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o Brief introduction to Probability and Stochastic Processes
@ Nature and Stochastic Processes: Brownian Motion
@ Basic Concepts in Probability Theory

e Markov Processes
@ Chapman-Kolmogorov equation
@ Markov chain
@ Master equation

e Stochastic Differential Equations
@ Fokker-Planck Equation
@ Langevin Equation
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Brownian motion (R. Brown, 1827)

@ pollen grains (Z7}) in water : manifest of life?
T

i
iy

B

Eam

@ But, any fine particles exhibit such a motion.

@ For a nice introduction to the history of Brownian motion,
E. Nelson, Dynamical Theories of Brownian Motion (1967).
http://www.math.princeton.edu/~nelson/books.html
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Einstein’s contribution (1905)

5.. Uber die von der molekularkinetischen Theorie
der Wirme geforderte Bewegung von in ruhenden
Flissigkeiten suspendierten Teilchen;

von A. Einstein.

o] BAEFol o] B 183 Ha) Lol A= A YA &F
ol tf st
A. Einstein, Annalen der Physik 17, 549 (1905)

Beginning of stochastic modelling of natural phenomena
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Einstein’s prediction and experimental confirmation

@ Einstein’s prediction

kgT
6mna

OP(x,1) 82P(x, 1) 0 _
o =D Fa (x(r)7) =2Dt, D=

a : radius of the suspended particle, 7 : viscosity,
T: temperature.

@ Smoluchowski’s independent work (1906).
@ Jean Baptiste Perrin’s experiment (Avogadro number)

fit'y The Nobel Prize in Physics 1926
? Jean Baptiste Perrin

http://nobelprize.org/nobel_prizes/physics/laureates/1926
@ Triumph of the atomic theory!
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Langevin’s contribution (1908)

PHYSIQUE., — Sur la théorte du mouvement brownien.
Note de M. P. Laxcevi, présentée par M. Mascart.

Bl &% o]0 tf3te]
P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).

English translation: D. S. Lemons and A. Gythiel, Am. J. Phys. 65,
1079 (1997).

“infinitely more simple”

Foundation of the stochastic differential equation
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Langevin equation

@ viscous friction and random force (fluctuation)

X dx
e —67r7]a5 +X.

@ Multiply x on both sides of the equation
md* ,
2a2”*

@ Average and equipartition theorem

m d* 2 d, 2
Eﬁ@v )+ 371'77(1%(): Y = (mv7) + (xX)
=kpT =0

67rnat) (=00 kgT .

m 3mna

d

2 2

= —3n + xX.
my na IX X

_ kgT
" 3ma

+ Cexp <7

kgT
2 B
=2Dt = t.
) 3mna
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Sample space and sample points

@ sample space 2 : a set of all outcomes
o toss a coin

Q={H,T}
o castadie
Q= {wi,ws, - ,we}, or @ = {Even,Odd}
o Maxwell velocity distribution
Q= {(v1,v2.v3)| — 00 <v; < 0}
o Wiener Process

Q={W(@n|Wec, W0)=0,0<r<T}

@ sample points (paths) w: elements of Q
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@ an event : a subset of the sample space
o If Ay, Ay, As,--- are events, then we expect

o o
(JAiand (") 4; are events.

i=1 i=1

e :asure event
e () : an event which never happens.
@ Two events A and B are called mututally exclusive, if

ANB=0.
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Probability (measure)

@ A:anevent

@ 0 <P(A) <1, P(A°) = 1 — P(A), P(0) =0, P(Q) = 1.
@ P(AUB)=P(A)+P(B)ifANB=10.

@ If Ay, Ay, ... are mutually exclusive,

P (D Al-) = i]?’(A,-) (countable union).
i=1

i=1

@ Why countable union?
Consider @ = {x[0 < x < 1}, P({xja <x < b})=b—a.
Let A, = {c}. P(A;) = 0, but P(Uyc < Ac) = 1.
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In mathematics . ..

@ M : acollection of subsets of €.

@ M is called a o-algebra (over ) if

0o leM, Qe M.

o A e Mimplies A° ¢ M

o IfA; e M(i=1,2,---),| JAi € M (countable union).
@ Pis a (positive) measure if

o P: M [0,0],

e P(0)) =0, and

o forA; e MwithA;NA; =0 (i=1,2,--),

£ (0n) - S

i=1
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Conditional probability

@ definition (Bayes’ rule)
P(ANB)
P(B)

P(A|B) = P(A N B) = P(A|B)P(B) = P(B|A)P(A).

o If U;B; = Q and B;’s are mutually exclusive,

J@anB)=4n (UB,-) —ANQ=A,

i

which entails

Z (ANB) =P (U(Ans):IP(A),

or equivalently

ZP(AlBi>P(Bi> =P(4).

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 15/120

Independence |

@ Two events A and B are independent if

P(A|B) = P(A)
or
P(A N B) = P(A)P(B).
@ Events A; (i=1,2,...,n) are independent if,

for any subset {iy, i, ...,ix} of {1,2,...,n},

P (Ai| NA,N--- ﬁAl‘k) = ]P’(A,'] )P(A,‘z) cee ]P(A,‘k).
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Random variable and stochastic process

@ arandom variable (r.v.) is a function X : Q — R.
@ a function of anr.v. is also an r.v.
@ X is not necessarily a one-to-one function.
@ For example,
o cast a die X(w,) =n.
o cast adie X(Even) =1, X(Odd) = —1.
o Maxwell velocity distribution X(w) = v,
o Wiener Process X(w) = W(¢) at “time” ¢
@ stochastic (=random) process
random variables indexed by “time”.
@ random variable, random vector, random process, random
function, ...: random elements.
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Probability density function and probability distribution

@ In adiscrete sample space Q = {x;,---} of anr.v. X,
Py=P(x,) =P({x}), > Pu=1.
@ In a (one-dimensional) continuous sample space,

P(4) = /A P(x)dx, /Q P)dx = 1

(x) is called a probability density function or a density.
(x)dx : probability for X to lie between x and x + dx.
distribution function (cumulative distribution function)

e P
e P
o =ps = [ rwiad. T pgy

o dx
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A distribution without a density : Cantor distribution

8/8
78
6/8

5/8

38

28

1F
But! 2= = 0 almost everywhere.
178 dx

9 29 39 49 59 69 7/9 89 99 X
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@ Definition

o discrete space

e continuous space

@ m-th Moment
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Characteristic function

@ definition

¢*P(x)dx continuous
G(k) = (™) =
> enp(x,) discrete

@ G(k) exists for all real k.
@ G(0) =1, |G(k)| <1 (k#0).
@ inverse formula .
Plx) = — —ikx
(x) 27T/G(k)e dk

G(k) characterizes P(x).
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Moment generating function

@ If G(k) is analytic at k = 0,

o0 .
(lk)lﬂ Amalﬁ
=1 = Gl
G6) = 1+ 3 Sl = o = (1" 60|

(Moment) Generating Function
@ If X only assumes integral values, it is convenient to introduce
[o<}
1
G= Y o P GG

il o

In this case, we define the factorial moments
Gn=(XX-1) (X=m+1)), =1
Sometimes (X™) is used to denote ¢,,.
dm

dng(Z)

= Om-
1
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Examples

@ Gaussian (normal distribution)

Ry
X i) > — G(k) = exp (zkul - la'2k2>

1
Plx) = V2ro? P (7( 202

@ Lorentzian (Cauchy distribution)

11

_ Ikl
p —Gk)=¢

P(x) =

No moments exist. (even average does not exist.)
@ Poisson distribution

Py="0e 5 Ga) =Y g, =0
ni
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nts and moments generating function

@ If X and Y have the same GF, Py and Py are the same (almost
everywhere).

@ Can we conclude that Px = Py if all moments are the same?

@ log-normal distribution : In X is normal-distributed.

flx) = @(x)ﬁ exp P%(lnx)z] = [ = exp(m?/2).

@ Different density with same moments (—1 < e < 1).
fe(x) =f(x) [1 + esin(27 Inx)]
Since, for any non-negative integer n (using Inx = y + n),

/OC X'f(x) sin(27 Inx)dx = 0,

0

i = exp(m?/2) for all e.
@ Note that G(k) cannot be written as a converging series.
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Cumulant generating function

InG(k) = Z %Hm,*} Fom = (ﬂ')'"% InG(k)

m=1 k=0

K] = 1 - mean

Ko = pz — i3 = ((X — (X))?) : variance
w3 = p3 = 3papn + 2453 = (X — (X))*)
cf. skewness = k3 /n;/ 2

© k4 = g — 4papn — 33 + 12p0p3 — 64§ # (X — (X))*)
cf. kurtosis = ra/r3
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@ Gaussian

2
InG(k) = ikpy + %02

Kl =1, ky=02 ky=0form>2.

@ Does P(x) exist whose In G(k) is a polynomial of order n > 2?
No! (Marcinkiewicz theorem)
See also, Rajagopal and Sudarshan, PRA 10, 1852 (1974).

@ Poisson distribution
G(k) = g(eik) = exp [(e"‘ — l) /\] .

OO m
nGk) = (X 1) A= (’2 A, = ki = Afor all m.
m=1
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Multivariate random variable or random vector

@ Let X be a random vector with components X, - -, X,.

@ joint probability distribution
P(X) = P(x1,x2,7+ ,X)
@ marginal distribution
P(xp, -, x) = /P(xlv S Xy X1y X)Xy e dy

@ conditional probability
P(xi, -+ %)

P(xy, s Xl oy xp) = m
s+l X

@ Average

(X1, . X)) = '/f(x1,~u X )P(xy, -+ x)dxy - - dxy

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017

Independence |l

@ Two sets of r.v’s (Xj, -, X,) and (Xy41,--- ,X,) are statistically
independent if

Pxi, o ,x) = P(xi, o x) P, -0, x0).
Accordingly,
P(xt, - X5l ts oo, xp) = Plxr, o, ).
@ Random variables X;, - - - , X, are called independent and
identically distributed (i.i.d.) if

@ P(xy, -+ ,x;) =P(x1)---P(x,),
o P(X;i=x)=P(X;=x)forallij.
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Independence I

@ Pairwise Independence : For any pair i, j, P(x;,x;) = P(x;)P(x;).
@ pairwise independence implies statistical independence?

o Example
Sample space @ = {(1,1,1),(1,0,0),(0,1,0), (0,0, 1)}.
w=(X1,X2,X3), Pw)=1/4

P(Xi=1)=P(X;=0)= 3

@ Itis easy to prove pairwise independence.
P(X1,X2) = P(X1)P(X2)

However,
PX;=1,X=1,X3=1)#P(X; = )P(Xa = )P(X3 = 1).
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Independence IV

o If X; and X; are independent,

(fiX)AX) = (X)) (B(X2)).

In particular, the characteristic function of Y = X; + X, is

Glk) = (M) = (M) = Gy, ()G, (K).

@ Covariance
(X1, X2) = (X1 — (X1)) (X2 — (X2))) = (X1X2) — (X1)(Xa).

If X; and X, are independent, (X;,X,) = 0.
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Law of large numbers

e LetXj,...,X,beiid. r.vs with probability (density) P(x).
@ If the average of P(x) exists and it is p,

(strong) law of large numbers

@ Example

1 if an event A happens, P(A) x=1,
i = : P(x) =
0 otherwise, =

Since p1 = P(A),

n—o0
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Central Limit Theorem

@ LetXj,...,X, bei.id. r.vs with probability (density) P(x).
o letS, =X+ -+ X,
@ If the average () and variance (o) of P(x) exist,

Central Limit Theorem (CLT)

. Sy — njuy 1 /‘X 1,
1 P = —
o ( N <"> ol A W At

@ the CLT implies the (weak) law of large numbers

P(ﬁ,m <€> :“”QM <@>
n Vno o
1 Vil 7&'2/2d) LN 0.
~ ; ) — orany ¢ >
V2 —ne/o Y
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Proof of the CLT

@ Taylor expansion of the cumulant generating function for X;

k2
InG(k) = ikpy — 502 + R(k),

where R(x)/x* — 0 as x — 0.
@ generating function for ¥, = (S, — nuu1)/(v/no)

iKY, vk k\"
) — _ G

“ exP( o ) (ﬁ0>

2 2

= In(e™n) :7%+nR( k ) H*kf<

no 2
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Stable distributions

@ Gaussian (assignment 1)
Let X;’s are i.i.d. Gaussian r.v. with mean 0 and variance 1, and let
Y =X+ +Xy)/Vn

P(Y=y) = \/%EXp (7%)1) .

@ Lorentzian (breakdown of the law of large numbers)

1

— oKl
fep] —Gk)=¢

P =1
Lety = (X, + - + X,)/n.
Gr(k) = (M) — (G <§>) — Gk

@ Levy distribution (assignment 2)
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@ Postulating a priori probability

equal a priori probability
@ Performing the suitable mathematical transformations
@ Comparing the a posteriori distribution with observation
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equal a priori probability : a caveat

@ principle of insufficient reason (Laplace)

@ Bertrand’s circle with “random” chord. For a detail, see
en.wikipedia.org/wiki/Bertrand_paradox_ (probability)

PHE

3 2 4
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Stochastic Process redefined

@ There is a time-dependent r.v. X(z).

@ We can measure values x;, x,, - -- attimes #;,1,- - -.

@ The set of all outcomes (X) is called the state space.

@ “space” and “time” can be either continuous or discrete.

@ Stochastic process is fully determined by P(x1, ;- - ;x,,1,)
@ conditional probability

P(xi, X2, 1,0+ |y1, 71392, 725 +)
P(xi, ti3 X2, b5 3 YL, T153Y2, 725 +)
Py, 71352, 725+ +)

valid definitions independently of the ordering of the times.

@ In the following, unless otherwise is mentioned, ; > 7; (for all i, j) is
assumed.
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Kinds of stochastic process

a) Complete Independence

P(xy, 330,150 ) = [ [ Pxin )
i

b) Bernoulli Trials: complete independence and
time-independent P(x;, ;) = P(x;)
c) Martingales (fair games):

X(1) o, o)) = / dxx plx, fxo, 10) = ¥o

We have defined conditional average
d) Markov Processes: present determines future.
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Markov Process |

Markov assumption (7; >

Pler, t1;- - y1, 71592, a5 -+ ) = Plen, ;- - [y, 1)

@ P(x,tly,7) is called the transition probability.
@ P(x,t|y, ) completely defines the process.

PO, 15X, 005+ 1 X, 1)
=plx,t ‘x27r2§ e ;xmfn)l?(xzﬁlz; e ?xn:tn)
= p(x1, tilxa, 02)p(ea, 123, 13) - - - p(En—1, tu—1 X0, 1a)P (X, 1),

provided t; > 1, > -+ > 1.
@ Does the Markov assumption impose time direction?
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Markov Process I

The present determines the past, too.

P(y1,Ti|x1,11;%2,2) = P(y1, Tix2, 1) if 1 > 12 > 7.

Py, mi5x1,015%2, 1

Py, Tilxr, t15 2, 12) = PO P(xlvtl'yxz’tz) )
St x,

_ Pla,tiln, 1)

P(x1,11; %2, 12)
—_———
=1/P(x2,12)
P(x2,12;y1,71)

=——F——-——=POn1|xn
Pl L OmTiR )

P(x2, 125 y1,71)
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Markov Process Il

Using P(A|B) = P(B|A)P(A)/P(B),

n—1
X1, t3X2, 023+ 3 X, 1n) = [Hp(xi,ti\xm,tm)} P(Xn, i)
i=1

n—1
p(xi, i)
= 1 i X 1 Ja)s
[H;:(xw, i ‘>p<x,~+1.,t,»+l)} P i),
n—1
= Hp(xi+lati+l‘xi»’i>:| px1,1),
i=1

provided 1y > 1, > -+ > t,.
p(y, 7lx, 1) also determines the stochastic process to the past.
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Chapman-Kolmogorov equation

@ Two identities (vaild to all stochastic processes)

P(xl,t|>: /dsz(xl,t|‘xz,tz)P(xz,lz),
P(xlytl‘thS):/deP(xlthxZ»,tleS»,tS)

= / dx; P(xy, 1 |x2, 1253, 13) P(x2, 12 |x3, 13)

@ If 1; > 1, > 13 and the Markov assumption is introduced,

Chapman-Kolmogorov (CK) equation

P(x1,11|x3,13) = /dsz(xl,tl\xz,tz)P(x2,12|x3,13).
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Chapman-Kolmogorov equation : consistency

From )~ P(A N B;) = P(A),
Plxi, ) = / dxy P(x1,11;%3,13) = / dxs P(x1,11)x3,13)P(x3, 13)
= /dx3 dxa P(x1, 11]x2, 22)P(x2, 12]x3, 13) P(x3, 13)

= /dxz P(xy, t1|x2, 12) P(x2, 12) = /dxz P(x1,115%2, 1)
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Is the solution of the CK equation a Markov process?

Q={(1,1,1),(1,0,0),(0,1,0), (0,0,1)}

P(15|11) = 5 = P(5102)P(O:]13) + P(15]2)P(12]1),
P(03]1,) = % = P(03]02)P(02]11) + P(03]12)P(12]11),
PULI0) = 5 = PL[0)P(0:01) + P(13]12)P(12[01),
P(03]0;) = % = P(03]02)P(02/01) + P(03]12)P(12]01),

1
Hence, P()C3 IX]) = Z P(X3 ‘xz)P(xz ‘Xl).
=0
But,
P(13]12;11) = 1 # P(13]12).
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Continuity in stochastic processes

@ Lindberg condition
For a Markov process, the sample paths are continuous function
of + with probability one, if, for any ¢ > 0,

.
lim — dx P(x,t+ Atly, 1) = 0.
Ao At /‘x,ybg e Plx, 1+ Ay )

@ Examples (assignment 3)

1 —y)? )
@ P(x,t+ Atly,t) = DA exp (— (ZDAyi ) : continuous
At ) .
o P(x,t+ Atly,t) = —————— : discontinuous

T(x—y)? + A7
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Example of sample paths (Gardiner)

—_——rN
— ]
——— 1 Yal

X(t) L/

,
!
!
?
‘-___———‘I

3

Wit)

1
i

)
o)
| S

te

X(r) : Cauchy process, W(r): Wiener Process.
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Differential Chapman-Kolmogorov Equation

OP(x, tly, ') d
o T Z 8 [Aie,)P(x )] | continuous
(Fokker-Planck
2 Z 6x8 [Bij(x, )P (x, tly, )] equation)

+ /dz [W(xlz, ))P(z. 1]y, 1) — W(z|x,O)P(x, 1]y, 1)],

discontinuous (master equation)

W(xlz,1) = AIEOP(x, t+ Atlz, 1)/ At,

1
= -— P — i S+ Atz 1),
Aifz, 1) = lim lim Al/‘x Z‘de(x z)p(x, 1+ Atlz, 1)

1
i = i dx(x; — zi)(xj — zj)p(x,t + Atlz, 1).
By(z.0) = lim lim / ez 5t -+ )
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discrete space-time

@ Markov Process in discrete space-time

Pny,m+1) = ZP(nl,m + 1|ny, m)P(ny, m).

n

@ Matrix representation
Let U(m) = (P(n,m))t, T(m)nn, = P(ny,m+ 1|ny, m),

U(m+ 1) = T(m)¥(m).

If we assume T(m) =T, ¥(m) = T"¥(0).
@ homogeneous Markov process

P(ny,mny,m’) = (Tm’m’),,,,,2 = P(n,m — m'|nz,0)

o cf: stationary process P(x,t) = P(x)
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Markov Chains

@ Markov chains
@ discrete “space”
@ discrete “time”
@ (time) homogeneous Markov process
@ “stochastic matrix”
o its elements are all non-negative.
@ each column adds up to unity.
e (...,1,1,1,...) is the left eigenstate of T with eigenvalue 1.

@ Existence of stationary state for finite system (by
Perron-Frobenius theorem)

lim U(m) = lim T"0(0) = T,

m—00 m—o00

where U, is the right eigenstate of T with eigenvalue 1.
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Some Definitions

elfScXxandT;=0forje Sandiec X — S, the set of states S is
called closed

@ If closed states have a single state, then this state is called an
absorbing state.

@ If X contains two or more closed sets, the chain is called
decomposbale or reducible.

_ T, 0O
(i 7)

@ A finite, irreducible chain has a unique stationary state.
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Galton-Watson Branching Process

@ discrete ‘generation’ (time) model

@ probability of each individual’s having k offspring is p(k).
@ X, (r.v.) : number of individuals at m-th generation

e X ={0,1,2,...} : state space, S = {0}: absorbing state.
@ What is the extinction probability, if Xo = 1?

@ iid. rv. nf”“ : number of offspring of j-th individual at generation
m

Xin

mtl
X1 = E ;i
J=1

T = P(X1 = KXo = i) = [p0)]" = > p(ki)--plky),
Kiki=k

i-fold convolution of p(k) with itself.
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Branching Process — generating function

@ CK equation

Pe(m) = P(X, =k) = TuPi(m— 1)
i=0
@ Generating function
Gn(z) = (&) = ZPu(m)
k=0
@ Evolution equation for G,,
Gni1(2) = (Z577) = (™) = Gu(G(2)),

where G(z) = Y52, Zp(k).
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Extinction Probability, £

@ Solution by iteration

Gn(z) = Gn-1(6(2)) = Gu—2(G(6(2)))
=G1(g(9(.)) = 9" () =G (¢" )
N——

m—1

= G(Gn-1(2)),

where G (z) = G(z) (because Xy = 1).
@ Extinction probability, &
Since & = P(Xyy = 0) = Gu(z = 0), &w = G(&n). Thus,

the Fundamental Theorem

¢ is the smallest solution of £ = G(£)(0 < € < 1).
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Graphical solution

p=> kpk)=Gg'z=1), Glz=1)=1
k

G(&) 463]
1 ............................. g 1 ............................. :
p(0)
% : (%
// . / .
5 i p(0) 7 :
6 ‘ S s
Lo Loe
p<l p>1
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Mean and variance

@ Mean

palm) = Y kPk(m) = Gy(1) = 2.6 (Gn-1(2)
k

=0

:Gm(%%w

) = ppi(m—1)
z=0.
Hence, i (m) = p™.
@ Variance (check it)
2wt =1 "
JWY—Q%U+%M)WMUV—{UM EEr

mo? p=1

@ assignment 4,5
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Markov chains in the continuous time limit

@ Fixed t = mr with 7 — 0.

Tuym, = (1 - Z P(”S”Z)) 6n|,n2 +1"(”1‘"2)(1 - 5;1..:13)

n3#ny

dP(n;,1) — lim P(ny,m) — P(n;,m—1)

dt 70 T
= Z [Wainy P(n2, 1) — Wagn, P(n1,1)],
n#n,
. - P
with transition rate Wy, = lim M
70 T

master equation

dP(ny,t
(dtl ) = Z [(Wainy P(n2,1) = Wayn, P31, 1)]
nyF#n
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Broken time reversal symmetry

Assume that the stationary distribution P(n) exist with Py(n) > 0.

Define Pnt)
x),ZP ( > ZP (n)f (),

where f(x) > 0 and f”(x) > 0 for 0 < x < oco. Then we get

dH(I =3 W Py(n) [sf () — xf (3)]

nn’

=3 WP [Gow = %) () +F () — F()] <

nn’

Since f”(x) > 0 and, accordingly, H(r) < 0, H(t) — constant as t — oc.
If we choose f(x) = xInx, we get H =", (n 1) In(P(n,1)/Py(n)).

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 60/120

One dimensional random walks : example

@ P(n;1) : prob. that a walker is located at x = n.
@ CK equation

P(n;t+7) =pP(n—1;1) + qP(n+ 1;1) + (1 — p — q)P(n; 1).

@ (naive) continuum limit

P(n;t — P(n;t
7('1’ +7) (1) = EP(n —1;0)+ zP(n-ﬁ— 1;1) — pta qP(n; 1),
T T T T

dP(n;1)
dr
where p/T — wy and g/7 — w_.

LP(n—1;0) + w_P(n+ 1;1) — (wy +w_)P(n;1),
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Time between jumps

@ Let O(ny,1,1) be the probability that we are “still” at point n; at ¢,
provided we start from n; at #.

O(ny,t +dt tg) = (1 -y anmdl> O(ny, 1, 1),

n#n

0
7,21, 1,10) = — > W, Q1 1,10) = =AQ(m1, 1, 10),
ny#n,

where A=Y, ., Win,- Thus, Q(my,1,19) = e 2=0),
@ to simulate the master equation
@ Assume we are at n; at time 1.
@ choose At from U(7) = P(At > 7) = exp(—A7).
@ choose n, from P(n) = Wy, /A
© Then we are now atn, at ¢+ Ar.

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 62/120

Properties of the exponential distribution

@ Lack of memory or Markov property (U(t) = P(Ar > 1))

P(At>s+1)

P(At>s+1t|Ar>1) = TR

=exp(—As) = P(Ar > s),
Ult +5) = U U(s).

@ unique solution of U(r + s) = U(r)U(s) for bounded U(r).

@ cf. Hamel equation /(s + 1) = f(s) + f ()

@ Poisson process (assignment 6)
Let Xi, ..., X, be i.i.d. r.v. with the exponential distribution. Let
Sy = X1+ -+ X, with Sp = 0. Let N(¢) be the number of indices
k > 1 such that S; < ¢, then

P(N(t) =n) = eﬂ\/(}’\lﬁ.
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Waiting time paradox

@ Buses arrive in accordance with a Poisson process with expected
time between consecutive buses to be A\~ | arrive at . What is
the expectation (W,) of my waiting time for the next bus?

Solution 1 The lack of memory implies (W;) = A~

Solution 2 My arrival time is chosen “at random” between two
consecutive buses. So due to the symmetry,
(W) =A71/2.

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 64/120

Simulation | : Contact Process (CP) in 1-D

@ Model
{A —0 withrate 1

0—A with rate 252

@ An example of sample paths (PBC)
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CP : rejection-free algorithm

@ mean waiting time : 7 = 1/(3 4 2)).
@ time when a jump happens : dt = —7In(1 — U(0, 1))
@ Prob that the configuration at 7 + dr: correpsonding rate xdr
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CP : pseudo-code |

a0 4 SO0, 00

0123 456

Keep number of particles and active vacancies NA, NV1, NV2

Make Three lists A[]1,V1([],V2[]

A[1]=0, A[2]=2, A[3]=3, V1[1]=4, V1[2]=6, V2[1l]=2

Determine dtby dt = 1./ (NA+(0.5+1lam) *NV1+lamxNV2)

Generate p= U(0, 1)

if (p<NAxdt) i=(int) (NA*U(0,1))+1 do A->0

else if (p<(NA+lamxNV2)xdt) i=(int) (NV2%U(0,1))+1
do AOA —-> AAA

else 1 = (int) (NV1xU(0,1))+1 do A0 -> AA

Update the lists and increase the time r — r + dt.
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pseudo code | — continuued

0000000 — 000000
0123456 0123456

@ Example of updating lists
Assuming p<NAxdt and i=2.

A[i]=A[NA], NA=NA-1

Accordingly, we need to update v1, v2

NV1=NV1+1, VI1[NV1]=2

NV2=NV2-1, NV1=NV1+1l, V1[NV1]=1

However, without knowing which number is assigned to site 1, it
will be very time consuming to implement the above procedure :
we need another array.
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udo-code Il : with rejection

Define § = 1./(1 + \)

Define x = ¢

Setdt = —dIn(1 — U(0,1))/L (L : system size).

To set dr = ¢/L is a good approximation (for large L, of course).
Choose i=(int) (LxU(0,1))

If site i is occupied,

@ remove particle with probability x
e With prob. 1 — x, set one of nearest neighbor to be occupied.

If site i is empty, do nothing.
Time increases by dr in any case.

Convince yourself that the average time to the next jump is the
same as before.
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pseudo-code Il : with particle list

@ Time rescale 7 = (1 + \)t
@ Define x = 1./(1 + \) (transition rate in the rescaled time)
@ Setdr =1./NA
@ Choose i=(int) (NAxU(0,1))+1
@ Generatep = U(0,1)

o if p<x, A[i]=A[NA],NA=NA-1

e elseif p<(1+x) 0.5,

j=i+l, if(j is empty) NA=NA+1,A[NA]=j

o else, j=i-1, if(j is empty) NA=NA+1,A[NA]=j
@ Need to know if site § is empty (another array : easy job).
@ Convince yourself that the average time to the next jump is the

same as before (up to time rescale).

@ Small tip : lusually make dt [1]1=1./1i beforehand.
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Simulation Il : A +A — 0 : pair list

@ Model

A0« 04, withrate D
AA — 00, with rate A

00— --OO0O00- OO
@ Define 6 = 1/max(D, \).
@ make three arrays 0[], list[],activel]

0[0]=0,0[1]=1,0[2]=1,0[3]=0,
1list[1]=0, list[2]=1,1list[3]=2,
active([0]=1,active[l]=2,active[2]=3,active[3]=0.

@ Set Np= size of the (valid) list.
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Simulation Il : A +A — 0 : pair list

@ Choose i=(int) (Np*U(0,1))+1,s=1ist[i]. setdr=d/Np
@ if(0O[i]x0[i+1]) AA->00 with prob Ad
@ else A0 <-> OA with prob D§
@ update the arrays
o decreasing Np at site s
i=active[s],list[i
Np=Np-1, active[s]=
e increasing Np at site s
Np=Np+1, list [Np]=s,active[s]=Np

]=1list [Np],active[list[Np]]=i,
0
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Simulation Il : A + A — 0 : particle list

0123

O
Y

Choose 6 = 1/max(D + \/2,2D, \).

make two arrays 1ist [],active[], N=2
list([1]=1,list[2]=2,
active[l]=1,active[2]=2,active[0]=active[3]=0
choose i=(int) (N*U(0,1))+1, s=list[i]

choose a direction at random (for example, j=s+1)

if 3 is empty, it moves there with prob. 2D§

if 3 is occupied, pair annihilation with prob. \J.

update the arrays as in the pair-list case and time increases by ¢/N
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Simulation Il : A +A — 0 —a comment

If either D > X > 0 or A > D > 0, it is more efficent to have two
lists plist[],slist[] and Ns, Np

diffusion event will occur with prob D x Ns/(D x Ns + X x Np).
if pair annihilation is determined, choose one from plist[],
remove that one, update the arrays.

@ time increases by 1/(D x Ns+ X x Np).

if system size is L < 2", it is convenient to set

active[s]=1i, plist[i]=s and

active[s]=2"n+i, slist[i]=s
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dinger equation

@ State and projection vectors
W), =Y P(r,0)n), (|=> (nl, {ln)}: orthonormal basis.

n
@ Normalization (:|¥), = 1 (in QM (¥|¥) = 1)
@ “Hamiltonian”
(mi|Hln2) = =Way y, (il Hlnr) = > Wy,

ny#n,

imaginary-time Schrédinger equation

9 N N
1) = ~HT) = 1) = 2.

@ Due to the normalization (-|H = 0.
@ Stationary state (if exists) is the right eigenstate of A with
eigenvalue 0.
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Stationary state and detailed balance

@ Stationary state P(n)

dP(n)
dt

=0="" [Wun,Ps(m1) = WanPs(n)].
n#n

0 = (n|H|V), for all n.

@ In the long time limit, P(n, 1jng,0) — Py(n), irrespective of no.
@ Detailed balance (approach to the equilibrium distribution)

Wayn, P5(n2) = anmP(\'(”I% Pﬁ(") X eiﬁE(")A,

where E(n) is the energy of the state n.

@ Can we know if the detailed balance is satisfied although we do
not know what P,(n) is? In principle, yes (assignment 7).
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Birth-and-Death (Jump, One-step) processes

@ Transition rates (integer space)
dn b"

n+1 n—1 n n+1 n+2

[ ]
)
)

@ master equation

7]
@Pn([) = dn+an+l(l) +bn—an—l<t) - (dn +bn)Pn(t>'
@ State space can be
e infinite: X ={...,-2,-1,0,1,2,...}.
o half-infinite : X = {0,1,2,...} (b—; =
o finite: X = {0,1,2,...,N} (b_; = dy = by
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Generating Function

@ equation for the generating function G(z, 1) Zz”P (1)

d
af Z[z dyi1Pog) — 2'dyPy + 2"y 1Pyt — 7"byPy)
—Z )Y duPu+ (=) byPy]
@ mean (n)
dln) _d (9G] _ )Py = (b)) —
- = (az z:1> =" (bn = du)Py = (b) — {dn).

n
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Pure Birth Proces

@ Poisson process b, = A, P(n,0) = d,0.
Py=—X\P,+AP,_1, Po=—-)\Py=P,(1) =

@ divergent Birth Process (dishonest process)

;P”(t) <1 forallt >0, iff Z 171,1 is finite.

For example, b, = n(n — 1) (2X — 3X reaction).

cf. ODE case: & _p
dt
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Linear Birth-and-Death Process |

@ Generating Function method

§7 S n=1_ _n n+l _ .n
azz{(z &) g Pat(z z))\(n+b)Pn:|

n=0 death birth

= (1= 9= 25 + (e = 1)G

with G(z,0) = 3=, 2Py (0) = 2 (Pu(0) = Gum)-

the method of characteristics
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The method of characteristics |

@ To solve partial differential equations

§+c(t x) 7f(txw)
Let (x(\),#(\)) be some curve in x — ¢ space.
&y Opdr  Odx [81;) dx/d\ 31/)}

AN Ord\ " oxdx  dx drjd) ox

Choose the curve such that (dx/d\)/(dt/d)\) = c(t,x); this curve is
called a characteristic. Then,

dt I . . .
N 7fd—A (ordinary differential equation)

It is convenient to set A = ¢.
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The method of characteristics Il

| know this characteristic curve.

| want to know
the value of(@)
at this point.

I know the value of(@)

: ) Match!
at this point.

Su-Chan Park (CUK)
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Linear Birth-and-Death Process Il

.. 0G aG B
Equation : a7t (z—=1)(n— Az)a—z = Mb(z— 1)G.

@ method of characteristics
Assume z is a function of ¢ [z = z(¢)] with zo = z(r = 0).
Choose a characteristic curve such that

d:
dj (z—1)(u— Az)ﬁ» /\Ze(* w' = C, (constant) ,

f (Z(I)*l)g%1n< ) _/\b/ (- 1)t = /:(f) Abd?!

= Az
-
ég:go(“ Z)
= Az

w—Az
— A2

=—bln
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Linear Birth-and-Death Process Il

Since Gy = G(2(0),0) =z,

1=z oo -2 op(l =) Faz(pe =)
ufx\ze 7u7/\zoﬁ SRR VS Y § RS T

- (2R (2

where & = e 1),
@ b =0: (continuous time) branching process (assignment 8)
@ b=-N,N =-)IN>0:reflectingwallatn =0and n = N.
@ )\ =0: pure death process.
@ 1= 0: pure birth process
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Chemical reactions

k
-] X<;‘I>
k

Wn—n+1)=k, Wn—n—1)=kn.

k
o X=—12X
ka

Win—n+1)=kin, Wn—n—1)=kn(n-1).
ki
@ 2X—=3X
ka

Whn—n+1)=knn-1), Wn—n—-1)=kn(n-1)(n—-2).

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 85/ 120




Fokker-Planck Equation

o differential CK equation with W(x|y,7) =0
Fokker-Planck equation (FPE)

OP(x, 1y, ) o ,
S = g e )]

I & )
+3 z,,: 0%, [Bj(x, 1)P(x, 1]y, 1")]

@ A(x) : drift vector
@ B(x) : diffusion matrix
@ Initial condition : P(x,tly,7) = d(x —y).
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short time behavior

o If Aris small, (cf: Langevin Equation)

P(x,1+ Ady, 1) = {(27) det[B(y, A}~ x

{ e —y —AQ. DAL B, [x —y — Ay, )A] }
Xexpq —= A

Y1+ A1) =y(1) + AW (1), )AL + () A2,

where (1(1)) =0, (n(t)n()T) =B, 1.
@ Sample paths are continuous with probability one.
@ Sample paths are nowhere differentiable because of Ar'/2.
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The Wiener Process |

FPE for the Wiener Process

1 0
23 Fowol (W,t‘Wo,l‘o),
P W7 tolWO,to) = (5<W = Wo)

0
fP(W th(),t()

@ generating function solution
805,02 [ dwp (.o, 0) explio), 606,10 = explism).
d¢ /dw P(w, t|wo, to) exp(isw)
2 0,
= dWZ@ 5P(w, t|wo, o) exp(isw) = =39 0]

o(s,1) = exp <7%s2(t —19) + iswo>
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The Wiener Process I

@ Fourier Transformation

P(w, tlwo, 19) = 2]771- /ds @(s,1) exp(—isw)

_ 1 ex _l(wfwo)2
©\2w(t—1) p( 2 -1 )

(W(1)) = wo (martingale) ,  ((W(r) —wo)?) =1 — 1.

@ Mean and Variance

@ cf. cumulant generating funcion

In¢(s,1) = UWO**JZ(Z*ZQ is(W(D) + 5 (’5)2<(W(t)*wﬂ)>
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Properties of the Wiener process |

@ Irregularity of Sample Paths
(W(r)) remains constant, but the variance diverges :

A !
I,‘. _y"&' |
af?

A .

\ P

l e v-]
Y

t
Sample paths are very variable and irregular
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Properties of the Wiener process |l

@ continuous everywhere but differentiable nowhere

W(t+h) — W(r) /°° 1 w?
pd| Y B s gl =0 [ dw—— -z
{’ h - o O amn TP\ T2

! ex] (7)(72) —1
o P > s
as h — 0 for any k > 0.

dw(t)
dt

o0

dx
kVh

Thus,

does not exist. (cf. Weierstrass function).
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Properties of the Wiener process I

@ independence of increments
Joint probability (due to the Markov property)

n—1
P(Way tai Wa 1, tn i+ 5w0,10) = [ [ POwigr, tia [wis ) P(wo, fo)
i=0
Let AW; = W(t;) — W(ti—1) (new r.v.), Aty = t; — ti_y,

P(Awy; Awy_p;- -+ ~Aw1‘w0)

- H { 2nAn (7%) } P(wo, to)-

r.v.s AW; are independent of each other and of W(z).
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Properties of the Wiener process |V

@ Autocorrelation function (cf. covariance)

WOWS) oo )y = [ szl s )
Assuming 7 > s and using the independence of increment,

(W()W(s)|[wo. to]) = ([W(t) — W(s)] W(s)) + (W(s)?)
=s—1+ w%
In general,

(W)W (s)|[wo, to]) = min(t — 19,5 — 1o) + w3,
(W(1), W(s)|[wo, f0]) = min(r — 19, s — to).

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 94/ 120




the Ornstein-Ulhenbeck Process

FPE for the Ornstein—UIhenbeck Process

7]
kxP + D
atP(x, t|xo0, f0) = ( (x, #]x0, 70)) £ P(x, t]x0, 1)

@ generating function solution

o(s,1) = /de(x,t\xo, to) exp(isx),  P(s,to) = exp(isxo)

O p(s, 1) + ksOs(s, 1) = —%Ds2¢(s, 1)
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Solution of the Ornstein-Ulhenbeck Process

010(s,1) + ksDyo(s,1) = 3 DS6(s,1)

@ the method of characteristics

% = ks, — se”" = A(constant),
d
90 IDs(Y'ole) = DA ()

2
d ¢ = ¢70€xp ( D { 2kt 1}) — ¢0€XP <,% {l 76721“}) .

When 1 = 0, ¢ = €5(=0% — (A% Hence,
D
B(s,1) = exp (ise’k’xo - ESZ {1- e—zkz})
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Stationary state

@ Mean and Variance

(X(1)) = x0e ™M, var(X(1)) {1 ey
@ Stationary solution
Ds? k kx?
¢(s,00) = exp <7ﬂ) , Py(x) =4/ —p P <73)
Note that P,(x) is the solution of the stationary FPE

Ox [kxP + %DOXP] =0
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Autocorrelation

@ time correlation function at stationarity
XOX)I o) = [ dsidiariaPlon e, ) Plas,shio ),
where 1 > s > 1y is assumed. Take #y — —oo, we get
{X(2),X(5))s = (X(OX(5))s = 57 exp (—l — 5]

The Ornstein-Uhlenbeck process in its stationary state models a
realistic noise signal with correlation time 1/k = 7.
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White noise in the Langevin equation

@ Langevin equation
dx
7 = A1)+ b(x (),
where &(1) is the rapidly fluctuating random term called the white
noise.
@ (£(1)) =0, (€(n&(f)) = 6(r — ') (no correlation at different times)

@ But, what is £(2)?
Let u(t) = [y &(¢')dr' (continuous stochastic process).

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 100/ 120

properties of u(z) |

@ u(r) is a Markov process.

ult) = tim [ /0 o dsf(s)] + / "¢
=l )

——
Ur=u(r) Uy

U, is independent of U,.
Thus, u(t) and u(#') — u(r) are statistically independent.
Furthermore, u(¢') — u(t) is independent of u(¢”) for ¢ < 1.
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properties of u(z) Il

@ FPE for u(z).

(u(t + At) — up|[uo, 1]) = < 5(s)ds> =

1+ At

((u(t+ Ar) — u0)2 [[uo, 1]) = dsds (s)f ’)>

t+AL pr+Ar
/ / dsds'S(s — s') = At.
Hence, A(uo, t) =0, B(up,t) = 1 : the Wiener Process.

o g =1,

: paradox!
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Stochastic Integral

@ Mathematically speaking, the Langevin equation does not exist.
@ However, the integral equation can be interpreted consistently.

w0 -x0) = [ ' ale(s), slds + / bla(s), sle(s)ds

= /0 ta[x(s),s]ds + /0 ’b[x(s),s]dW(S),

which is a kind of stochastic Stieltjes integral w.r.t. a sample
function W(r).
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Definition of the Stochastic Integral

@ (naive) definition

/IG(f/)dW('/) - Jim {Z G(m) W(h) — W(ti—l)]}
p

fo

=S,

whereto <t/ <t < <t <ty=tandt; < < he
@ But S, depends on the choice of 7’s. Take G(r) = W(1),

(Su) = Z (W(m) W(t) = W(t)])

= Z [min(7;, ;) — min(7;, ti—1)] = Z (i — tiz1)
i=1

i=1

Choose 7; = at; + (1 — a)t;—1 (0 < o < 1), then (S,) = a(r — 19).
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It6 stochastic integral

the It6 stochastic integral (o« = 0 or 7; = ;)

/ G)aw() = mstim {Z G (1) W (1) — W (z,-_l)]}
i=1

fo

G(r) is assumed not to be affected by the “future” : causality.
Such a G(r) is called a nonanticipating function.
@ examples of nonanticipating functions
Q w(
Q [ Fw()ar
Q ' FIw()aw(r)
Q ['G(")ar (G(1) itself is a nonanticipating function)
Q J'G()aw(r)
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Example [ W(r)dW(z)

Sp="> Wit (Wi— W) ZZ Wiy - AW]
1
=3 W07 = W] - S aw?.
<
=U
Note that

o (U) = Y(AW) = Yi(t — ti-1) = 1 = 1o,
@ (U~ (t—1))%) =23(ti — ti-1)*> — 0 as n — oo (check it!)
Hence (mean square limit),

/’ W(/)dW (/) = ms-limS, = % [W(r)? — W(1)?] — l(t —19).

(assignment 9)
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</W th)> < [(W(n)? - W(to)z}—%(t7t0)>:0.

o AW? is not negligible [~ O(dr)].
@ the Stratonovich integral

! Wit Wiy
/ A ’ ! W
S)~/Io W()aw(!') = ms-lim §.: 7 (Wi=Wi)

1
=5 [W(z)2 - W(to)z] s
similar to the ordinary calculus.

Note that the Stratonovich integral is not the same as the midpoint
prescription o = % though similar (assignment).
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Properties of the 1t6 Stochastic Integral |

@ dW(t)? = dr and dW(1)>tN = dW(t)dt = 0 in the sense that

1
aw (>N G(¢') = ms-lim G,-,lAW,-HN
[ W 6(6) = s )y

{/tdt’G(t’) for N =0,
=<

0 for N > 0.
@ Existence
J G(¢)dw (') exists whenever G(t) is continuous and
nonanticipating

Su-Chan Park (CUK) Stochastic Processes 14th Winter School, 2017 108 /120

Properties of the It6 Stochastic Integral Il

@ Integration of Polynomials. Since

dw(n)]" = [W(t) +dw(o)]" — W()"
-3 (’:) W) dW (1) — dW(1)? = dt
r=1
= W) dw (o) + 7”("; Dyr-2a,
we get

/ "W yaw () :nlﬁ (W™ — W)™

1
n
—= | w({)ar.
2 /fn
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Properties of the Itd Stochastic Integral llI

@ General differentiation rule (keep terms up to dW?)

of of 1 9°f 2
> —dt + d—WdW(r) + 2dW2dW(r)

_(of 10 of
= (5 + EW) dt + BWdW( )

w1 =

@ Mean value Formula

< / G(z’)dW(z’)> —o.

@ Correlation Formula

< /’0 "G(yaw () /m tH(t’)dW(t’)> = /10 I<G(t’)H<r’>>dt’
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Stochastic Differential Equation (SDE)

@ Ité SDE : definition

dx(t) = a[x(r),t)dt + b [x(t), 1] dW (1),

if for all r and ¢,

x(1) = x(t0) + /I"a (). /] df + /Ib[x(t’),z’] aw(e).

fo
@ x(r) is a Markov process.
@ additive noise: b|x(t), ] does not depend on x.
@ multiplicative noise: b[x(r),t] does depend on x.
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It6’s Formula

drix(0)] = £ I o)lte) + " x(0)ax()?

="l {alx(r), d)dr + blx(s), dW (1)} + %f”[X(l)]b[X(t% i2aw()?
= {a[X(l), A (0] + %f”[X(l)]b[X(t% tlz} dt + f'[x(1)]blx(1), 1Jaw (1)
where we have used,
dx(1) = alx(r), ] di + b [x(r), 1] dW (1),
dW(1)? = dt, and dW(1)>™N = dW(r)dr =

A — (a0 + "0l )
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Connection between the FPE and the SDE

7<fx(t )= /dxf P(x, ]x0, 1)
- / dx {a 0f (%) + 5b(x, t)zf”(x)}P(x, tx0, 10)
= /dxf(x) {7%(54(& HP) + %g—i(b(x, t)zP)} .

Since f is arbitrary,

FPE-SDE connection (assignment 10)

o d 1%,
dx = adi + bdW & o = —2-(aP) + 5 55 (0°P).
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Stratonovich SDE

@ Stratonovich integral : definition

) /’ G [x(¢), 7] aw(’)

0

= ms- llmZG { (x(ti) + x(ti=1)) , ti— 1] (W(t:) = W(tiz1)) -

@ Stratonovich SDE
(S)dx(t) = a[x(t), 1] dr + b [x(t),1] dW(1),

if for all r and #,

x(t) = x(to) + /[a [x(), 7] daf' + (S) /.rb [x(#), 7] aw(?).

to to

@ change of variables (same as the ordinary calculus rule)
S)df[x(1)] = f'[x(t)] {a [x(r), 1] dt + b [x(1),1] dW (1)} .
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Stratonovich vs [t6

@ From Stratonovich to It

(S =351 = (5 ) (W)~ W)

= [ﬂ (Xi-1) + %ﬂ/(xi—l)] AW; = B(xi—1)dW; + %ﬁ(xi—l)g/(xi—l)dt

Stratonovich and It6

[Sldx = au(x, 1)dt+5(x,1)dW & dx = (a(x, 1)t %ﬂ(x, t)%) di+-3(x, t)dW
(B W) {0’ »
x,t)dW) =< 1 a8 )
5 B(x,1) adt, Stratonovich.
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Example | : Geometric Brownian Motion

@ dx = cxdW(t).
@ change of variable : y = Inx

dy = % - i(dx)z = cdW(t) — %czdz
= 3() = yla0) + € [W(0) ~ W(ao) — 3620~ 1)
= x0) = i) exp { V(0 W] - 3 - )}

@ mean and autocorrelation function (assignment 11)

(x(1)) = (x(10)),
(x(1),x(s)) = (x(10)%) exp {min(t — 10,5 — 10)}
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Exmaple 2: Ornstein-Uhlenbeck Process

@ dx = —kxdt + /DdW
@ change of variable : y = xe/

dy = (dx)e“ + xd(e) = [7kxdz + \/Bdw] M+ kxel'dr
= VDél'aw
()wo)e*kwf/ K= aw (r').
@ mean and autocorrelation function
(x(1) = (x(0))e ™,

min(t,s) ,
(K(x(s)) = (x(0)2)e X6+ 4D / eHIR=2gy

(x(1), x(s)) = [var{x( )} — —} Krts) 4 = % D ki,
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The white noise limit

@ In real physical systems, noise should be correlated.
@ We are interested in a limit of a differential equation

dx

= ale) + b, (1),

where &, (1) is a stochastic source with nonzero correlation time.
o If (¢,(r)) =0and

ngigga(t)fw(r’)),- =5(t—1),

the above differential equation becomes

The white noise limit (assignment 12)

(S)dx = a(x)dr + b(x)dW(r)
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Positive Poisson Representation (Gardiner)

For any P,, a positive f(c) exists such that

P, = /dzoz (e’o‘j—;>f(a),

where o = o, + ior, and d*a = daydoyy.

o0

n=0 n

Hence, f(«) is a probability density.
@ Iff(a) = d(a— p) forreal p, P, = e Pp"/nl.
@ (n) = (a) always.
e (n)yy=nn—-1)---(n—m+1)) = (a™)
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SDE using Poisson representation

ki k;
X—/=0, X—=2X
k3 ky

2 aw ().

da = [ks + (k — ki)a — ksa?] dt + [2(koor — ksa?)]
If k4 = 0, the SDE is exactly solvable (linear birth-death).
If ky = k4 = 0, the dynamics is deterministic.
If k; = 0, « should be complex.
cf. Path integral approach (Cardy, cond-mat/9607163)
assignment 13, project
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