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2. Non-charged TB-AdS (Analogy)

Sch-AdS black hole non-charged TB-AdS
Small black hole/ Small TB-AdS/

Negative heat capacity Negative heat capacity
Large black hole/ Large TB-AdS/

Positive heat capacity Positive heat capacity
3. Dyonic TB-AdS (Differences)

dyonic RN black hole dyonic TB-AdS
Regularity condition on A Regularity condition on A

is NOT essential is essential
for thermodynamics for thermodynamics

electric potential Φ(1)
E = Φ

(2)
E electric potential Φ(1)

E �= Φ
(2)
E

Q and P charges Q and P charges
are independent are NOT independent

4. Zero temperature limit of TB-AdS
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� Taub-NUT-AdS spacetime : Asymptotically locally AdS spacetime

lim
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ds2TN-AdS �= ds2AdS, Rabcd ∼ − 1

l2

(
gacgbd − gadgbc
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Misner string for κ = 1

et̂ = F (r)[dt+ 4s sin2
(
θ

2

)
dφ], er̂ = F (r)−1dr,

eθ̂ = (r2 + s2)1/2dθ, eφ̂ = (r2 + s2)1/2 sin(θ)dφ

� string singularity : (∇t)2 is regular as θ → 0, it diverges as θ → π

−(∇t)2 =
1

F (r)2
− (2s)2

r2 + s2
tan2

(
θ

2

)

� On constant r hypersurface

et̂ = dtN + 4s sin2
(
θ

2

)
dφ, (0 ≤ θ < π)

et̂ = dtS − 4s cos2
(
θ

2

)
dφ, (0 < θ ≤ π)

� combine two patches → time coordinate becomes periodic

tN ≡ tN + 8πs



Euclidean Taub-NUT-AdS space

Euclidean Taub-NUT-AdS is written

ds2E = FE(r)
2

[
dτ + 4χ sin2

(
θ

2

)
dφ

]2
+

dr2

FE(r)2
+ (r2 − χ2)dΩ2

2,

FE(r)
2 =

l2(r2 − χ2)2 + (κ− 4l−2χ2)(r2 + χ2)− 2Mr

r2 − χ2

� Horizon is located at FE(r+) = 0

� NUT solution occurs when the fixed point set of ∂τ is zero
dimensional, e.g. r+ = χ (denoted as TN-AdS)

� Bolt solution occurs when the fixed point set of ∂τ is two
dimensional, e.g. r+ �= χ (denoted as TB-AdS)



Thermodynamics of
non-charged TB/TN-AdS space



non-charged TB/TN-AdS
The Euclidean action and metric

IE = − 1

16πG4

∫
d4x

√
g

(
R+

6

l2

)
− 1

8πG4

∫
d3x

√
hK (1)

Iren. = IE +
1

8πG4

∫
d3x

√
h

(
2

l
+

l

2
R3

)
, (2)

Rμν − 1

2
gμνR− 3

l2
gμν = 0 (3)

ds2E = fE(r)(dτ + 2χλ(θ)dφ)2 +
dr2

fE(r)
+ (r2 − χ2)(dθ2 + Y (θ)2dφ2), (4)

fE =
l−2(r2 − χ2)2 + (κ− 4l−2χ2)(r2 + χ2)− 2Mr

r2 − χ2
.

λ(θ) =

⎧⎪⎨
⎪⎩

cos θ

−θ

− cosh θ

, Y (θ) =

⎧⎪⎨
⎪⎩

sin θ for κ = 1

1 for κ = 0

sinh θ for κ = −1,



Thermodynamics of non-charged TN-AdS
� Taub-"NUT"-AdS solution when r+ = χ where fE(r+) = 0

� metric function

fn(r) =
l−2(r − χ)2(r + 3χ)χ+ κ(r − χ)χ

χ(r + χ)
, Mn = χκ− 4χ3

l2

� Hawking temperature

Tn =
1

4π
f ′
n(χ) =

κ

8πχ

� Entropy and Energy

S =

(
β

∂

∂β
− 1

)
Iren. =

2πωχ2

G

(
κ− 6χ2

l2

)
,

E = ∂βIren. =
χω

2G

(
κ− 4χ2

l2

)

� First law and free energy

dE = TdS, F = E − TS



Thermodynamics of non-charged TB-AdS (κ �= 1)
� Taub-Bolt-AdS solution when r+ �= χ where fE(r+) = 0

� mass parameter

Mb =
−6χ2r2b + r4b − 3χ4 + κ

(
r2b + χ2

)
l2

2l2rb
.

� Hawking temperature

T =
1

4π
f ′
E(χ) =

Mb

(
r2b + χ2

)
+ (9χ4rb − 2χ2r3b + r5b )l

−2 − 2κrbχ
2

2π (χ2 − r2b )
2 .

� Entropy and Energy

S(κ �=1) =

(
β

∂

∂β
− 1

)
Iren. =

πω

2G
(r2b − χ2)

E(κ �=1) = ∂βIren. =
ω

4G

(
κ+

r3b − 3rbχ
2

l2

)

� First law and free energy

dE = TdS, F = E − TS
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Thermodynamics of non-charged TB-AdS (κ = 1)
� Entropy and Energy

S(κ=1) =

(
β

∂

∂β
− 1

)
Iren. =

2πωχ

G

(
Mb +

r3b − 3rbχ
2

l2

)
,

E(κ=1) = ∂βIren. =
ω

2G
Mb
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� First law and free energy

dE = TdS, F = E − TS

� Heat capacity

C = T
∂S

∂T
= T

(
∂T

∂M

∂M

∂rb

∂rb
∂S

)−1

=
πω

G

rb(12χ
3 − l2rb)

(−12rbχ+ l2)



Thermodynamics of non-charged TB-AdS (κ = 1)
� First law and free energy
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Thermodynamics of
dyonic RN black hole



Dyonic RN black hole

Iren =

∫
M

√−g

(
1

κ2
R− 1

4
F 2

)
+

2

κ2

∫
∂M

√−h(K − K̂), (5)

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2, f(rh) = 0, (6)

f(r) = 1− 2M

r
+

q2 + p2

4r2
, F =

1

κ

(
q

r2
dt ∧ dr + pΩ2

)
. (7)
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√
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Dyonic RN black hole
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� Regularity Condition on ds2E : Time periodicity → Hawking Temperature

f(r)dτ2 +
dr2

f(r)

∣∣∣∣
r∼rh+ε

∼ ρ2dψ2 + dρ2 (8)

� Regularity Condition on A (F = dA) : A should be regular at the horizon

At(rh) = 0 → At(r) =
1

κ

(
q

r
− q

rh

)
, A2(rh) =

p2

κ2r2h
cot2(θ) (9)



Dyonic RN black hole
� Electric potential Φ(1)

E : conjugate variable of Q

IE, ren = βF, F = E − TS − Φ
(1)
E Q (10)

∂Iren
∂β

= E − Φ
(1)
E Q, Φ

(1)
E =

∂E

∂Q

∣∣∣∣
rb

=
1

κ

q

rh
(11)

� Electric potential Φ(2)
E

Φ
(2)
E = At(rh)−At(∞) =

1

κ

q

rh
(12)

� Φ
(1)
E and Φ

(2)
E are agreed : Φ(1)

E = Φ
(2)
E = ΦE

� First law
dE = TdS +ΦedQ+ΦmdP (13)

where
Qm =

∫
∗F, Qm =

∫
F (14)



Thermodynamics of
charged TB/TN-AdS space



Charged TB/TN-AdS spacetime

IE = − 1

16πG4

∫
d4x

√
g

(
R+

6

l2
− FμνFμν

)
− 1

8πG4

∫
d3x

√
hK (15)

Iren. = IE +
1

8πG4

∫
d3x

√
h

(
2

l
+

l

2
R3

)
, (16)

ds2E = fE(r)(dτ + 2χλ(θ)dφ)2 +
dr2

fE(r)
+ (r2 − χ2)(dθ2 + Y (θ)2dφ2), (17)

fE =
l−2(r2 − χ2)2 + (κ− 4l−2χ2)(r2 + χ2)− 2Mr + P 2 +Q2

r2 − χ2
, (18)

AE =
1

2χ
hE(r)

(
dτ + 2χλ(θ)dφ

)
, hE =

2iQχr − P (r2 + χ2)

r2 − χ2
(19)

� TB-AdS solution when r = rb �= χ, fE(rb) = 0

� TN-AdS solution when r = rn = χ, fE(rn) = 0



Electric and magnetic charge
� Electric charge

Qe[ξt] ≡ 1

ω

∫
∂Σκ

∗F = lim
r→∞

Q
(
r2 − s2

)− 2Prs

r2 + s2
= Q, (20)

� Magnetic charge

Qm[ξφ] ≡ 1

ω

∫
∂Σκ

F = lim
r→∞

P
(
r2 − s2

)
+ 2Qrs

r2 + s2
= P (21)



Regularity conditions on dyonic TB-AdS
� Regularity condition on ds2E at r = rb

T =
1

4π
f ′
E(rb) =

l2(κrb −Mb) + 2rb
(
r2b − 3χ2

)
2πl2 (r2b − χ2)

(22)

� Regularity condition on A at r = rb

AE =
1

2χ
hE(r)

(
dτ + 2χλ(θ)dφ

)
, hE =

2iQχr − P (r2 + χ2)

r2 − χ2
, (23)

AE,τ (rb) = 0 → hE(rb) = 0 → P =
2iQχrb
r2b + χ2

(24)



Electric and magnetic Potential of dyonic TB-AdS
� Electric Φ

(1)
E and magnetic Φ

(1)
M potential : conjugate variable of Q and P

IE, ren = βF, F = E − TS − Φ
(1)
E Q− Φ

(1)
M P (25)

∂Iren
∂β

= E − Φ
(1)
E Q− Φ

(1)
M P, (26)

Φ
(1)
E =

∂E

∂Q

∣∣∣∣
rb,P

, Φ
(1)
M =

∂E

∂P

∣∣∣∣
rb,Q

(27)

� Electric Φ
(2)
E and magnetic Φ

(2)
M potential

Φ
(2)
E = Aτ (rh)−Aτ (∞), Φ

(2)
M = Φ

(2)
M (rh)− Φ

(2)
M (∞) (28)

where
Φ

(2)
M (r) =

∫ r

dr′B(r′), B(r) =
1√
g
εtrθφFθφ (29)

� Φ
(1)
E �= Φ

(2)
E and Φ

(1)
M �= Φ

(2)
M

� Once imposing the regularity condition, Φ(1)
E = Φ

(2)
E



Thermodynamics of dyonic TB-AdS (κ �= 1)
� temperature and entropy

T =
1

4π
f ′
E(rb) =

l2(κrb −Mb) + 2rb
(
r2b − 3χ2

)
2πl2

(
r2b − χ2

) ,

S ≡
(
β

∂

∂β
− 1

)
IE =

πω
(
r2b − χ2

)
2G

,

� by using thermodynamic relations

Φ
(1)
E =

ω

4πG

Q
(
r2b + χ2

)
rb + 2iPr2bχ(

r2b − χ2
)2 , Φ

(1)
M =

ω

4πG

2iQr2bχ− P
(
r2b + χ2

)
rb(

r2b − χ2
)2

E(1) =
rbω

8πG

(
κ+

r2b − 3χ2

l2
+

(
Q2 − P 2

) (
r2b + χ2

)
+ 4iPQrbχ(

r2b − χ2
)2

)
,

� by using conventional method

Φ
(2)
E =

ω

4πG

Qrb + iPχ(
r2b − χ2

) , Φ
(2)
M =

ω

4πG

iQχ− Prb(
r2b − χ2

) .

E(2) =
ω

8πG

(
κrb +

r3b − 3rbχ
2

l2
+

(P 2rb − 2iPQχ)
(
r2b + χ2

)
+Q2rb

(
r2b − 3χ2

)
(
r2b − χ2

)2
)

.



Thermodynamics of dyonic TB-AdS (κ �= 1)
� imposing the regularity condition

E(1) = E(2) = E =
ω

8πG

(
κrb +

rb
(
r2b − 3χ2

)
l2

+
Q2rb

r2b + χ2

)
, (30)

Φ
(1)
E = Φ

(2)
E = ΦE =

ω

4πG

Qrb(
r2b + χ2

) , (31)

Φ
(1)
M = 0 �= Φ

(2)
M = − ω

4πG

iQχ(
r2b + χ2

) (32)

� thermodynamic relations are satisfied

dE = TdS +ΦEdQ, (33)

F = E − TS − ΦEQ (34)

upon using Φ
(1)
M = ΦM = 0.



Thermodynamics of dyonic TB-AdS (κ = 1)
� Thermodynamic quantities

T =
1

4π
f ′
E(rb) =

1

8πχ
, S =

πω

2G

[
r2b + χ2 − 24χ3rb

l2
+

8Q2χ3rb(
r2b + χ2

)2
]

� by using thermodynamic relations

Φ
(1)
E =

ω

4πG

rb
(
2iPχrb +Q(r2b + χ2)

)
(
χ2 − r2b

)2 , Φ
(1)
M = − ω

4πG

rb
(
P (r2b + χ2)− 2iQχrb

)
(
χ2 − r2b

)2 .

E(1) =
ω

8πG

[
Mb +

r2b + χ2

4χ
− 3χ2rb + r3b

l2
+

(
Q2 − P 2

) (−3χ4rb − 6χ2r3b + r5b
)

(
r2b − χ2

)3
+

16iPQχ3r2b(
χ2 − r2b

)3
]
,

� by using conventional method

Φ
(2)
E =

ω

4πG

(Qrb + iPχ)(
r2b − χ2

) , Φ
(2)
M =

ω

4πG

(−Prb + iQχ)(
r2b − χ2

)
E(2) =

ω

8πG

[
Mb +

r2b + χ2

4χ
− rb

(
r2b + 3χ2

)
l2

+
1

(r2b − χ2)3

(
P 2rb(r

4
b + 6r2bχ

2 + χ4)

+ 2iPQχ(−3r4b − 6r2bχ
2 + χ4) +Q2rb(r

4
b − 10r2bχ

2 + χ4)

)]
.



Thermodynamics of dyonic TB-AdS (κ = 1)
� imposing the regularity condition

E =
ω

8πG

[
Mb +

r2b + χ2

4χ
− rb

(
r2b + 3χ2

)
l2

+
Q2

(
3χ2rb + r3b

)
(
r2b + χ2

)2
]
, (35)

S =
ω

4G

[
r2b + χ2 − 24χ3rb

l2
+

8Q2χ3rb(
r2b + χ2

)2
]
, (36)

ΦE =
ω

4πG

Qrb(
r2b + χ2

) (37)

� thermodynamic relations are satisfied

dE = TdS +ΦEdQ (38)

F = E − TS − ΦEQ (39)

� Heat Capacity (P = −2iχg)

CP,Q ≡ −β
∂S

∂β
=

ωl2rbχ
2

2Ga1

[(
r2b − χ2

)2 (
l2rb − 12χ3

)
l2χ2

+
4χ

(
Q2 − P 2

) (
9r4b + 14r2bχ

2 + χ4
)
+ 16iPQrb

(
r4b + 8r2bχ

2 + 3χ4
)

(
r2b − χ2

)2
]
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Figure: The horizon radius of TB-AdS for κ = 1 vs χ for fixed values of Q and
g with G = l = 1.
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Figure: Entropy of TB-AdS for κ = 1 vs χ for fixed values of Q and g with
G = l = 1
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Figure: Heat capacity for TB-AdS for κ = 1 vs χ for fixed Q and g with
G = l = 1



Thermodynamics of charged TN-AdS (κ = 1)
� Taub-"NUT"-AdS solution when r+ = χ where fE(r+) = 0

fn(r) =
l−2(r − χ)2(r + 3χ)χ+ κ(r − χ)χ− (P 2 +Q2)

χ(r + χ)
, (40)

l−2(r+ − χ)2(r+ + 3χ)χ+ κ(r+ − χ)χ− P 2 −Q2 = 0 (41)

→ P 2 +Q2 = 0 (P = iQ) is required

� Hawking temperature

Tn =
1

4π
f ′
n(χ) =

κ

8πχ

� entropy, energy, and gauge field potential (P = 2ivχ → Q = 2vχ)

S =

(
β

∂

∂β
− 1

)
Iren. =

2πωχ2

G

(
1 + 2v2 − 6χ2

l2

)
,

E = ∂βIren. =
ωχ

2G

(
1 + 2v2 − 4χ2

l2

)
,

Φ =
iω

2G

1

2χ

(
hE(χ)− hE(∞)

)
=

ω

2G
v

� First law and free energy

dE = TndS +ΦdQ, F = E − TnS − ΦQ.



Thermodynamics of charged TN-AdS (κ �= 1)
For κ = 0 case,
� zero Hawking temperature
� energy and gauge potential

E =
ω

2G

(
Q2

4χ
− χ3

l2

)
, Φ =

Qω

4Gχ
(42)

� First law and free energy

dE = ΦdQ, F = E − ΦQ. (43)

For κ = −1 case, fn(r) becomes negative near r+ = χ and so we exclude
this case.



"Thermodynamics" of Extremal TB-AdS



Near Horizon Geometry of the extremal TB-AdS
The extremal limit

TH → 0.

At the zero temperature limit, the metric is factorized as follows

fE =
1

r2l2
(r + r0 + α)(r + r0 − α)(r − r0)

2

where

r0 =

√
χ2 +

1

6
l
(√

κ2l2 + 12 (Q2 + P 2)− κl
)
,

α =

√
4χ2 − 1

3
l
(√

κ2l2 + 12 (Q2 + P 2) + 2κl
)
.
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Near Horizon Geometry of the extremal TB-AdS
The extremal limit

TH → 0.

At the zero temperature limit, the metric is factorized as follows

fE =
1

r2l2
(r + r0 + α)(r + r0 − α)(r − r0)

2

where

r0 =

√
χ2 +

1

6
l
(√

κ2l2 + 12 (Q2 + P 2)− κl
)
,

α =

√
4χ2 − 1

3
l
(√

κ2l2 + 12 (Q2 + P 2) + 2κl
)
.

Taking the near horizon expansion,

τ → τ̃

ε
, r → r0 + ε

ds2ext ∼ r̃2

l2
(4r20 − α2)

r20 − χ2
dτ̃2 +

l2

r̃2
r20 − χ2

(4r20 − α2)
dr̃2 + (r20 − χ2)(dθ2 + Y (θ)2dφ2),

∼AdS2 × S2 (H2 or R2)
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"Thermodynamics" of Extremal TB-AdS
� κ �= 1 case : We can take the zero temperature limit.
� κ = 1 case : We imposed the following condition at finite temperature

TH =
1

2π
f ′(rb) =

1

8πχ
(44)

where

1. physical value of rb is only defined by finite ranges of χ
2. but zero temperature limit requires χ → ∞

[Conclusion1.] No zero temperature limit for κ = 1 case

3. Time periodicity is not defined on AdS2

4. Intrinsically we cannot give time periodicity
4. No Misner string at the horizon
5. Then we can give up Δτ = 4χ

[Conclusion2.] zero temperature limit for κ = 1 case without Δτ = 4χ



"Thermodynamics" of Extremal TB-AdS
The mass parameter and charges are related as

M =

(
2κl2 − 12χ2 + lΔ

)√
6χ2 − l2κ+ lΔ

3
√
6l2

,

Δ =
√

κ2l2 + 12(Q2 + P 2)

The free energy and energy are

Fext = −ωrb
2G

(
κχ2

r2b − χ2
+

r2b + 3χ2

l2

)
,

Eext =
ωr3b
2G

(
κ

r2b − χ2
+

2

l2

)

The first law and free energy are satisfied

Fext = Eext − ΦEQ|ext,
dEext = ΦEdQ|ext
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Inspired by the idea1 that
� ω ≡ 1

T
where ω is the conjugate variable to the charges Q+ J

� BPS black holes behaves similar to the AdS-Schwarzschild black holes

Here we identify ΦE as "temperature".

ΦE =
ω

2G

Qextrb
(r2b + χ2)

, Q2
ext =

(
r2b + χ2)2 ( κ

r2b − χ2
+

3

l2

)

� horizon radius rb vs inverse "temperature"
� entropy S vs inverse "temperature"
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Now let us define the heat capacity as follows

C ≡ T
∂S

∂T
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∂S

∂ΦE

then
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Summary
� For all κ, thermodynamics are tested for non-charged/charged

TB/TN-AdS space.
� The regularity condition which comes from At(r+) = 0 is

necessary to satisfy the first law and free energy.
� For the extremal case, the thermodynamic like behaviours are

observed by identifying the gauge potential to temperature.
� (Recently, there have been studied about thermodynamics of

Lorentzian Taub-NUT-spacetimes.)
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