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Motivation

Three easy pieces

1. Develop precision holography for non-conformal QFTs.

2. Harness the power of supersymmetric localization to understand and test
holography.

3. Understand D-branes with curved worldvolume in string theory and
supergravity.

Goal: Describe recent progress which relates these 3 topics.



Synopsis

I SYM theory can be formulated on Sd while preserving 16 supercharges
for 2 ≤ d ≤ 7.

I The path integral can be reduced to a matrix model via supersymmetric
localization.

I The free energy and the 1
2 -BPS Wilson loop vev simplify in the planar

limit and can be computed for large ’t Hooft coupling.
I There are explicit smooth spherical Dp-brane supergravity solutions

(p = d− 1) which are holographically dual to the SYM theory.
I The usual asymptotically locally AdS holographic renormalization

procedure does not apply but can be modified to study new supergravity
solutions.

I Explicit precision test of the gauge/gravity duality.



General lessons

Sd is a useful IR regulator, compatible with supersymmetry, for the path
integral of a QFT.

Sd serves as a simple and effective way to resolve some naked singularities
arising from D-branes in string theory.



Plan

I Introduction and motivation X

I Maximal SYM on Sd and localization

I Spherical branes

I Non-conformal precision holography



Maximal SYM on Sd



Lagrangian and symmetries
The SYM Lagrangian on Sd is [Blau], [Minahan-Zabzine]

L = − 1
2g2

YM
Tr

(
1
2FMNF

MN −Ψ /DΨ + (d− 4)
2R ΨΛΨ + 2(d− 3)

R2 φAφA

+ (d− 2)
R2 φiφi + 2 i

3R (d− 4)[φA, φB ]φCεABC −KmK
m

)
.

The indices are M,N = 0, . . . 9, A,B = 0, 8, 9 and i, j = d+ 1, . . . 7. The 7
auxiliary fields Km allow for off-shell formulation of supersymmetry. Take
SU(N) gauge group for this talk.

I The terms proportional to R−1 and R−2 break the R-symmetry from
SO(1, 9− d) to SU(1, 1)× SO(7− d) (except for d = 4).

I The dimensionless ’t Hooft coupling is λ = R4−dg2
YMN .

I The theory is asymptotically free for d < 4, conformal for d = 4, and
non-renormalizable for d > 4.

I The expected UV completions are: the (2, 0) 6d SCFT for d = 5; (1, 1)
little string theory for d = 6; type IIA string theory for d = 7.



SUSY Localization - I
Use supersymmetric localization to compute the path integral. [Pestun], [Kim-Kim],

[Minahan-Zabzine],...

The path integral reduces to a matrix model in all integer dimensions
2 ≤ d ≤ 7.
Ignore instantons in the large N limit. The path integral simplifies and can be
treated with d = p+ 1 as a parameter.

Z =
∫

Cartan

[dσ] exp

(
−4π

p+2
2 N

λΓ( p−2
2 )

Trσ2

)
Z1−loop(σ) ,

where σ = Rφ0.
Solve this by a saddle point approximation for the eigenvalue density ρ(σ)

8π
p+2

2

λΓ
(
p−2

2

)σ =
∫
−G(σ − σ′)ρ(σ′)dσ′ .

The kernel is

iG(σ)
Γ(4− d) = Γ(−iσ)

Γ(4− d− iσ)−
Γ(iσ)

Γ(4− d+ iσ)−
Γ(d− 3− iσ)

Γ(1− iσ) + Γ(d− 3 + iσ)
Γ(1 + iσ) .



SUSY Localization - II
The result for the density is

ρ(σ) = 2π
p+2

2 (b2 − σ2)
4−p

2

πλΓ(5− p)Γ( p2 ) .

Here b is the edge of the eigenvalue distribution and is determined by
normalization

b5−p = 32λ(4π)−
p+2

2 Γ
( 7−p

2

)
Γ
( 5−p

2

)
Γ
(
p
2

)
.

Using this we find the free energy

F = −N
24π

p+2
2

λΓ( p−2
2 )

5− p
(7− p)(p− 3) b

2 ,

and the expectation value of a 1
2 -BPS Wilson loop
log〈W 〉 = 2πb .



Special cases
The formulae above are valid for 3 < d < 6. Results outside of this range can
be obtained by careful regularization.

I For d = 2 one has

F = −4
√

2π
3
√
λ
N2 , log〈W 〉 = 27/4π3/4λ1/4 .

I For d = 3 the calculation can be done for general λ

F = 0 , 〈W 〉 = 3
ξ3 (ξ cosh ξ − sinh ξ) , ξ3 = 6π2λ .

I For d = 6 one has to remove an exponential divergence (LST?) to find

F = −3N2exp
(
−2− 16π3

3λ

)
, log〈W 〉 = 4πexp

(
−1− 8π3

3λ

)
.

I For d = 7 the divergence is more standard and one finds

F = 16π10

3λ3 N2 , log〈W 〉 = −4π4

λ
.



Spherical branes



How to find the supergravity dual?
Naïve approach: Consider a suitable Ansatz in type II supergravity.

From symmetry considerations alone, we expect a background of type II
supergravity of the form

ds2
10 = ∆

[
dr2 +R2e2AdΩ2

p+1 + e2B(dθ2 + P cos2 θ dΩ̃2
2

+Q sin2 θ dΩ2
5−p
)]
.

where dΩ̃2
2 is the metric on dS2. This realizes the SO(p+ 2) isometry and

SU(1, 1)× SO(6− p) R-symmetry.

Turn on all supergravity fluxes compatible with this symmetry.

Impose that the supersymmetry variations of type II supergravity vanish. This
leads to nonlinear PDEs in (r, θ) for the functions in the ansatz.

Comment: The solutions should asymptote to the standard flat near horizon
Dp-brane solutions in the UV and be regular in the IR.
[Itzhaki-Maldacena-Sonnenschein-Yankielowicz]

This is hard!



Gauged supergravity - I
Better idea: Reduce the problem to a supergravity in p+ 2 dimensions and
uplift the solution found there back to ten dimensions.

The supergravity theory should be a truncation of maximal Euclidean
supergravity with gauge group G ⊃ SO(1, 8− p). The truncation should retain
only the metric gµν and three scalar fields dual to the operators

Tr |F |2 , Trφaφa , Tr Ψ̄ΛΨ .

The scalars should implement the breaking of the gauge group as in the field
theory

SO(1, 8− p)→ SU(1, 1)× SO(6− p) .

The relevant supergravity theories are

I p = 6, eight-dimensional SO(3) gSUGRA [Salam-Sezgin]

I p = 5, seven-dimensional SO(4) gSUGRA [Samtleben-Weidner]

I p = 4, seven-dimensional SO(5) gSUGRA reduced on S1 [Pernici-Pilch-van

Nieuwenhuizen]

I p = 2, four-dimensional SO(7) gSUGRA [Hull]

Note: We have to Wick rotate these theories to Euclidean signature.



Gauged supergravity - II

Unified description extracted from various gauged SUGRA papers

L = 1
2κ2

[
R− 3p

2(6− p) |∂η|
2 − 2Kττ̃∂τ · ∂τ̃ − V

]
,

V = 1
2eK

(
6− p

3p |∂ηW|
2 + 1

4K
ττ̃DτWDτ̃W̃ −

p+ 1
2p |W|

2
)
,

W =

 −g e 1
2 η
(

3τ + (6− p)ie−
p

6−p
η
)

for p < 3 ,

−g e
3(2−p)
2(6−p) η

(
3ie

p
6−p

η + (6− p)τ
)

for p > 3 .

The limit p→ 6 has to be taken with care. The scalar field has to be removed.

Comment: The theory for p = 1 is obtained by “analytic continuation”. Would
be interesting to derive it.



Constructing the solutions

We look for spherical domain walls of this theory:

ds2
p+2 = dr2 + e2A(r)dΩ2

p+1 .

Supersymmetry reduces the problem to three nonlinear ODEs and an algebraic

relation for e2A.

(η′)2 = eK
(

6− p
3p

)2

(∂ηW)(∂ηW̃) ,

(η′)(τ ′) = eK
(

6− p
12p

)
(∂ηW)Kττ̃Dτ̃W̃ ,

(η′)(τ̃ ′) = eK
(

6− p
12p

)
(∂ηW̃)Kτ̃τDτW ,

e2A = eK 4
9g4

(τ̃ − τ)2

(τ̃ + τ)2 e
4(p−3)

6−p
η(∂ηW)(∂ηW̃) .



Results

A 1-parameter family of explicit solutions parametrized by the value of the
scalar ηIR.

UV: The solutions approach the near horizon limits of the flat Dp-branes
supergravity solutions.

IR: Smooth Rp+2 cap-off.

Note: Analytic solutions for p = 1, 2, 3, 4, 6. Numerical solution for p = 5.



Uplifting to 10d
The 10d string frame metric is

ds2
10 = Q−

1
2 eη
[

ds2
p+2 + g−2e

2(p−3)
6−p η (dθ2 + P cos2 θdΩ̃2

2 +Q sin2 θdΩ2
5−p
)]

where

P =

{
X
(
X sin2 θ + (X2 − Y 2) cos2 θ

)−1 for p < 3 ,
X
(

cos2 θ +X sin2 θ
)−1 for p > 3 ,

Q =

{
X
(

sin2 θ +X cos2 θ
)−1 for p < 3 ,

X
(
X cos2 θ + (X2 − Y 2) sin2 θ

)−1 for p > 3 .

and
τ = ie−

p
6−p

η(X + Y ) , τ̃ = −ie−
p

6−p
η(X − Y ) , for p < 3 ,

τ = ie
p

6−p
η(X + Y ) , τ̃ = −ie

p
6−p

η(X − Y ) , for p > 3 .
The non-vanishing type II supergravity fields are given by

B2 = e
p

6−p
η Y P

g2X
cos3 θ vol2 , e2Φ = g2

se
p(7−p)

6−p
η
P Q

1−p
2 ,

C5−p = ie−
p

6−p
η Y Q

gsg5−pX
sin4−p θ vol5−p ,

C7−p = i
gsg7−p

(
ω(θ) + P cos θ sin6−p θ

)
vol2 ∧ vol5−p .



Special cases
• The spherical type IIA D4-brane solution has a large dilaton in the UV. Uplift
to M-theory to find the well-known AdS7 × S4 background. Note, the
boundary is S5 × S1.

• The D5-brane solution has a linear dilaton in the UV. It should be
appropriate for studying the N = (1, 1) little string theory on S6.

• The spherical type IIA D6-brane solution also has a region with a large
dilaton. Uplift to M-theory to find S7 ×H2,2/ZN .

ds2
11 = L2

4
(
4dΩ2

7 + ds2
4
)
, L = R/g1/3

s

ds2
4 = dρ2 − sinh2 ρ

4
(
dt2 − cosh2 t dψ2 + (N−1dω − sinh t dψ)2) .

The eleven-dimensional 4-form is given by

G4 = 6 i
L

volH2,2 ,

Note: One can Wick rotate to (1, 10) signature with real flux.



Non-conformal holography



Holographic free energy - I

Set up the stage by defining a few key quantities.

The effective ’t Hooft coupling is

λhol = g2
YM,holNE

p−3
hol ,

where E is some energy scale. Following the QFT we set E = R−1
hol .

Key point: Both gYM and Rhol run with energy.

We take
g2
YM,hol = 2π

(2π`s)3−p eΦ , Rhol = Q−1/4eA+η/2 .

Putting all this together we find

λhol = lim
r→∞

2πgsN
(2π`s)3−p e(3−p)Ae

9−p
6−p

η
.

Note: This is finite for all p.



Holographic free energy - II
The holographic free energy is computed by evaluating the p+ 2-dimensional
supergravity action on-shell.

Fhol = SRen.
on-shell .

Problem: The backgrounds we have are no asymptotically locally AdS.
Solution: Employ the dual frame of [Kanitscheider-Skenderis-Taylor]

gµν = e2aη g̃µν , where a = p− 3
6− p .

The case p = 6 needs to be treated separately. The gSUGRA action takes the
form

S = 1
2κ2

p+2

∫
dp+2x

√
g̃ epaη

{
R̃+

( 3p
2(p−6) + a2p(p+ 1)

)
|dη2|

−2Kττ̃ |dτ |2 − e2aηV
}
.

Now apply the standard holographic renormalization to the fields in the new
action. This works for all cases p 6= 5.
Upshot: For all values of p we are able to show

Fhol = FQFT .



Example

For p = 1, 4 there are finite counterterms that can be added to the action.
Tune their coefficients to get a match with the localization results.

Take D4-branes, i.e. 5d SYM. The finite counterterms are

Sct,fin = 1
κ2

6

∫
d5x
√
h̃e2η

(
c1

(
1
g
R̃Y 2 − 20gY 4

)
+ c2gY

6 + c3
g
R̃Y 4 + c4

g3 R̃
2Y 2
)
.

Fix
c1 = c2 = c4 = 0 , c3 = − 1

10 ,

to get a match with holography.

Resolves a puzzle in the literature where the naive AdS7 action with S5 × S1

boundary was evaluated. [Kallen-Minahan-Nedelin-Zabzine]

Similar problem with the on-shell action of AdS5 with S3 × S1 boundary. [Benetti

Genolini-Cassani-Martelli-Sparks]

Should be made more rigorous using a proper supersymmetric regularization
scheme. [Papadimitriou]



Holographic Wilson loop
The vev of a (fundamental) Wilson loop is given by the renormalized on-shell
action of a probe string placed in the supergravity background [Maldacena], [Rey-Yee]

log〈W 〉 = −SRen.
string .

We must first determine a stable configuration for the probe string

Sstring = 1
2π`2s

∫
(
√
|g|d2σ −B2) .

The string action is minimized for a string wrapping the great circle of the
Sp+1. On the internal space it sits at θ = 0 and a point on dΩ̃2

2.
For this configuration the action simplifies to

Sstring = 1
`2s

∫
eA+η dr .

This diverges in the UV and should be regularized by using the counterterm

Lct = 1
`2s

eA+ 3
6−p

η|r→∞ .

A precise match with the localization results for all p!



Summary

I Studied maximal SYM on Sd for 2 ≤ d ≤ 7.

I Explicit results for the free energy and the 1
2 -BPS Wilson loop vev in the

large N , large λ limit.

I For d = 3 exact result for the 1
2 -BPS Wilson loop vev in the large N limit

as a function of λ.

I Explicit supergravity spherical brane solutions.

I Non-trivial application of holographic renormalization which leads to
precision tests of non-conformal holography.



Outlook

I Generalize to SYM theories with less supersymmetry.

I Other compact manifolds, i.e. other curved D-branes?

I For d = 3 we have a trivial free energy but an exact result for the Wilson
loop as a function of λ. Understand this better. Integrability?

I Lessons from our results in d = 6 for little string theory?
[Aharony-Evtikhiev-Feldman]

I Understand d = 7 better.

I Is it possible to compute 1/N and 1/λ corrections both in QFT and in
supergravity? [Binder-Chester-Pufu-Wang]



Thank You!


