-consistent equation for t →∞

Θ =
∑

k

kPd(k)

〈k〉 {1− rk − sk}

= 1− µφ−
∑

k

kPd(k)

〈k〉 e−λ k φ = 0 (3)

r =
∑

k Pd(k)rk =
∑

k Pd(k)(1− e−λ k φ) represents the fraction of individuals
who have been infected, which is positive if φ > 0.

Rearranging Eq. (3) as φ = y(φ) with y(φ) = µ−1
∑

k
kPd (k)
〈k〉 (1− e−λ k φ), we

find that for φ kmax � 1, y(φ) ' λ
µ
〈k2〉
〈k〉 φ− 1

2
λ2

µ
〈k3〉
〈k〉 φ

2 + · · · giving the same

threshold λc = µ 〈k〉〈k2〉
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIR model in the heterogeneous
mean-field approach III

The behavior of φ as a function of λ close to λc is obtained by the behavior of
y(φ) for φ� 1 and kmax φ� 1, which is

y(φ) ∼





λ
λc
φ− 1

2
λ2

µ
〈k3〉
〈k〉 φ

2 + · · · (γ > 4)
λ
λc
φ− (const.)λ

γ−2

µ φγ−2 (3 < γ < 4)

const.λ
γ−2

µ φγ−2 (2 < γ < 3)

leading to

r ∼ φ ∼





λ− λc (γ > 4)

(λ− λc)
1

γ−3 (3 < γ < 4)

λ
1

3−γ (2 < γ < 3)
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Epidemic spreading Quenched mean-field approach

SIS model in the quenched mean-field approach I

SIS in a given network is considered

The adjacency matrix Aij is NOT replaced by any probabilistic quantity but
preserved in the time evolution equation

Assumption: No dynamical correlations between the states of different nodes

The transition probability

W
(S→I )
j (t) = λ

∑N
`=1 Aj` i`(t)

Evolution of the number of infectious individuals

dij (t)
dt = −µ ij(t) + λ{1− ij(t)}∑` Aj` i`(t)

Early-time regime (i(t)� 1):

dij (t)
dt = −µ ij(t) + λ

∑
` Aj` i`(t)
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Epidemic spreading Quenched mean-field approach

SIS model in the quenched mean-field approach II

With the eigenvalues {Λn|1 ≤ n ≤ N}’s and the eigenvectors
{|n〉|n = 1, 2, . . . ,N}’s of the adjacency matrix A, we find that

ij(t) =
∑N

n=1 e
(λΛn−µ)t〈j |n〉〈n|i(0)〉.

If the largest eigenvalue ΛN satisfies λΛN − µ > 0, the number of infectious
individuals may increase exponentially with time in the early-time regime.

Epidemic threshold λc = µ
ΛN

ΛN ∼ max{k3−γ
max , k

1/2
max} implying λc = 0 for all networks with kmax →∞

λc from the HMF is not zero but positive.
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Dynamical fluctuations in the SIS model I

Issue: λc = 0 or > 0 in case of γ > 3

H.K. Lee, P.-S. Shim, and J.D. Noh, PRE (2013)

The modes corresponding to the large eigenvalues of A represents the infection
of hubs and their neighbors.
For given λ, the eigenmodes satisfying λΛ− µ > 0 are activated around the
hubs of degree k > (µ/λ)2.
Each of those local hub infections will be terminated by all the local infected
nodes accidentally becoming susceptible, unless distinct hub infections reinfect
one another.
Characteristic healing time scale of V infected nodes: τV ∼ ea V

In ’unclustered’ networks where hubs are sufficiently far from each other, like
the (u, v) flower networks, i(t) ∼

∫∞
1/λ2 dk (λ k)Pd(k)e−t/τλk ∼ (ln t)2−γ → 0

in the long-time limit

Boguñá et al., PRL (2013) and a comment by Lee, Shim, Noh and the reply.
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Dynamical fluctuations in the SIS model II

Hub-hub reinfection, if any, can be described in the rate equation on a long

time scale:
dij (t)
dt = −µ̃j ij(t) + λ

∑N
`=1 p

dj` i`(t) with dj` the distance between j

and `, p the infection probability p = λ
λ+1 , and µ̃j = 1/τλkj = e−aλkj the

healing rate.
In random scale-free networks, two nodes j and ` whose degrees are k and k ′

are separated on the average by distance dkk′ =
ln 2L

kk′
lnκ with κ = 〈k2〉

〈k〉 the

branching ratio (from kκdkk′ k
′

2L ∼ 1)

For the nodes of given degree k , dik (t)
dt = −µ̃k ik(t) + λ̃k ik(t) with the effective

infection rate

λ̃k = λN
∑

k′ e
ln p ln 2L

kk′
lnκ Pd(k ′) ∼ λN∑k′

(
k k′

2L

)b
k ′−γ ≤ λ

(
kkmax

2L

)b ≤ λN− γ−3
γ−1 b

Therefore, the nodes of degree k satisfying λ̃k > µ̃k may remain infectious on a
long time scale, which are the nodes of degree k > lnN but occupy quite small
fraction.
It was claimed that small-degree nodes connecting those hubs are infectious as
well
Numerical results are not so confirming...
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