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가톨릭대학교
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Brownian motion (R. Brown, 1827)

pollen grains (꽃가루) in water : manifest of life?

But, any fine particles exhibit such a motion.
For a nice introduction to the history of Brownian motion,
E. Nelson, Dynamical Theories of Brownian Motion (1967).
http://www.math.princeton.edu/~nelson/books.html
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Einstein’s contribution (1905)

열의분자운동이론이필요한,고요한액체속에있는작은입자의운동
에대하여

A. Einstein, Annalen der Physik 17, 549 (1905)

Beginning of stochastic modelling of natural phenomena
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Einstein’s prediction and experimental confirmation

Einstein’s prediction

∂P(x, t)
∂t

= D
∂2P(x, t)
∂x2 , 〈x(t)2〉 = 2Dt, D =

kBT
6πηa

a : radius of the suspended particle, η : viscosity,
T: temperature.
Smoluchowski’s independent work (1906).
Jean Baptiste Perrin’s experiment (Avogadro number)

http://nobelprize.org/nobel_prizes/physics/laureates/1926
Triumph of the atomic theory!
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Langevin’s contribution (1908)

브라운운동이론에대하여

P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).

English translation: D. S. Lemons and A. Gythiel, Am. J. Phys. 65,
1079 (1997).

“infinitely more simple”

Foundation of the stochastic differential equation
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Langevin equation

viscous friction and random force (fluctuation)

m
d2x
dt2 = −6πηa

dx
dt

+ X.

Multiply x on both sides of the equation

m
2

d2

dt2 x2 − mv2 = −3πηa
d
dt

x2 + xX.

Average and equipartition theorem

m
2

d2

dt2 〈x
2〉+ 3πηa

d
dt
〈x2〉 = 〈mv2〉︸ ︷︷ ︸

=kBT

+ 〈xX〉︸︷︷︸
=0

d
dt
〈x2〉 =

kBT
3πηa

+ C exp
(
−6πηa

m
t
)

t→∞−−−−→ kBT
3πηa

.

〈x2〉 = 2Dt =
kBT

3πηa
t.
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Sample space and sample points

sample space Ω : a set of all outcomes
toss a coin

Ω = {H, T}

cast a die

Ω = {ω1, ω2, · · · , ω6}, or Ω = {Even,Odd}

Maxwell velocity distribution

Ω = {(v1, v2, v3)| −∞ < vi <∞}

Wiener Process

Ω = {W(t)|W ∈ C0, W(0) = 0, 0 < t < T}

sample points (paths) ω: elements of Ω
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Events

an event : a subset of the sample space
If A1, A2, A3, · · · are events, then we expect

∞⋃
i=1

Ai and
∞⋂

i=1

Ai are events.

Ω : a sure event
∅ : an event which never happens.
Two events A and B are called mututally exclusive, if

A ∩ B = ∅.
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Probability (measure)

A : an event
0 ≤ P(A) ≤ 1, P(Ac) = 1− P(A), P(∅) = 0, P(Ω) = 1.
P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅.
If A1, A2, . . . are mutually exclusive,

P

(∞⋃
i=1

Ai

)
=
∞∑

i=1

P(Ai) (countable union).

Why countable union?
Consider Ω = {x|0 ≤ x ≤ 1}, P({x|a ≤ x ≤ b}) = b− a.
Let Ac = {c}. P(Ac) = 0, but P(

⋃
0≤c≤1 Ac) = 1.
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In mathematics . . .

M : a collection of subsets of Ω.

M is called a σ-algebra (over Ω) if
∅ ∈ M, Ω ∈M.
A ∈M implies Ac ∈M
If Ai ∈M (i = 1, 2, · · · ),

⋃
i

Ai ∈M (countable union).

P is a (positive) measure if
P :M 7→ [0,∞],
P(∅) = 0, and
for Ai ∈M with Ai ∩ Aj = ∅ (i = 1, 2, · · · ),

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).
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Conditional probability

definition (Bayes’ rule)

P(A|B) =
P(A ∩ B)

P(B)
, P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A).

If ∪iBi = Ω and Bi’s are mutually exclusive,⋃
i

(A ∩ Bi) = A ∩
(⋃

i

Bi

)
= A ∩ Ω = A,

which entails∑
i

P(A ∩ Bi) = P

(⋃
i

(A ∩ Bi)

)
= P(A),

or equivalently ∑
i

P(A|Bi)P(Bi) = P(A).
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Independence I

Two events A and B are independent if

P(A|B) = P(A)

or
P(A ∩ B) = P(A)P(B).

Events Ai (i = 1, 2, . . . , n) are independent if,
for any subset {i1, i2, . . . , ik} of {1, 2, . . . , n},

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P(Ai1)P(Ai2) · · ·P(Aik).
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Random variable and stochastic process

a random variable (r.v.) is a function X : Ω 7→ R.
a function of an r.v. is also an r.v.
X is not necessarily a one-to-one function.
For example,

cast a die X(ωn) = n.
cast a die X(Even) = 1, X(Odd) = −1.
Maxwell velocity distribution X(ω) = v1
Wiener Process X(ω) = W(t) at “time” t

stochastic (=random) process
random variables indexed by “time”.
random variable, random vector, random process, random
function, . . . : random elements.
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Probability density function and probability distribution

In a discrete sample space Ω = {x1, · · · } of an r.v. X,

Pn ≡ P(xn) ≡ P({xn}),
∑

n

Pn = 1.

In a (one-dimensional) continuous sample space,

P(A) ≡
∫

A
P(x)dx,

∫
Ω

P(x)dx = 1

P(x) is called a probability density function or a density.
P(x)dx : probability for X to lie between x and x + dx.
distribution function (cumulative distribution function)

F(x) = P(X ≤ x) =

∫ x

−∞
P(x′)dx′,

dF(x)

dx
= P(x)
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A distribution without a density : Cantor distribution

F

x

But!
dF
dx

= 0 almost everywhere.
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Average

Definition
〈f (X)〉 =

∫
Ω

f (X(ω))P(ω)dω

discrete space
〈f (X)〉 =

∑
n

f (xn)P(xn)

continuous space

〈f (X)〉 =

∫
f (x)P(x)dx

m-th Moment
µm ≡ 〈Xm〉
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Characteristic function

definition

G(k) ≡
〈
eikX〉 =



∫
eikxP(x)dx continuous

∑
n

eikxnP(xn) discrete

G(k) exists for all real k.
G(0) = 1, |G(k)| < 1 (k 6= 0).
inverse formula

P(x) =
1

2π

∫
G(k)e−ikxdk

G(k) characterizes P(x).
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Moment generating function

If G(k) is analytic at k = 0,

G(k) = 1 +
∞∑

m=1

(ik)m

m!
µm,→ µm = (−i)m ∂m

∂km G(k)

∣∣∣∣
k=0

(Moment) Generating Function
If X only assumes integral values, it is convenient to introduce

G(z) ≡
∞∑

n=−∞
znPn. Pn =

1
2πi

∮
|z|=1

G(z)
zn+1 dz

In this case, we define the factorial moments

φm ≡ 〈X(X − 1) · · · (X − m + 1)〉, φ0 = 1.

Sometimes 〈Xm〉f is used to denote φm.

dm

dzmG(z)
∣∣∣∣
z=1

= φm.
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Examples

Gaussian (normal distribution)

P(x) =
1√

2πσ2
exp

(
−(x− µ1)2

2σ2

)
→ G(k) = exp

(
ikµ1 −

1
2
σ2k2

)

Lorentzian (Cauchy distribution)

P(x) =
1
π

1
x2 + 1

→ G(k) = e−|k|

No moments exist. (even average does not exist.)
Poisson distribution

Pn =
λn

n!
e−λ,→ G(z) = e(z−1)λ, φm = λm.
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A Caveat : moments and moments generating function

If X and Y have the same GF, PX and PY are the same (almost
everywhere).
Can we conclude that PX = PY if all moments are the same?
log-normal distribution : ln X is normal-distributed.

f (x) = Θ(x)
1

x
√

2π
exp

[
−1

2
(ln x)2

]
⇒ µm = exp(m2/2).

Different density with same moments (−1 ≤ ε ≤ 1).

fε(x) = f (x) [1 + ε sin(2π ln x)]

Since, for any non-negative integer n (using ln x = y + n),∫ ∞
0

xnf (x) sin(2π ln x)dx = 0,

µn = exp(m2/2) for all ε.
Note that G(k) cannot be written as a converging series.

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 24 / 120



Cumulant generating function

ln G(k) =

∞∑
m=1

(ik)m

m!
κm,→ κm = (−i)m ∂m

∂km ln G(k)

∣∣∣∣
k=0

κ1 = µ1 : mean
κ2 = µ2 − µ2

1 =
〈
(X − 〈X〉)2

〉
: variance

κ3 = µ3 − 3µ2µ1 + 2µ3
1 =

〈
(X − 〈X〉)3

〉
cf. skewness = κ3/κ

3/2
2

κ4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ6

1 6=
〈
(X − 〈X〉)4

〉
cf. kurtosis = κ4/κ

2
2
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Examples

Gaussian

ln G(k) = ikµ1 +
(ik)2

2
σ2

κ1 = µ1, κ2 = σ2, κm = 0 for m > 2.

Does P(x) exist whose ln G(k) is a polynomial of order n > 2?
No! (Marcinkiewicz theorem)
See also, Rajagopal and Sudarshan, PRA 10, 1852 (1974).
Poisson distribution

G(k) = G(eik) = exp
[(

eik − 1
)
λ
]
.

ln G(k) =
(
eik − 1

)
λ =

∞∑
m=1

(ik)m

m!
λ,→ κm = λ for all m.
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Multivariate random variable or random vector

Let X be a random vector with components X1, · · · ,Xr.

joint probability distribution

P(X) = P(x1, x2, · · · , xr)

marginal distribution

P(x1, · · · , xs) ≡
∫

P(x1, · · · , xs, xs+1, · · · xr)dxs+1 · · · dxr

conditional probability

P(x1, · · · , xs|xs+1, · · · , xr) =
P(x1, · · · , xr)

P(xs+1, · · · , xr)

Average

〈f (X1, · · · ,Xr)〉 =

∫
f (x1, · · · , xr)P(x1, · · · , xr)dx1 · · · dxr.
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Independence II

Two sets of r.v.’s (X1, · · · ,Xs) and (Xs+1, · · · ,Xr) are statistically
independent if

P(x1, · · · , xr) = P(x1, · · · , xs)P(xs+1, · · · , xr).

Accordingly,

P(x1, · · · , xs|xs+1, · · · , xr) = P(x1, · · · , xs).

Random variables X1, · · · ,Xr are called independent and
identically distributed (i.i.d.) if

P(x1, · · · , xr) = P(x1) · · ·P(xr),
P(Xi = x) = P(Xj = x) for all i, j.
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Independence III

Pairwise Independence : For any pair i, j, P(xi, xj) = P(xi)P(xj).
pairwise independence implies statistical independence?
Example
Sample space Ω = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.
ω = (X1,X2,X3), P(ω) = 1/4.

P(Xi = 1) = P(Xi = 0) =
1
2

It is easy to prove pairwise independence.

P(X1,X2) = P(X1)P(X2)

However,
P(X1 = 1,X2 = 1,X3 = 1) 6= P(X1 = 1)P(X2 = 1)P(X3 = 1).
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Independence IV

If X1 and X2 are independent,

〈f1(X1)f2(X2)〉 = 〈f1(X1)〉〈f2(X2)〉.

In particular, the characteristic function of Y = X1 + X2 is

G(k) ≡
〈
eikY〉 =

〈
eik(X1+X2)

〉
= GX1(k)GX2(k).

Covariance

〈X1,X2〉 ≡ 〈(X1 − 〈X1〉)(X2 − 〈X2〉)〉 = 〈X1X2〉 − 〈X1〉〈X2〉.

If X1 and X2 are independent, 〈X1,X2〉 = 0.
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Law of large numbers

Let X1, . . . ,Xn be i.i.d. r.v.’s with probability (density) P(x).
If the average of P(x) exists and it is µ1,

(strong) law of large numbers

lim
n→∞

X1 + · · ·+ Xn

n
= µ1.

Example

Xi =

{
1 if an event A happens,
0 otherwise,

P(x) =

{
P(A) x = 1,
1− P(A) x = 0.

Since µ1 = P(A),

lim
n→∞

X1 + · · ·+ Xn

n
= P(A).

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 31 / 120

Central Limit Theorem

Let X1, . . . ,Xn be i.i.d. r.v.’s with probability (density) P(x).
Let Sn = X1 + · · ·+ Xn.
If the average (µ1) and variance (σ2) of P(x) exist,

Central Limit Theorem (CLT)

lim
n→∞

P
(

Sn − nµ1√
nσ

< x
)

=
1√
2π

∫ x

−∞
exp

(
−1

2
y2
)

dy

the CLT implies the (weak) law of large numbers

P
(∣∣∣∣Sn

n
− µ1

∣∣∣∣ < ε

)
= P

(∣∣∣∣Sn − nµ1√
nσ

∣∣∣∣ < √nε
σ

)
∼ 1√

2π

∫ √nε/σ

−
√

nε/σ
e−y2/2dy n→∞−−−−→ 1 for any ε > 0.
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Proof of the CLT

Taylor expansion of the cumulant generating function for Xi

ln G(k) = ikµ1 −
k2

2
σ2 + R(k),

where R(x)/x2 → 0 as x→ 0.
generating function for Yn = (Sn − nµ1)/(

√
nσ)

〈eikYn〉 = exp
(
−
√

nµ1k
σ

)
G
(

k√
nσ

)n

⇒ ln〈eikYn〉 = −k2

2
+ nR

(
k√
nσ

)
→ −k2

2
.
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Stable distributions

Gaussian (assignment 1)
Let Xi’s are i.i.d. Gaussian r.v. with mean 0 and variance 1, and let
Y = (X1 + · · ·+ Xn)/

√
n.

P(Y = y) =
1√
2π

exp
(
−1

2
y2
)
.

Lorentzian (breakdown of the law of large numbers)

P(x) =
1
π

1
x2 + 1

→ G(k) = e−|k|

Let Y = (X1 + · · ·+ Xn)/n.

GY(k) ≡ 〈eikY〉 =

(
G
(

k
n

))n

= G(k)

Levý distribution (assignment 2)
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To do list

1 Postulating a priori probability
equal a priori probability

2 Performing the suitable mathematical transformations
3 Comparing the a posteriori distribution with observation
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equal a priori probability : a caveat

principle of insufficient reason (Laplace)
Bertrand’s circle with “random” chord. For a detail, see
en.wikipedia.org/wiki/Bertrand_paradox_(probability)

1
3

1
2

1
4
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Stochastic Process redefined

There is a time-dependent r.v. X(t).
We can measure values x1, x2, · · · at times t1, t2, · · · .
The set of all outcomes (X) is called the state space.
“space” and “time” can be either continuous or discrete.
Stochastic process is fully determined by P(x1, t1; · · · ; xn, tn)

conditional probability

P(x1, t1; x2, t2, · · ·|y1, τ1; y2, τ2; · · · )

=
P(x1, t1; x2, t2; · · · ; y1, τ1; y2, τ2; · · · )

P(y1, τ1; y2, τ2; · · · )

valid definitions independently of the ordering of the times.
In the following, unless otherwise is mentioned, ti ≥ τj (for all i, j) is
assumed.
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Kinds of stochastic process

a) Complete Independence

P(x1, t1; x2, t2; · · · ) =
∏

i

P(xi, ti)

b) Bernoulli Trials: complete independence and
time-independent P(xi, ti) = P(xi)

c) Martingales (fair games):

〈X(t)|[x0, t0]〉 ≡
∫

dx x p(x, t|x0, t0) = x0

We have defined conditional average
d) Markov Processes: present determines future.
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Markov Process I

Markov assumption (τ1 > τ2 > . . .)

P(x1, t1; · · · |y1, τ1; y2, τ2; · · · ) = P(x1, t1; · · · |y1, τ1)

P(x, t|y, τ) is called the transition probability.
P(x, t|y, τ) completely defines the process.

p(x1, t1; x2, t2; · · · ; xn, tn)

= p(x1, t1|x2, t2; · · · ; xn, tn)p(x2, t2; · · · ; xn, tn)

= p(x1, t1|x2, t2)p(x2, t2|x3, t3) · · · p(xn−1, tn−1|xn, tn)p(xn, tn),

provided t1 > t2 > · · · > tn.
Does the Markov assumption impose time direction?
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Markov Process II

The present determines the past, too.

P(y1, τ1|x1, t1; x2, t2) = P(y1, τ1|x2, t2) if t1 > t2 > τ1.

P(y1, τ1|x1, t1; x2, t2) =
P(y1, τ1; x1, t1; x2, t2)

P(x1, t1; x2, t2)

=
P(x1, t1|x2, t2)

P(x1, t1; x2, t2)︸ ︷︷ ︸
=1/P(x2,t2)

P(x2, t2; y1, τ1)

=
P(x2, t2; y1, τ1)

P(x2, t2)
= P(y1, τ1|x2, t2)
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Markov Process III

Using P(A|B) = P(B|A)P(A)/P(B),

p(x1, t1; x2, t2; · · · ; xn, tn) =

[
n−1∏
i=1

p(xi, ti|xi+1, ti+1)

]
p(xn, tn)

=

[
n−1∏
i=1

p(xi+1, ti+1|xi, ti)
p(xi, ti)

p(xi+1, ti+1)

]
p(xn, tn),

=

[
n−1∏
i=1

p(xi+1, ti+1|xi, ti)

]
p(x1, t1),

provided t1 > t2 > · · · > tn.
p(y, τ |x, t) also determines the stochastic process to the past.
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Chapman-Kolmogorov equation

Two identities (vaild to all stochastic processes)

P(x1, t1) =

∫
dx2 P(x1, t1|x2, t2)P(x2, t2),

P(x1, t1|x3, t3) =

∫
dx2 P(x1, t1; x2, t2|x3, t3)

=

∫
dx2 P(x1, t1|x2, t2; x3, t3)P(x2, t2|x3, t3)

If t1 ≥ t2 ≥ t3 and the Markov assumption is introduced,

Chapman-Kolmogorov (CK) equation

P(x1, t1|x3, t3) =

∫
d x2 P(x1, t1|x2, t2)P(x2, t2|x3, t3).
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Chapman-Kolmogorov equation : consistency

From
∑

i P(A ∩ Bi) = P(A),

P(x1, t1) =

∫
dx3 P(x1, t1; x3, t3) =

∫
dx3 P(x1, t1|x3, t3)P(x3, t3)

=

∫
dx3 dx2 P(x1, t1|x2, t2)P(x2, t2|x3, t3)P(x3, t3)

=

∫
dx2 P(x1, t1|x2, t2)P(x2, t2) =

∫
dx2 P(x1, t1; x2, t2)
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Is the solution of the CK equation a Markov process?

Ω = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

P(13|11) =
1
2

= P(13|02)P(02|11) + P(13|12)P(12|11),

P(03|11) =
1
2

= P(03|02)P(02|11) + P(03|12)P(12|11),

P(13|01) =
1
2

= P(13|02)P(02|01) + P(13|12)P(12|01),

P(03|01) =
1
2

= P(03|02)P(02|01) + P(03|12)P(12|01),

Hence, P(x3|x1) =
1∑

x2=0

P(x3|x2)P(x2|x1).

But,
P(13|12; 11) = 1 6= P(13|12).

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 45 / 120



Continuity in stochastic processes

Lindberg condition
For a Markov process, the sample paths are continuous function
of t with probability one, if, for any ε > 0,

lim
∆t→0

1
∆t

∫
|x−y|>ε

dx P(x, t + ∆t|y, t) = 0.

Examples (assignment 3)

P(x, t + ∆t|y, t) =
1√

4πD∆t
exp

(
− (x− y)2

4D∆t

)
: continuous

P(x, t + ∆t|y, t) =
∆t

π [(x− y)2 + ∆t2]
: discontinuous
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Example of sample paths (Gardiner)

X(t) : Cauchy process, W(t): Wiener Process.
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Differential Chapman-Kolmogorov Equation

∂P(x, t|y, t′)
∂t

= −
∑

i

∂

∂xi

[
Ai(x, t)P(x, t|y, t′)

]
+

1
2

∑
ij

∂2

∂xi∂xj

[
Bij(x, t)P(x, t|y, t′)

]


continuous
(Fokker-Planck
equation)

+

∫
dz
[
W(x|z, t)P(z, t|y, t′)−W(z|x, t)P(x, t|y, t′)

]
︸ ︷︷ ︸

discontinuous (master equation)

,

W(x|z, t) ≡ lim
∆t→0

P(x, t + ∆t|z, t)/∆t,

Ai(z, t) = lim
ε→0

lim
∆t→0

1
∆t

∫
|x−z|<ε

dx(xi − zi)p(x, t + ∆t|z, t),

Bij(z, t) = lim
ε→0

lim
∆t→0

1
∆t

∫
|x−z|<ε

dx(xi − zi)(xj − zj)p(x, t + ∆t|z, t).
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discrete space-time

Markov Process in discrete space-time

P(n1,m + 1) =
∑
n2

P(n1,m + 1|n2,m)P(n2,m).

Matrix representation
Let Ψ(m) = (P(n,m))†, T(m)n1n2 ≡ P(n1,m + 1|n2,m),

Ψ(m + 1) = T(m)Ψ(m).

If we assume T(m) = T, Ψ(m) = TmΨ(0).
homogeneous Markov process

P(n1,m|n2,m′) = (Tm−m′
)n1n2 = P(n1,m− m′|n2, 0)

cf: stationary process P(x, t) = Ps(x)
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Markov Chains

Markov chains
1 discrete “space”
2 discrete “time”
3 (time) homogeneous Markov process

“stochastic matrix”
its elements are all non-negative.
each column adds up to unity.
(. . . ,1,1,1,. . . ) is the left eigenstate of T with eigenvalue 1.

Existence of stationary state for finite system (by
Perron-Frobenius theorem)

lim
m→∞

Ψ(m) = lim
m→∞

TmΨ(0) = Ψs,

where Ψs is the right eigenstate of T with eigenvalue 1.
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Some Definitions

If S ⊂ X and Tij = 0 for j ∈ S and i ∈ X− S, the set of states S is
called closed
If closed states have a single state, then this state is called an
absorbing state.
If X contains two or more closed sets, the chain is called
decomposbale or reducible.

T =

(
T1 0
0 T2

)
A finite, irreducible chain has a unique stationary state.
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Galton-Watson Branching Process

discrete ‘generation’ (time) model
probability of each individual’s having k offspring is p(k).
Xm (r.v.) : number of individuals at m-th generation
X = {0, 1, 2, . . .} : state space, S = {0}: absorbing state.
What is the extinction probability, if X0 = 1?
i.i.d. r.v. ηm+1

j : number of offspring of j-th individual at generation
m

Xm+1 =

Xm∑
j=1

ηm+1
j

Tki ≡ P(Xm+1 = k|Xm = i) = [p(k)]∗i =
∑

k1+···ki=k

p(k1) · · · p(ki),

i-fold convolution of p(k) with itself.
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Branching Process – generating function

CK equation

Pk(m) ≡ P(Xm = k) =

∞∑
i=0

TkiPi(m− 1)

Generating function

Gm(z) ≡ 〈zXm〉 =

∞∑
k=0

zkPk(m)

Evolution equation for Gm

Gm+1(z) =
〈

z
∑Xm

j=1 η
m+1
j

〉
= 〈G(z)Xm〉 = Gm(G(z)),

where G(z) =
∑∞

k=0 zkp(k).
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Extinction Probability, ξ

Solution by iteration

Gm(z) = Gm−1(G(z)) = Gm−2(G(G(z)))

= G1(G(G(. . .))︸ ︷︷ ︸
m−1

) = G(m)(z) = G
(
G(m−1)(z)

)
= G(Gm−1(z)),

where G1(z) = G(z) (because X0 = 1).
Extinction probability, ξ
Since ξm ≡ P(Xm = 0) = Gm(z = 0), ξm = G(ξm−1). Thus,

the Fundamental Theorem

ξ is the smallest solution of ξ = G(ξ)(0 ≤ ξ ≤ 1).
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Graphical solution

µ ≡
∑

k

kp(k) = G′(z = 1), G(z = 1) = 1

G(ξ)

ξ

1

1

µ < 1

G(ξ)

ξ

1

1

µ > 1

1

p(0)

p(0)

G(
ξ)
=
ξ

G(ξ)

ξ

1

1

µ < 1

G(ξ)

ξ

1

1

µ > 1

1

G(
ξ)
=
ξ
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Mean and variance

Mean

µ1(m) ≡
∑

k

kPk(m) = G′m(1) =
∂

∂z
G (Gm−1(z))

∣∣∣∣
z=0

= G′(1)

(
∂

∂z
Gm(z)

∣∣∣∣
z=0

)
= µµ1(m− 1)

Hence, µ1(m) = µm.
Variance (check it)

σ(m)2 = G′′m(1) + G′m(1)−
[
G′m(1)

]2
=

σ2µmµ
m − 1
µ2 − µ µ 6= 1,

mσ2 µ = 1.

assignment 4, 5
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Markov chains in the continuous time limit

Fixed t = mτ with τ → 0.

Tn1n2 =

1−
∑

n3 6=n2

P(n3|n2)

 δn1,n2 + P(n1|n2)(1− δn1,n2)

dP(n1, t)
dt

≡ lim
τ→0

P(n1,m)− P(n1,m− 1)

τ

=
∑

n2 6=n1

[Wn1n2P(n2, t)−Wn2n1P(n1, t)],

with transition rate Wn1n2 ≡ lim
τ→0

P(n1|n2)

τ
.

master equation
dP(n1, t)

dt
=
∑

n2 6=n1

[Wn1n2P(n2, t)−Wn2n1P(n1, t)]
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Broken time reversal symmetry

Assume that the stationary distribution Ps(n) exist with Ps(n) > 0.
Define

H(t) ≡
∑

n

Ps(n)f
(

P(n, t)
Ps(n)

)
≡
∑

n

Ps(n)f (xn),

where f (x) ≥ 0 and f ′′(x) > 0 for 0 ≤ x <∞. Then we get

dH(t)
dt

=
∑
nn′

Wnn′Ps(n′)
[
xn′ f ′(xn)− xn′ f ′(xn)

]
=
∑
nn′

Wnn′Ps(n′)
[
(xn′ − xn)f ′(xn) + f (xn)− f (xn′)

]
< 0.

Since f ′′(x) > 0 and, accordingly, H(t) ≤ 0, H(t)→ constant as t→∞.
If we choose f (x) = x ln x, we get H =

∑
n P(n, t) ln(P(n, t)/Ps(n)).
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One dimensional random walks : example

P(n; t) : prob. that a walker is located at x = n.
CK equation

P(n; t + τ) = pP(n− 1; t) + qP(n + 1; t) + (1− p− q)P(n; t).

(naive) continuum limit

P(n; t + τ)− P(n; t)
τ

=
p
τ

P(n− 1; t) +
q
τ

P(n + 1; t)− p + q
τ

P(n; t),

dP(n; t)
dt

= w+P(n− 1; t) + w−P(n + 1; t)− (w+ + w−)P(n; t),

where p/τ → w+ and q/τ → w−.
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Time between jumps

Let Q(n1, t, t0) be the probability that we are “still” at point n1 at t,
provided we start from n1 at t0.

Q(n1, t + dt, t0) =

1−
∑

n2 6=n1

Wn2n1dt

Q(n1, t, t0),

∂

∂t
Q(n1, t, t0) = −

∑
n2 6=n1

Wn2n1Q(n1, t, t0) ≡ −λQ(n1, t, t0),

where λ ≡∑n2 6=n1
Wn2n1 . Thus, Q(n1, t, t0) = e−λ(t−t0).

to simulate the master equation
1 Assume we are at n1 at time t.
2 choose ∆t from U(τ) ≡ P(∆t > τ) = exp(−λτ).
3 choose n2 from P(n2) = Wn2n1/λ.
4 Then we are now at n2 at t + ∆t.
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Properties of the exponential distribution

Lack of memory or Markov property (U(t) ≡ P(∆t > t))

P(∆t > s + t|∆t > t) =
P(∆t > s + t)

P(∆t > t)
= exp(−λs) = P(∆t > s),

U(t + s) = U(t)U(s).

unique solution of U(t + s) = U(t)U(s) for bounded U(t).
cf. Hamel equation f (s + t) = f (s) + f (t)

Poisson process (assignment 6)
Let X1, . . . , Xn be i.i.d. r.v. with the exponential distribution. Let
Sn = X1 + · · ·+ Xn with S0 ≡ 0. Let N(t) be the number of indices
k ≥ 1 such that Sk ≤ t, then

P(N(t) = n) = e−λt (λt)n

n!
.
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Waiting time paradox

Buses arrive in accordance with a Poisson process with expected
time between consecutive buses to be λ−1. I arrive at t. What is
the expectation 〈Wt〉 of my waiting time for the next bus?

Solution 1 The lack of memory implies 〈Wt〉 = λ−1.
Solution 2 My arrival time is chosen “at random” between two

consecutive buses. So due to the symmetry,
〈Wt〉 = λ−1/2.
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Simulation I : Contact Process (CP) in 1-D

Model {
A→ 0 with rate 1
0→ A with rate nn×λ

2

An example of sample paths (PBC)

1
1

��

2
1

�

2
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CP : rejection-free algorithm

1
1

��

2
1

�

2

mean waiting time : τ = 1/(3 + 2λ).
time when a jump happens : dt = −τ ln(1− U(0, 1))

Prob that the configuration at t + dt: correpsonding rate×dt
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CP : pseudo-code I

0 1 2 3 4 5 6

Keep number of particles and active vacancies NA, NV1, NV2

Make Three lists A[],V1[],V2[]
A[1]=0, A[2]=2, A[3]=3, V1[1]=4, V1[2]=6, V2[1]=2

Determine dt by dt = 1./(NA+(0.5*lam)*NV1+lam*NV2)

Generate p= U(0, 1)

if(p<NA*dt) i=(int)(NA*U(0,1))+1 do A->0
else if (p<(NA+lam*NV2)*dt) i=(int)(NV2*U(0,1))+1

do A0A -> AAA
else i = (int)(NV1*U(0,1))+1 do A0 -> AA

Update the lists and increase the time t→ t + dt.
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pseudo code I – continuued

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Example of updating lists
Assuming p<NA*dt and i=2.
A[i]=A[NA], NA=NA-1

Accordingly, we need to update V1, V2

NV1=NV1+1, V1[NV1]=2
NV2=NV2-1, NV1=NV1+1, V1[NV1]=1

However, without knowing which number is assigned to site 1, it
will be very time consuming to implement the above procedure :
we need another array.
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pseudo-code II : with rejection

Define δ = 1./(1 + λ)

Define x = δ

Set dt = −δ ln(1− U(0, 1))/L (L : system size).
To set dt = δ/L is a good approximation (for large L, of course).
Choose i=(int)(L*U(0,1))

If site i is occupied,
remove particle with probability x
With prob. 1− x, set one of nearest neighbor to be occupied.

If site i is empty, do nothing.
Time increases by dt in any case.
Convince yourself that the average time to the next jump is the
same as before.
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pseudo-code III : with particle list

Time rescale τ = (1 + λ)t

Define x = 1./(1 + λ) (transition rate in the rescaled time)
Set dτ = 1./NA

Choose i=(int)(NA*U(0,1))+1

Generate p = U(0,1)
if p<x, A[i]=A[NA],NA=NA-1
else if p<(1+x)*0.5,
j=i+1, if(j is empty) NA=NA+1,A[NA]=j
else, j=i-1, if(j is empty) NA=NA+1,A[NA]=j

Need to know if site j is empty (another array : easy job).
Convince yourself that the average time to the next jump is the
same as before (up to time rescale).
Small tip : I usually make dt[i]=1./i beforehand.
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Simulation II : A + A→ 0 : pair list

Model {
A0↔ 0A, with rate D
AA→ 00, with rate λ

D D�

0 1 2 3

Define δ = 1/max(D, λ).
make three arrays O[],list[],active[]
O[0]=0,O[1]=1,O[2]=1,O[3]=0,
list[1]=0, list[2]=1,list[3]=2,
active[0]=1,active[1]=2,active[2]=3,active[3]=0.

Set Np= size of the (valid) list.
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Simulation II : A + A→ 0 : pair list

D D�

0 1 2 3

Choose i=(int)(Np*U(0,1))+1,s=list[i]. set dt = δ/Np

if(O[i]*O[i+1]) AA->00 with prob λδ

else A0 <-> 0A with prob Dδ
update the arrays

decreasing Np at site s

i=active[s],list[i]=list[Np],active[list[Np]]=i,
Np=Np-1,active[s]=0

increasing Np at site s

Np=Np+1,list[Np]=s,active[s]=Np
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Simulation II : A + A→ 0 : particle list

D D�

0 1 2 3

Choose δ = 1/max(D + λ/2, 2D, λ).
make two arrays list[],active[], N=2
list[1]=1,list[2]=2,
active[1]=1,active[2]=2,active[0]=active[3]=0

choose i=(int)(N*U(0,1))+1, s=list[i]

choose a direction at random (for example, j=s+1)
if j is empty, it moves there with prob. 2Dδ

if j is occupied, pair annihilation with prob. λδ.
update the arrays as in the pair-list case and time increases by δ/N
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Simulation II : A + A→ 0 – a comment

If either D� λ > 0 or λ� D > 0, it is more efficent to have two
lists plist[],slist[] and Ns,Np

diffusion event will occur with prob D× Ns/(D× Ns + λ× Np).
if pair annihilation is determined, choose one from plist[],
remove that one, update the arrays.
time increases by 1/(D× Ns + λ× Np).
if system size is L < 2n, it is convenient to set
active[s]=i, plist[i]=s and
active[s]=2^n+i, slist[i]=s
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Imaginary-time Schrödinger equation

State and projection vectors
|Ψ〉t ≡

∑
n

P(n, t)|n〉, 〈·| ≡
∑

n
〈n|, {|n〉} : orthonormal basis.

Normalization 〈·|Ψ〉t = 1 (in QM 〈Ψ|Ψ〉 = 1)
“Hamiltonian”
〈n1|Ĥ|n2〉 = −Wn1,n2 , 〈n1|Ĥ|n1〉 =

∑
n2 6=n1

Wn2,n1 .

imaginary-time Schrödinger equation
∂

∂t
|Ψ〉 = −Ĥ|Ψ〉 ⇒ |Ψ〉t = e−Ĥt|Ψ〉0.

Due to the normalization 〈·|Ĥ = 0.
Stationary state (if exists) is the right eigenstate of Ĥ with
eigenvalue 0.
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Stationary state and detailed balance

Stationary state Ps(n)

dPs(n)

dt
= 0 =

∑
n1 6=n

[Wnn1Ps(n1)−Wn1nPs(n)] .

0 = 〈n|Ĥ|Ψ〉s for all n.

In the long time limit, P(n, t|n0, 0)→ Ps(n), irrespective of n0.
Detailed balance (approach to the equilibrium distribution)

Wn1n2Pe
s(n2) = Wn2n1Pe

s(n1), Pe
s(n) ∝ e−βE(n),

where E(n) is the energy of the state n.
Can we know if the detailed balance is satisfied although we do
not know what Ps(n) is? In principle, yes (assignment 7).
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Birth-and-Death (Jump, One-step) processes

Transition rates (integer space)

nn− 1 n + 1 n + 2n + 1

bndn

master equation

∂

∂t
Pn(t) = dn+1Pn+1(t) + bn−1Pn−1(t)− (dn + bn)Pn(t).

State space can be
infinite : X = {. . . ,−2,−1, 0, 1, 2, . . .}.
half-infinite : X = {0, 1, 2, . . .} (b−1 = d0 = 0).
finite: X = {0, 1, 2, . . . ,N} (b−1 = d0 = bN = dN+1 = 0).
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Generating Function

equation for the generating function G(z, t) ≡
∑

n

znPn(t)

∂G
∂t

=
∑

n

[zndn+1Pn+1 − zndnPn + znbn−1Pn−1 − znbnPn]

=
∑

n

[(
zn−1 − zn) dnPn +

(
zn+1 − zn) bnPn

]
.

mean 〈n〉

d〈n〉
dt

=
d
dt

(
∂G
∂z

∣∣∣∣
z=1

)
=
∑

n

(bn − dn)Pn = 〈bn〉 − 〈dn〉.
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Pure Birth Process (dn = 0)

Poisson process bn = λ, P(n, 0) = δn0.

Ṗn = −λPn + λPn−1, Ṗ0 = −λP0 ⇒ Pn(t) =
(λt)n

n!
e−λt.

divergent Birth Process (dishonest process)

Theorem ∑
n

Pn(t) < 1 for all t > 0, iff
∑

n

1
bn

is finite.

For example, bn = n(n− 1) (2X → 3X reaction).

cf. ODE case:
dx
dt

= x2
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Linear Birth-and-Death Process I

Generating Function method

∂G
∂t

=

∞∑
n=0

(zn−1 − zn) µ n︸︷︷︸
death

Pn +
(
zn+1 − zn)λ(n + b)︸ ︷︷ ︸

birth

Pn


= (1− z)(µ− λz)

∂G
∂z

+ λb(z− 1)G,

with G(z, 0) =
∑

n znPn(0) = zm (Pn(0) = δnm).

the method of characteristics
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The method of characteristics I

To solve partial differential equations

∂ψ

∂t
+ c(t, x)

∂ψ

∂x
= f (t, x, ψ).

Let (x(λ), t(λ)) be some curve in x− t space.
dψ
dλ

=
∂ψ

∂t
dt
dλ

+
∂ψ

∂x
dx
dλ

=
dt
dλ

[
∂ψ

∂t
+

dx/dλ
dt/dλ

∂ψ

∂x

]
.

Choose the curve such that (dx/dλ)/(dt/dλ) = c(t, x); this curve is
called a characteristic. Then,

dψ
dλ

= f
dt
dλ

(ordinary differential equation)

It is convenient to set λ = t.
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The method of characteristics II

I want to know
the value of ψ
at this point.

I know the value of ψ
at this point.

characteristicI know this characteristic curve.

Match!

x

t
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Linear Birth-and-Death Process II

Equation :
∂G
∂t

+ (z− 1)(µ− λz)
∂G
∂z

= λb(z− 1)G.

method of characteristics
Assume z is a function of t [z = z(t)] with z0 = z(t = 0).
Choose a characteristic curve such that

dz
dt

= (z− 1)(µ− λz)→ 1− z
µ− λz

e(λ−µ)t = C0 (constant) ,

dG
dt

= λb(z(t)− 1)G → ln
( G
G0

)
= λb

∫ t

0
(z− 1)dt′ =

∫ z(t)

z0

λbdz′

µ− λz

= −b ln
∣∣∣∣ µ− λz
µ− λz0

∣∣∣∣⇒ G = G0

(
µ− λz
µ− λz0

)−b

.
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Linear Birth-and-Death Process III

Since G0 = G(z(0), 0) = zm
0 ,

1− z
µ− λz

e(λ−µ)t =
1− z0

µ− λz0
→ z0 =

µ(1− ε) + z(µε− λ)

µ− λε− λ(1− ε)z
,

G(z, t) =

(
µ(1− ε) + z(µε− λ)

µ− λε− λ(1− ε)z

)m(µ− λε− λ(1− ε)z
µ− λ

)−b

,

where ε ≡ e(λ−µ)t.
b = 0 : (continuous time) branching process (assignment 8)
b = −N, λ′ = −λN > 0 : reflecting wall at n = 0 and n = N.
λ = 0 : pure death process.
µ = 0 : pure birth process
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Chemical reactions

X
k1 // 0
k2

oo

W(n→ n + 1) = k2, W(n→ n− 1) = k1n.

X
k1 // 2X
k2

oo

W(n→ n + 1) = k1n, W(n→ n− 1) = k2n(n− 1).

2X
k1 // 3X
k2

oo

W(n→ n + 1) = k1n(n− 1), W(n→ n− 1) = k2n(n− 1)(n− 2).
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Fokker-Planck Equation

differential CK equation with W(x|y, t) = 0

Fokker-Planck equation (FPE)
∂P(x, t|y, t′)

∂t
=−

∑
i

∂

∂xi

[
Ai(x, t)P(x, t|y, t′)

]
+

1
2

∑
ij

∂2

∂xi∂xj

[
Bij(x, t)P(x, t|y, t′)

]
A(x) : drift vector
B(x) : diffusion matrix
Initial condition : P(x, t|y, t) = δ(x− y).
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short time behavior

If ∆t is small, (cf: Langevin Equation)

P(x, t + ∆t|y, t) =
{

(2π)N det[B(y, t)∆t]
}−1/2×

× exp

{
−1

2
[x− y− A(y, t)∆t]T [B(y, t)]−1 [x− y− A(y, t)∆t]

∆t

}

y(t + ∆t) = y(t) + A(y(t), t)∆t + η(t)∆t1/2,

where 〈η(t)〉 = 0, 〈η(t)η(t)T〉 = B(y, t).
Sample paths are continuous with probability one.
Sample paths are nowhere differentiable because of ∆t1/2.
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The Wiener Process I

FPE for the Wiener Process
∂

∂t
P(w, t|w0, t0) =

1
2
∂2

∂w2 P(w, t|w0, t0),

P(w, t0|w0, t0) = δ(w− w0)

generating function solution

φ(s, t) ≡
∫

dwP(w, t|w0, t0) exp(isw), φ(s, t0) = exp(isw0).

∂φ

∂t
=

∫
dw

∂

∂t
P(w, t|w0, t0) exp(isw)

=

∫
dw

1
2
∂2

∂w2 P(w, t|w0, t0) exp(isw) = −1
2

s2φ

φ(s, t) = exp
(
−1

2
s2(t − t0) + isw0

)
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The Wiener Process II

Fourier Transformation

P(w, t|w0, t0) =
1

2π

∫
ds φ(s, t) exp(−isw)

=
1√

2π(t − t0)
exp

(
−1

2
(w− w0)2

t − t0

)
.

Mean and Variance

〈W(t)〉 = w0 (martingale) , 〈(W(t)− w0)2〉 = t − t0.

cf. cumulant generating funcion

lnφ(s, t) = isw0 −
1
2

s2(t − t0) = is〈W(t)〉+
1
2

(is)2〈(W(t)− w0)2〉
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Properties of the Wiener process I

Irregularity of Sample Paths
〈W(t)〉 remains constant, but the variance diverges :

Sample paths are very variable and irregular
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Properties of the Wiener process II

continuous everywhere but differentiable nowhere

P
{∣∣∣∣W(t + h)−W(t)

h

∣∣∣∣ > k
}

= 2
∫ ∞

kh
dw

1√
2πh

exp
(
−w2

2h

)
= 2

∫ ∞
k
√

h
dx

1√
2π

exp
(
−x2

2

)
→ 1,

as h→ 0 for any k > 0.

Thus,
dW(t)

dt
does not exist. (cf. Weierstrass function).
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Properties of the Wiener process III

independence of increments
Joint probability (due to the Markov property)

P(wn, tn; wn−1, tn−1; · · · ; w0, t0) =

n−1∏
i=0

P(wi+1, ti+1|wi, ti)P(w0, t0)

Let ∆Wi = W(ti)−W(ti−1) (new r.v.), ∆ti = ti − ti−1,

P(∆wn; ∆wn−1; · · · ; ∆w1; w0)

=
n∏

i=1

{
1√

2π∆ti
exp

(
−∆w2

i

2∆ti

)}
P(w0, t0).

r.v.’s ∆Wi are independent of each other and of W(t0).
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Properties of the Wiener process IV

Autocorrelation function (cf. covariance)

〈W(t)W(s)|[w0, t0]〉 =

∫
dw1 dw2 w1w2p(w1, t; w2, s|w0, t0)

Assuming t > s and using the independence of increment,

〈W(t)W(s)|[w0, t0]〉 = 〈[W(t)−W(s)] W(s)〉+ 〈W(s)2〉
= s− t0 + w2

0

In general,

〈W(t)W(s)|[w0, t0]〉 = min(t − t0, s− t0) + w2
0,

〈W(t),W(s)|[w0, t0]〉 = min(t − t0, s− t0).
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the Ornstein-Ulhenbeck Process

FPE for the Ornstein-Ulhenbeck Process
∂

∂t
P(x, t|x0, t0) =

∂

∂x
(kxP(x, t|x0, t0)) +

1
2

D
∂2

∂x2 P(x, t|x0, t0)

generating function solution

φ(s, t) ≡
∫

dx P(x, t|x0, t0) exp(isx), φ(s, t0) = exp(isx0)

∂tφ(s, t) + ks∂sφ(s, t) = −1
2

Ds2φ(s, t)
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Solution of the Ornstein-Ulhenbeck Process

∂tφ(s, t) + ks∂sφ(s, t) = −1
2

Ds2φ(s, t)

the method of characteristics

ds
dt

= ks,→ se−kt = A(constant),

dφ
dt

= −1
2

Ds(t)2φ(t) = −1
2

DA2e2ktφ(t)

→ φ = φ0 exp
(
−DA2

4k

{
e2kt − 1

})
= φ0 exp

(
−Ds2

4k

{
1− e−2kt}) .

When t = 0, φ0 = eis(t=0)x0 = eiAx0 . Hence,

φ(s, t) = exp
(

ise−ktx0 −
D
4k

s2 {1− e−2kt})

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 96 / 120



Stationary state

Mean and Variance

〈X(t)〉 = x0e−kt, var(X(t)) =
D
2k

{
1− e−2kt}

Stationary solution

φ(s,∞) = exp
(
−Ds2

4k

)
, Ps(x) =

√
k
πD

exp
(
−kx2

D

)
Note that Ps(x) is the solution of the stationary FPE

∂x

[
kxP +

1
2

D∂xP
]

= 0
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Autocorrelation

time correlation function at stationarity

〈X(t)X(s)|[x0, t0]〉 =

∫
dx1dx2x1x2P(x1, t|x2, s)P(x2, s|x0, t0),

where t ≥ s ≥ t0 is assumed. Take t0 → −∞, we get

〈X(t),X(s)〉s = 〈X(t)X(s)〉s =
D
2k

exp (−k|t − s|)

The Ornstein-Uhlenbeck process in its stationary state models a
realistic noise signal with correlation time 1/k = τ .
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White noise in the Langevin equation

Langevin equation

dx
dt

= a(x, t) + b(x, t)ξ(t),

where ξ(t) is the rapidly fluctuating random term called the white
noise.
〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′) (no correlation at different times)
But, what is ξ(t)?
Let u(t) =

∫ t
0 ξ(t′)dt′ (continuous stochastic process).
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properties of u(t) I

u(t) is a Markov process.

u(t′) = lim
ε→0

[∫ t−ε

0
dsξ(s)

]
︸ ︷︷ ︸

U1=u(t)

+

∫ t′

t
ξ(s)︸ ︷︷ ︸

U2

U1 is independent of U2.
Thus, u(t) and u(t′)− u(t) are statistically independent.
Furthermore, u(t′)− u(t) is independent of u(t′′) for t′′ < t.
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properties of u(t) II

FPE for u(t).

〈u(t + ∆t)− u0|[u0, t]〉 =

〈∫ t+∆t

t
ξ(s)ds

〉
= 0,

〈(u(t + ∆t)− u0)2|[u0, t]〉 =

∫ t+∆t

t

∫ t+∆t

t
dsds′

〈
ξ(s)ξ(s′)

〉
=

∫ t+∆t

t

∫ t+∆t

t
dsds′δ(s− s′) = ∆t.

Hence, A(u0, t) = 0, B(u0, t) = 1 : the Wiener Process.

ξ(t) =
dW(t)

dt
: paradox!
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Stochastic Integral

Mathematically speaking, the Langevin equation does not exist.
However, the integral equation can be interpreted consistently.

x(t)− x(0) =

∫ t

0
a[x(s), s]ds +

∫ t

0
b[x(s), s]ξ(s)ds

=

∫ t

0
a[x(s), s]ds +

∫ t

0
b[x(s), s]dW(s),

which is a kind of stochastic Stieltjes integral w.r.t. a sample
function W(t).
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Definition of the Stochastic Integral

(naive) definition∫ t

t0
G(t′)dW(t′) ?

= lim
n→∞

{
n∑

i=1

G(τi) [W(ti)−W(ti−1)]

}
︸ ︷︷ ︸

≡ Sn

where t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn = t and ti−1 ≤ τi ≤ ti.
But Sn depends on the choice of τ ’s. Take G(t) = W(t),

〈Sn〉 =
∑

i

〈W(τi) [W(ti)−W(ti−1)]〉

=

n∑
i=1

[min(τi, ti)−min(τi, ti−1)] =

n∑
i=1

(τi − ti−1)

Choose τi = αti + (1− α)ti−1 (0 ≤ α ≤ 1), then 〈Sn〉 = α(t − t0).
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Itô stochastic integral

the Itô stochastic integral (α = 0 or τi = ti−1)∫ t

t0
G(t′)dW(t′) ≡ ms-lim

n→∞

{
n∑

i=1

G (ti−1) [W (ti)−W (ti−1)]

}

G(t) is assumed not to be affected by the “future” : causality.
Such a G(t) is called a nonanticipating function.

examples of nonanticipating functions
1 W(t)
2
∫ t F[W(t′)]dt′

3
∫ t F[W(t′)]dW(t′)

4
∫ t G(t′)dt′ (G(t) itself is a nonanticipating function)

5
∫ t G(t′)dW(t′)

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 105 / 120



Example
∫

W(t)dW(t)

Sn =

n∑
i=1

Wi−1 (Wi −Wi−1) =
1
2

∑
i

[
W2

i −W2
i−1 −∆W2

i
]

=
1
2
[
W(t)2 −W(t0)2]−∑

i

∆W2
i︸ ︷︷ ︸

≡U

.

Note that
〈U〉 =

∑
i〈∆W2

i 〉 =
∑

i(ti − ti−1) = t − t0.
〈(U − (t − t0))2〉 = 2

∑
i(ti − ti−1)2 → 0 as n→∞ (check it!)

Hence (mean square limit),∫ t

t0
W(t′)dW(t′) = ms-lim

n→∞
Sn =

1
2
[
W(t)2 −W(t0)2]− 1

2
(t − t0).

(assignment 9)
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Comments

〈∫ t

t0
W(t′)dW(t′)

〉
=

〈
1
2
[
W(t)2 −W(t0)2]− 1

2
(t − t0)

〉
= 0.

∆W2
i is not negligible [∼ O(dt)].

the Stratonovich integral

(S)
∫ t

t0
W(t′)dW(t′) = ms-lim

n→∞

n∑
i=1

Wi + Wi−1

2
(Wi −Wi−1)

=
1
2
[
W(t)2 −W(t0)2] ,

similar to the ordinary calculus.
Note that the Stratonovich integral is not the same as the midpoint
prescription α = 1

2 , though similar (assignment).
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Properties of the Itô Stochastic Integral I

dW(t)2 = dt and dW(t)2+N = dW(t)dt = 0 in the sense that∫ t

t0

[
dW(t′)

]2+N G(t′) ≡ ms-lim
n→∞

∑
i

Gi−1∆W2+N
i

=


∫ t

t0
dt′G(t′) for N = 0,

0 for N > 0.

Existence∫
G(t′)dW(t′) exists whenever G(t) is continuous and

nonanticipating
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Properties of the Itô Stochastic Integral II

Integration of Polynomials. Since

d[W(t)]n = [W(t) + dW(t)]n −W(t)n

=
n∑

r=1

(
n
r

)
W(t)n−rdW(t)r ← dW(t)2 = dt

= nW(t)n−1dW(t) +
n(n− 1)

2
Wn−2dt,

we get ∫ t

t0
W(t′)ndW(t′) =

1
n + 1

[
W(t)n+1 −W(t0)n+1]

− n
2

∫ t

t0
W(t′)n−1dt′.
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Properties of the Itô Stochastic Integral III

General differentiation rule (keep terms up to dW2)

df [W(t), t] =
∂f
∂t

dt +
∂f
∂W

dW(t) +
1
2
∂2f
∂W2 dW(t)2

=

(
∂f
∂t

+
1
2
∂2f
∂W2

)
dt +

∂f
∂W

dW(t)

Mean value Formula 〈∫
G(t′)dW(t′)

〉
= 0.

Correlation Formula〈∫ t

t0
G(t′)dW(t′)

∫ t

t0
H(t′)dW(t′)

〉
=

∫ t

t0

〈
G(t′)H(t′)

〉
dt′.
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Stochastic Differential Equation (SDE)

Itô SDE : definition

dx(t) = a [x(t), t] dt + b [x(t), t] dW(t),

if for all t and t0,

x(t) = x(t0) +

∫ t

t0
a
[
x(t′), t′

]
dt′ +

∫ t

t0
b
[
x(t′), t′

]
dW(t′).

x(t) is a Markov process.
additive noise: b[x(t), t] does not depend on x.
multiplicative noise: b[x(t), t] does depend on x.

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 111 / 120



Itô’s Formula

df [x(t)] = f ′[x(t)]dx(t) +
1
2

f ′′[x(t)]dx(t)2

= f ′[x(t)] {a[x(t), t]dt + b[x(t), t]dW(t)}+
1
2

f ′′[x(t)]b[x(t), t]2dW(t)2

=

{
a[x(t), t]f ′[x(t)] +

1
2

f ′′[x(t)]b[x(t), t]2
}

dt + f ′[x(t)]b[x(t), t]dW(t)

where we have used,

dx(t) = a [x(t), t] dt + b [x(t), t] dW(t),

dW(t)2 = dt, and dW(t)2+N = dW(t)dt = 0.

d〈f [x(t)]〉
dt

=

〈
a[x(t), t]f ′[x(t)] +

1
2

f ′′[x(t)]b[x(t), t]2
〉
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Connection between the FPE and the SDE

d
dt
〈f [x(t)]〉 =

∫
dx f (x)

∂

∂t
P(x, t|x0, t0)

=

∫
dx
{

a(x, t)f ′(x) +
1
2

b(x, t)2f ′′(x)

}
P(x, t|x0, t0)

=

∫
dx f (x)

{
− ∂

∂x
(a(x, t)P) +

1
2
∂2

∂x
(b(x, t)2P)

}
.

Since f is arbitrary,

FPE-SDE connection (assignment 10)

dx = adt + bdW ⇔ ∂P
∂t

= − ∂

∂x
(aP) +

1
2
∂2

∂x2 (b2P).
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Stratonovich SDE

Stratonovich integral : definition

(S)
∫ t

t0
G
[
x(t′), t′

]
dW(t′)

= ms-lim
n→∞

n∑
i=1

G
[

1
2

(x(ti) + x(ti−1)) , ti−1

]
(W(ti)−W(ti−1)) .

Stratonovich SDE

(S)dx(t) = a [x(t), t] dt + b [x(t), t] dW(t),

if for all t and t0,

x(t) = x(t0) +

∫ t

t0
a
[
x(t′), t′

]
dt′ + (S)

∫ t

t0
b
[
x(t′), t′

]
dW(t′).

change of variables (same as the ordinary calculus rule)

(S)df [x(t)] = f ′[x(t)] {a [x(t), t] dt + b [x(t), t] dW(t)} .
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Stratonovich vs Itô

From Stratonovich to Itô

[(S)]dx = xi − xi−1 = β

(
xi + xi−1

2
, ti−1

)
(W(ti)−W(ti−1))

=

[
β (xi−1) +

dx
2
β′(xi−1)

]
∆Wi = β(xi−1)dWi +

1
2
β(xi−1)β′(xi−1)dt.

Stratonovich and Itô

[S]dx = α(x, t)dt+β(x, t)dW ⇔ dx =

(
α(x, t) +

1
2
β(x, t)

∂β

∂x

)
dt+β(x, t)dW

〈β(x, t)dW〉 =

0, Itô,
1
2
β(x, t)

∂β

∂x
dt, Stratonovich.
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Example I : Geometric Brownian Motion

dx = cxdW(t).

change of variable : y = ln x

dy =
dx
x
− 1

2x2 (dx)2 = cdW(t)− 1
2

c2dt

⇒ y(t) = y(t0) + c [W(t)−W(t0)]− 1
2

c2(t − t0)

⇒ x(t) = x(t0) exp
{

c [W(t)−W(t0)]− 1
2

c2(t − t0)

}
mean and autocorrelation function (assignment 11)

〈x(t)〉 = 〈x(t0)〉,
〈x(t), x(s)〉 = 〈x(t0)2〉 exp

{
c2min(t − t0, s− t0)

}
Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 116 / 120

Exmaple 2: Ornstein-Uhlenbeck Process

dx = −kxdt +
√

DdW
change of variable : y = xekt

dy = (dx)ekt + xd(ekt) =
[
−kxdt +

√
DdW

]
ekt + kxektdt

=
√

DektdW

x(t) = x(0)e−kt +
√

D
∫ t

0
e−k(t−t′)dW(t′).

mean and autocorrelation function

〈x(t)〉 = 〈x(0)〉e−kt,

〈x(t)x(s)〉 = 〈x(0)2〉e−k(s+t) + D
∫ min(t,s)

0
e−k(t+s−2t′)dt′

〈x(t), x(s)〉 =

[
var{x(0)} − D

2k

]
e−k(t+s) +

D
2k

e−k|t−s|.
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The white noise limit

In real physical systems, noise should be correlated.
We are interested in a limit of a differential equation

dx
dt

= a(x) + b(x)ξγ(t),

where ξγ(t) is a stochastic source with nonzero correlation time.
If 〈ξγ(t)〉 = 0 and

lim
γ→∞
〈ξγ(t)ξγ(t′)〉s = δ(t − t′),

the above differential equation becomes

The white noise limit (assignment 12)

(S)dx = a(x)dt + b(x)dW(t)
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Positive Poisson Representation (Gardiner)

Theorem
For any Pn, a positive f (α) exists such that

Pn =

∫
d2α

(
e−α

αn

n!

)
f (α),

where α = αx + iαy and d2α = dαxdαy.

1 =
∞∑

n=0

Pn =

∫
d2α

(∑
n

e−α
αn

n!

)
f (α) =

∫
d2α f (α).

Hence, f (α) is a probability density.
If f (α) = δ(α− ρ) for real ρ, Pn = e−ρρn/n!.
〈n〉 = 〈α〉 always.
〈nm〉f ≡ 〈n(n− 1) · · · (n− m + 1)〉 = 〈αm〉
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SDE using Poisson representation

X
k1 // 0
k3

oo , X
k2 // 2X
k4

oo

dα =
[
k3 + (k2 − k1)α− k4α

2] dt +
[
2(k2α− k4α

2)
]1/2

dW(t).

If k4 = 0, the SDE is exactly solvable (linear birth-death).
If k2 = k4 = 0, the dynamics is deterministic.
If k2 = 0, α should be complex.
cf. Path integral approach (Cardy, cond-mat/9607163)
assignment 13, project
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