An Essential Primer of Stochastic Processes

Su-Chan Park

가톨릭대학교

References

固
W. Feller,

An Introduction to Probability Theory and Its Applications Vol. I and II.
C. Gardiner,

Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009) 4th ed.

星
N. G. van Kampen,

Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007) 3rd ed.

Outline

(1) Brief introduction to Probability and Stochastic Processes

- Nature and Stochastic Processes: Brownian Motion
- Basic Concepts in Probability Theory
(2) Markov Processes
- Chapman-Kolmogorov equation
- Markov chain
- Master equation
(3) Stochastic Differential Equations
- Fokker-Planck Equation
- Langevin Equation

Brownian motion (R. Brown, 1827)

- pollen grains (꽃가루) in water : manifest of life?

- But, any fine particles exhibit such a motion.
- For a nice introduction to the history of Brownian motion, E. Nelson, Dynamical Theories of Brownian Motion (1967). http://www.math.princeton.edu/~nelson/books.html

Einstein's contribution (1905)

5. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen; von A. Einstein.
열의 분자운동이론이 필요한, 고요한 액체 속에 있는 작은 입자의 운동 에 대하여
A. Einstein, Annalen der Physik 17, 549 (1905)

Beginning of stochastic modelling of natural phenomena

Einstein's prediction and experimental confirmation

- Einstein's prediction

$$
\frac{\partial P(x, t)}{\partial t}=D \frac{\partial^{2} P(x, t)}{\partial x^{2}}, \quad\left\langle x(t)^{2}\right\rangle=2 D t, \quad D=\frac{k_{B} T}{6 \pi \eta a}
$$

a : radius of the suspended particle, η : viscosity,
T : temperature.

- Smoluchowski's independent work (1906).
- Jean Baptiste Perrin's experiment (Avogadro number)

The Nobel Prize in Physics 1926 Jean Baptiste Perrin

http://nobelprize.org/nobel_prizes/physics/laureates/1926

- Triumph of the atomic theory!

Langevin's contribution (1908)

Physique. - Sur la theorie du mouvement brownien. Note de M. P. Laxgevis, présentée par M. Mascart.

브라운 운동 이론에 대하여
P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).

English translation: D. S. Lemons and A. Gythiel, Am. J. Phys. 65, 1079 (1997).
"infinitely more simple"
Foundation of the stochastic differential equation

Langevin equation

- viscous friction and random force (fluctuation)

$$
m \frac{d^{2} x}{d t^{2}}=-6 \pi \eta a \frac{d x}{d t}+X
$$

- Multiply x on both sides of the equation

$$
\frac{m}{2} \frac{d^{2}}{d t^{2}} x^{2}-m v^{2}=-3 \pi \eta a \frac{d}{d t} x^{2}+x X
$$

- Average and equipartition theorem

$$
\begin{aligned}
& \frac{m}{2} \frac{d^{2}}{d t^{2}}\left\langle x^{2}\right\rangle+3 \pi \eta a \frac{d}{d t}\left\langle x^{2}\right\rangle=\underbrace{\left\langle m v^{2}\right\rangle}_{=k_{B} T}+\underbrace{\langle x X\rangle}_{=0} \\
& \frac{d}{d t}\left\langle x^{2}\right\rangle=\frac{k_{B} T}{3 \pi \eta a}+C \exp \left(-\frac{6 \pi \eta a}{m} t\right) \xrightarrow{t \rightarrow \infty} \frac{k_{B} T}{3 \pi \eta a} . \\
& \left\langle x^{2}\right\rangle=2 D t=\frac{k_{B} T}{3 \pi \eta a} t .
\end{aligned}
$$

Sample space and sample points

- sample space Ω : a set of all outcomes
- toss a coin

$$
\Omega=\{\mathrm{H}, \mathrm{~T}\}
$$

- cast a die

$$
\Omega=\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{6}\right\}, \text { or } \Omega=\{\text { Even, Odd }\}
$$

- Maxwell velocity distribution

$$
\Omega=\left\{\left(v_{1}, v_{2}, v_{3}\right) \mid-\infty<v_{i}<\infty\right\}
$$

- Wiener Process

$$
\Omega=\left\{W(t) \mid W \in C^{0}, W(0)=0,0<t<T\right\}
$$

- sample points (paths) ω : elements of Ω

Events

- an event : a subset of the sample space
- If $A_{1}, A_{2}, A_{3}, \cdots$ are events, then we expect

$$
\bigcup_{i=1}^{\infty} A_{i} \text { and } \bigcap_{i=1}^{\infty} A_{i} \text { are events. }
$$

- Ω : a sure event
- \emptyset : an event which never happens.
- Two events A and B are called mututally exclusive, if

$$
A \cap B=\emptyset .
$$

Probability (measure)

- A: an event
- $0 \leq \mathbb{P}(A) \leq 1, \mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A), \mathbb{P}(\emptyset)=0, \mathbb{P}(\Omega)=1$.
- $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$ if $A \cap B=\emptyset$.
- If A_{1}, A_{2}, \ldots are mutually exclusive,

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right) \text { (countable union). }
$$

- Why countable union?

Consider $\Omega=\{x \mid 0 \leq x \leq 1\}, \mathbb{P}(\{x \mid a \leq x \leq b\})=b-a$.
Let $A_{c}=\{c\} . \mathbb{P}\left(A_{c}\right)=0$, but $\mathbb{P}\left(\bigcup_{0 \leq c \leq 1} A_{c}\right)=1$.

In mathematics

- \mathcal{M} : a collection of subsets of Ω.
- \mathcal{M} is called a σ-algebra (over Ω) if
- $\emptyset \in \mathcal{M}, \Omega \in \mathcal{M}$.
- $A \in \mathcal{M}$ implies $A^{c} \in \mathcal{M}$
- If $A_{i} \in \mathcal{M}(i=1,2, \cdots), \bigcup_{i} A_{i} \in \mathcal{M}$ (countable union).
- \mathbb{P} is a (positive) measure if
- $\mathbb{P}: \mathcal{M} \mapsto[0, \infty]$,
- $\mathbb{P}(\emptyset)=0$, and
- for $A_{i} \in \mathcal{M}$ with $A_{i} \cap A_{j}=\emptyset(i=1,2, \cdots)$,

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

Conditional probability

- definition (Bayes' rule)

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \quad \mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)=\mathbb{P}(B \mid A) \mathbb{P}(A)
$$

- If $\cup_{i} B_{i}=\Omega$ and B_{i} 's are mutually exclusive,

$$
\bigcup_{i}\left(A \cap B_{i}\right)=A \cap\left(\bigcup_{i} B_{i}\right)=A \cap \Omega=A
$$

which entails

$$
\sum_{i} \mathbb{P}\left(A \cap B_{i}\right)=\mathbb{P}\left(\bigcup_{i}\left(A \cap B_{i}\right)\right)=\mathbb{P}(A)
$$

or equivalently

$$
\sum_{i} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)=\mathbb{P}(A)
$$

Independence I

- Two events A and B are independent if

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

or

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

- Events $A_{i}(i=1,2, \ldots, n)$ are independent if, for any subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, n\}$,

$$
\mathbb{P}\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right)=\mathbb{P}\left(A_{i_{1}}\right) \mathbb{P}\left(A_{i_{2}}\right) \cdots \mathbb{P}\left(A_{i_{k}}\right)
$$

Random variable and stochastic process

- a random variable (r.v.) is a function $X: \Omega \mapsto \mathbf{R}$.
- a function of an r.v. is also an r.v.
- X is not necessarily a one-to-one function.
- For example,
- cast a die $X\left(\omega_{n}\right)=n$.
- cast a die $X($ Even $)=1, X($ Odd $)=-1$.
- Maxwell velocity distribution $X(\omega)=v_{1}$
- Wiener Process $X(\omega)=W(t)$ at "time" t
- stochastic (=random) process random variables indexed by "time".
- random variable, random vector, random process, random function, ... : random elements.

Probability density function and probability distribution

- In a discrete sample space $\Omega=\left\{x_{1}, \cdots\right\}$ of an r.v. X,

$$
P_{n} \equiv P\left(x_{n}\right) \equiv \mathbb{P}\left(\left\{x_{n}\right\}\right), \quad \sum_{n} P_{n}=1 .
$$

- In a (one-dimensional) continuous sample space,

$$
\mathbb{P}(A) \equiv \int_{A} P(x) d x, \quad \int_{\Omega} P(x) d x=1
$$

- $P(x)$ is called a probability density function or a density.
- $P(x) d x$: probability for X to lie between x and $x+d x$.
- distribution function (cumulative distribution function)

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} P\left(x^{\prime}\right) d x^{\prime}, \quad \frac{d F(x)}{d x}=P(x)
$$

A distribution without a density : Cantor distribution

Average

- Definition

$$
\langle f(X)\rangle=\int_{\Omega} f(X(\omega)) P(\omega) d \omega
$$

- discrete space

$$
\langle f(X)\rangle=\sum_{n} f\left(x_{n}\right) P\left(x_{n}\right)
$$

- continuous space

$$
\langle f(X)\rangle=\int f(x) P(x) d x
$$

- m-th Moment

$$
\mu_{m} \equiv\left\langle X^{m}\right\rangle
$$

Characteristic function

- definition

$$
G(k) \equiv\left\langle e^{i k X}\right\rangle= \begin{cases}\int e^{i k x} P(x) d x & \text { continuous } \\ \sum_{n} e^{i k x_{n}} P\left(x_{n}\right) & \text { discrete }\end{cases}
$$

- $G(k)$ exists for all real k.
- $G(0)=1,|G(k)|<1(k \neq 0)$.
- inverse formula

$$
P(x)=\frac{1}{2 \pi} \int G(k) e^{-i k x} d k
$$

$G(k)$ characterizes $P(x)$.

Moment generating function

- If $G(k)$ is analytic at $k=0$,

$$
G(k)=1+\sum_{m=1}^{\infty} \frac{(i k)^{m}}{m!} \mu_{m}, \rightarrow \mu_{m}=\left.(-i)^{m} \frac{\partial^{m}}{\partial k^{m}} G(k)\right|_{k=0}
$$

(Moment) Generating Function

- If X only assumes integral values, it is convenient to introduce

$$
\mathcal{G}(z) \equiv \sum_{n=-\infty}^{\infty} z^{n} P_{n} . \quad P_{n}=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{\mathcal{G}(z)}{z^{n+1}} d z
$$

In this case, we define the factorial moments

$$
\phi_{m} \equiv\langle X(X-1) \cdots(X-m+1)\rangle, \quad \phi_{0}=1
$$

Sometimes $\left\langle X^{m}\right\rangle_{f}$ is used to denote ϕ_{m}.

$$
\left.\frac{d^{m}}{d z^{m}} \mathcal{G}(z)\right|_{z=1}=\phi_{m}
$$

Examples

- Gaussian (normal distribution)

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma^{2}}\right) \rightarrow G(k)=\exp \left(i k \mu_{1}-\frac{1}{2} \sigma^{2} k^{2}\right)
$$

- Lorentzian (Cauchy distribution)

$$
P(x)=\frac{1}{\pi} \frac{1}{x^{2}+1} \rightarrow G(k)=e^{-|k|}
$$

No moments exist. (even average does not exist.)

- Poisson distribution

$$
P_{n}=\frac{\lambda^{n}}{n!} e^{-\lambda}, \rightarrow \mathcal{G}(z)=e^{(z-1) \lambda}, \quad \phi_{m}=\lambda^{m} .
$$

A Caveat : moments and moments generating function

- If X and Y have the same GF, P_{X} and P_{Y} are the same (almost everywhere).
- Can we conclude that $P_{X}=P_{Y}$ if all moments are the same?
- log-normal distribution : $\ln X$ is normal-distributed.

$$
f(x)=\Theta(x) \frac{1}{x \sqrt{2 \pi}} \exp \left[-\frac{1}{2}(\ln x)^{2}\right] \Rightarrow \mu_{m}=\exp \left(m^{2} / 2\right)
$$

- Different density with same moments $(-1 \leq \epsilon \leq 1)$.

$$
f_{\epsilon}(x)=f(x)[1+\epsilon \sin (2 \pi \ln x)]
$$

Since, for any non-negative integer n (using $\ln x=y+n$),

$$
\int_{0}^{\infty} x^{n} f(x) \sin (2 \pi \ln x) d x=0
$$

$\mu_{n}=\exp \left(m^{2} / 2\right)$ for all ϵ.

- Note that $G(k)$ cannot be written as a converging series.

Cumulant generating function

$$
\ln G(k)=\sum_{m=1}^{\infty} \frac{(i k)^{m}}{m!} \kappa_{m}, \rightarrow \kappa_{m}=\left.(-i)^{m} \frac{\partial^{m}}{\partial k^{m}} \ln G(k)\right|_{k=0}
$$

- $\kappa_{1}=\mu_{1}:$ mean
- $\kappa_{2}=\mu_{2}-\mu_{1}^{2}=\left\langle(X-\langle X\rangle)^{2}\right\rangle$: variance
- $\kappa_{3}=\mu_{3}-3 \mu_{2} \mu_{1}+2 \mu_{1}^{3}=\left\langle(X-\langle X\rangle)^{3}\right\rangle$
cf. skewness $=\kappa_{3} / \kappa_{2}^{3 / 2}$
- $\kappa_{4}=\mu_{4}-4 \mu_{3} \mu_{1}-3 \mu_{2}^{2}+12 \mu_{2} \mu_{1}^{2}-6 \mu_{1}^{6} \neq\left\langle(X-\langle X\rangle)^{4}\right\rangle$
cf. kurtosis $=\kappa_{4} / \kappa_{2}^{2}$

Examples

- Gaussian

$$
\begin{aligned}
& \ln G(k)=i k \mu_{1}+\frac{(i k)^{2}}{2} \sigma^{2} \\
& \kappa_{1}=\mu_{1}, \quad \kappa_{2}=\sigma^{2}, \quad \kappa_{m}=0 \text { for } m>2 .
\end{aligned}
$$

- Does $P(x)$ exist whose $\ln G(k)$ is a polynomial of order $n>2$?

No! (Marcinkiewicz theorem)
See also, Rajagopal and Sudarshan, PRA 10, 1852 (1974).

- Poisson distribution

$$
\begin{aligned}
& G(k)=\mathcal{G}\left(e^{i k}\right)=\exp \left[\left(e^{i k}-1\right) \lambda\right] . \\
& \ln G(k)=\left(e^{i k}-1\right) \lambda=\sum_{m=1}^{\infty} \frac{(i k)^{m}}{m!} \lambda, \rightarrow \kappa_{m}=\lambda \text { for all } m .
\end{aligned}
$$

Multivariate random variable or random vector

- Let \boldsymbol{X} be a random vector with components X_{1}, \cdots, X_{r}.
- joint probability distribution

$$
P(\boldsymbol{X})=P\left(x_{1}, x_{2}, \cdots, x_{r}\right)
$$

- marginal distribution

$$
P\left(x_{1}, \cdots, x_{s}\right) \equiv \int P\left(x_{1}, \cdots, x_{s}, x_{s+1}, \cdots x_{r}\right) d x_{s+1} \cdots d x_{r}
$$

- conditional probability

$$
P\left(x_{1}, \cdots, x_{s} \mid x_{s+1}, \cdots, x_{r}\right)=\frac{P\left(x_{1}, \cdots, x_{r}\right)}{P\left(x_{s+1}, \cdots, x_{r}\right)}
$$

- Average

$$
\left\langle f\left(X_{1}, \cdots, X_{r}\right)\right\rangle=\int f\left(x_{1}, \cdots, x_{r}\right) P\left(x_{1}, \cdots, x_{r}\right) d x_{1} \cdots d x_{r}
$$

Independence II

- Two sets of r.v.'s $\left(X_{1}, \cdots, X_{s}\right)$ and $\left(X_{s+1}, \cdots, X_{r}\right)$ are statistically independent if

$$
P\left(x_{1}, \cdots, x_{r}\right)=P\left(x_{1}, \cdots, x_{s}\right) P\left(x_{s+1}, \cdots, x_{r}\right)
$$

Accordingly,

$$
P\left(x_{1}, \cdots, x_{s} \mid x_{s+1}, \cdots, x_{r}\right)=P\left(x_{1}, \cdots, x_{s}\right)
$$

- Random variables X_{1}, \cdots, X_{r} are called independent and identically distributed (i.i.d.) if
- $P\left(x_{1}, \cdots, x_{r}\right)=P\left(x_{1}\right) \cdots P\left(x_{r}\right)$,
- $P\left(X_{i}=x\right)=P\left(X_{j}=x\right)$ for all i, j.

Independence III

- Pairwise Independence : For any pair $i, j, P\left(x_{i}, x_{j}\right)=P\left(x_{i}\right) P\left(x_{j}\right)$.
- pairwise independence implies statistical independence?
- Example

Sample space $\Omega=\{(1,1,1),(1,0,0),(0,1,0),(0,0,1)\}$.
$\omega=\left(X_{1}, X_{2}, X_{3}\right), \quad P(\omega)=1 / 4$.

$$
P\left(X_{i}=1\right)=P\left(X_{i}=0\right)=\frac{1}{2}
$$

- It is easy to prove pairwise independence.

$$
P\left(X_{1}, X_{2}\right)=P\left(X_{1}\right) P\left(X_{2}\right)
$$

However,
$P\left(X_{1}=1, X_{2}=1, X_{3}=1\right) \neq P\left(X_{1}=1\right) P\left(X_{2}=1\right) P\left(X_{3}=1\right)$.

Independence IV

- If X_{1} and X_{2} are independent,

$$
\left\langle f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right\rangle=\left\langle f_{1}\left(X_{1}\right)\right\rangle\left\langle f_{2}\left(X_{2}\right)\right\rangle
$$

In particular, the characteristic function of $Y=X_{1}+X_{2}$ is

$$
G(k) \equiv\left\langle e^{i k Y}\right\rangle=\left\langle e^{i k\left(X_{1}+X_{2}\right)}\right\rangle=G_{X_{1}}(k) G_{X_{2}}(k)
$$

- Covariance

$$
\left\langle X_{1}, X_{2}\right\rangle \equiv\left\langle\left(X_{1}-\left\langle X_{1}\right\rangle\right)\left(X_{2}-\left\langle X_{2}\right\rangle\right)\right\rangle=\left\langle X_{1} X_{2}\right\rangle-\left\langle X_{1}\right\rangle\left\langle X_{2}\right\rangle .
$$

If X_{1} and X_{2} are independent, $\left\langle X_{1}, X_{2}\right\rangle=0$.

Law of large numbers

- Let X_{1}, \ldots, X_{n} be i.i.d. r.v.'s with probability (density) $P(x)$.
- If the average of $P(x)$ exists and it is μ_{1},

(strong) law of large numbers

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\mu_{1}
$$

- Example

Since $\mu_{1}=\mathbb{P}(A)$,

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\mathbb{P}(A)
$$

Central Limit Theorem

- Let X_{1}, \ldots, X_{n} be i.i.d. r.v.'s with probability (density) $P(x)$.
- Let $S_{n}=X_{1}+\cdots+X_{n}$.
- If the average $\left(\mu_{1}\right)$ and variance $\left(\sigma^{2}\right)$ of $P(x)$ exist,

Central Limit Theorem (CLT)

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{S_{n}-n \mu_{1}}{\sqrt{n} \sigma}<x\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} y^{2}\right) d y
$$

- the CLT implies the (weak) law of large numbers

$$
\begin{aligned}
& \mathbb{P}\left(\left|\frac{S_{n}}{n}-\mu_{1}\right|<\varepsilon\right)=\mathbb{P}\left(\left|\frac{S_{n}-n \mu_{1}}{\sqrt{n} \sigma}\right|<\frac{\sqrt{n} \varepsilon}{\sigma}\right) \\
& \quad \sim \frac{1}{\sqrt{2 \pi}} \int_{-\sqrt{n} \varepsilon / \sigma}^{\sqrt{n} \varepsilon / \sigma} e^{-y^{2} / 2} d y \xrightarrow{n \rightarrow \infty} 1 \text { for any } \varepsilon>0 .
\end{aligned}
$$

Proof of the CLT

- Taylor expansion of the cumulant generating function for X_{i}

$$
\ln G(k)=i k \mu_{1}-\frac{k^{2}}{2} \sigma^{2}+R(k)
$$

where $R(x) / x^{2} \rightarrow 0$ as $x \rightarrow 0$.

- generating function for $Y_{n}=\left(S_{n}-n \mu_{1}\right) /(\sqrt{n} \sigma)$

$$
\begin{aligned}
\left\langle e^{i k Y_{n}}\right\rangle & =\exp \left(-\frac{\sqrt{n} \mu_{1} k}{\sigma}\right) G\left(\frac{k}{\sqrt{n} \sigma}\right)^{n} \\
& \Rightarrow \ln \left\langle e^{i k Y_{n}}\right\rangle=-\frac{k^{2}}{2}+n R\left(\frac{k}{\sqrt{n} \sigma}\right) \rightarrow-\frac{k^{2}}{2}
\end{aligned}
$$

Stable distributions

- Gaussian (assignment 1)

Let X_{i} 's are i.i.d. Gaussian r.v. with mean 0 and variance 1, and let $Y=\left(X_{1}+\cdots+X_{n}\right) / \sqrt{n}$.

$$
P(Y=y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right)
$$

- Lorentzian (breakdown of the law of large numbers)

$$
P(x)=\frac{1}{\pi} \frac{1}{x^{2}+1} \rightarrow G(k)=e^{-|k|}
$$

Let $Y=\left(X_{1}+\cdots+X_{n}\right) / n$.

$$
G_{Y}(k) \equiv\left\langle e^{i k Y}\right\rangle=\left(G\left(\frac{k}{n}\right)\right)^{n}=G(k)
$$

- Levý distribution (assignment 2)

To do list

(1) Postulating a priori probability equal a priori probability
(2) Performing the suitable mathematical transformations
(3) Comparing the a posteriori distribution with observation

equal a priori probability : a caveat

- principle of insufficient reason (Laplace)
- Bertrand's circle with "random" chord. For a detail, see en.wikipedia.org/wiki/Bertrand_paradox_(probability)

$\frac{1}{3}$

1
$\overline{2}$

$\frac{1}{4}$

Stochastic Process redefined

- There is a time-dependent r.v. $\boldsymbol{X}(t)$.
- We can measure values x_{1}, x_{2}, \cdots at times t_{1}, t_{2}, \cdots.
- The set of all outcomes (\mathfrak{X}) is called the state space.
- "space" and "time" can be either continuous or discrete.
- Stochastic process is fully determined by $P\left(\boldsymbol{x}_{1}, t_{1} ; \cdots ; \boldsymbol{x}_{n}, t_{n}\right)$
- conditional probability

$$
\begin{aligned}
& P\left(\boldsymbol{x}_{1}, t_{1} ; \boldsymbol{x}_{2}, t_{2}, \cdots \mid \boldsymbol{y}_{1}, \tau_{1} ; \boldsymbol{y}_{2}, \tau_{2} ; \cdots\right) \\
&=\frac{P\left(\boldsymbol{x}_{1}, t_{1} ; \boldsymbol{x}_{2}, t_{2} ; \cdots ; \boldsymbol{y}_{1}, \tau_{1} ; \boldsymbol{y}_{2}, \tau_{2} ; \cdots\right)}{P\left(\boldsymbol{y}_{1}, \tau_{1} ; \boldsymbol{y}_{2}, \tau_{2} ; \cdots\right)}
\end{aligned}
$$

valid definitions independently of the ordering of the times.

- In the following, unless otherwise is mentioned, $t_{i} \geq \tau_{j}$ (for all i, j) is assumed.

Kinds of stochastic process

a) Complete Independence

$$
P\left(x_{1}, t_{1} ; x_{2}, t_{2} ; \cdots\right)=\prod_{i} P\left(x_{i}, t_{i}\right)
$$

b) Bernoulli Trials: complete independence and time-independent $P\left(x_{i}, t_{i}\right)=P\left(x_{i}\right)$
c) Martingales (fair games):

$$
\left\langle\boldsymbol{X}(t) \mid\left[x_{0}, t_{0}\right]\right\rangle \equiv \int d \boldsymbol{x} \boldsymbol{x} p\left(\boldsymbol{x}, t \mid x_{0}, t_{0}\right)=\boldsymbol{x}_{0}
$$

We have defined conditional average
d) Markov Processes: present determines future.

Markov Process 1

Markov assumption ($\tau_{1}>\tau_{2}$

$$
P\left(\boldsymbol{x}_{1}, t_{1} ; \cdots \mid \boldsymbol{y}_{1}, \tau_{1} ; \boldsymbol{y}_{2}, \tau_{2} ; \cdots\right)=P\left(\boldsymbol{x}_{1}, t_{1} ; \cdots \mid \boldsymbol{y}_{1}, \tau_{1}\right)
$$

- $P(\boldsymbol{x}, t \mid \boldsymbol{y}, \tau)$ is called the transition probability.
- $P(\boldsymbol{x}, t \mid \boldsymbol{y}, \tau)$ completely defines the process.

$$
\begin{aligned}
& p\left(\boldsymbol{x}_{1}, t_{1} ; \boldsymbol{x}_{2}, t_{2} ; \cdots ; \boldsymbol{x}_{n}, t_{n}\right) \\
& =p\left(\boldsymbol{x}_{1}, t_{1} \mid \boldsymbol{x}_{2}, t_{2} ; \cdots ; \boldsymbol{x}_{n}, t_{n}\right) p\left(\boldsymbol{x}_{2}, t_{2} ; \cdots ; \boldsymbol{x}_{n}, t_{n}\right) \\
& =p\left(\boldsymbol{x}_{1}, t_{1} \mid \boldsymbol{x}_{2}, t_{2}\right) p\left(\boldsymbol{x}_{2}, t_{2} \mid \boldsymbol{x}_{3}, t_{3}\right) \cdots p\left(\boldsymbol{x}_{n-1}, t_{n-1} \mid \boldsymbol{x}_{n}, t_{n}\right) p\left(\boldsymbol{x}_{n}, t_{n}\right)
\end{aligned}
$$

provided $t_{1}>t_{2}>\cdots>t_{n}$.

- Does the Markov assumption impose time direction?

Markov Process II

The present determines the past, too.

$$
P\left(\boldsymbol{y}_{1}, \tau_{1} \mid \boldsymbol{x}_{1}, t_{1} ; \boldsymbol{x}_{2}, t_{2}\right)=P\left(\boldsymbol{y}_{1}, \tau_{1} \mid \boldsymbol{x}_{2}, t_{2}\right) \text { if } t_{1}>t_{2}>\tau_{1}
$$

$$
\begin{aligned}
& P\left(y_{1}, \tau_{1} \mid x_{1}, t_{1} ; x_{2}, t_{2}\right)=\frac{P\left(y_{1}, \tau_{1} ; x_{1}, t_{1} ; x_{2}, t_{2}\right)}{P\left(x_{1}, t_{1} ; x_{2}, t_{2}\right)} \\
& \quad=\underbrace{\frac{P\left(x_{1}, t_{1} \mid x_{2}, t_{2}\right)}{P\left(x_{1}, t_{1} ; x_{2}, t_{2}\right)} P\left(x_{2}, t_{2} ; y_{1}, \tau_{1}\right)}_{=1 / P\left(x_{2}, t_{2}\right)} \\
& \quad=\frac{P\left(x_{2}, t_{2} ; y_{1}, \tau_{1}\right)}{P\left(x_{2}, t_{2}\right)}=P\left(y_{1}, \tau_{1} \mid x_{2}, t_{2}\right)
\end{aligned}
$$

Markov Process III

Using $P(A \mid B)=P(B \mid A) P(A) / P(B)$,

$$
\begin{aligned}
& p\left(\boldsymbol{x}_{1}, t_{1} ; \boldsymbol{x}_{2}, t_{2} ; \cdots ; \boldsymbol{x}_{n}, t_{n}\right)=\left[\prod_{i=1}^{n-1} p\left(\boldsymbol{x}_{i}, t_{i} \mid \boldsymbol{x}_{i+1}, t_{i+1}\right)\right] p\left(\boldsymbol{x}_{n}, t_{n}\right) \\
&=\left[\prod_{i=1}^{n-1} p\left(\boldsymbol{x}_{i+1}, t_{i+1} \mid \boldsymbol{x}_{i}, t_{i}\right) \frac{p\left(\boldsymbol{x}_{i}, t_{i}\right)}{p\left(\boldsymbol{x}_{i+1}, t_{i+1}\right)}\right] p\left(\boldsymbol{x}_{n}, t_{n}\right) \\
&=\left[\prod_{i=1}^{n-1} p\left(\boldsymbol{x}_{i+1}, t_{i+1} \mid \boldsymbol{x}_{i}, t_{i}\right)\right] p\left(\boldsymbol{x}_{1}, t_{1}\right)
\end{aligned}
$$

provided $t_{1}>t_{2}>\cdots>t_{n}$.
$p(\boldsymbol{y}, \tau \mid \boldsymbol{x}, t)$ also determines the stochastic process to the past.

Chapman-Kolmogorov equation

- Two identities (vaild to all stochastic processes)

$$
\begin{aligned}
& P\left(\boldsymbol{x}_{1}, t_{1}\right)=\int d \boldsymbol{x}_{2} P\left(\boldsymbol{x}_{1}, t_{1} \mid \boldsymbol{x}_{2}, t_{2}\right) P\left(\boldsymbol{x}_{2}, t_{2}\right) \\
& \begin{aligned}
& P\left(\boldsymbol{x}_{1}, t_{1} \mid \boldsymbol{x}_{3}, t_{3}\right)=\int d \boldsymbol{x}_{2} P\left(\boldsymbol{x}_{1}, t_{1} ; \boldsymbol{x}_{2}, t_{2} \mid \boldsymbol{x}_{3}, t_{3}\right) \\
&=\int d \boldsymbol{x}_{2} P\left(\boldsymbol{x}_{1}, t_{1} \mid \boldsymbol{x}_{2}, t_{2} ; \boldsymbol{x}_{3}, t_{3}\right) P\left(\boldsymbol{x}_{2}, t_{2} \mid \boldsymbol{x}_{3}, t_{3}\right)
\end{aligned}
\end{aligned}
$$

- If $t_{1} \geq t_{2} \geq t_{3}$ and the Markov assumption is introduced,

Chapman-Kolmogorov (CK) equation

$$
P\left(x_{1}, t_{1} \mid \boldsymbol{x}_{3}, t_{3}\right)=\int d x_{2} P\left(x_{1}, t_{1} \mid x_{2}, t_{2}\right) P\left(x_{2}, t_{2} \mid x_{3}, t_{3}\right)
$$

Chapman-Kolmogorov equation : consistency

From $\sum_{i} \mathbb{P}\left(A \cap B_{i}\right)=\mathbb{P}(A)$,

$$
\begin{aligned}
P\left(x_{1}, t_{1}\right) & =\int d x_{3} P\left(x_{1}, t_{1} ; \boldsymbol{x}_{3}, t_{3}\right)=\int d x_{3} P\left(x_{1}, t_{1} \mid x_{3}, t_{3}\right) P\left(x_{3}, t_{3}\right) \\
& =\int d x_{3} d x_{2} P\left(x_{1}, t_{1} \mid x_{2}, t_{2}\right) P\left(x_{2}, t_{2} \mid x_{3}, t_{3}\right) P\left(x_{3}, t_{3}\right) \\
& =\int d x_{2} P\left(x_{1}, t_{1} \mid x_{2}, t_{2}\right) P\left(x_{2}, t_{2}\right)=\int d x_{2} P\left(\boldsymbol{x}_{1}, t_{1} ; \boldsymbol{x}_{2}, t_{2}\right)
\end{aligned}
$$

Is the solution of the CK equation a Markov process?

$\Omega=\{(1,1,1),(1,0,0),(0,1,0),(0,0,1)\}$

$$
\begin{aligned}
& P\left(1_{3} \mid 1_{1}\right)=\frac{1}{2}=P\left(1_{3} \mid 0_{2}\right) P\left(0_{2} \mid 1_{1}\right)+P\left(1_{3} \mid 1_{2}\right) P\left(1_{2} \mid 1_{1}\right), \\
& P\left(0_{3} \mid 1_{1}\right)=\frac{1}{2}=P\left(0_{3} \mid 0_{2}\right) P\left(0_{2} \mid 1_{1}\right)+P\left(0_{3} \mid 1_{2}\right) P\left(1_{2} \mid 1_{1}\right), \\
& P\left(1_{3} \mid 0_{1}\right)=\frac{1}{2}=P\left(1_{3} \mid 0_{2}\right) P\left(0_{2} \mid 0_{1}\right)+P\left(1_{3} \mid 1_{2}\right) P\left(1_{2} \mid 0_{1}\right), \\
& P\left(0_{3} \mid 0_{1}\right)=\frac{1}{2}=P\left(0_{3} \mid 0_{2}\right) P\left(0_{2} \mid 0_{1}\right)+P\left(0_{3} \mid 1_{2}\right) P\left(1_{2} \mid 0_{1}\right),
\end{aligned}
$$

Hence, $P\left(x_{3} \mid x_{1}\right)=\sum_{x_{2}=0}^{1} P\left(x_{3} \mid x_{2}\right) P\left(x_{2} \mid x_{1}\right)$.
But,

$$
P\left(1_{3} \mid 1_{2} ; 1_{1}\right)=1 \neq P\left(1_{3} \mid 1_{2}\right)
$$

Continuity in stochastic processes

- Lindberg condition

For a Markov process, the sample paths are continuous function of t with probability one, if, for any $\varepsilon>0$,

$$
\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int_{|x-y|>\varepsilon} d x P(x, t+\Delta t \mid \boldsymbol{y}, t)=0
$$

- Examples (assignment 3)
- $P(x, t+\Delta t \mid y, t)=\frac{1}{\sqrt{4 \pi D \Delta t}} \exp \left(-\frac{(x-y)^{2}}{4 D \Delta t}\right):$ continuous
- $P(x, t+\Delta t \mid y, t)=\frac{\Delta t}{\pi\left[(x-y)^{2}+\Delta t^{2}\right]}$: discontinuous

Example of sample paths (Gardiner)

$X(t)$: Cauchy process, $W(t)$: Wiener Process.

Differential Chapman-Kolmogorov Equation

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{\partial P\left(\boldsymbol{x}, t \mid \boldsymbol{y}, t^{\prime}\right)}{\partial t}=-\sum_{i} \frac{\partial}{\partial x_{i}}\left[A_{i}(\boldsymbol{x}, t) P\left(\boldsymbol{x}, t \mid \boldsymbol{y}, t^{\prime}\right)\right] \\
+ \\
+\frac{1}{2} \sum_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left[B_{i j}(\boldsymbol{x}, t) P\left(\boldsymbol{x}, t \mid \boldsymbol{y}, t^{\prime}\right)\right]
\end{array}\right\} \begin{array}{l}
\text { continuous } \\
\text { (Fokker-Planck } \\
\text { equation) }
\end{array} \\
& \underbrace{\int d \boldsymbol{z}\left[W(\boldsymbol{x} \mid \boldsymbol{z}, t) P\left(\boldsymbol{z}, t \mid \boldsymbol{y}, t^{\prime}\right)-W(\boldsymbol{z} \mid \boldsymbol{x}, t) P\left(\boldsymbol{x}, t \mid \boldsymbol{y}, t^{\prime}\right)\right]}_{\text {discontinuous (master equation) }}, \\
& W(\boldsymbol{x} \mid \boldsymbol{z}, t) \equiv \lim _{\Delta t \rightarrow 0} P(x, t+\Delta t \mid \boldsymbol{z}, t) / \Delta t, \\
& A_{i}(z, t)=\lim _{\varepsilon \rightarrow 0} \lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int_{|\boldsymbol{x}-\boldsymbol{z}|<\varepsilon} d \boldsymbol{x}\left(x_{i}-z_{i}\right) p(\boldsymbol{x}, t+\Delta t \mid \boldsymbol{z}, t), \\
& B_{i j}(z, t)=\lim _{\varepsilon \rightarrow 0} \lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int_{|\boldsymbol{x}-z|<\varepsilon} d \boldsymbol{x}\left(x_{i}-z_{i}\right)\left(x_{j}-z_{j}\right) p(\boldsymbol{x}, t+\Delta t \mid \boldsymbol{z}, t) .
\end{aligned}
$$

discrete space-time

- Markov Process in discrete space-time

$$
P\left(\boldsymbol{n}_{1}, m+1\right)=\sum_{\boldsymbol{n}_{2}} P\left(\boldsymbol{n}_{1}, m+1 \mid \boldsymbol{n}_{2}, m\right) P\left(\boldsymbol{n}_{2}, m\right)
$$

- Matrix representation

Let $\Psi(m)=(P(\boldsymbol{n}, m))^{\dagger}, T(m)_{\boldsymbol{n}_{1} \boldsymbol{n}_{2}} \equiv P\left(\boldsymbol{n}_{1}, m+1 \mid \boldsymbol{n}_{2}, m\right)$,

$$
\Psi(m+1)=T(m) \Psi(m)
$$

If we assume $T(m)=T, \Psi(m)=T^{m} \Psi(0)$.

- homogeneous Markov process

$$
P\left(\boldsymbol{n}_{1}, m \mid \boldsymbol{n}_{2}, m^{\prime}\right)=\left(T^{m-m^{\prime}}\right)_{\boldsymbol{n}_{1} \boldsymbol{n}_{2}}=P\left(\boldsymbol{n}_{1}, m-m^{\prime} \mid \boldsymbol{n}_{2}, 0\right)
$$

- cf: stationary process $P(\boldsymbol{x}, t)=P_{s}(\boldsymbol{x})$

Markov Chains

- Markov chains
(1) discrete "space"
(2) discrete "time"
(3) (time) homogeneous Markov process
- "stochastic matrix"
- its elements are all non-negative.
- each column adds up to unity.
- $(\ldots, 1,1,1, \ldots)$ is the left eigenstate of T with eigenvalue 1 .
- Existence of stationary state for finite system (by Perron-Frobenius theorem)

$$
\lim _{m \rightarrow \infty} \Psi(m)=\lim _{m \rightarrow \infty} T^{m} \Psi(0)=\Psi_{s}
$$

where Ψ_{s} is the right eigenstate of T with eigenvalue 1 .

Some Definitions

- If $S \subset \mathfrak{X}$ and $T_{i j}=0$ for $j \in S$ and $i \in \mathfrak{X}-S$, the set of states S is called closed
- If closed states have a single state, then this state is called an absorbing state.
- If \mathfrak{X} contains two or more closed sets, the chain is called decomposbale or reducible.

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right)
$$

- A finite, irreducible chain has a unique stationary state.

Galton-Watson Branching Process

- discrete 'generation' (time) model
- probability of each individual's having k offspring is $p(k)$.
- X_{m} (r.v.) : number of individuals at m-th generation
- $\mathfrak{X}=\{0,1,2, \ldots\}$: state space, $S=\{0\}$: absorbing state.
- What is the extinction probability, if $X_{0}=1$?
- i.i.d. r.v. η_{j}^{m+1} : number of offspring of j-th individual at generation m

$$
\begin{gathered}
X_{m+1}=\sum_{j=1}^{X_{m}} \eta_{j}^{m+1} \\
T_{k i} \equiv P\left(X_{m+1}=k \mid X_{m}=i\right)=[p(k)]^{* i}=\sum_{k_{1}+\cdots k_{i}=k} p\left(k_{1}\right) \cdots p\left(k_{i}\right),
\end{gathered}
$$

i-fold convolution of $p(k)$ with itself.

Branching Process - generating function

- CK equation

$$
P_{k}(m) \equiv \mathbb{P}\left(X_{m}=k\right)=\sum_{i=0}^{\infty} T_{k i} P_{i}(m-1)
$$

- Generating function

$$
\mathcal{G}_{m}(z) \equiv\left\langle z^{X_{m}}\right\rangle=\sum_{k=0}^{\infty} z^{k} P_{k}(m)
$$

- Evolution equation for \mathcal{G}_{m}

$$
\mathcal{G}_{m+1}(z)=\left\langle z^{\sum_{j=1}^{X_{m}} \eta_{j}^{m+1}}\right\rangle=\left\langle\mathcal{G}(z)^{X_{m}}\right\rangle=\mathcal{G}_{m}(\mathcal{G}(z))
$$

where $\mathcal{G}(z)=\sum_{k=0}^{\infty} z^{k} p(k)$.

Extinction Probability, ξ

- Solution by iteration

$$
\begin{aligned}
\mathcal{G}_{m}(z) & =\mathcal{G}_{m-1}(\mathcal{G}(z))=\mathcal{G}_{m-2}(\mathcal{G}(\mathcal{G}(z))) \\
& =\mathcal{G}_{1}(\underbrace{\mathcal{G}(\mathcal{G}(\ldots))}_{m-1})=\mathcal{G}^{(m)}(z)=\mathcal{G}\left(\mathcal{G}^{(m-1)}(z)\right) \\
& =\mathcal{G}\left(\mathcal{G}_{m-1}(z)\right),
\end{aligned}
$$

where $\mathcal{G}_{1}(z)=\mathcal{G}(z)$ (because $X_{0}=1$).

- Extinction probability, ξ

Since $\xi_{m} \equiv P\left(X_{m}=0\right)=\mathcal{G}_{m}(z=0), \xi_{m}=\mathcal{G}\left(\xi_{m-1}\right)$. Thus,

the Fundamental Theorem

$$
\xi \text { is the smallest solution of } \xi=\mathcal{G}(\xi)(0 \leq \xi \leq 1) \text {. }
$$

Graphical solution

$$
\mu \equiv \sum_{k} k p(k)=\mathcal{G}^{\prime}(z=1), \quad \mathcal{G}(z=1)=1
$$

$\mu<1$

$\mu>1$

Mean and variance

- Mean

$$
\begin{aligned}
\mu_{1}(m) & \equiv \sum_{k} k P_{k}(m)=\mathcal{G}_{m}^{\prime}(1)=\left.\frac{\partial}{\partial z} \mathcal{G}\left(\mathcal{G}_{m-1}(z)\right)\right|_{z=0} \\
& =\mathcal{G}^{\prime}(1)\left(\left.\frac{\partial}{\partial z} \mathcal{G}_{m}(z)\right|_{z=0}\right)=\mu \mu_{1}(m-1)
\end{aligned}
$$

Hence, $\mu_{1}(m)=\mu^{m}$.

- Variance (check it)

$$
\sigma(m)^{2}=\mathcal{G}_{m}^{\prime \prime}(1)+\mathcal{G}_{m}^{\prime}(1)-\left[\mathcal{G}_{m}^{\prime}(1)\right]^{2}= \begin{cases}\sigma^{2} \mu^{m} \frac{\mu^{m}-1}{\mu^{2}-\mu} & \mu \neq 1 \\ m \sigma^{2} & \mu=1\end{cases}
$$

- assignment 4, 5

Markov chains in the continuous time limit

- Fixed $t=m \tau$ with $\tau \rightarrow 0$.

$$
\begin{aligned}
& T_{\boldsymbol{n}_{1} \boldsymbol{n}_{2}}=\left(1-\sum_{\boldsymbol{n}_{3} \neq \boldsymbol{n}_{2}} P\left(\boldsymbol{n}_{3} \mid \boldsymbol{n}_{2}\right)\right) \delta_{\boldsymbol{n}_{1}, \boldsymbol{n}_{2}}+P\left(\boldsymbol{n}_{1} \mid \boldsymbol{n}_{2}\right)\left(1-\delta_{\boldsymbol{n}_{1}, \boldsymbol{n}_{2}}\right) \\
& \frac{d P\left(\boldsymbol{n}_{1}, t\right)}{d t} \equiv \lim _{\tau \rightarrow 0} \frac{P\left(\boldsymbol{n}_{1}, m\right)-P\left(\boldsymbol{n}_{1}, m-1\right)}{\tau} \\
&=\sum_{\boldsymbol{n}_{2} \neq \boldsymbol{n}_{1}}\left[W_{\boldsymbol{n}_{1} \boldsymbol{n}_{2}} P\left(\boldsymbol{n}_{2}, t\right)-W_{\boldsymbol{n}_{2} \boldsymbol{n}_{1}} P\left(\boldsymbol{n}_{1}, t\right)\right]
\end{aligned}
$$

with transition rate $W_{\boldsymbol{n}_{1} \boldsymbol{n}_{2}} \equiv \lim _{\tau \rightarrow 0} \frac{P\left(\boldsymbol{n}_{1} \mid \boldsymbol{n}_{2}\right)}{\tau}$.

master equation

$$
\frac{d P\left(\boldsymbol{n}_{1}, t\right)}{d t}=\sum_{\boldsymbol{n}_{2} \neq \boldsymbol{n}_{1}}\left[W_{\boldsymbol{n}_{1} \boldsymbol{n}_{2}} P\left(\boldsymbol{n}_{2}, t\right)-W_{\boldsymbol{n}_{2} \boldsymbol{n}_{1}} P\left(\boldsymbol{n}_{1}, t\right)\right]
$$

Broken time reversal symmetry

Assume that the stationary distribution $P_{s}(n)$ exist with $P_{s}(\boldsymbol{n})>0$. Define

$$
H(t) \equiv \sum_{n} P_{s}(n) f\left(\frac{P(n, t)}{P_{s}(n)}\right) \equiv \sum_{n} P_{s}(n) f\left(x_{n}\right)
$$

where $f(x) \geq 0$ and $f^{\prime \prime}(x)>0$ for $0 \leq x<\infty$. Then we get

$$
\begin{aligned}
\frac{d H(t)}{d t} & =\sum_{n n^{\prime}} W_{n n^{\prime}} P_{s}\left(n^{\prime}\right)\left[x_{n^{\prime}} f^{\prime}\left(x_{n}\right)-x_{n^{\prime}} f^{\prime}\left(x_{n}\right)\right] \\
& =\sum_{n n^{\prime}} W_{n n^{\prime}} P_{s}\left(n^{\prime}\right)\left[\left(x_{n^{\prime}}-x_{n}\right) f^{\prime}\left(x_{n}\right)+f\left(x_{n}\right)-f\left(x_{n^{\prime}}\right)\right]<0 .
\end{aligned}
$$

Since $f^{\prime \prime}(x)>0$ and, accordingly, $H(t) \leq 0, H(t) \rightarrow$ constant as $t \rightarrow \infty$. If we choose $f(x)=x \ln x$, we get $H=\sum_{n} P(n, t) \ln \left(P(n, t) / P_{s}(n)\right)$.

One dimensional random walks : example

- $P(n ; t)$: prob. that a walker is located at $x=n$.
- CK equation

$$
P(n ; t+\tau)=p P(n-1 ; t)+q P(n+1 ; t)+(1-p-q) P(n ; t)
$$

- (naive) continuum limit

$$
\begin{aligned}
& \frac{P(n ; t+\tau)-P(n ; t)}{\tau}=\frac{p}{\tau} P(n-1 ; t)+\frac{q}{\tau} P(n+1 ; t)-\frac{p+q}{\tau} P(n ; t) \\
& \frac{d P(n ; t)}{d t}=w_{+} P(n-1 ; t)+w_{-} P(n+1 ; t)-\left(w_{+}+w_{-}\right) P(n ; t)
\end{aligned}
$$

where $p / \tau \rightarrow w_{+}$and $q / \tau \rightarrow w_{-}$.

Time between jumps

- Let $Q\left(\boldsymbol{n}_{1}, t, t_{0}\right)$ be the probability that we are "still" at point \boldsymbol{n}_{1} at t, provided we start from \boldsymbol{n}_{1} at t_{0}.

$$
\begin{aligned}
& Q\left(\boldsymbol{n}_{1}, t+d t, t_{0}\right)=\left(1-\sum_{\boldsymbol{n}_{2} \neq \boldsymbol{n}_{1}} W_{\boldsymbol{n}_{2} \boldsymbol{n}_{1}} d t\right) Q\left(\boldsymbol{n}_{1}, t, t_{0}\right) \\
& \frac{\partial}{\partial t} Q\left(\boldsymbol{n}_{1}, t, t_{0}\right)=-\sum_{\boldsymbol{n}_{2} \neq \boldsymbol{n}_{1}} W_{\boldsymbol{n}_{2} \boldsymbol{n}_{1}} Q\left(\boldsymbol{n}_{1}, t, t_{0}\right) \equiv-\lambda Q\left(\boldsymbol{n}_{1}, t, t_{0}\right)
\end{aligned}
$$

where $\lambda \equiv \sum_{\boldsymbol{n}_{2} \neq \boldsymbol{n}_{1}} W_{\boldsymbol{n}_{2} \boldsymbol{n}_{1}}$. Thus, $Q\left(\boldsymbol{n}_{1}, t, t_{0}\right)=e^{-\lambda\left(t-t_{0}\right)}$.

- to simulate the master equation
(1) Assume we are at \boldsymbol{n}_{1} at time t.
(2) choose Δt from $U(\tau) \equiv \mathbb{P}(\Delta t>\tau)=\exp (-\lambda \tau)$.
(3) choose \boldsymbol{n}_{2} from $\mathbb{P}\left(\boldsymbol{n}_{2}\right)=W_{\boldsymbol{n}_{2} \boldsymbol{n}_{1}} / \lambda$.
(9) Then we are now at \boldsymbol{n}_{2} at $t+\Delta t$.

Properties of the exponential distribution

- Lack of memory or Markov property $(U(t) \equiv \mathbb{P}(\Delta t>t))$

$$
\begin{aligned}
& P(\Delta t>s+t \mid \Delta t>t)=\frac{P(\Delta t>s+t)}{P(\Delta t>t)}=\exp (-\lambda s)=P(\Delta t>s) \\
& U(t+s)=U(t) U(s)
\end{aligned}
$$

- unique solution of $U(t+s)=U(t) U(s)$ for bounded $U(t)$.
- cf. Hamel equation $f(s+t)=f(s)+f(t)$
- Poisson process (assignment 6)

Let X_{1}, \ldots, X_{n} be i.i.d. r.v. with the exponential distribution. Let $S_{n}=X_{1}+\cdots+X_{n}$ with $S_{0} \equiv 0$. Let $N(t)$ be the number of indices $k \geq 1$ such that $S_{k} \leq t$, then

$$
P(N(t)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

Waiting time paradox

- Buses arrive in accordance with a Poisson process with expected time between consecutive buses to be λ^{-1}. I arrive at t. What is the expectation $\left\langle W_{t}\right\rangle$ of my waiting time for the next bus?
Solution 1 The lack of memory implies $\left\langle W_{t}\right\rangle=\lambda^{-1}$.
Solution 2 My arrival time is chosen "at random" between two consecutive buses. So due to the symmetry, $\left\langle W_{t}\right\rangle=\lambda^{-1} / 2$.

Simulation I : Contact Process (CP) in 1-D

- Model

$$
\begin{cases}A \rightarrow 0 & \text { with rate } 1 \\ 0 \rightarrow A & \text { with rate } \frac{n n \times \lambda}{2}\end{cases}
$$

- An example of sample paths (PBC)

CP : rejection-free algorithm

- mean waiting time : $\tau=1 /(3+2 \lambda)$.
- time when a jump happens : $d t=-\tau \ln (1-U(0,1))$
- Prob that the configuration at $t+d t$: correpsonding rate $\times d t$

CP : pseudo-code I

- Keep number of particles and active vacancies NA, NV1, NV2
- Make Three lists A [], V1 [], V2 []

$$
A[1]=0, A[2]=2, A[3]=3, \quad \mathrm{~V} 1[1]=4, \quad \mathrm{~V} 1[2]=6, \quad \mathrm{~V} 2[1]=2
$$

- Determine $d t$ by $d t=1 . /(\mathrm{NA}+(0.5 * 1 \mathrm{am}) * \mathrm{NV} 1+1 \mathrm{am} * \mathrm{NV} 2)$
- Generate $\mathrm{p}=U(0,1)$

$$
\begin{aligned}
& \text { if }(p<N A * d t) \quad i=(\text { int })(N A * U(0,1))+1 \text { do } A->0 \\
& \text { else if }(p<(N A+l a m * N V 2) * d t) \quad i=(i n t)(N V 2 * U(0,1))+1 \\
& \text { do A0A }->\text { AAA } \\
& \text { else i }=(\text { int })(N V 1 * U(0,1))+1 \text { do A0 } \rightarrow \text { AA }
\end{aligned}
$$

- Update the lists and increase the time $t \rightarrow t+d t$.

pseudo code I - continuued

$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

- Example of updating lists

Assuming $p<N A * d t$ and $i=2$.
$\mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{NA}], \mathrm{NA}=\mathrm{NA}-1$

- Accordingly, we need to update v1, V2

NV1=NV1+1, V1[NV1]=2
NV2=NV2-1, NV1=NV1+1, V1[NV1]=1

- However, without knowing which number is assigned to site 1 , it will be very time consuming to implement the above procedure : we need another array.

pseudo-code II : with rejection

- Define $\delta=1 . /(1+\lambda)$
- Define $x=\delta$
- Set $d t=-\delta \ln (1-U(0,1)) / L(L$: system size $)$.
- To set $d t=\delta / L$ is a good approximation (for large L, of course).
- Choose i=(int) ($\mathrm{L} * \mathrm{U}(0,1))$
- If site i is occupied,
- remove particle with probability x
- With prob. $1-x$, set one of nearest neighbor to be occupied.
- If site i is empty, do nothing.
- Time increases by $d t$ in any case.
- Convince yourself that the average time to the next jump is the same as before.

pseudo-code III : with particle list

- Time rescale $\tau=(1+\lambda) t$
- Define $x=1 . /(1+\lambda)$ (transition rate in the rescaled time)
- Set $d \tau=1$./ NA
- Choose i=(int) $(N A * U(0,1))+1$
- Generate $\mathrm{p}=\mathrm{U}(0,1)$
- if $p<x, A[i]=A[N A], N A=N A-1$
- else if $\mathrm{p}<(1+\mathrm{x}) * 0.5$,

$$
j=i+1, \quad i f(j \text { is empty) } N A=N A+1, A[N A]=j
$$

- else, $j=i-1, ~ i f(j$ is empty) $N A=N A+1, A[N A]=j$
- Need to know if site j is empty (another array : easy job).
- Convince yourself that the average time to the next jump is the same as before (up to time rescale).
- Small tip : I usually make dt [i]=1./i beforehand.

Simulation II : A+A 0 : pair list

- Model

$$
\begin{cases}A 0 \leftrightarrow 0 A, & \text { with rate } D \\ A A \rightarrow 00, & \text { with rate } \lambda\end{cases}
$$

- Define $\delta=1 / \max (D, \lambda)$.
- make three arrays O[], list [], active []
$\mathrm{O}[0]=0, \mathrm{O}[1]=1, \mathrm{O}[2]=1, \mathrm{O}[3]=0$,
list[1]=0, list[2]=1, list[3]=2,
active[0]=1, active[1]=2, active[2]=3, active[3]=0.
- Set $\mathrm{Np}=$ size of the (valid) list.

Simulation II : A+A 0 : pair list

- Choose $i=($ int $)(N p * U(0,1))+1, s=1 i s t[i]$. set $d t=\delta / N p$
- if (O[i]*O[i+1]) AA->00 with prob $\lambda \delta$
- else A0 <-> 0A with prob $D \delta$
- update the arrays
- decreasing Np at site s

$$
\begin{aligned}
& \text { i=active[s], list }[i]=\text { list }[\mathrm{Np}], \text { active }[\text { list }[\mathrm{Np}]]=i, \\
& \mathrm{~Np}=\mathrm{Np}-1, \text { active }[s]=0
\end{aligned}
$$

- increasing Np at site s

$$
N p=N p+1, \text { list }[N p]=s, \text { active }[s]=N p
$$

Simulation II : A+A 0 : particle list

- Choose $\delta=1 / \max (D+\lambda / 2,2 D, \lambda)$.
- make two arrays list [], active [], N=2
list[1]=1, list[2]=2,
active[1]=1, active[2]=2, active[0]=active[3]=0
- choose $i=($ int $)(N * U(0,1))+1$, $s=1 i s t[i]$
- choose a direction at random (for example, $j=s+1$)
- if j is empty, it moves there with prob. $2 D \delta$
- if j is occupied, pair annihilation with prob. $\lambda \delta$.
- update the arrays as in the pair-list case and time increases by δ / N

Simulation II : $A+A \rightarrow 0-\mathrm{a}$ comment

- If either $D \gg \lambda>0$ or $\lambda \gg D>0$, it is more efficent to have two lists plist [], slist [] and Ns, Np
- diffusion event will occur with prob $D \times N s /(D \times N s+\lambda \times N p)$.
- if pair annihilation is determined, choose one from plist [], remove that one, update the arrays.
- time increases by $1 /(D \times N s+\lambda \times N p)$.
- if system size is $L<2^{n}$, it is convenient to set active[s]=i, plist[i]=s and active[s]=2^n+i, slist[i]=s

Imaginary-time Schrödinger equation

- State and projection vectors

$$
|\Psi\rangle_{t} \equiv \sum_{\boldsymbol{n}} P(\boldsymbol{n}, t)|\boldsymbol{n}\rangle, \quad\langle\cdot| \equiv \sum_{\boldsymbol{n}}\langle\boldsymbol{n}|, \quad\{|\boldsymbol{n}\rangle\}: \text { orthonormal basis. }
$$

- Normalization $\langle\cdot \mid \Psi\rangle_{t}=1($ in $\mathrm{QM}\langle\Psi \mid \Psi\rangle=1)$
- "Hamiltonian"

$$
\left\langle\boldsymbol{n}_{1}\right| \hat{H}\left|\boldsymbol{n}_{2}\right\rangle=-W_{\boldsymbol{n}_{1}, \boldsymbol{n}_{2}},\left\langle\boldsymbol{n}_{1}\right| \hat{H}\left|\boldsymbol{n}_{1}\right\rangle=\sum_{\boldsymbol{n}_{2} \neq \boldsymbol{n}_{1}} W_{\boldsymbol{n}_{2}, \boldsymbol{n}_{1}}
$$

imaginary-time Schrödinger equation

$$
\frac{\partial}{\partial t}|\Psi\rangle=-\hat{H}|\Psi\rangle \Rightarrow|\Psi\rangle_{t}=e^{-\hat{H} t}|\Psi\rangle_{0}
$$

- Due to the normalization $\langle\cdot| \hat{H}=0$.
- Stationary state (if exists) is the right eigenstate of \hat{H} with eigenvalue 0 .

Stationary state and detailed balance

- Stationary state $P_{s}(\boldsymbol{n})$

$$
\begin{aligned}
\frac{d P_{s}(\boldsymbol{n})}{d t} & =0=\sum_{n_{1} \neq \boldsymbol{n}}\left[W_{n n_{1}} P_{s}\left(\boldsymbol{n}_{1}\right)-W_{\boldsymbol{n}_{1} \boldsymbol{n}} P_{s}(\boldsymbol{n})\right] . \\
0 & =\langle\boldsymbol{n}| \hat{H}|\Psi\rangle_{s} \text { for all } \boldsymbol{n} .
\end{aligned}
$$

- In the long time limit, $P\left(\boldsymbol{n}, t \mid \boldsymbol{n}_{0}, 0\right) \rightarrow P_{s}(\boldsymbol{n})$, irrespective of \boldsymbol{n}_{0}.
- Detailed balance (approach to the equilibrium distribution)

$$
W_{\boldsymbol{n}_{1} \boldsymbol{n}_{2}} P_{s}^{e}\left(\boldsymbol{n}_{2}\right)=W_{n_{2} n_{1}} P_{s}^{e}\left(\boldsymbol{n}_{1}\right), \quad P_{s}^{e}(\boldsymbol{n}) \propto e^{-\beta E(\boldsymbol{n})}
$$

where $E(\boldsymbol{n})$ is the energy of the state \boldsymbol{n}.

- Can we know if the detailed balance is satisfied although we do not know what $P_{s}(\boldsymbol{n})$ is? In principle, yes (assignment 7).

Birth-and-Death (Jump, One-step) processes

- Transition rates (integer space)

- master equation

$$
\frac{\partial}{\partial t} P_{n}(t)=d_{n+1} P_{n+1}(t)+b_{n-1} P_{n-1}(t)-\left(d_{n}+b_{n}\right) P_{n}(t)
$$

- State space can be
- infinite : $\mathfrak{X}=\{\ldots,-2,-1,0,1,2, \ldots\}$.
- half-infinite : $\mathfrak{X}=\{0,1,2, \ldots\}\left(b_{-1}=d_{0}=0\right)$.
- finite: $\mathfrak{X}=\{0,1,2, \ldots, N\}\left(b_{-1}=d_{0}=b_{N}=d_{N+1}=0\right)$.

Generating Function

- equation for the generating function $\mathcal{G}(z, t) \equiv \sum_{n} z^{n} P_{n}(t)$

$$
\begin{aligned}
\frac{\partial \mathcal{G}}{\partial t} & =\sum_{n}\left[z^{n} d_{n+1} P_{n+1}-z^{n} d_{n} P_{n}+z^{n} b_{n-1} P_{n-1}-z^{n} b_{n} P_{n}\right] \\
& =\sum_{n}\left[\left(z^{n-1}-z^{n}\right) d_{n} P_{n}+\left(z^{n+1}-z^{n}\right) b_{n} P_{n}\right]
\end{aligned}
$$

- mean $\langle n\rangle$

$$
\frac{d\langle n\rangle}{d t}=\frac{d}{d t}\left(\left.\frac{\partial \mathcal{G}}{\partial z}\right|_{z=1}\right)=\sum_{n}\left(b_{n}-d_{n}\right) P_{n}=\left\langle b_{n}\right\rangle-\left\langle d_{n}\right\rangle .
$$

Pure Birth Process $\left(d_{n}=0\right)$

- Poisson process $b_{n}=\lambda, P(n, 0)=\delta_{n 0}$.

$$
\dot{P}_{n}=-\lambda P_{n}+\lambda P_{n-1}, \quad \dot{P}_{0}=-\lambda P_{0} \Rightarrow P_{n}(t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

- divergent Birth Process (dishonest process)

Theorem

$$
\sum_{n} P_{n}(t)<1 \text { for all } t>0, \text { iff } \sum_{n} \frac{1}{b_{n}} \text { is finite. }
$$

For example, $b_{n}=n(n-1)(2 X \rightarrow 3 X$ reaction $)$.

$$
\text { cf. ODE case: } \frac{d x}{d t}=x^{2}
$$

Linear Birth-and-Death Process I

- Generating Function method

$$
\begin{aligned}
\frac{\partial \mathcal{G}}{\partial t} & =\sum_{n=0}^{\infty}[\left(z^{n-1}-z^{n}\right) \underbrace{\mu n}_{\text {death }} P_{n}+\left(z^{n+1}-z^{n}\right) \underbrace{\lambda(n+b)}_{\text {birth }} P_{n}] \\
& =(1-z)(\mu-\lambda z) \frac{\partial \mathcal{G}}{\partial z}+\lambda b(z-1) \mathcal{G}
\end{aligned}
$$

with $\mathcal{G}(z, 0)=\sum_{n} z^{n} P_{n}(0)=z^{m}\left(P_{n}(0)=\delta_{n m}\right)$.
the method of characteristics

The method of characteristics I

- To solve partial differential equations

$$
\frac{\partial \psi}{\partial t}+c(t, x) \frac{\partial \psi}{\partial x}=f(t, x, \psi)
$$

Let $(x(\lambda), t(\lambda))$ be some curve in $x-t$ space.

$$
\frac{d \psi}{d \lambda}=\frac{\partial \psi}{\partial t} \frac{d t}{d \lambda}+\frac{\partial \psi}{\partial x} \frac{d x}{d \lambda}=\frac{d t}{d \lambda}\left[\frac{\partial \psi}{\partial t}+\frac{d x / d \lambda}{d t / d \lambda} \frac{\partial \psi}{\partial x}\right]
$$

Choose the curve such that $(d x / d \lambda) /(d t / d \lambda)=c(t, x)$; this curve is called a characteristic. Then,

$$
\frac{d \psi}{d \lambda}=f \frac{d t}{d \lambda} \text { (ordinary differential equation) }
$$

It is convenient to set $\lambda=t$.

The method of characteristics II

Linear Birth-and-Death Process II

$$
\text { Equation: } \frac{\partial \mathcal{G}}{\partial t}+(z-1)(\mu-\lambda z) \frac{\partial \mathcal{G}}{\partial z}=\lambda b(z-1) \mathcal{G}
$$

- method of characteristics

Assume z is a function of $t[z=z(t)]$ with $z_{0}=z(t=0)$.
Choose a characteristic curve such that

$$
\begin{aligned}
& \frac{d z}{d t}=(z-1)(\mu-\lambda z) \rightarrow \frac{1-z}{\mu-\lambda z} e^{(\lambda-\mu) t}=C_{0} \text { (constant) } \\
& \frac{d \mathcal{G}}{d t}=\lambda b(z(t)-1) \mathcal{G} \rightarrow \ln \left(\frac{\mathcal{G}}{\mathcal{G}_{0}}\right)=\lambda b \int_{0}^{t}(z-1) d t^{\prime}=\int_{z_{0}}^{z(t)} \frac{\lambda b d z^{\prime}}{\mu-\lambda z} \\
& =-b \ln \left|\frac{\mu-\lambda z}{\mu-\lambda z_{0}}\right| \Rightarrow \mathcal{G}=\mathcal{G}_{0}\left(\frac{\mu-\lambda z}{\mu-\lambda z_{0}}\right)^{-b}
\end{aligned}
$$

Linear Birth-and-Death Process III

Since $\mathcal{G}_{0}=\mathcal{G}(z(0), 0)=z_{0}^{m}$,

$$
\begin{aligned}
& \frac{1-z}{\mu-\lambda z} e^{(\lambda-\mu) t}=\frac{1-z_{0}}{\mu-\lambda z_{0}} \rightarrow z_{0}=\frac{\mu(1-\varepsilon)+z(\mu \varepsilon-\lambda)}{\mu-\lambda \varepsilon-\lambda(1-\varepsilon) z} \\
& \mathcal{G}(z, t)=\left(\frac{\mu(1-\varepsilon)+z(\mu \varepsilon-\lambda)}{\mu-\lambda \varepsilon-\lambda(1-\varepsilon) z}\right)^{m}\left(\frac{\mu-\lambda \varepsilon-\lambda(1-\varepsilon) z}{\mu-\lambda}\right)^{-b}
\end{aligned}
$$

where $\varepsilon \equiv e^{(\lambda-\mu) t}$.

- $b=0:$ (continuous time) branching process (assignment 8)
- $b=-N, \lambda^{\prime}=-\lambda N>0$: reflecting wall at $n=0$ and $n=N$.
- $\lambda=0$: pure death process.
- $\mu=0$: pure birth process

Chemical reactions

- $X \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} 0$

$$
W(n \rightarrow n+1)=k_{2}, \quad W(n \rightarrow n-1)=k_{1} n
$$

- $X \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} 2 X$

$$
W(n \rightarrow n+1)=k_{1} n, \quad W(n \rightarrow n-1)=k_{2} n(n-1) .
$$

- $2 X \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} 3 X$

$$
W(n \rightarrow n+1)=k_{1} n(n-1), \quad W(n \rightarrow n-1)=k_{2} n(n-1)(n-2) .
$$

Fokker-Planck Equation

- differential CK equation with $W(\boldsymbol{x} \mid \boldsymbol{y}, t)=0$

Fokker-Planck equation (FPE)

$$
\begin{aligned}
\frac{\partial P\left(\boldsymbol{x}, t \mid \boldsymbol{y}, t^{\prime}\right)}{\partial t}= & -\sum_{i} \frac{\partial}{\partial x_{i}}\left[A_{i}(\boldsymbol{x}, t) P\left(\boldsymbol{x}, t \mid \boldsymbol{y}, t^{\prime}\right)\right] \\
& +\frac{1}{2} \sum_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left[B_{i j}(\boldsymbol{x}, t) P\left(\boldsymbol{x}, t \mid \boldsymbol{y}, t^{\prime}\right)\right]
\end{aligned}
$$

- $\boldsymbol{A}(\boldsymbol{x})$: drift vector
- $\boldsymbol{B}(\boldsymbol{x})$: diffusion matrix
- Initial condition : $P(\boldsymbol{x}, t \mid \boldsymbol{y}, t)=\delta(\boldsymbol{x}-\boldsymbol{y})$.

short time behavior

- If Δt is small, (cf: Langevin Equation)

$$
\begin{aligned}
& \qquad P(\boldsymbol{x}, t+\Delta t \mid \boldsymbol{y}, t)=\left\{(2 \pi)^{N} \operatorname{det}[\boldsymbol{B}(\boldsymbol{y}, t) \Delta t]\right\}^{-1 / 2} \times \\
& \times \exp \left\{-\frac{1}{2} \frac{[\boldsymbol{x}-\boldsymbol{y}-\boldsymbol{A}(\boldsymbol{y}, t) \Delta t]^{\top}[\boldsymbol{B}(\boldsymbol{y}, t)]^{-1}[\boldsymbol{x}-\boldsymbol{y}-\boldsymbol{A}(\boldsymbol{y}, t) \Delta t]}{\Delta t}\right\} \\
& \boldsymbol{y}(t+\Delta t)=\boldsymbol{y}(t)+\boldsymbol{A}(\boldsymbol{y}(t), t) \Delta t+\boldsymbol{\eta}(t) \Delta t^{1 / 2}, \\
& \text { where }\langle\boldsymbol{\eta}(t)\rangle=0, \quad\left\langle\boldsymbol{\eta}(t) \boldsymbol{\eta}(t)^{\top}\right\rangle=\boldsymbol{B}(\boldsymbol{y}, t) .
\end{aligned}
$$

- Sample paths are continuous with probability one.
- Sample paths are nowhere differentiable because of $\Delta t^{1 / 2}$.

The Wiener Process I

FPE for the Wiener Process

$$
\begin{aligned}
\frac{\partial}{\partial t} P\left(w, t \mid w_{0}, t_{0}\right) & =\frac{1}{2} \frac{\partial^{2}}{\partial w^{2}} P\left(w, t \mid w_{0}, t_{0}\right) \\
P\left(w, t_{0} \mid w_{0}, t_{0}\right) & =\delta\left(w-w_{0}\right)
\end{aligned}
$$

- generating function solution

$$
\begin{aligned}
& \phi(s, t) \equiv \int d w P\left(w, t \mid w_{0}, t_{0}\right) \exp (i s w), \quad \phi\left(s, t_{0}\right)=\exp \left(i s w_{0}\right) \\
& \frac{\partial \phi}{\partial t}=\int d w \frac{\partial}{\partial t} P\left(w, t \mid w_{0}, t_{0}\right) \exp (i s w) \\
&=\int d w \frac{1}{2} \frac{\partial^{2}}{\partial w^{2}} P\left(w, t \mid w_{0}, t_{0}\right) \exp (i s w)=-\frac{1}{2} s^{2} \phi \\
& \phi(s, t)=\exp \left(-\frac{1}{2} s^{2}\left(t-t_{0}\right)+i s w_{0}\right)
\end{aligned}
$$

The Wiener Process II

- Fourier Transformation

$$
\begin{aligned}
P\left(w, t \mid w_{0}, t_{0}\right) & =\frac{1}{2 \pi} \int d s \phi(s, t) \exp (-i s w) \\
& =\frac{1}{\sqrt{2 \pi\left(t-t_{0}\right)}} \exp \left(-\frac{1}{2} \frac{\left(w-w_{0}\right)^{2}}{t-t_{0}}\right)
\end{aligned}
$$

- Mean and Variance

$$
\langle W(t)\rangle=w_{0} \text { (martingale) }, \quad\left\langle\left(W(t)-w_{0}\right)^{2}\right\rangle=t-t_{0}
$$

- cf. cumulant generating funcion

$$
\ln \phi(s, t)=i s w_{0}-\frac{1}{2} s^{2}\left(t-t_{0}\right)=i s\langle W(t)\rangle+\frac{1}{2}(i s)^{2}\left\langle\left(W(t)-w_{0}\right)^{2}\right\rangle
$$

Properties of the Wiener process I

- Irregularity of Sample Paths $\langle W(t)\rangle$ remains constant, but the variance diverges :

Sample paths are very variable and irregular

Properties of the Wiener process II

- continuous everywhere but differentiable nowhere

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\frac{W(t+h)-W(t)}{h}\right|>k\right\}=2 \int_{k h}^{\infty} d w \frac{1}{\sqrt{2 \pi h}} \exp \left(-\frac{w^{2}}{2 h}\right) \\
& =2 \int_{k \sqrt{h}}^{\infty} d x \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) \rightarrow 1
\end{aligned}
$$

as $h \rightarrow 0$ for any $k>0$.
Thus, $\frac{d W(t)}{d t}$ does not exist. (cf. Weierstrass function).

Properties of the Wiener process III

- independence of increments Joint probability (due to the Markov property)

$$
P\left(w_{n}, t_{n} ; w_{n-1}, t_{n-1} ; \cdots ; w_{0}, t_{0}\right)=\prod_{i=0}^{n-1} P\left(w_{i+1}, t_{i+1} \mid w_{i}, t_{i}\right) P\left(w_{0}, t_{0}\right)
$$

Let $\Delta W_{i}=W\left(t_{i}\right)-W\left(t_{i-1}\right)$ (new r.v.), $\Delta t_{i}=t_{i}-t_{i-1}$,

$$
\begin{aligned}
P\left(\Delta w_{n} ; \Delta w_{n-1} ;\right. & \left.\cdots ; \Delta w_{1} ; w_{0}\right) \\
& =\prod_{i=1}^{n}\left\{\frac{1}{\sqrt{2 \pi \Delta t_{i}}} \exp \left(-\frac{\Delta w_{i}^{2}}{2 \Delta t_{i}}\right)\right\} P\left(w_{0}, t_{0}\right) .
\end{aligned}
$$

r.v.'s ΔW_{i} are independent of each other and of $W\left(t_{0}\right)$.

Properties of the Wiener process IV

- Autocorrelation function (cf. covariance)

$$
\left\langle W(t) W(s) \mid\left[w_{0}, t_{0}\right]\right\rangle=\int d w_{1} d w_{2} w_{1} w_{2} p\left(w_{1}, t ; w_{2}, s \mid w_{0}, t_{0}\right)
$$

Assuming $t>s$ and using the independence of increment,

$$
\begin{aligned}
\left\langle W(t) W(s) \mid\left[w_{0}, t_{0}\right]\right\rangle & =\langle[W(t)-W(s)] W(s)\rangle+\left\langle W(s)^{2}\right\rangle \\
& =s-t_{0}+w_{0}^{2}
\end{aligned}
$$

In general,

$$
\begin{aligned}
\left\langle W(t) W(s) \mid\left[w_{0}, t_{0}\right]\right\rangle & =\min \left(t-t_{0}, s-t_{0}\right)+w_{0}^{2} \\
\left\langle W(t), W(s) \mid\left[w_{0}, t_{0}\right]\right\rangle & =\min \left(t-t_{0}, s-t_{0}\right) .
\end{aligned}
$$

the Ornstein-Ulhenbeck Process

FPE for the Ornstein-Ulhenbeck Process

$$
\frac{\partial}{\partial t} P\left(x, t \mid x_{0}, t_{0}\right)=\frac{\partial}{\partial x}\left(k x P\left(x, t \mid x_{0}, t_{0}\right)\right)+\frac{1}{2} D \frac{\partial^{2}}{\partial x^{2}} P\left(x, t \mid x_{0}, t_{0}\right)
$$

- generating function solution

$$
\begin{aligned}
& \phi(s, t) \equiv \int d x P\left(x, t \mid x_{0}, t_{0}\right) \exp (i s x), \quad \phi\left(s, t_{0}\right)=\exp \left(i s x_{0}\right) \\
& \partial_{t} \phi(s, t)+k s \partial_{s} \phi(s, t)=-\frac{1}{2} D s^{2} \phi(s, t)
\end{aligned}
$$

Solution of the Ornstein-Ulhenbeck Process

$$
\partial_{t} \phi(s, t)+k s \partial_{s} \phi(s, t)=-\frac{1}{2} D s^{2} \phi(s, t)
$$

- the method of characteristics

$$
\begin{aligned}
& \frac{d s}{d t}=k s, \rightarrow s e^{-k t}=A(\text { constant }) \\
& \frac{d \phi}{d t}=-\frac{1}{2} D s(t)^{2} \phi(t)=-\frac{1}{2} D A^{2} e^{2 k t} \phi(t) \\
& \rightarrow \phi=\phi_{0} \exp \left(-\frac{D A^{2}}{4 k}\left\{e^{2 k t}-1\right\}\right)=\phi_{0} \exp \left(-\frac{D s^{2}}{4 k}\left\{1-e^{-2 k t}\right\}\right)
\end{aligned}
$$

When $t=0, \phi_{0}=e^{i s(t=0) x_{0}}=e^{i A x_{0}}$. Hence,

$$
\phi(s, t)=\exp \left(i s e^{-k t} x_{0}-\frac{D}{4 k} s^{2}\left\{1-e^{-2 k t}\right\}\right)
$$

Stationary state

- Mean and Variance

$$
\langle X(t)\rangle=x_{0} e^{-k t}, \quad \operatorname{var}(X(t))=\frac{D}{2 k}\left\{1-e^{-2 k t}\right\}
$$

- Stationary solution

$$
\phi(s, \infty)=\exp \left(-\frac{D s^{2}}{4 k}\right), P_{s}(x)=\sqrt{\frac{k}{\pi D}} \exp \left(-\frac{k x^{2}}{D}\right)
$$

Note that $P_{s}(x)$ is the solution of the stationary FPE

$$
\partial_{x}\left[k x P+\frac{1}{2} D \partial_{x} P\right]=0
$$

Autocorrelation

- time correlation function at stationarity

$$
\left\langle X(t) X(s) \mid\left[x_{0}, t_{0}\right]\right\rangle=\int d x_{1} d x_{2} x_{1} x_{2} P\left(x_{1}, t \mid x_{2}, s\right) P\left(x_{2}, s \mid x_{0}, t_{0}\right)
$$

where $t \geq s \geq t_{0}$ is assumed. Take $t_{0} \rightarrow-\infty$, we get

$$
\langle X(t), X(s)\rangle_{s}=\langle X(t) X(s)\rangle_{s}=\frac{D}{2 k} \exp (-k|t-s|)
$$

The Ornstein-Uhlenbeck process in its stationary state models a realistic noise signal with correlation time $1 / k=\tau$.

White noise in the Langevin equation

- Langevin equation

$$
\frac{d x}{d t}=a(x, t)+b(x, t) \xi(t)
$$

where $\xi(t)$ is the rapidly fluctuating random term called the white noise.

- $\langle\xi(t)\rangle=0,\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)$ (no correlation at different times)
- But, what is $\xi(t)$?

Let $u(t)=\int_{0}^{t} \xi\left(t^{\prime}\right) d t^{\prime}$ (continuous stochastic process).

properties of $u(t)$ I

- $u(t)$ is a Markov process.

$$
u\left(t^{\prime}\right)=\underbrace{\lim _{\varepsilon \rightarrow 0}\left[\int_{0}^{t-\varepsilon} d s \xi(s)\right]}_{U_{1}=u(t)}+\underbrace{\int_{t}^{t^{\prime}} \xi(s)}_{U_{2}}
$$

U_{1} is independent of U_{2}.
Thus, $u(t)$ and $u\left(t^{\prime}\right)-u(t)$ are statistically independent.
Furthermore, $u\left(t^{\prime}\right)-u(t)$ is independent of $u\left(t^{\prime \prime}\right)$ for $t^{\prime \prime}<t$.

properties of $u(t)$ II

- FPE for $u(t)$.

$$
\begin{aligned}
\left\langle u(t+\Delta t)-u_{0} \mid\left[u_{0}, t\right]\right\rangle & =\left\langle\int_{t}^{t+\Delta t} \xi(s) d s\right\rangle=0 \\
\left\langle\left(u(t+\Delta t)-u_{0}\right)^{2} \mid\left[u_{0}, t\right]\right\rangle & =\int_{t}^{t+\Delta t} \int_{t}^{t+\Delta t} d s d s^{\prime}\left\langle\xi(s) \xi\left(s^{\prime}\right)\right\rangle \\
& =\int_{t}^{t+\Delta t} \int_{t}^{t+\Delta t} d s d s^{\prime} \delta\left(s-s^{\prime}\right)=\Delta t
\end{aligned}
$$

Hence, $A\left(u_{0}, t\right)=0, B\left(u_{0}, t\right)=1$: the Wiener Process.

- $\xi(t)=\frac{d W(t)}{d t}$: paradox!

Stochastic Integral

- Mathematically speaking, the Langevin equation does not exist.
- However, the integral equation can be interpreted consistently.

$$
\begin{aligned}
x(t)-x(0) & =\int_{0}^{t} a[x(s), s] d s+\int_{0}^{t} b[x(s), s] \xi(s) d s \\
& =\int_{0}^{t} a[x(s), s] d s+\int_{0}^{t} b[x(s), s] d W(s)
\end{aligned}
$$

which is a kind of stochastic Stieltjes integral w.r.t. a sample function $W(t)$.

Definition of the Stochastic Integral

- (naive) definition

$$
\int_{t_{0}}^{t} G\left(t^{\prime}\right) d W\left(t^{\prime}\right) \stackrel{?}{=} \lim _{n \rightarrow \infty} \underbrace{\left\{\sum_{i=1}^{n} G\left(\tau_{i}\right)\left[W\left(t_{i}\right)-W\left(t_{i-1}\right)\right]\right\}}_{\equiv S_{n}}
$$

where $t_{0} \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n-1} \leq t_{n}=t$ and $t_{i-1} \leq \tau_{i} \leq t_{i}$.

- But S_{n} depends on the choice of τ 's. Take $G(t)=W(t)$,

$$
\begin{aligned}
\left\langle S_{n}\right\rangle & =\sum_{i}\left\langle W\left(\tau_{i}\right)\left[W\left(t_{i}\right)-W\left(t_{i-1}\right)\right]\right\rangle \\
& =\sum_{i=1}^{n}\left[\min \left(\tau_{i}, t_{i}\right)-\min \left(\tau_{i}, t_{i-1}\right)\right]=\sum_{i=1}^{n}\left(\tau_{i}-t_{i-1}\right)
\end{aligned}
$$

Choose $\tau_{i}=\alpha t_{i}+(1-\alpha) t_{i-1}(0 \leq \alpha \leq 1)$, then $\left\langle S_{n}\right\rangle=\alpha\left(t-t_{0}\right)$.

Itô stochastic integral

the Itô stochastic integral ($\alpha=0$ or $\tau_{i}=t_{i-1}$)

$$
\int_{t_{0}}^{t} G\left(t^{\prime}\right) d W\left(t^{\prime}\right) \equiv \operatorname{ms-lim}_{n \rightarrow \infty}\left\{\sum_{i=1}^{n} G\left(t_{i-1}\right)\left[W\left(t_{i}\right)-W\left(t_{i-1}\right)\right]\right\}
$$

$G(t)$ is assumed not to be affected by the "future" : causality.
Such a $G(t)$ is called a nonanticipating function.

- examples of nonanticipating functions
(1) $W(t)$
(2) $\int^{t} F\left[W\left(t^{\prime}\right)\right] d t^{\prime}$
(3) $\int^{t} F\left[W\left(t^{\prime}\right)\right] d W\left(t^{\prime}\right)$
(- $\int^{t} G\left(t^{\prime}\right) d t^{\prime}(G(t)$ itself is a nonanticipating function)
(0) $\int^{t} G\left(t^{\prime}\right) d W\left(t^{\prime}\right)$

Example $\int W(t) d W(t)$

$$
\begin{aligned}
S_{n} & =\sum_{i=1}^{n} W_{i-1}\left(W_{i}-W_{i-1}\right)=\frac{1}{2} \sum_{i}\left[W_{i}^{2}-W_{i-1}^{2}-\Delta W_{i}^{2}\right] \\
& =\frac{1}{2}\left[W(t)^{2}-W\left(t_{0}\right)^{2}\right]-\underbrace{\sum_{i} \Delta W_{i}^{2}}_{\equiv U} .
\end{aligned}
$$

Note that

- $\langle U\rangle=\sum_{i}\left\langle\Delta W_{i}^{2}\right\rangle=\sum_{i}\left(t_{i}-t_{i-1}\right)=t-t_{0}$.
- $\left\langle\left(U-\left(t-t_{0}\right)\right)^{2}\right\rangle=2 \sum_{i}\left(t_{i}-t_{i-1}\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$ (check it!)

Hence (mean square limit),

$$
\int_{t_{0}}^{t} W\left(t^{\prime}\right) d W\left(t^{\prime}\right)=\underset{n \rightarrow \infty}{\operatorname{ms-lim}} S_{n}=\frac{1}{2}\left[W(t)^{2}-W\left(t_{0}\right)^{2}\right]-\frac{1}{2}\left(t-t_{0}\right) .
$$

(assignment 9)

Comments

- $\left\langle\int_{t_{0}}^{t} W\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle=\left\langle\frac{1}{2}\left[W(t)^{2}-W\left(t_{0}\right)^{2}\right]-\frac{1}{2}\left(t-t_{0}\right)\right\rangle=0$.
- ΔW_{i}^{2} is not negligible $[\sim O(d t)]$.
- the Stratonovich integral

$$
\text { (S) } \begin{aligned}
\int_{t_{0}}^{t} W\left(t^{\prime}\right) d W\left(t^{\prime}\right) & =\operatorname{ms}_{n \rightarrow \infty} \sum_{i=1}^{n} \frac{W_{i}+W_{i-1}}{2}\left(W_{i}-W_{i-1}\right) \\
& =\frac{1}{2}\left[W(t)^{2}-W\left(t_{0}\right)^{2}\right]
\end{aligned}
$$

similar to the ordinary calculus.
Note that the Stratonovich integral is not the same as the midpoint prescription $\alpha=\frac{1}{2}$, though similar (assignment).

Properties of the Itô Stochastic Integral I

- $d W(t)^{2}=d t$ and $d W(t)^{2+N}=d W(t) d t=0$ in the sense that

$$
\begin{aligned}
\int_{t_{0}}^{t}\left[d W\left(t^{\prime}\right)\right]^{2+N} G\left(t^{\prime}\right) & \equiv \mathrm{ms}-\lim _{n \rightarrow \infty} \sum_{i} G_{i-1} \Delta W_{i}^{2+N} \\
& = \begin{cases}\int_{t_{0}}^{t} d t^{\prime} G\left(t^{\prime}\right) & \text { for } N=0 \\
0 & \text { for } N>0\end{cases}
\end{aligned}
$$

- Existence
$\int G\left(t^{\prime}\right) d W\left(t^{\prime}\right)$ exists whenever $G(t)$ is continuous and nonanticipating

Properties of the Itô Stochastic Integral II

- Integration of Polynomials. Since

$$
\begin{aligned}
d[W(t)]^{n} & =[W(t)+d W(t)]^{n}-W(t)^{n} \\
& =\sum_{r=1}^{n}\binom{n}{r} W(t)^{n-r} d W(t)^{r} \leftarrow d W(t)^{2}=d t \\
& =n W(t)^{n-1} d W(t)+\frac{n(n-1)}{2} W^{n-2} d t,
\end{aligned}
$$

we get

$$
\begin{aligned}
\int_{t_{0}}^{t} W\left(t^{\prime}\right)^{n} d W\left(t^{\prime}\right)= & \frac{1}{n+1}\left[W(t)^{n+1}-W\left(t_{0}\right)^{n+1}\right] \\
& -\frac{n}{2} \int_{t_{0}}^{t} W\left(t^{\prime}\right)^{n-1} d t^{\prime}
\end{aligned}
$$

Properties of the Itô Stochastic Integral III

- General differentiation rule (keep terms up to $d W^{2}$)

$$
\begin{aligned}
d f[W(t), t] & =\frac{\partial f}{\partial t} d t+\frac{\partial f}{\partial W} d W(t)+\frac{1}{2} \frac{\partial^{2} f}{\partial W^{2}} d W(t)^{2} \\
& =\left(\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial W^{2}}\right) d t+\frac{\partial f}{\partial W} d W(t)
\end{aligned}
$$

- Mean value Formula

$$
\left\langle\int G\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle=0 .
$$

- Correlation Formula

$$
\left\langle\int_{t_{0}}^{t} G\left(t^{\prime}\right) d W\left(t^{\prime}\right) \int_{t_{0}}^{t} H\left(t^{\prime}\right) d W\left(t^{\prime}\right)\right\rangle=\int_{t_{0}}^{t}\left\langle G\left(t^{\prime}\right) H\left(t^{\prime}\right)\right\rangle d t^{\prime} .
$$

Stochastic Differential Equation (SDE)

- Itô SDE : definition

$$
d x(t)=a[x(t), t] d t+b[x(t), t] d W(t)
$$

if for all t and t_{0},

$$
x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} a\left[x\left(t^{\prime}\right), t^{\prime}\right] d t^{\prime}+\int_{t_{0}}^{t} b\left[x\left(t^{\prime}\right), t^{\prime}\right] d W\left(t^{\prime}\right)
$$

- $x(t)$ is a Markov process.
- additive noise: $b[x(t), t]$ does not depend on x.
- multiplicative noise: $b[x(t), t]$ does depend on x.

Itô's Formula

$$
\begin{aligned}
& d f[x(t)]=f^{\prime}[x(t)] d x(t)+\frac{1}{2} f^{\prime \prime}[x(t)] d x(t)^{2} \\
& =f^{\prime}[x(t)]\{a[x(t), t] d t+b[x(t), t] d W(t)\}+\frac{1}{2} f^{\prime \prime}[x(t)] b[x(t), t]^{2} d W(t)^{2} \\
& =\left\{a[x(t), t] f^{\prime}[x(t)]+\frac{1}{2} f^{\prime \prime}[x(t)] b[x(t), t]^{2}\right\} d t+f^{\prime}[x(t)] b[x(t), t] d W(t)
\end{aligned}
$$

where we have used,

$$
d x(t)=a[x(t), t] d t+b[x(t), t] d W(t)
$$

$d W(t)^{2}=d t$, and $d W(t)^{2+N}=d W(t) d t=0$.

$$
\frac{d\langle f[x(t)]\rangle}{d t}=\left\langle a[x(t), t] f^{\prime}[x(t)]+\frac{1}{2} f^{\prime \prime}[x(t)] b[x(t), t]^{2}\right\rangle
$$

Connection between the FPE and the SDE

$$
\begin{aligned}
\frac{d}{d t}\langle f[x(t)]\rangle & =\int d x f(x) \frac{\partial}{\partial t} P\left(x, t \mid x_{0}, t_{0}\right) \\
& =\int d x\left\{a(x, t) f^{\prime}(x)+\frac{1}{2} b(x, t)^{2} f^{\prime \prime}(x)\right\} P\left(x, t \mid x_{0}, t_{0}\right) \\
& =\int d x f(x)\left\{-\frac{\partial}{\partial x}(a(x, t) P)+\frac{1}{2} \frac{\partial^{2}}{\partial x}\left(b(x, t)^{2} P\right)\right\}
\end{aligned}
$$

Since f is arbitrary,

FPE-SDE connection (assignment 10)

$$
d x=a d t+b d W \Leftrightarrow \frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}(a P)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(b^{2} P\right)
$$

Stratonovich SDE

- Stratonovich integral : definition

$$
\begin{aligned}
& \text { (S) } \int_{t_{0}}^{t} G\left[x\left(t^{\prime}\right), t^{\prime}\right] d W\left(t^{\prime}\right) \\
& =\mathrm{ms}_{n \rightarrow \infty} \sum_{i=1}^{n} G\left[\frac{1}{2}\left(x\left(t_{i}\right)+x\left(t_{i-1}\right)\right), t_{i-1}\right]\left(W\left(t_{i}\right)-W\left(t_{i-1}\right)\right)
\end{aligned}
$$

- Stratonovich SDE

$$
(\mathrm{S}) d x(t)=a[x(t), t] d t+b[x(t), t] d W(t)
$$

if for all t and t_{0},

$$
x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} a\left[x\left(t^{\prime}\right), t^{\prime}\right] d t^{\prime}+(\mathrm{S}) \int_{t_{0}}^{t} b\left[x\left(t^{\prime}\right), t^{\prime}\right] d W\left(t^{\prime}\right)
$$

- change of variables (same as the ordinary calculus rule)

$$
(\mathrm{S}) d f[x(t)]=f^{\prime}[x(t)]\{a[x(t), t] d t+b[x(t), t] d W(t)\}
$$

Stratonovich vs Itô

- From Stratonovich to Itô

$$
\begin{aligned}
& {[(\mathrm{S})] d x=x_{i}-x_{i-1}=\beta\left(\frac{x_{i}+x_{i-1}}{2}, t_{i-1}\right)\left(W\left(t_{i}\right)-W\left(t_{i-1}\right)\right)} \\
& =\left[\beta\left(x_{i-1}\right)+\frac{d x}{2} \beta^{\prime}\left(x_{i-1}\right)\right] \Delta W_{i}=\beta\left(x_{i-1}\right) d W_{i}+\frac{1}{2} \beta\left(x_{i-1}\right) \beta^{\prime}\left(x_{i-1}\right) d t
\end{aligned}
$$

Stratonovich and Itô

$[\mathrm{S}] d x=\alpha(x, t) d t+\beta(x, t) d W \Leftrightarrow d x=\left(\alpha(x, t)+\frac{1}{2} \beta(x, t) \frac{\partial \beta}{\partial x}\right) d t+\beta(x, t) d W$

$$
\langle\beta(x, t) d W\rangle= \begin{cases}0, & \text { Itô, } \\ \frac{1}{2} \beta(x, t) \frac{\partial \beta}{\partial x} d t, & \text { Stratonovich. }\end{cases}
$$

Example I : Geometric Brownian Motion

- $d x=c x d W(t)$.
- change of variable : $y=\ln x$

$$
\begin{aligned}
& d y=\frac{d x}{x}-\frac{1}{2 x^{2}}(d x)^{2}=c d W(t)-\frac{1}{2} c^{2} d t \\
& \Rightarrow y(t)=y\left(t_{0}\right)+c\left[W(t)-W\left(t_{0}\right)\right]-\frac{1}{2} c^{2}\left(t-t_{0}\right) \\
& \Rightarrow x(t)=x\left(t_{0}\right) \exp \left\{c\left[W(t)-W\left(t_{0}\right)\right]-\frac{1}{2} c^{2}\left(t-t_{0}\right)\right\}
\end{aligned}
$$

- mean and autocorrelation function (assignment 11)

$$
\begin{aligned}
\langle x(t)\rangle & =\left\langle x\left(t_{0}\right)\right\rangle \\
\langle x(t), x(s)\rangle & =\left\langle x\left(t_{0}\right)^{2}\right\rangle \exp \left\{c^{2} \min \left(t-t_{0}, s-t_{0}\right)\right\}
\end{aligned}
$$

Exmaple 2: Ornstein-Uhlenbeck Process

- $d x=-k x d t+\sqrt{D} d W$
- change of variable : $y=x e^{k t}$

$$
\begin{aligned}
d y & =(d x) e^{k t}+x d\left(e^{k t}\right)=[-k x d t+\sqrt{D} d W] e^{k t}+k x e^{k t} d t \\
& =\sqrt{D} e^{k t} d W \\
x(t) & =x(0) e^{-k t}+\sqrt{D} \int_{0}^{t} e^{-k\left(t-t^{\prime}\right)} d W\left(t^{\prime}\right)
\end{aligned}
$$

- mean and autocorrelation function

$$
\begin{aligned}
\langle x(t)\rangle & =\langle x(0)\rangle e^{-k t} \\
\langle x(t) x(s)\rangle & =\left\langle x(0)^{2}\right\rangle e^{-k(s+t)}+D \int_{0}^{\min (t, s)} e^{-k\left(t+s-2 t^{\prime}\right)} d t^{\prime} \\
\langle x(t), x(s)\rangle & =\left[\operatorname{var}\{x(0)\}-\frac{D}{2 k}\right] e^{-k(t+s)}+\frac{D}{2 k} e^{-k|t-s|}
\end{aligned}
$$

The white noise limit

- In real physical systems, noise should be correlated.
- We are interested in a limit of a differential equation

$$
\frac{d x}{d t}=a(x)+b(x) \xi_{\gamma}(t)
$$

where $\xi_{\gamma}(t)$ is a stochastic source with nonzero correlation time.

- If $\left\langle\xi_{\gamma}(t)\right\rangle=0$ and

$$
\lim _{\gamma \rightarrow \infty}\left\langle\xi_{\gamma}(t) \xi_{\gamma}\left(t^{\prime}\right)\right\rangle_{s}=\delta\left(t-t^{\prime}\right)
$$

the above differential equation becomes

The white noise limit (assignment 12)

$$
(\mathrm{S}) d x=a(x) d t+b(x) d W(t)
$$

Positive Poisson Representation (Gardiner)

Theorem

For any P_{n}, a positive $f(\alpha)$ exists such that

$$
P_{n}=\int d^{2} \alpha\left(e^{-\alpha} \frac{\alpha^{n}}{n!}\right) f(\alpha)
$$

where $\alpha=\alpha_{x}+i \alpha_{y}$ and $d^{2} \alpha=d \alpha_{x} d \alpha_{y}$.

- $1=\sum_{n=0}^{\infty} P_{n}=\int d^{2} \alpha\left(\sum_{n} e^{-\alpha} \frac{\alpha^{n}}{n!}\right) f(\alpha)=\int d^{2} \alpha f(\alpha)$.

Hence, $f(\alpha)$ is a probability density.

- If $f(\alpha)=\delta(\alpha-\rho)$ for real $\rho, P_{n}=e^{-\rho} \rho^{n} / n$!.
- $\langle n\rangle=\langle\alpha\rangle$ always.
- $\left\langle n^{m}\right\rangle_{f} \equiv\langle n(n-1) \cdots(n-m+1)\rangle=\left\langle\alpha^{m}\right\rangle$

SDE using Poisson representation

$$
\begin{gathered}
X \underset{k_{3}}{\stackrel{k_{1}}{\rightleftarrows}} 0, \quad X \underset{k_{4}}{\stackrel{k_{2}}{\rightleftarrows}} 2 X \\
d \alpha=\left[k_{3}+\left(k_{2}-k_{1}\right) \alpha-k_{4} \alpha^{2}\right] d t+\left[2\left(k_{2} \alpha-k_{4} \alpha^{2}\right)\right]^{1 / 2} d W(t) .
\end{gathered}
$$

- If $k_{4}=0$, the SDE is exactly solvable (linear birth-death).
- If $k_{2}=k_{4}=0$, the dynamics is deterministic.
- If $k_{2}=0, \alpha$ should be complex.
- cf. Path integral approach (Cardy, cond-mat/9607163)
- assignment 13, project

