Baryogenesis & Dark Matter in Axionic Higgs Portal

Recent and on-going works in collaboration with

Sang Hui Im, Tae Hyun Jung, Sunghoon Jung, Chang Sub Shin, Seodong Shin, Jong-Chul Park

Kwang Sik JEONG

Pusan National University, Korea

APCTP-PH2020 Workshop

14 Nov 2020

- I. Introduction
- II. Axionic Higgs portal
 - Axion
 - Dark matter
 - Baryogenesis
- III. Summary

What is physics beyond the SM?

Before LHC

Models to explain the EW hierarchy problem

H-----H
$$\delta m_H^2 \sim \frac{(\text{UV cutoff scale})^2}{16 \, \pi^2}$$

 \rightarrow TeV particles with sizable couplings to the SM

e.g. SUSY, extra dimensions, composite Higgs, ...

 \rightarrow (often) WIMP as cold dark matter

I. Introduction- BSM

LHC results so far

- No significant deviations from the SM
- No clear signals for BSM

Direct & indirect dark matter searches so far

• No evidence of WIMPs

I. Introduction- BSM

What is physics beyond the SM?

After LHC

Another viable direction

- New light particles feebly coupled to the SM

- Cosmologically important
- Solution to the SM problems?

I. Introduction- BSM

What is physics beyond the SM?

Portal frameworks

Interaction between the SM and dark sector

- Dark Higgs: $\lambda S^2 H^{\dagger} H$
- Sterile neutrino: yLHN
- Dark photon: $\epsilon F'_{\mu\nu}B^{\mu\nu}$
- Axion: $\frac{a}{f}\tilde{F}_{\mu\nu}F^{\mu\nu}$

Axion/Axion-like-particle

Pseudo Nambu-Goldstone boson of spontaneously broken U(1)

Periodic: $\phi \equiv \phi + 2\pi f$

where axion decay constant f = U(1) breaking scale

Mass and couplings

- Interaction: suppressed by f
- Mass: controlled by shift symmetry, $\phi \rightarrow \phi + \text{constant}$

$$m_{\phi} = \frac{(\text{shift symmetry breaking scale})^2}{f}$$

 \rightarrow Feebly interacting light particle for large f

Axion portal

- Perturbative shift symmetry, $\phi \rightarrow \phi + \text{constant}$
 - 3 types of interaction
 - Yukawa, derivative, and anomalous coupling

$$m_{\psi}e^{ic_{1}\frac{\phi}{f}}\bar{\psi}\psi + c_{2}\frac{\partial_{\mu}\phi}{f}\bar{\psi}\gamma^{\mu}\gamma_{5}\psi + \frac{c_{3}}{16\pi^{2}}\frac{\phi}{f}F\tilde{F}$$

- Physics: combinations of c_i invariant under chiral field redefinitions

 Potential to be probed by cosmological, astrophysical and laboratory observations

I. Introduction- Axion

Experiments

Examples

QCD axion for CP conservation in QCD

Neutron EDM bound on $\bar{\theta}G\tilde{G}$

Peccei, Quinn 1977

Axion anomalously coupled to gluons

- Natural solution to the strong CP problem: $\bar{\theta} \propto \langle \phi \rangle = 0$
- Dark matter: misalignment, topological defects

I. Introduction- Axion

Examples

Freese, Frieman, Olinto 1990

Natural inflation

Inflation: initial conditions for the Big Bang cosmology

Very flat potential from axion

$$V = \Lambda^4 \left(1 - \cos\left(\frac{\phi}{f}\right) \right)$$
 with $f \ge M_{Pl}$

II. Axionic Higgs Portal- Framework

Portal interaction

• Axion portal ($\phi \equiv \phi + 2\pi f$)

$$m_{\psi}e^{ic_{1}\frac{\phi}{f}}\bar{\psi}\psi + c_{2}\frac{\partial_{\mu}\phi}{f}\,\bar{\psi}\gamma^{\mu}\gamma_{5}\psi + \frac{c_{3}}{16\pi^{2}}\frac{\phi}{f}F\tilde{F}$$

Another type of axion portal coupling

$$M^2 \cos\left(\frac{\phi}{f}\right) |H|^2$$

- Feeble interaction with the SM via the Higgs field
- Much interest after "Cosmological relaxation of the Higgs mass"

Graham, Kaplan, Rajendran 2015

II. Axionic Higgs Portal- Framework

UV completion

- Model with perturbative shift symmetry
 - Hidden QCD
 - Vector-like lepton doublets $L + L^c$ and singlets $N + N^c$

Axion properties

Scalar potential

$$V = \lambda |H|^4 + \mu^2 |H|^2 - M^2 \cos\left(\frac{\phi}{f}\right) |H|^2 - \Lambda^4 \cos\left(\frac{\phi}{f} + \alpha\right)$$

$$\uparrow$$
closed Higgs loop: $\Lambda^4 \ge \frac{1}{16\pi^2} M^2 \Lambda_{cut}^2$

- Axion properties depend on f, M, Λ, α
- Axion evolution is tied to EW symmetry breaking!

Experimental constraints

- Axion-Higgs mixing after EWSB for $\alpha \neq 0$
 - Stringent constraints for axion at sub-MeV to multi-GeV from rare K and B meson decays, and beam-dump experiments
- Further constraints if anomalously couples to SM gauge bosons

Cosmological roles of axion

$$V = \lambda |H|^4 + \mu^2 |H|^2 - \frac{M^2}{f} \cos\left(\frac{\phi}{f}\right) |H|^2 - \frac{\Lambda^4}{f} \cos\left(\frac{\phi}{f} + \alpha\right)$$

Axion-driven EW phase transition

for *M* above the weak scale

Cosmologically stable axion

for tiny α or huge f

Freeze-in dark matter

- Alternative to WIMP dark matter (freeze-out)
- Never in thermal equilibrium: feebly coupled to SM
 - Produced via thermal freeze-in McDonald 2001, Choi, Roszkowski 2005, Petraki, Kusenko 2007

Hall, Jedamzik, March-Russell, West 2009

2-2 scattering, decay of thermal particles

• Relic abundance: $\Omega_{\chi} \propto \lambda^2 m_{\chi}$

- Observed DM abundance if $\lambda \sim 10^{-12}$ and $m_{\chi} \sim 100 {\rm GeV}$

• Need an explanation for $\lambda \ll 1!$

Gravitino, axino in SUSY (many works) Clockwork FIMP, Mohan and Sengupta 2018

II. AHP- Model for Freeze-in Axion Dark Matter

Axionic Higgs portal

KSJ, Im 1907.07383

Coupled to the SM ONLY via Higgs portal

- CP conserving minimum $\phi = 0$
 - No ALP-Higgs mixing
 - Stable axion due to accidental Z₂ symmetry $\phi \rightarrow -\phi$
 - Feebly coupled to SM thermal bath for large f
 - \rightarrow Natural framework for freeze-in DM

Axion dark matter

Axion properties

- Mass mainly from closed Higgs loops: $m_{\phi} \simeq \frac{\Lambda^2}{f}$

- Interactions with the SM

$$\frac{\lambda_{h\phi}}{4}h^2\phi^2 + \frac{\lambda_{h\phi}\nu}{2}h\phi^2 \text{ with } \lambda_{h\phi} = \left(\frac{M}{f}\right)^2$$

- Never in thermal equilibrium for $\lambda_{h\phi} < 10^{-7}$

 If thermalized, it overcloses the universe in most of parameter space satisfying the bound on DM scattering with nuclei

Axion dark matter

- Freeze-in production via $h \rightarrow \phi \phi$ (dominant if open), and $hh \rightarrow \phi \phi$
 - Correct dark matter density

$$\lambda_{h\phi} \simeq 10^{-10} \times \left(\frac{m_{\phi}}{_{3 \text{MeV}}}\right)^{-\frac{1}{2}} \text{ and } m_{\phi} \simeq 1 \text{MeV} \times \left(\frac{\Lambda}{_{10^{3} \text{GeV}}}\right)^{\frac{4}{5}}$$

 $\lambda_{h\phi} \simeq 10^{-11} \text{ and } m_{\phi} \simeq 380 \text{GeV} \times \left(\frac{\Lambda}{_{10^{9} \text{GeV}}}\right)$

• Coherent oscillations: negligible if $T_{\rm osc} \gg 10^6 \times m_{\phi}$

UV completion

- Non-perturbative Higgs portal via hidden QCD
 - Lepton doublets $L + L^c$ and singlets $N + N^c$
 - Generically, $\alpha \neq 0$
- Severe constraint on the lifetime (α) from gamma ray observations

II. AHP- Model for Electroweak Baryogenesis

Electroweak phase transition

Last period affecting baryon asymmetry

B+L violation by rapid EW sphaleron transition in symmetric phase

- Baryogenesis
- 1) Nonzero B-L above EW scale: Leptogenesis, Affleck-Dine, ...
- 2) B+L generation at EW scale and sphaleron decoupling
 - → EW baryogenesis

Lots of works since 1985

II. AHP- Model for Electroweak Baryogenesis

EW baryogenesis

- Requirements
 - Strong first-order phase transition to avoid washout

SM: crossover if $m_h > 75$ GeV

- Sufficient CP violation beyond SM

Conventional scenarios

Strong first-order phase transition

e.g. thermal or effective Higgs cubic term, log potential

higher dim operator with low cutoff

- \rightarrow New particles coupled to *H* or sizable modification of Higgs sector
- Non-local baryogenesis
 - CP violation in front of wall, B violation away from wall
- Probe of EWBG
 - LHC (direct searches) and EDM experiments

c.f. severe constraint from electron EDM: $|d_e| < 1.1 \times 10^{-29} e \cdot cm$

ACME II 2018

II. AHP- Model for Electroweak Baryogenesis

Axionic Higgs portal

• Free energy: $V = V_0 + (\text{thermal effect})$

$$V_{0} = \lambda |H|^{4} + \left[\mu^{2} - M^{2} \cos\left(\frac{\phi}{f}\right) \right] |H|^{2} - \Lambda^{4} \cos\left(\frac{\phi}{f} + \alpha\right)$$

$$\Delta V_{\text{thermal}} = c_{H} T^{2} |H|^{2} \quad \text{and} \quad \text{and}$$

Free energy in terms of 3 positive parameters

$$\alpha, \ \epsilon \equiv \frac{\sqrt{\lambda}\Lambda^2}{M^2}, \ r \equiv \frac{\Lambda^2}{\sqrt{\lambda}v_0^2}$$

with λ and μ^2 fixed by $m_h = 125 \text{GeV}$ and $v_0 = 246 \text{GeV}$

EWPT in axionic Higgs portal

- For large *f*, tiny thermal and quantum corrections to *V* from axion
- Free energy $V = V(h, \phi/f)$: Insensitive to f
- Tunneling mainly along the light axion direction for $f \gg \text{TeV}$
 - Higgs field can be replaced by solving $\partial_h V = 0$
- Phase transition
 - Two degenerate minima at T_c : lower than in the SM
 - Bubble nucleation at T_n
 - Barrier disappears at T_2

EWPT in axionic Higgs portal

Approximate scaling behaviors

• Euclidean action of O(3) symmetric critical bubble

 $S_3 \propto f^3$

 \Rightarrow Bubble radius $\propto f$, and T_n close to T_2

c.f. conventional models: thin wall, T_n close to T_c

 Relatively smooth phase transition (no substantial expansion of bubbles), but rapid ALP evolution

EW phase transition

• Case with
$$r \equiv \frac{\Lambda^2}{\sqrt{\lambda}v_0^2} = 1.2$$

- First-order PT in red region (wider at small *r*)
- Red region close to blue line
- → EWPT at very low T
 PT pattern: insensitive to *f*

Implications

- Delayed EW phase transition
 - Late-time entropy production to dilute preexisting relics (e.g. dark matter)

$$\Delta = 10^4 \left(\frac{T_{\rm reh}}{40 {\rm GeV}}\right)^3 \left(\frac{T_n}{2 {\rm GeV}}\right)^{-3}$$

Temperature after phase transition

$$T_{reh} = 40 \text{GeV}\left(\frac{\Delta V^{1/4}}{100 \text{GeV}}\right)$$

- Strong first order phase transition
 - EW baryogenesis

Axionic EW baryogenesis

Strong first order phase transition driven by axion via

$$M^2 \cos\left(\frac{\phi}{f}\right) |H|^2$$

- New direction in EWBG
 - Free from EDM and LHC constraints for $f \gg \text{TeV}$
 - Axion searches to reveal the connection between
 - EW phase transition and baryogenesis

EW baryogenesis

- CP violation depending on the bubble wall profile
- 1) Axion-dependent top quark Yukawa

$$(y_t + x_t e^{i\phi/f})ht_L t_R$$

axion variation along the wall \rightarrow B number chemical potential

2) Anomalous axion coupling to EW gauge bosons

$$\frac{1}{16\pi^2} \frac{\phi}{f} W_{\mu\nu} \widetilde{W}^{\mu\nu}$$

 $\frac{d\phi}{dt} \rightarrow B$ number chemical potential

II. AHP- Model for Electroweak Baryogenesis- Baryon Asymmetry

EW baryogenesis

Condition for EWBG

II. AHP- Model for Electroweak Baryogenesis- Baryon Asymmetry

1) Non-local EWBG KSJ, Jung, Shin 1806.02591

CP violation from axion-dependent top quark mass

- Baryon asymmetry
 - CP violation x_t , wall width L_w , wall velocity v_w
 - Sizable diffusion effect for $L_w T_n \leq 100 \rightarrow$ upper bound on f

1) Non-local EWBG

• Correct baryon asymmetry for $3\text{TeV} \le f \le 10\text{TeV}$

(axion mass: GeV to 20 GeV)

II. AHP- Model for Electroweak Baryogenesis- Baryon Asymmetry

2) Local EWBG KSJ, Jung, Shin 1811.03294

CP violation from axion-dependent EW @-term

 $\frac{\phi}{f}W\widetilde{W} \rightarrow \frac{d\phi}{dt}$ = chemical potential for baryon number

- Simultaneous B and CP violations across thick walls
 - B generation through EW anomaly

$$\frac{dn_B}{dt} = \frac{3}{2} \frac{\Gamma_{\text{sph}}}{T} \frac{d}{dt} \frac{\phi}{f} - \frac{39}{4} \frac{\Gamma_{\text{sph}}}{T^3} n_B$$

$$\uparrow$$
sphaleron-induced washout

- Wash-out: need to suppress axion oscillations quickly

via thermal dissipation (axion-Higgs mixing)

2) Local EWBG

• Correct baryon asymmetry for $10^5 \text{GeV} \le f \le 10^7 \text{GeV}$

r=1.1 (A=130 GeV) η/η_{obs} 1.0 Not 1st order 0.8 3 Not strong 1st order $(v_n < T_n)$ 0.6 2 w 0.4 1 1/10 0.2 $f = 10^{6} {
m GeV}$ Metastable 0 Not global minimum 0.0 0.0 0.5 1.0 1.5 2.0 a

(axion mass: MeV to GeV)

II. AHP- Model for Electroweak Baryogenesis- Baryon Asymmetry

How to probe axion-driven EWBG

- Axion at MeV-GeV (local) or GeV-20GeV (non-local)
 - window without strong theoretical interests so far

axion-Higgs mixing: rare B-meson decays, beam dump

II. AHP- Model for Cogenesis

Axionic cogenesis KSJ, Sang Hui Im 2012.xxxx

• Axionic Higgs portal with $M \ll m_Z$

$$V = \lambda |H|^4 + \mu^2 |H|^2 - \frac{M^2 \cos\left(\frac{\phi}{F}\right)}{|H|^2} - \frac{\Lambda^4 \cos\left(\frac{\phi}{F} + \alpha\right)}{|H|^2}$$

axion evolution is triggered by EW symmetry breaking

CP violation from anomalous coupling to EW gauge bosons

$$\frac{1}{16\pi^2} \frac{\phi}{f} W_{\mu\nu} \widetilde{W}^{\mu\nu}$$

axion evolution $\frac{d}{dt} \frac{\phi}{f}$: chemical potential of baryon number

Axionic cogenesis

- Spontaneous baryogenesis via slow shift of potential minimum $\frac{\phi}{F}$
 - Correct baryon asymmetry for $F > 10^7 \times f$
 - Clockwork mechanism

collective rotations of N axions

- Dark matter from axion coherent oscillations
 - Cosmologically stable due to tiny mass
 - Photophobic axion to avoid astrophysical constraints
 - $(f < 10^7 \text{GeV for sufficient thermal dissipation})$

Axion coupling to dark sector

- Axion-driven EWBG with CP violation from
 - axion-dependent top quark Yukawa
 - anomalous axion coupling to EW gauge bosons
- Dark sector
 - Dark photon dark matter: $\frac{\phi}{f} \tilde{F}'_{\mu\nu} F'^{\mu\nu}$
 - Fermionic dark matter: $m_{\chi}e^{ic\frac{\varphi}{f}}\bar{\chi}\chi$

Dark

Sector

φ

SM

III. Summary

Axion

- Feebly interacting light particle with properties controlled by perturbative shift symmetry
- Strong CP problem, dark matter, inflation, ...

Axionic Higgs portal

- Electroweak hierarchy: cosmological relaxation
- Matter-antimatter asymmetry via EW baryogenesis
- Dark matter via freeze-in or misalignment