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Objective

@ Some analytic approaches to stochastic processes on complex networks
@ Some of the effects of the heterogeneous connectivity on dynamics

@ Limitations of the approximate analytic approaches
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Branching processes Galton-Watson process

Galton-Watson branching process

The problem of extinction of families (1874)

Let qo, g1, g2, . . . be the respective probabilities that a man has 0,1,2, ... sons and
each son have the same probability for sons of his own. What is the probability
that the male line is extinct after r generations, and what is the probability for
any given number of descendants in the maie line in any given generation?

@ To examine the hypothesis that distinguished families are more likely to die
out than ordinary ones, a first step would be to determine the probability
that an ordinary family will disappear

@ R.A. Fisher used this model to study the survival of the progeny of a mutant
gene (1922-1930)

@ The probability of extinction was given by J.F.F. Steffensen (1930) and the
asymptotic form of the probability that the family is still in existence was
determined by A. Kolmogorov (1938).

o After 1940, interest in the model increased because of the analogy between
the growth of families and nuclear chain reactions



Galton-Watson process
Definition

@ The number of individuals in a given generation n : s(n)
s(0) = 1,s(1),s(2),... : the number of individuals in the 0—th, first, second, ...
generations

o For given s(n), s(n+ 1) = ki + ko + - - - kg() with the number of children k's
following independently a branching probability qgx

@ Branching probability gx < 1 forall k=0,1,2,...and go+q1 <1
@ Branching ratio k = (k) =), kqx < o0
@ A Markov process with the transition probability

Py = P(s(n+1) = l|s(n) = j) =

Zz):o Zij:o T Zif:o iy Gl Qi Ok 4kt Ky £



IETIL Il E  Galton-Watson process

Number of individuals in a given generation

@ Probability to find ¢ individuals in generation n+ 1. P(s(n) ={)

o Time evolution P(s(n+1) =€) =3 . PyP(s(n) =)

e Generating function of P(s(n+ 1)): f,11)(z) = >, P(s(n+1) = £)z*
satsfies the recursive relation

fin+1)(z) = fin)(f(z)) = f(f(n)(z)) J

finin)(2) = 320 355 Py P(s(n) = j)z° = 32, 32, P(s(n) =
J) Zkho Zk?f Zkﬁo Ak Gk~ Gk 2 5k1+k2+"'+kjvfzﬁ = Zj P(s(n) =
D) (Zkaz) = fio) (F(2))

o Generating function of the branching probability f(z) =, qxz*

e f(0) =qo,f(1) =1, and f(z) is a convex function if go + g1 < 1

° fin)(2) = fin-1)(f(2)) = f(n—2)(F(F(2))) = - -- = f1)(fa-1(2)) = fa(2) where
fa(z) the n-th iterate of f(z)



Sl
Probability of extinction

@ The probability of extinction in a given generation n : P(s(n) = 0) = 7,(0)
e f,(0) increases with n :
P(s(n) = 0) = Prob.(s(1) =0Us(2) =01J---Us(n) =0)
e Extinction probability r = lim,_, P(s(n) = 0) = lim,_c ,(0)
o Self-consistent equation for r : f,(0) = f(f,—1(0)) —

r=f(r) J

@ Whether the branching ratio
k = f'(1) is larger or smaller than
1 distinguishes whether y = f(z)
meets y = z not only at z =1 but
also at z < 1.

1 1 5.2

09t —%+§Z+¥22
2 2 1

1 tgzt+32

y=z

1 @ The extinction probability
02t 1 r = 1 (K] — f/(l) S 1)
N ] <1 (k=f(1)>1)
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IETIL Il E  Galton-Watson process

Instability of the number of individuals

@ The sequence {s(n)} either goes to oo or goes to 0

Theorem

limp_00 P(s(n) = ¢) =0 for given { =1,2,...; s(n) — 0 with probability r and
s(n) — oo with probability 1 — r.

"1 if g =0
P / — g — E = ql /
(s(n+n") [s(n) ) { <1-¢qJ <1 otherwise
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Branching processes Galton-Watson process

Distribution of finite tree size |

@ The probability that the total number of individuals in a tree grown by a
branching process is equal to s in generation n : Pp(s)

e Time (n) evolution of P,(s):

5 6 0 7 0

Pn(s) = Ziozo qk Hf:l Pn_l(sj)551+52+5k75_1'
where k is the number of children of the root and s; is the size of the tree
rooted in the j-th child of the root.
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IETIL Il E  Galton-Watson process

Distribution of finite tree size |l

o Generating function F,(z) =Y oo Pn(s)z® satisfies the recursive relation

Fny1(2) = 2 f(Fa(2)) ]

with f(z) the generating function of the branching probability.
Foi1(z) =
e S R Gk ey S 302 Puls1)Pa(52) - Pa(Sk) 055y sy s—12° =
Yk akz (3, Pa(s)2°)" = 2 f(Fo(2))

e Stationary distribution P(s) = lim,_, P,(s) and its generating function
F(z) = lim,_o0 Fn(z) satisfies

F(z) = zf(F(z))

J

e F(1) =), P(s) is the probability to find a finite tree and the solution of the
self-consistent equation F(1) = f(F(1)), equal to the extinction probability r.
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IETIL Il E  Galton-Watson process

Asymptotic behavior of the stationary tree-size distribution |

@ The singular behavior of F(z) can inform of the large-s behavior of P(s).

12

* (n) T
[ Z
p Fo, 20)
—
R os
~—
=
06
3
-
A — 141 Sp2?
_f(F>*.1+§F+gF
02 1 5 12
— )=ty ir P
0

0 0.5 1 15 2 25

F

@ The plots of z = F/f(F) versus F represent the inverse of F(z).

o If the derivative g—f_- = % is zero at Fg, then F(z) is singular there:

Fo f'(Fo) = f(Fo) and zp = Fo/f(Fo)
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IETIL Il E  Galton-Watson process

Asymptotic behavior of the stationary tree-size distribution Il

@ Assuming that f(F) is analytic for 0 < F < Fy, we see that around (Fo, zp),

zZ~z9+ dF|F0(F FO)+%Z;2F (F—F0)2 cee = Zo—fFoi(,(__SQ)(F—Fo)z-f—

@ We are interested in the regime F < Fy :

2\ 1/2
Fa) = Fo— (F3E5) (20— 27 }

e Expand F(z) around z =0 as F(z) = > P(s)z° to obtain P(s) :
(1—x)M2 = =320 L 582k for x| < 1

26(Fo)2 \1/2 172 2s-2) [ 5\
Fz)=Fo+ (Fof(”(olzo)> ZO/ 220 5225_?(531)! (70)

@ Using Stirling's formula s! ~ s°v/2mse™°, we obtain

1/2 1/2
Pls) = (2R Y % b2y 0 e o (LY 2692 for 5351 J

Fof” (Fo) 27" (Fo)
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Branching processes Galton-Watson process

Subcritical, critical, and supercritical phase

09 1+ z+§
4+xz+
y=x

1,2

0
o o1

02 03 04 05 06 07

z

08 09

1

() i
p Fo. z)

—f(F):IJr [y

52

—f(F)={+3iF+iF?

15

F

The location of the singular point (Fo, zp) varies depending on the form of f.

Subcritical phas

e

the branching ratio Kk < 1:

zo>1land Fp > 1:

P(s)

decays exponentially P(s) ~ e~5/% with the characteristic scale sy = 1/ In zg

Critical phase :
P(s) ~ s73/2

k=1:

Supercritical phase :
P(s) ~ e~/% with the characteristic scale so = 1/ In z

K>1:

zg=1and Fp, =1:

zo>1and Fp <1:

P(s) is a power-law

P(s) decays exponentially
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IETIL Il E  Galton-Watson process

Discrete Tauberian theorem

Theorem (Discrete Tauberian theorem)

Yorganz" ~(1—2z)""L (i) asz— 1"
—

1
ap, ~ T+

rp(;) L(n) as n — oo

if p > 0, a, monotonic, and L(x) is slowly varying for x large such that
L(Ax)/L(x) — 1 as x — oo.

@ Proof in W. Feller, An introduction to probability theory and its applications
vol I (John Wiley & Sons, 1957)

o )  ntleTn ~ P J dyyP~le™

17 /91




IETIL Il E  Galton-Watson process

When the branching ratio is close to 1

@ zy and Fg will be close to 1.
o Let A=1— k. We consider the case of 0 < A < 1.
@ The branching probability generating function behaves around z =1 as

f(Z):1+I€(Z—1)+f”2(1)(2—1)2+... (1)

with & = /(1) if £'(1) = (k) is finite. (F()(1) = (k"))
@ To determine the generating function F(z) of the tree-size distribution P(s)

Z =5 liﬁ(lil__)+f”( TS ( ) > ( )°+ J
%lp =0: Fo~ 1+ 74y and 20 = 1+ 35
P(s) ~ s 3/2e75/% with s, =1/Inzg ~ A2 J
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Galton-Watson process
Lifetime distribution |

e Extinction probability at generation n: r(n) = f,(0) = P(s(n) = 0)

o Lifetime dsitribution £(n) : the probability that the tree is terminated at
generation n: ¢(n) = r(n) — r(n—1)

e Recursive relation r(n) = f(r(n — 1))

@ subcritical or critical phase : r = lim,_o r(n) =1

@ Using the expansion Eq. (1) of f(z) near z =1, we obtain

r(n) =14 r(r(n—1) = 1)+ ZB((t-1) = 1)2 + - J

e Let 7(n) =1 — r(n), which is small.

o If the branching ratio « is significantly smaller than 1, then
7(n) ~ kF(n — 1) leading to 7(n) ~ k" ~ e~"/" with n. ~ 1/|In k]|

19/91



Branching processes Galton-Watson process

Lifetime distribution 1l

@ If the branching ratio is close to 1 (A =1 — k < 1), then

Fn)=(1—A)F(n—1) - EMFn 12+ or

df ALy J
, . OA  e-Bn Ae ™A (n>>n.=ATY)
Iead|ng to r(n) ~ f/,i(l)ﬁ ~ { % (n << nc)
5 2 ,—nA — A1
o The lifetime distribution ¢(n) ~ — 97 ~ { % € (n>ne = A7)
o (n< ne)

o At the critical phase (A = 0), the lifetime distribution is a power-law
{(n) ~ n=2,

20/91



Sandpile avalanches on complex networks
BTW Sandpile model

@ Bak-Tang-Wiesenfeld model for sandpile avalanches

@ At each time step, a grain is added at a randomly chosen node i.

@ If the height h; at the node i reaches or exceeds a threshold H; = k; with k; the
degree of the node i/, then it becomes unstable and H; grains at the node
topple to its nearest neighbors nodes such that h; — h; — H; and h; — h; +1
for all neighbor nodes ;.

© If this toppling causes any of the adjacent nodes unstable, subsequent topplings
follow in parallel until there is no unstable node left. This process defines an
avalanche.

@ Repeat 1)-3)

@ Avalanche size s: the number of toppling events in an avalanche.
@ The duration of an avalanche n

@ A cluster of nodes participating in an avalanche can be seen as a tree
generated by a branching process

@ What is the branching probability g for the model on a network?
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Sandpile avalanches on complex networks
Critical branching process for the BTW sandpile model |

t=0

3 4 t=1

O OO0 =2
0 7 0

@ After receiving a grain from a neighbor node, grains at a node / topple to its
ki neighbor nodes in an avalanche = node i gives birth to k; children in the
corresponding tree

@ The branching probability g, = ¢M (k) ¢ (k) where g(!)(k) is the
probability that the node (/) receiving a grain has degree k and ¢(® (k) is the
probability that toppling indeed occurs.
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Sandpile avalanches on complex networks
Critical branching process for the BTW sandpile model Il

o qM(k) = M?"Tgk) where Py(k) is the degree distribution of the substrate

network Py(k) = N~1 Z,N:l dk; k and the degree k; of node i is given by
ki = Zj Ajj with Aj; the adjacency matrix.

° q(z)(k) = 1/k if we assume that the height is uniformly distributed between
0and k—1
® qx = P‘Z,E;() for k > 1 and qozl—qukzl—ZkZIP(dT(;()>0.

o Branching ratio x = (k) = 30, qx = Y37 k4 = 1 (critical branching

processes)
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IEHIITEISS  Sandpile avalanches on complex networks

Critical branching processes with diverging moments of g

@ In scale-free networks with the degree distribution Py(k) ~ k=7, the
generating function f(z) = >"72, gz is singular at z = 1:
o Let Py(k) = % for k > 1. Then the branching probability g, = % for

4 G))
k>land g =1 G=D)

@ The generating function of gx behaves around z =1 as

flz=e) = L gae ™ =1—a+ LT+ 4+ o J

using the Mellin transform (J.E. Robinson, Phys. Rev. 83, 678 (1951) )
flz=e) =10 <n? a <k"> -

1—a(k) + 202(k?) + -+ 300y Bt an =741 with o — 0,
K — o0 and Ka — oo.
fl2) =1 (1= 2)+ P2 (1= 2 + - AL - 2 |
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IEHIITEISS  Sandpile avalanches on complex networks

Avalanche size distribution

@ Avalanche size distribution P(s)

e Its generating function F(z) =) _ P(s)z® satisfies the relation
_ _F _ 1—(1—F) N
G G I K R o E
1-B1-F?  (y>3)
1-Al-F) ! (2<vy<3)

@ The singular behavior of the generating function F(z) at z =1 is then given

2
=(1 - >3
by1-Fz)~{ VEL—D 03
AT-1(1—2z)71 (2<y<3)
e Differentiating the singular terms of F(z) with respect to z, one finds the
coefficients to be the tree-size distribution, which is
—3/2 > 3
ps)~ 1 S5 (=3
s 1 (2<v<3)
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IEHIITEISS  Sandpile avalanches on complex networks

Lifetime distribution

o Lifetime distribution ¢(n) = r(n) — r(n —1) ~ %
o Critical phase : The extinction probability r = lim,_,o r(n) =1
@ The extinction probability up to generation n, r(n) satisfies
r(n) =1—(1=r(n—1))+ XA - r(n—1))>+---+ A()(L = r(n— 1))
o Let 7(n) =1— r(n).

26 /91



Random walks 14th KIAS-APCTP Winter School on Statistical Physics

Random walks

27 /91



Random walks Return and reaching

Random walk in discrete space and discrete time

Occupation probability Pj(n) : the probability of being at site i after n steps
starting at site j

Initial condition Pj(0) = ¢;;
Normalization ), P;j(n) =1
Transition probability (one-step occupation probability) M;; = Pj(1) = ATJU

with Ajj = 1 or 0 the adjacency matrix element and k;j = 3, Aj; the number
of the nearest neighbors (degree) of site j

We are interested in Pjs(n)

Time evolution of Pis(n)

Pis(n+1) = >_; MjiPjs(n) J

Generating function of Pj(n): Pjj(z) = >_2,z"Pji(n)
77,'5(2) = 0js + sz M,'J'PJ'S(Z)

28 /91



Random walks Return and reaching

Recurrence

Pélya (1919)

What is the probability that a given site will be ever visited or the starting site will
be ever revisited?

@ The probability that a site will be visited or the starting site will be revisited
at least once in the first n steps increases with n. Then what is the
probability in the limit n — oco?

o First passage time Tj;: The time when a walker arrives at / starting at j.
@ Reaching or return probability Rjj = Prob. (T < o0)
o Answer (Pdlya's theorem) Rjj = 1 for d = 1 or 2 but less than 1 for d =3

Theorem (Recurrence theorem)

If sites i and j are accessible from each other, i.e., Rjj > 0 and Rj; > 0, then either
Rii = Rjj = R,‘j = RJ',' =lorR;< 1,Rjj < l,R,'jRj,' < 1.
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conkrlesn:
First-passage probability

o First passage probability Fjj(n) = Prob. (T = n) : the probability of arriving
at site i for the first time on the nth step starting at site j.

o F,J(O) =0.

e Rjj = Prob. (Tj < 00) =372, Fjj(n), which can be equal to or smaller than
1.

°

Relation between the occupation probability

and the first-passage probability
P,-j(n) = 5ij5n0 + ZZ’:I F,-J-(n’)P,-,-(n — n’) J i i
e Generating function of Fjj(n): Fjj(z) = > 2, z"Fij(n)
[+ R,'j = ]'-,‘j(].*) = |imZH1— .7:,'1'(2)

e Pj(z) = djj + Fij(z)Pii(z), leading to

i(z _6[,.
‘Fij(z) = 7)]7;722) . J

/

@ Mean first-passage time (MFPT) (Tj;) = F (17).
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Random walks Return and reaching

Recurrent vs transient

@ Return probability Rij = > "7, Fii(n) =1 — ﬁ

n

31/91



Random walks Return and reaching

Return probability on the 1-dimensional infinite lattice

@ Transition probability M;; = *5/Ji1 move to the right or to the left with
probability 1/2.

@ Time-dependent return probability
Ps(n=2m)= (3" (3)" (3)" ~ms1 (mm)~Y2(m! ~ 20\/27m)
Pss(z) _ Zm (2’;n)4—m22m _ (1 _ Z2)—1/2
o First-passage probability
Fas(2)=1—p iz =1-(1~ z2)1/2
Fss(2m) = %j(mzf)si\z:o 2m1 1( ) (%)2 m>1 %ﬂmfyz

@ Return probability Rss = Fss(17) =1 — y = =1.

73’55(1
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Return and reaching
Pss(z) and Pss(z) in 1d

10'
10°

Pyy(2m)
Pz

P.o(2m)
oo
Pas(2)

o 10°

33
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Random walks Return and reaching

Reaching probability on the 1-dimensional infinite lattice

Start at s = 0.
Poo(n+1) =35 Mg Poo(n) = 311 3Ps—c0(n)
Transition matrix M;; = %(5;Ji1 is diagonalized by the plane wave

X = (-, e, et .. as M X, = m(k)X, with the eigenvalue
m(k) =2, 11 ek = cos k called the structure function of the walk.

Decomposition in terms of the eigenvectors = Discrete Fourier Transform:

Isk(n) = Zs eiSszo(n), Pso(n) = i fjﬂ_ dk e*"kslsk(n).
Pi(n+1)= m(k)lsk( ), Pr(0) =1 — Py(n) = m(k)" = (cos k)"

PSO(Z) - Zn 027 f dk e” /ks(cos k)n "= f dk 1— zcosk -

= “12 [1-(1-22)1/2 Is
2 =1 9272771 =(1-2)Y {f}

> —(1—22)1/2 Is
Foolz) = 2l = {0200
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Random walks Return and reaching

Return probability on the 2-dimensional infinite square lattice

e Transition probability M. ; = %(5F;,i + 0. 5. ) with the structure function

>4 Fr'+y
cos ky+cos ky
2

o P:(n) = m(k)" = (Eoskx;cosky)”

(eigenvalues) m(k) =

K
@ Generating function of the occupation probability P.5(z) =

—,

Zooo{fﬂ ks (7 &e—"(kxﬂrkyy)m(k)”}z” — [T d T Dk e boxthyy)
n=

—m 27 J—m 27w —T 27 J—7m 27 1izcoskx+cosky
2

@ Time-dependent return probability

17 1 2 1 _
Pri(z) = 5 |- dk T T @ B Moz i In[8(1 - 2)~"]
with the complete elliptic integral of the first kind

K(z) = fol dX(1,X2)1/2(11722X2)1/2
_ 2
Por(n = 2m) = (%) ~oms1 (rm) 7L

o First-passage probability Frz) =1 — ﬁ ~_ge1l— W
@ Return probability Rz = Frr(17) =1 — % =1.
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Random walks Return and reaching

Return probability on the 3-dimensional infinite body-centered
cubic lattice

Transition probability

=1 W o o o s
MF,I‘_; = 8(5ﬁr,+x+}£iz + 5]77r,+x7‘;iz + 5ar,+ 7x+2yiz + 5?!"
structure function (eigenvalues) m(k) = COSkXJrCOZk ytcos ks
Generating function of the occupation probability

pﬁo(z):fﬂ' %J‘ﬂ dky f7T dy e~ i(kocthyythz2)

—7 27w J—7 27 T 27 1— Zcoskx+cosky+coskz

—s g+ ) with the
3

Time-dependent return probability
4
Prz) = 3F2(3,3,3:1,1,;2%) =1 28 ~1.3932039.. .. with the

generalized hypergeometric function ,Fq (al a,...,ap; b1, b2 . by z) =

Z:)c L" F(31+n)F(ag+n).A.F(ap+n)r(b1)r(bg) (bq)
n=0 n! I'(al)I'(az)...r(ap)r(ler;)l'(ngrn)...r(bq+n)
Proln = 2m) = ({E335) "~ (nm) >/

Return probability

Prr(z) ~1-z<1 (S TL . %(1 - 2)1/2 — Rp=1-—

473

First-passage probability
f’*(Z) =1- 'P—~( ) ~l_zk1 RF’F’_ 'P-*-‘(%l )2 2\[( )1/2

1
~ (0.282230
Prra-)
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Return and reaching
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Random walks Return and reaching

Polya's theorem

Theorem (Pdlya’s theorem)

For the random walks on infinite d-dimensional lattice with finite mean-square

displacement and zero mean displacement per step, the walk is recurrent if d = 1
or d = 2 and transient if d > 3.

Structure function m(k) = Erae"(?_?)‘EM;’
Dij = 52/ = )i(r = ') Mrz

o o d9K T Kd—1 — 00 (d§2)
Pirlz=17) = 27de17 (k) ~ o dk“{<oo (d>2) }

p 1= 3300 kikiDy with
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Random walks Return and reaching

Effects of dimension: Spectral decomposition |

o d-dimensional lattice of lateral length L and the total number of sites L9

@ Laplacian matrix Zﬁ;‘r = 5F,r — Mpp = (5,;7 — 21d 7:1(5ﬁp+@j + (5;’};7_@].)
with the eigenvectors (k|r) = (k) = ik
and the eigenvalues (k|M|k) = pu(k) =1 — 3 Z __1 COS K;
Ex. d =1: Y522 L F(rF) = f(r) — w — 1 and
(k) =1 —cosk ~ 2k?

e Wave vector k under the periodic boundary condition: k= 2Zr(nl, N, ..., Ng)
with nj = —-L/2,-L/2+1,...,-1,0,1,...,L/2—2,L/2 — 1 for L even and
nj=—-(L-1)/2,-(L-3)/2,...,-1,0,1,...,(L—3)/2,(L—1)/2 for L odd.

@ Occupation probability Pz (n) = (M")z = > {1 — pu(k )}”Ld e ik(7=7)
@ Time-dependent return probability

Prr(n) = {5 Sp{1 — p(k)}" J
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Random walks Return and reaching

Effects of dimension: Spectral decomposition Il

o Generating function Prx(z) = Y 02, L—ld Yoll- u(k)}z" = Lid Yor m

@ Spectral density function p(u) = L—ld >k 5(u(k) — )
= ﬁ [d?ks(1 - %Zj!:lcoskj —p) =
d

A [ dae 0 (L [T ke85 k) T = 1 [ cosfq(1 — )] {o(3))

3
2/-_\
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o
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Random walks Return and reaching

Effects of dimension: Spectral decomposition Il

@ The convergence/divergence of PrH17) = L—ld Dok ﬁ = [y du p(,u,)i
depends on the small-y behavior of p(u)

-,

e For u— 0, u(k) ~ %/?2 and

. o k2 dd/2 %*1
1) = rya | d7k0(35 = 1) = oyare tar) J

@ Time-dependent return probability

e Singularity of the generating function :
2 1-z 2
Prdz) = Jo dpp(h) =z ~e1 Jo  dup(n) 15 + i dup(u)]; ~
(1-2z2)927t  (d<?2)
in () (d=2)
finite constant (d > 2).
P 7 2
o Prr(n) = muy [ d7k{L — p(k)}" = [5 dup(p)(1 - p)" =
n 1 n
(T4 (=1)") Jo dup(p)(1 = )"
o For large n, Ps(n=2m) ~ 2 fol dp p(p) e #" [Laplace transform of p(u)]
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Random walks Return and reaching

Effects of dimension: Spectral decomposition 1V

o The behavior of p(u) for u — 0 determines R(n) for n — oo such that

ge's) g1 n d
R(n) =~ [y~ du (27;;7/5 ‘ru(z//z)e Hl~n—2 J

o Tauberian theorem and the singularity of P(z) can be used to obtain the same

result.

42 /91



Random walks Random walks on finite heterogeneous networks

Random walk on a general network

Random walk on a network which is finite and has no translational invariance
How fast and far can a random walker go on a network?

Need to extend the concept of recurrence and transience

A network of N nodes and L links with the adjacency matrix A;; is considered.

Transition probability from a node j to i M;; = %
J

Occupation probability Pjs(n) evolves with time as Pjs(n+1) = > M;;Pjs(n).
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Random walks Random walks on finite heterogeneous networks

Stationary state on a network

@ Fundamental theorem of Markov chains - A finite, irreducible, and aperiodic
Markov chain has a unique stationary distribution P; = lim,_,o Pis(n)

@ irreducible ~ consisting of a single strongly-connected component

@ aperiodic ~ without a limiting cycle

o If M = Mj; for all i and j, it follows that } ; M = >, M;; = 1 leading to
P, =1/N.

e For Mj; # M;; for some i and j, P; = % (as Zj ATJ”PJ = %)

@ Detailed balance condition M;jP; = M;iP; (implying (M");;P; = (M");;P; for
alln>1)
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Random walks on finite heterogeneous networks
Return probability on a finite N = L9 lattice

o Time-dependent return probability R(n) = & >, Pss(n) =
L el u(R))" = &+ [ dup(u)( — 1) ~ &+ (const.)n—/2
@ Characteristic scale nxy = N2/ such that

[ n79? (n< nx)
R(”)—{u/v (n> )

@ Generating function
R(z) = 1 Y Pss(2) = ﬁ + (const.) 4 (const.)(1 — z)4/>~1 ...,
The limit z — 1~ for computing the return probability R = R(z =17) in the
infinite lattice (N — 00) corresponds to the scaling regime (1 — z)N?/¢ > 1 for
d<2and (1—-z)N>1ford>2.

@ Question: Return probability on complex networks?
The eigenvalues of the Laplacian matrix of complex networks are not known.
No translational invariance for complex networks — Pss(n) for a specific
node s can be different fromR(n).
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Random walks on finite heterogeneous networks
Spectral dimension of complex networks

ﬂ
ki
o If the spectral density function p(1) behaves as p(p) ~ p%/2=1 for small p,
the spectral dimension of this network is ds.
@ How to measure the spectral dimension of an ensemble of networks
@ Determine numerically the small eigenvalues of [ and compute p(p) ~ p/2-1,
@ Obtain the second-smallest eigenvalue py for different N to estimate ds by the
extreme-value relation [ dpp(u) ~ 1/N or pp ~ N7/
© Perform the simulation of random walks and obtain
R(n) = [ dup(p)e™" ~ n=%/2

o Laplacian matrix L; = §;; —

0
Data ds (f) 10 ' yeast protein i‘meraclion (frac‘!al) o
-1 e horsi (o ractl) -
(u,v) flower network 72“;(“”) Y riemet non-facl) 0
! nuv -2
. 10
Yeast ppi 1.30 £ 0.04 -~
Human ppi 20+04 o0 @ O 0y 8
Coauthorship 39+0.4 10
Internet 49+04 107 | -
east coauthor
10-6 y dhtllm(an Internet )
Table: Spectral dimension 100 10! 102 16} 16

t 46 /91



Random walks Random walks on finite heterogeneous networks

Time-dependent return probability of a specific node

10
. ®
e Pg(n) # R(n) for scale-free 107
networks having a power-law degree 0 (b) . f:‘lg::"
distribution Py(k) ~ k=7 : AP T T el
Simulations show that Pg(n) 107% 4 39 i \%\i‘m::v,}:\
decays slow with n if the degree of s 1o [ RN
) y & 107 = 8 | ! L
is large. L4 oA
=5 . gl | Sl L
S TN 1° 100 10

@ In the stationary state, the probability to cross a link is all the same;
MjjPjs = L5 — 1
iFjs = i 20 = 2L
Idea: Can we represent P (n) as the ratio of the effective degree ks(n) to the total
number of effective links L(t) like Pss(n — 00) = ks/(2L) in the stationary state?
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Random walks on finite heterogeneous networks
Effective degree |

@ For given finite n, a walker has crossed some links and not crossed others.
® Pis(n) = >_; M;jPjs(n — 1) = sum of jump probability from the neighbors ())
to /.

@ Link accessibility for a link (j — 1)

(n) — _ MiPjs(n—1)
VVU(n) T maxap MapPap(n—1) J

o Wji(n) is between 0 and 1.

e maxap MapPap(n — 1) = that from the first-visited neighbor of s to the starting
node = (Ms;Pre(n — 2))enn.(s)

e Time evolution of link accessibility :
Wie(n=2) = %SWJ’Z“() ~ k% increases to Wse(n — o0) = 1.
W;;(n) increases from 0 to 1 for (j — /) far from s.
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Random walks on finite heterogeneous networks
Effective degree Il

o Effective degree

LPu(n1)

ki(t) = 35, A Wi(n) = 32 A

éPZZ(n_2)>ZEn.nA(s)

increases from 0 or 1 to the full degree k;.

@ Total number of effective links

de
20(n) =X, ki(n) = 1 ~ ) n7 (n<nx)
(n) =2 kiln) (i%z("*@)zeﬂ.nxq R(n-2) 2L (n>> nx)
@ Occupation probability Pis(n) = %
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Random walks on finite heterogeneous networks
Effective degree IlI

@ Time evolution of the effective degree

o Simulations : ks(n) ~ n? for n < n and ks = ks for
n>> n.

o Local-stationary assumption: Link accessibilities
W;(n) are uniform for the links that have been
passed — Effective degree distribution of the visited
nodes Py(k) ~ k=7

kst

o In case of the starting node being the hub node, the
. MR i largest effective degree is that of the starting node
o e e e ks, which satisfies [ P(k) ~ 1/L leading to

ko(n) ~ L(n) .

@ Scaling behavior of the effective degree

S 2(y-1)
ks(n) ~ 2D (n<ne) - yieh ne ~ ks ®
ks (n> n.)
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Random walks on finite heterogeneous networks
Crossover behavior of the return probability

2(y—1) “ 5
e Considering the crossover scale n. ~ ks *  for kg(n) and nx ~ L4,

4h)
s
n- "2 n < ne (h )
d . . . -
Pss(n) ~ — g with the hub spectral dimension ds ' = ds1—=
ss( ) ksn 2 ne € n << nx p s S~y—1
ks
o n> nx
102F k=126 [ T
. 62 ol S
a gy T R 9N *
51000 ' ¢ 6 [
o 2 <
F \ S oel .
¥ ol & & ~
L [ (b) WFN p=1 - Y, L A k=680 a 26
X e 2700 & 10
]OZ 104 102 100 102 007 102 100 10 104+ = igg = ‘:
10° [ ] [ ]
I SR v o 56
~ T3 I
ol 3 04 107 10° 102 104
IS tt;
Yoroel
L () FN(@) m=2 )
o Figure: WWW: v ~ 2.2, d, ~ 1.8,

|
104 107 100 102
t/t;

d" ~ 0.33
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Random walks Random walks on finite heterogeneous networks

Divergence of the generating function Ps(z) around z =1 |

@ Return probability for a specific node Fos(17) =1 — %
@ The generating function fore =1 —z — 0,
Pss(z=1—¢€) = Pss(n)e " ~

(h)
. d o :
[ dnn~7 e + [ dn ksn=2 e "+ [*dn g—ie_f”

@ Divergence varies depending on ¢, the spectral dimension ds and the hub
spectral dimension d_gh) = ds%:
@ The first integral diverges if min(n., e~ 1) is infinitely large and d_c,(h) <2
@ The second integral diverges i) if min(nx, e~ 1) is infinitely large and ds < 2 or
ds
i) if ds > 2 and ksne 7 is infinitely large.
© The last integral diverges as ~= if € < ks/(2L)
QO d_éh) = ds% = 2‘% with a critical dimension d () = 2%.
Q@ d"=2e=d,.=d.>2
Q d\" < d..
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Random walks Random walks on finite heterogeneous networks

Divergence of the generating function Pg(z) around z

@ Characteristic scales €. = nc_1 ~ ks %

2 (v-1)

,EX:n)_(].NLTS

2

o a=(1— 2)(y— 1), which is smaller than 1 for d < d.

o ()ds <2:

7)55(2: 1_6) ~

)

ez 1 + const.

d.
o E7571 kl-a
2
p 2 1
2LSE S o

(e >e€c)
(ex € e K €ec)
(e < €x)

=11l

o (IN2<ds <d.:

Pss(z=1—¢€) ~

)

s
ez 1 -+ const.

d
kl=o 4 keez 1
-« k.
kks +12Lse
—«

2Lse + kS

(e > ec)
(ex € e K €ec)
(e € € K €x)
(6 < 6*)
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Random walks Random walks on finite heterogeneous networks

Divergence of the generating function Pg(z) around z = 1 Il

o () ds > de:
alh
(const.) 4 ¢z 1 (e >ec)
(const.) + k1~ °‘+ke2 1 (ex € e <€)
Pss(z=1—¢) ~ (const.) + k1= + 21_6 (e < € K €x))
(const.) + 2’256 + ki« (e K € K €4)
(const.) + ks1 o (6 € €x)
@ Another characteristic scale n, = e, " ~ Lk;® and n.. = €, ~ L/ks.
EX ™~ L_dls (ds < 2)
o (1-2);m1- =9 e~ k2/L (2<ds <d)

Exx ™ ks/L (ds > dc)
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Random walks Random walks on finite heterogeneous networks

Recurrent vs. transient on heterogeneous networks

In the limit N,L — oo and L/N finite

With no dominant divergence but ks/(2Le), we consider the walk transient.

Multiple divergence can be observed for the random walks on complex
networks.

(1) ds < 2: the random walk is recurrent for all s in two modes:

© Trapping : For e ~ ¢, = k;%(wfl), Pes(z=17) ~ k=% with
a=(1-2)(y—1) <0. This diverges for ks infinitely large, i.e., ks = O(L®)
with § > 0.

@ Returning : At e ~ n;l = Lfd%, Pes(z=17) ~ ksLifl. This one diverges.
(I1) 2 < ds < d¢: the random walk is recurrent for hub starting nodes by
trapping :

© Trapping: For e, < € S, Pss(z=17) ~ k1= with 0 < a < 1. This diverges

for hub nodes of degree ks = O(L%) with § > 0.

(II1) ds > dc: the random walk is transient for all s. a > 1, No divergence.
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Random walks on finite heterogeneous networks
All-to-one (Global) first-passage probability in networks

@ We consider the first-passage probability from all possible starting nodes to a
specific target node Frne(n) =) %Fms(n)
o weight ks/(2L) — first-passage of the random walkers in the stationary state

o Using Fins(z) = %)(;‘;ms, we find the generating function of F,e(n)
represented in terms of Ppm(z) as

kmz
Fme(z) = 20(1-z) Pm,ln(z) J

m k Pmi 4 .
Fme(z) = ST (1 - T) + Z/;ém 2L P (( )) -

km m(z) _ kpz 1
2L (1 pmm ) + Z’?ém 2L 77rnrn(z) 2L(1-2) Pmm(2)
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Random walks Random walks on finite heterogeneous networks

Global mean first-passage time in networks

© (o) = & Fm(Doma- |
d — km 7)"""(Z)_(]'_ZWDrnrn(z)
E]:""(z) = 20(1—2)Pom(2) +2Lkymz (2L(1—2) Prm(2)}
Pmm(z) = 2L(kl 7+ (weakly diverging part for z — 1) =
2Lﬂf—ﬂﬁ%m()—»kmamﬂPmm&)—(l—zﬂﬁmxdzzpmm&)—éﬂ%zj
Ponn(2) = 3188825 + Pln(2) With Pipn(2) = 5, (Prm(n) — 47)

(Tm) = 25Prm(17) + 1 J

klds ' (ds < 2;2=1— ex)
o Prm(z=17)=4 kL@ (2<ds<de;z=1-¢)
const. (ds > de;z=1— €44)

L (ds <2)
® GMFPT (Tm) ~ q Lk, (2<ds <d.)
Lkt (ds > do)
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Random walks Random walks on finite heterogeneous networks

Classification of networks according to the scaling of the GMFPT

@ Scaling of (T,,) depends both on the spectral dimension ds and the degree

exponent

e With small 7y (many hubs present), the GMFPT is reduced to L% < L at the

hub node of the largest degree k,, ~ Lﬁ in the networks of
2<ds <do =215

(o8]

b)1

L Protein Folding,'BA Model
~ AS2004

(11D
D) a2 flower
H.sapiens
gYéNerg/isiae (I) 3,5 flower
2 3 4" 0
Y

58 /91



SCIEVINIENGRIET Ml 14th KIAS-APCTP Winter School on Statistical Physics

Exploration and trapping
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Exploration and trapping Mean number of visited nodes

Mean number of visited sites

@ Start at site s
@ The number of distinct sites visited in the first n steps of the walk Ss(n)
@ How fast does S¢(n) grows with n?
o Ss(n) =>"1_o Ds(n') with Ds(n) = 1 if the walker arrives at a virgin site
and 0 otherwise.
@ The mean number of distinct visited sites (Ss(n)) = > 1 _o(Ds(n))
@ (Dg(n)) = Prob.( Ds(n) =1)
Theorem (Lemma of Dvoretzky and Erdos)
For homogeneous lattice walks, limp_,(Ds(n)) =1 — R with the return

probability R = Fes(17) = 1 — %

leading to
(Ss(n)) ~ (1 — R)n for n — oo J
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Mean number of visted nodes
Relation between (Ss(n)) and the first-passage probability

@ The probability to arrive at a virgin site at the nth step:
(Ds(n)) =32 s Fis(n) for n > 1 and Ds(0) = 1.

o (S(n) = 5 _o(Ds(n)) = 1+ 32,5 3 n_y Fis(n)

@ Generating function of (Ds(n)) — dn0:
Ds(z) = Zi;ﬁs ]::s( ) = Z:;«és 7;,78) = -1+ Z: ;)97((;
e Generating function of (Ss(n)) :

Ss(z) = 11

Pis(z)
z Zi Pii(2) J

(Ss(m)z" = 22020 Xm=o(Ds(n))2" =
Zif:og(n ))) Yo 2" = 2 y—o(D(n) i = {1 + Ds(2)} =
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Exploration and trapping Mean number of visited nodes

Mean number of visited sites in the infinite lattice

e For homogeneous Iattlce walks, Pji(z) = ( ), leading to
Ds(z) = -1+ 7(172)7)55(2) and Ss(z) = 71 P
e Singularity of Ss(z) as z — 17

@ For homogeneous lattice walks in d dimension,
T (d>2

L (d>2)
o Ss(z) ~ (1—2)2In(-L) (d=2)
(1-2)%1 (d<?2)
(1—R)n (d>2)
e For n — oo, Ss(n) {ln"n (d=2)
n® (d <2)
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Survival probability in random walks with traps
The Rosenstock Trapping model

@ To model the decrease of the uv-light-irradiated luminescence of the crystals
that are first damaged by bombardment with high-energy radiation,
Rosenstock proposed a model that a quantum (particle) of energy perform a
random walk over molecules until it is absorbed by g fraction of 'bad’
molecules that can absorb it or it is emitted as luminescence (1961).

@ The survival probability ¢(n) : the probability the walker makes at least n
steps

¢(n) = 32221(1 — g)°Prob.(S(n) = s) = (1~ ¢)°") J

which is the generating function of the probability distribution of the number
of distinct visited sites.
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Exploration and trapping Survival probability in random walks with traps

Rosenstock (RS) approximation

o A lower bound of the survival probability: ¢(n) > (1 — q)*(") (Jensen's
inequality for convex functions)

@ Rosenstock (RS) approximation :

drs(n) = (1 — q)>(") J

e RS is valid for small g and n : early-time behavior of ¢(n) :
Cumulant expansion:

6(n) = exp [In(1 = q)(S(m) + "0 02 4 O((In(1 - 9))?)] =

(In(1-q))? 2

(1-— q)<5(”)> T3 05
o d=1: (S(n)) ~ nt/2 — gps(n) ~ e~(const)an'”
o d=2:(5(n)) ~ = — ¢rs(n) ~ g~ (const.)a 7

o d =3 (S(n) = (1 - R)n — rs(n) ~ e 90=R

64 /91



Exploration and trapping Survival probability in random walks with traps

Mean lifetime

o n': the number of steps on which trapping occurs.
e Prob.(nf = n) = ¢(n—1) — ¢(n)

@ Mean lifetime

(nf) = 3=5Zg nProb.(n' = n) =37, n{e(n—1) = ¢(n)} = 32720 ¢(n)

average over walk trajectories and trap realizations

A lower bound : (nT) > 3" (1 — q){(")

Rosenstock approximation (nf) =~ (nt)gs = 3> (1 — q){(")
d=1: {n")gs ~ [dn e=an? L g2
d=2: (n")gs ~ [dn e 9inn ~ %In (%)
d =3: (nf)gs ~ [ dne90=RIn

1
(1-R)q
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Survival probability in random walks with traps
The Rosenstock Trapping model on 1d lattice

@ Exact mean lifetime in 1d

o Probability that the closest traps are ¢ units away to the left and r units away
to the right of the starting site f(/,r) = ¢*(1 — q)*"1(1 — q) 1

o Mean lifetime (nf(¢, r)) = ¢r for given £ and r

o Average over £ and r: (nf) =372, 5" (rf(l,r)=1/q°

@ Survival probability in 1d
¢(n) - Z?il Z?il (b(n; l, r)f(& r)
e The conditional survival probability for large n
d(n; €, r) ~ P_gex<r(n) = Z,u>0 e MM (=L, r)|p){p|0) ~ e=He"
with 11p oc (£ + r)~2 the smallest positive eigenvalue of the Laplacian [
e Then we see

¢(n) ~ 32, , q% exp {—(const.)ﬁ —q(l+ r)} ~rex
g% [ x dx e~ (const) 3 —ax ~ o mln/q/3 G N/ % exp(—(const.)g?/3n?/3)
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Exploration and trapping Survival probability in random walks with traps

The long-time behavior of the survival probability:
Donsker-Varadhan (DV) limit |

Theorem (Theorem of Donsker and Varadhan)

For random walks on d-dimensional lattices of N nodes,

lim oo W In(e=KS(n)) = _K2/(d+2) (%) (%j)d%? with the infimum of the
second smallest eigenvalue of the Laplacian matrix jio ~ a N—2/4

Grassberger and Procaccia’s argument (1982) according to Barkema et al. in PRL
87, 170601 (2001)

Consider rare but large trap-free regions where walkers can survive for a long time.
With increasing time ever larger trap-free regions become dominant; the
probability of finding such regions decreases exponentially with their
d-dimensional volume, but the decay rate of particles moving within such a region
is inversely proportional to the square of its diameter. The optimal choice of this
diameter gives rise to the stretched exponential behavior

67 /91



Survival probability in random walks with traps
The long-time behavior of the survival probability:
Donsker-Varadhan (DV) limit Il

o ¢(n) = (e *5(M) with e=X the probability that a site is trap-free.

o Probability of finding trap-free region of volume V : P(V) = e KV

@ Probability to survive in the region of volume V until the n'th step :
o(n; V) =32, e " (V[u){p|0) ~ e7#2" with pp ~ a V=2/4 under the
boundary condition ¢(n; V) = 0 on the boundary of V. ais a constant.

e ¢(n)=>, P(V)p(n; V) ~ > exp (—KV —an V’2/d)

o valid in the long-time limit
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Survival probability in random walks with traps
Crossover from the RS to the DV behaviors |

g small
@ RS for n small and DV for n large

1/2
. - ~y qn (n << nl)
d=1: —Ing¢(n) { 33 (n>m)
Vig(x) ~ {

= W14(g?n) with

X2 (x < 1)
X3 (x>1)

n (n < )

d=2: —In¢(n) { g2 n'2 (n> )

= InnWy4(\/qn/Inn) with

x? (x<1)
Waa(x) ~ { X (x> 1)
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FIG. 6.1. Asymptotic solution of Rosenstock’s trapping model for a one-
dimensional Pélya walk. We show here three approximations for the
survival probability ¢, with logyo ¢n/(1 — g) plotted as a function of
z = {mlog[(1 — ¢)~!]}*/3n}/3. The broken line is the large- form of
Rosenstock’s approximation (6.310), in the limit of small ¢ so that the
factor of (1 — g) in the denominator of Eq. (6.310) can be discarded.
The lower continuous curve corresponds to the asymptotic form (6.299)
established in Anlauf’s theorem, while the upper continuous curve cor-
responds to the 4-term expansion (6.308).

Exploration and trappi Survival probability in random walks with traps

Crossover from the RS to the DV behaviors Il

100 ¢ ———rr
- 10k 4
g E
=z [ ]
g L ]
£
' 1 |
04 Ll . M
0.2 0.5 1 2 5 10
"™ /In(t)
FIG. 3. Collapse of the two-dimensional data: — In[P(c, )]/

In(r) is plotted as a function of VAz/In(t) in a double-
logarithmic plot. The solid lines are fits to the data, with slopes
2 and 1. They cross at the point (1.13, 3.5).

Figure: (left) d =1 (Hughes, 1995) (right) d = 2 (Barkema et al., 2001)
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Exploration and trapping Survival probability in random walks with traps

Trapping in complex networks |

e Kilttas, Carmi, Havlin, and Argyrakis, EPL 84, 40008 (2008).

@ Random walk with a number of traps on the largest connected components
of the SF networks generated by the Molloy-Reed algorithm for the degree
m < k < N — 1 with the degree exponent .

@ The survival probability ¢(t) at a time t depends on the number of nodes N,
the fraction of traps g, and the mean connectivity (k) = 2L/N.

@ Mean-field equation d¢/dt = —(const.)pK /2L with K the total number of
links incident on the trap nodes, leading to ¢(t) = ng(O)e*(COHSt')%t
e Corresponding to the RS approximation: ¢(t) ~ e~ 91=R)t with g = K/(2L).

Simulation results are consistent with the theoretical prediction
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Exploration and trapping Survival probability in random walks with traps

Trapping in complex networks Il

B . . . 1] ]
] = y=25k=3| ] m=1, k=2
014 0 y=2.5k=6 | ] 0,14 m=1,k=4 | 4
8 y=2.5, k=9 m=2, k=2
0,011 e y=50k=3| | 0014 m=2 ked | ]
o y=5.0, k=6
4 1E-34 ® y=5.0,k=9| ] S1E-34 ]
a a
1E-4 ] TT1E-44 E
1E- 1E-5
54 1 4 AA 1
1E-64 1 1E-6 4 A . AMas E
0 500000 1000000 1500000 0 1000000 2000000 3000000
kt " kt

Figure: (left) ¢(t) for N = 10* v = 2.5,m = 3 and 5 and a single trap on a node of
degree k. (b) same as (a) but with m =1 and 2.
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Epidemic spreading Heterogeneous mean-field approach

Epidemic models

@ An individual is in one of three states X = susceptible (S), infectious (/),
and recovered (R).

@ A population of N individuals is divided into different classes depending on
the stage of the disease:

@ S, I, R may denote the number of individuals in the corresponding states and
S+I+R=N.

@ 1) spontaneous transition from a state to another such as | - Ror [ — S
2) Contagion of a susceptible individual in interaction with an infectious one
S+1—=2l

@ Sl model: S and | only: S+ 1 — 2/ with the infection rate A only
@ SIS model: S and | only: S+ 1 — 2/ with rate A and /| — S with rate p
@ SIR model: S, I, and R: § 4+ 1 — 2/ with rate A, | — R with rate p
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Epidemic spreading Heterogeneous mean-field approach

Evolution of the number of susceptible, infectious, and recovered
individuals |

@ The state of an individual j at time t : x;(t)
@ We are interested in the ensemble-averaged fraction of each class of

individuals: X(t) = (31, by()x) with X = S/, R.

@ The probability of an individual j to be in state X at time t :
X4y —
P7(t) = (0x(t) . x)
e Transition rate of an individual j in a state X to Y at time t: WJ-(X_W)(t)

@ S| model:

IO = 5N POy WET(1), S(2) = N - I(2).

@ SIS model:

20— s PP W () - PO WD)}, S() = N - I(1)




Epidemic spreading Heterogeneous mean-field approach

Evolution of the number of susceptible, infectious, and recovered
individuals ||

@ SIR model:
S
dld(tt) _ Zszl PJ(S)(t) ij( %l)( ) ( )VVJIeR ( )},
S 5 I
B — W PO WO (),

/ =R
950 _ 3 P W

J

@ Transition rates (=5 x; )
VVJ(S—)I)(t) _ Pfs)(t)_l Z . ‘ . P-XJ_ LRI R AR I3 (t))\ Zéf:l 5XJ£ / Wlth

le’)<127-'~7xjk J

Aj_ie =1 for€:1,2,...,k,
wi9)(e) = p,

I—R
W) =
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Mean-field approach

@ Homogeneous network: all nodes have k neighbors
@ Assumptions:
© Assume no fluctuations from node to node: all nodes are statistically
equivalent: PY)(t) = POO(t) = X0 j(r) = M 5(r) = 20 r(r) = B
@ Assume no dynamical correlations between the states of different nodes:
pPI=Em ) (1) = PO [T5, P (2)
@ Then the transition rates are represented as

WD) = A Aje (S PP ) = AL, A ()ZAkj'(,\f)ZMji(t)J
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Time evolution in the mean-field approach |

@ S| model:
MO — s(t)Aki(t) = Aki(t){1—i(t)} — i(t) = % with 7 = ¢ J
@ SIS model:
I = s k(L) — pi(t) = (Ak — ) i(t) = Mki(t)? — i(t) = m%%
with 7' =Xk —pand B= 1. =1- &

o Epidemic threshold: 7 > 0(7 < 0) if the infection rate A k is larger (smaller)
than the recovery rate pu.
B=1-4 (ANk>p)

Long-time limit (t/|7| = o0): i(c0) =

0 (A< p)
o Early-time regime (t/7 — 0), i(t) ~i(0) {1+t (£ — X ki(0))}
o Caseof 7 =0: i(t) = 1+,(())>\kt
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the mean-field approach Il

@ SIR model:

O — Nks(t)i(t) — wi(t). J

o Epidemic threshold: As s(t) ~ 1 initially, whether Ak is larger or smaller than
determines the early-time spread of the considered disease.
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Epidemic spreading Heterogeneous mean-field approach

Heterogeneous mean-field approach

@ Nodes have varying numbers of neighbors k in scale-free networks.
@ Assumptions:

@ No structural or dynamical fluctuations in the set of nodes with the same
degree : all nodes with the same degree are statistically equivalent:

PEO(t) = PEO, (1) = X0 (1) = K8 5 (¢) = 20 1 (¢) = B with N
the number of nodes of degree k

© No dynamical correlations between the states of different nodes
(X=S5,Xj; s Xj5 5+--5Xj, ) S) (xj,) S) (xj,)
Py IR () = PO Ty P (0) = P () Ty Py (1)
@ Then the transition rates are represented as

WD () = A, Je(zx ixa) = A APy = MOy () with

_ I . .
O (1) = ko AP (1) = S P(K k)P = 32,0 P(K [K; ik (£) with
St Qg ok o1 At O, i
P(K'|k) = ‘ o
(K'lk) St Ok Sopr—y Ager

4(K')
&0

o No degree-degree correlations assumed — Ay = k‘k‘” — P(K'|k) =

/\'U
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SI model in the heterogeneous mean-field
approach

@ S|l model :

Glt) — 5 (£)A kOk(t) = Ak {1- ik( )10 (t) with
Ok(t) = O(t) = X2 “FelDi (¢)

o Early-time regime (i(t) < 1) : t) = A kO(t) with

d 2
d@ 1.') Zk/ dek) Ik/(t Zk/ de k))\kl (t)— 7;@(1:)
o The probablllty of a nelghbor to be mfected O(t) = i(0)et/™ with the
2

characteristic time scale 7 = % increases with time exponentially in the
initial stage

o Growth time scale 7 is related to the network heterogeneity such that 7 goes to
zero (fast spread of infection) in strongly heterogeneous networks.

o ir(t) = ik(o){l+ I((lik;( t/r _ 1)}
o i(t) =, ik(t) = i(0) {1 + %(et/f _ 1)}
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIS model in the heterogeneous mean-field
approach |

@ SIS model:

B0 — s ()N kO(t) — pik(t) = XNk (1 — ik(t) O(t) — prik(t) with
Ox(t) = O(t) = Tp “fLi(t)

o Early-time regime (i(t) << 1): d'k 9 = NkO(t) — pix(t)
o0 _ 5, Kt _ s, R0 (3y0(6) — i (0) =

(e

; ; . _ /T _ R/ — Sk
o Epidemic threshold : ©(t) = i(0)e”/” with 7 = 5 with Ac = 17
e For A > Ac(A < A.), local infection may spread (decay) exponentially.
e The epidemic threshold A\, becomes zero for v < 3.
o Long-time limit (ix(t) = const.) : %(tt) =Ak(l—i)® —pix=0—

. AkO
k= ke
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Time evolution in the SIS model in the heterogeneous mean-field
approach Il

e Self-consistent equation

kPy(K) kO
@_zk: CRESYE (2)

e A non-zero solution for © exists when the right-hand-side, which increases with

© as a function of © from 0 to a constant smaller than 1, has its derivative

larger than 1 at © = 0.

Let y(©) be the right-hand-side of Eq. (2)

o For Okpax < 1, y(©) ~ %%@ {1 + O(kmax®©)}, which shows that the
threshold distinguishing © > 0 and © = 0 is equal to A\ = u(k)/(k?).
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Time evolution in the SIS model in the heterogeneous mean-field
approach llI

e The behavior of © as a function of A close to A. can be obtained by analyzing
the behavior of y(©) for © < 1 and kuax® > 1, which is

2
ol (2) et (y>4)
y(©) ~ 1§ £:© — (const.) (%)7 ©7%? (3<y<4) leadingto
const. <%)v 2@7_2 (2<v<3)
A= Ac (y>4)
i(H)~O~L (A=A)73 (B3<y<4)
AT (2<v<3)
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Time evolution in the SIR model in the heterogeneous
mean-field approach |

@ SIR model:

diZ(tt) = sk ()N kO(t) — pix(t)
) _ )\ ks (1)002)

drk( ) = pik(t) with ©k(t) = O(t) = Zk’
sk(t) = e <90 with

= Jo dt' () = X, Tl [Fat i(¢) = pt X, el (1)

Ik/(t)

e Initial condition: ix(0) — 0,s,(0) ~ 1, r,(0) = 0.
o Early-time regime (i(t) < 1,r(t) < 1): same as in the SIS model
(k)

characterized by the same epidemic threshold A\ = 17y

@ Long-time limit: ix(00) — 0, sx(00) + rk(o0) =1,
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIR model in the heterogeneous
mean-field approach I

o Self-consistent equation for t — oo

R

_1_u¢—zkp<‘;<(>k)e“¢_o (3)
k

o r=>, Py(k)re =, Pa(k)(L — e=*%?) represents the fraction of individuals
who have been infected, which is positive if ¢ > 0.

o Rearranging Eq. (3) as ¢ = y(¢) with y(¢) == *>", de(>k)(1 — e Mk9), we
find that for ¢ kmax < 1, y(¢) ~ %%¢ — %’\;%& - giving the same

threshold \, = u%
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Epidemic spreading Heterogeneous mean-field approach

Time evolution in the SIR model in the heterogeneous
mean-field approach IlI

e The behavior of ¢ as a function of A close to A, is obtained by the behavior of
y(¢) for ¢ < 1 and kyax ¢ > 1, which is

Agp 1N 2

):\c¢ 2u<k>q:7_—’2_ g (v>4) |
y(¢) ~ % ¢ — (const.) = —¢” (3< vy <4) leading to

const.¥¢7’2 2<vy<3)

A—Ac (y>4)

1

r~g~< (A=A)73 (B<vy<4)

AT (2<~<3)
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SO ENTTRELICECT-al  Quenched mean-field approach

SIS model in the quenched mean-field approach |

SIS in a given network is considered

The adjacency matrix A;; is NOT replaced by any probabilistic quantity but
preserved in the time evolution equation

@ Assumption: No dynamical correlations between the states of different nodes
@ The transition probability
W) = A2 Aje (D) J
@ Evolution of the number of infectious individuals
e = (1) ML (D) Aei(2) |
o Early-time regime (i(t) < 1):
T = () + A Aje (1) |
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SIS model in the quenched mean-field approach Il

o With the eigenvalues {A,|1 < n < N}'s and the eigenvectors
{In)|ln=1,2,..., N}'s of the adjacency matrix A, we find that
() = iy €Tl (0]i(0)).

o If the largest eigenvalue Ay satisfies AAy — p > 0, the number of infectious
individuals may increase exponentially with time in the early-time regime.

o Epidemic threshold \. = ﬁ

o Ay ~ max{k3>7 kél/fx} implying Ac = 0 for all networks with ky.x — 00

max’

e A from the HMF is not zero but positive.
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SO ENTTRELICECT-al  Quenched mean-field approach

Dynamical fluctuations in the SIS model |

@ Issue: Ac =0or >0 in case of v >3
e H.K. Lee, P.-S. Shim, and J.D. Noh, PRE (2013)

The modes corresponding to the large eigenvalues of A represents the infection
of hubs and their neighbors.

For given A, the eigenmodes satisfying AA — 1 > 0 are activated around the
hubs of degree k > (u/)\)2.

Each of those local hub infections will be terminated by all the local infected

nodes accidentally becoming susceptible, unless distinct hub infections reinfect
one another.

o Characteristic healing time scale of V infected nodes: 7y ~ e?V
o In 'unclustered’ networks where hubs are sufficiently far from each other, like

the (u, v) flower networks, i(t) ~ flo/o)\z dk (A k) Pg(k)e™t/™k ~ (Int)>=7 — 0
in the long-time limit

@ Bogufid et al., PRL (2013) and a comment by Lee, Shim, Noh and the reply.

90 /91



SO ENTTRELICECT-al  Quenched mean-field approach

Dynamical fluctuations in the SIS model Il

e Hub-hub rein_fection if any, can be described in the rate equation on a long
time scale: % —fijii(t) + )‘221:1 p%io(t) with dj, the distance between j
and /, p the infection probability p = 125, and fij = 1/7x, = e the
healing rate.

e In random scale-free networks, two nodes j and /¢ Whose degrees are k and k’

are separated on the average by distance di = || T with k = <<k>> the

branching ratio (from kr%« é‘—;_ ~1)
o For the nodes of given degree k, dig(tt) = —Jiric(t) + Axix(t) with the effective
infection rate
S = AT, e By (k) ~ AN, (%) K= <\ (Mg ) P < AN
o Therefore, the nodes of degree k satisfying A\x > jix may remain infectious on a
long time scale, which are the nodes of degree k > In N but occupy quite small
fraction.
o It was claimed that small-degree nodes connecting those hubs are infectious as

well
o Numerical results are not so confirming...
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