APCTP Workshop for Particle Physics Phenomenology [Nov.13(Fri)-15(Sun),2020] Higgs physics with electron-proton colliders

Jeonghyeon Song (Konkuk University, Korea)

w/ Adil Jueid, Jin Heung Kim, Soojin Lee 2020. 11.14.

Contents

- 1. Deep Inelastic Scattering and HERA
- 2. LHeC design
- 3. Advantages of the LHeC over the LHC
- 4. What can we do with the LHeC?
- 5. Conclusions

Future colliders

- Hadron colliders
 - High luminosity LHC (HL-LHC);
 - High energy LHC (HE-LHC);
 - Future Circular Collider for hadrons (FCC-hh);
- Electron-positron colliders
 - International Linear Collider (ILC);
 - Compact Linear Collider (CLIC);
 - Future Circular Collider for electrons and positrons (FCC-ee);
 - Chinese Electron-Positron Collider (CEPC).
- Electron-hadron colliders
 - HL-LHeC, HE-LHeC, and FCC-eh.

Future colliders

- Hadron colliders
 - High luminosity LHC (HL-LHC);
 - High energy LHC (HE-LHC);
 - Future Circular Collider for hadrons (FCC-hh);
- Electron-positron colliders
 - International Linear Collider (ILC);
 - Compact Linear Collider (CLIC);
 - Future Circular Collider for electrons and positrons (FCC-ee);
 - Chinese Electron-Positron Collider (CEPC).
- Electron-hadron colliders
 - HL-LHeC, HE-LHeC, and FCC-eh.

1. Deep Inelastic Scattering and HERA

- In 1955
 - Scattering of the electron off proton with $E_e = 0.2 \text{ GeV}$
 - Finite proton radius of $\simeq 0.74\,{\rm fm}.$
- SLAC-MIT experiment in 1968
 - $-E_e=10~{
 m GeV}$
 - Proton structure function $F_2(x, Q^2)$ at fixed Bjorken x as a function of Q^2 was measured.
 - partons!
- SLAC in 1978

 \implies

– Polarization asymmetry in e^-p scattering

– RH weak isospin charged of the electron is zero.

- In 1955
 - Scattering of the electron off pr
 - Finite proton radius of
- SLAC-MIT experime
 - $-E_e = 10 \,\,\mathrm{GeV}$
 - Proton s
 - \boldsymbol{x} as

on $F_2(x, Q^2)$ at fixed Bjorken was measured.

 $0.2 \,\,\mathrm{GeV}$

.1zation asymmetry in e^-p scattering

– RH weak isospin charged of the electron is zero.

First electron-proton collider

HERA (construction from 1984 to 1992)

H1 and ZEUS: two collider experiments in operation since 1992 for 15 years.

- A unique lepton proton collider
- $E_e = 27.5 \,\, {
 m GeV}, \ \ E_p = 920 \,\, {
 m GeV} \Longrightarrow \sqrt{s} \simeq 0.3 \,\, {
 m TeV}$
- Physics data taking: 1992-2007
- HERA I
 - -1992-2000
 - unpolarized lepton beams, mainly with e^+ .
- HERA II
 - -2003-2007
 - the luminosity was increased
 - polarized e^{\pm} data were taken with about equal amounts in terms of charge and polarization states.

Main results of HERA

- Structure Functions and Parton Distributions
- QCD: Measurements of α_s in Inclusive DIS
- Jet Measurements
- Heavy Flavors
- Electroweak Measurements: CC vs. NC
- New physics Searches: leptoquarks

Next ep collider design?

- the need for higher energy
- the need for much higher luminosity

Next ep collider design?

- the need for higher energy
- the need for much higher luminosity

LHeC: the most feasible!

First CDR in 2012

CERN-OPEN-2012-015 LHeC-Note-2012-002 GEN Geneva, June 13, 2012

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group

Allowing some options

- $E_p = 7$ TeV and $E_e = 60 140$ GeV
- design luminosity $10^{33}/\text{cm}^2/\text{s}$
- The electron accelerator? LHeC either as a ring-ring or as a linac-ring collider.

- Two electron beam accelerator designs
 - RR option: a ring mounted on top of the LHC;
 - LR option: Energy Recovery Linac in a racetrack configuration;
- LHeC is designed to run simultaneously with *pp* at the HL-LHC.
- LR option was favored.

Electron accelerator

- Default LHeC racetrack configuration.
- Each linac accelerates the beam to 10 GeV.
- After 3 passes, we have 60 GeV electron energy.

Electron accelerator

- Default LHeC racetrack configuration.
- Each linac accelerates the beam to 10 GeV.
- After 3 passes, we have 60 GeV electron energy.

Asymmetric detector!

We can distinguish forward from backward

2012 CDR

parameter [unit]	LH	IeC			
species	e ⁻	$p, {}^{208}\mathrm{Pb}^{82+}$			
beam energy (/nucleon) [GeV]	60	7000, 2760			
bunch spacing [ns]	25,100	25, 100			
bunch intensity (nucleon) $[10^{10}]$	$0.1 \ (0.2), \ 0.4$	17 (22), 2.5			
beam current [mA]	6.4(12.8)	860 (1110), 6			
rms bunch length [mm]	0.6	75.5			
polarization $[\%]$	90	none, none			
normalized rms emittance $[\mu m]$	50	3.75(2.0), 1.5			
geometric rms emittance [nm]	0.43	$0.50 \ (0.31)$			
IP beta function $\beta_{x,y}^*$ [m]	$0.12 \ (0.032)$	$0.1 \ (0.05)$			
IP spot size $[\mu m]$	7.2 (3.7)	7.2(3.7)			
synchrotron tune Q_s		1.9×10^{-3}			
hadron beam-beam parameter	0.0001	(0.0002)			
lepton disruption parameter D	6 ((30)			
crossing angle	0 (detector-int	egrated dipole)			
hourglass reduction factor H_{hg}	0.91 (0.67)				
pinch enhancement factor H_D	1.35				
CM energy [TeV]	1300, 810				
luminosity / nucleon $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1 (10), 0.2				

CERN-ACC-Note-2020-0002 Geneva, July 28, 2020

The Large Hadron-Electron Collider at the HL-LHC

LHeC and FCC-he Study Group

Cost saving

Component	$\begin{array}{c} {\rm CDR} \ 2012 \\ {\rm (60GeV)} \end{array}$	Stage 1 (30 GeV)	Default (50 GeV)
SRF System	805	402	670
SRF R+D and Prototyping	31	31	31
Injector	40	40	40
Arc Magnets and Vacuum	215	103	103
SC IR Magnets	105	105	105
Source and Dump System	5	5	5
Cryogenic Infrastructure	100	41	69
General Infrastructure and Installation	69	58	58
Civil Engineering	386	289	289
Total Cost	1756	1075	1371

Parameter	Unit	LHeC option						
		1/3 LHC	1/4 LHC	1/5 LHC	1/6 LHC			
Circumference	m	9000	6750	5332	4500			
Arc radius	m · 2π	1058	737	536	427			
Linac length	${ m m}\cdot 2$	1025	909	829	758			
Spreader and recombiner length	$m \cdot 4$	76	76	76	76			
Electron energy	GeV	61.1	54.2	49.1	45.2			

c.m. energy

1.3 TeV

1.19 TeV

LHC schedule

LS2 Report: A new schedule

As a result of the shutdown caused by the COVID-19 crisis, the injectors will restart at the end of the year and the LHC will restart in autumn 2021

24 JUNE, 2020	By Anaïs Schaeffer
---------------	--------------------

	2019	2019 2020 2021		1		2022 2023			2024 2025			2026 20		202	027														
JF№	1AMJJASON	NDJ FMAM	JJASON	JFMA	MJJA	SOND	JFM	AMJ	JASON	DJF	MAM	JJASC	ND	JFM	AMJJ	JASO	NDJ	FM	AMJJ	ASON	DJF	FMA	MJJA	ASO	ND	JFMA	(M)	AS	OND
																			Ш										
	Long Sh	utdown	2 (LS2)							Run	3								L	ong S	Shu	tdo	wn 3	3 (L	_S3)			

2028	2029	2030	2031	2032	2033	2034	2035	2036	
JFMAMJJASONDJFM	MAMJJASOND	JFMAMJJASOND							
	Run 4		LS4		Run 5		LS5		

Schedule

Parameter	Unit]	LHeC		FCC	C-eh
		CDR	Run 5	Run 6	Dedicated	$E_p=20\mathrm{TeV}$	$E_p = 50 \mathrm{TeV}$
E_e	${ m GeV}$	60	30	50	50	60	60
N_p	10^{11}	1.7	2.2	2.2	2.2	1	1
ϵ_p	$\mu { m m}$	3.7	2.5	2.5	2.5	2.2	2.2
I_e	mA	6.4	15	20	50	20	20
N_e	10^{9}	1	2.3	3.1	7.8	3.1	3.1
eta^*	cm	10	10	7	7	12	15
Luminosity	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1	5	9	23	8	15
			W	LHC			

a final, dedicated, stand-alone ep phase

3. Advantages of the LHeC over the LHC: no gluon-gluon fusion

3. Advantages of the LHeC over the LHC

3-1. Small signal but much smaller backgrounds

LHC: single W production

q \searrow \overline{q}

 $\sigma(pp
ightarrow W^{\pm}) \simeq 10^5 \; {
m pb}$

LHC: single W production

$ ightarrow W^{\pm}) \simeq 10^5 ~{ m pb}$
$\sim 5 imes 10^{-5}$
$E_e = 50 \text{GeV}, E_p = 7 \text{TeV}$ $p_T^e > 10 \text{GeV}$
$1.00\mathrm{pb}$
$0.930\mathrm{pb}$
$0.796\mathrm{pb}$
$0.412\mathrm{pb}$
$0.177\mathrm{pb}$

 $e^- p \rightarrow e^- W^+ j, \quad e^- p \rightarrow e^- W^- j,$

 $e^- p \rightarrow \nu_e^- W^- j, \quad e^- p \rightarrow \nu_e^- Z j$

$$e^-p \to e^-Zj,$$

LHeC: only through VBF

Single top production at ep colliders

1.89 pb at the LHeC

LHeC is a single top and anti-top quark factory

At the LHC, $\sigma(pp \to tX) \simeq 200 \text{ pb}$

top quark pair production at ep colliders

At the LHC, $\sigma(pp \to t\bar{t}X) \simeq 900 \text{ pb}$

the largest part of the background in many BSM models.

Single top production at ep colliders

Sensitive to the FCNC in top quark decays

3. Advantages of the LHeC over the LHC

3-2. Practically no pileups

For example HH AT THE LHC

^{IVI}HH

• HL-LHC

- $-\sim 20\%$ larger cross section, but much more difficult environment!
- Higher PU \Longrightarrow lower sensitivity to κ_{λ} variations

At LHeC, PU is only 0.1

4. What can we do with the LHeC?

4-1 PDF and QCD

- Parton Distributions Resolving the Substructure of the Proton
- Exploration of Quantum Chromodynamics
 - Determination of the strong coupling constant
 - Discovery of New Strong Interaction Dynamics at Small x

4-2 EW precision measurements

Coupling	PDG	Expected uncertainties							
parameter	value	LHeC-60	LHeC-60 ($\delta_{uncor.}=0.25\%$)	LHeC-50					
g^u_A	$0.50 {}^{+0.04}_{-0.05}$	0.0022	0.0015	0.0035					
g^d_A	$-0.514 \begin{array}{c} +0.050 \\ -0.029 \end{array}$	0.0055	0.0034	0.0083					
g_V^u	$0.18\ {\pm}0.05$	0.0015	0.0010	0.0028					
g_V^d	$-0.35 \ ^{+0.05}_{-0.06}$	0.0046	0.0027	0.0067					

LHeC: Best for Anomalous Triple Gauge Couplings

$$\mathcal{L}_{TGC}/g_{WWV} = ig_{1,V}(W^{+}_{\mu\nu}W^{-}_{\mu\nu}V_{\nu} - W^{-}_{\mu\nu}W^{+}_{\mu}V_{\nu}) + i\kappa_{V}W^{+}_{\mu}W^{-}_{\nu}V_{\mu\nu} + \frac{i\lambda_{V}}{M_{W}^{2}}W^{+}_{\mu\nu}W^{-}_{\nu\rho}V_{\rho\mu} + g_{5}^{V}\epsilon_{\mu\nu\rho\sigma}(W^{+}_{\mu}\overleftrightarrow{\partial}_{\rho}W^{-}_{\nu})V_{\sigma} - g_{4}^{V}W^{+}_{\mu}W^{-}_{\nu}(\partial_{\mu}V_{\nu} + \partial_{\nu}V_{\mu}) + i\tilde{\kappa}_{V}W^{+}_{\mu}W^{-}_{\nu}\tilde{V}_{\mu\nu} + \frac{i\tilde{\lambda}_{V}}{M_{W}^{2}}W^{+}_{\lambda\mu}W^{-}_{\mu\nu}\tilde{V}_{\nu\lambda},$$

Direct W and Z Production: small but good enough

Process	$E_e = 50 \mathrm{GeV}, E_p = 7 \mathrm{TeV}$
	$p_T^e > 10 \mathrm{GeV}$
e^-W^+j	$1.00\mathrm{pb}$
e^-W^-j	$0.930\mathrm{pb}$
$\nu_e^- W^- j$	$0.796\mathrm{pb}$
$\nu_e^- Z j$	$0.412\mathrm{pb}$
e^-Zj	$0.177\mathrm{pb}$

LHeC: Best for Anomalous Triple Gauge Couplings

$$\mathcal{L}_{TGC}/g_{WWV} = ig_{1,V}(W^{+}_{\mu\nu}W^{-}_{\mu}V_{\nu} - W^{-}_{\mu\nu}W^{+}_{\mu}V_{\nu}) + i\kappa_{V}W^{+}_{\mu}W^{-}_{\nu}V_{\mu\nu} + \frac{i\lambda_{V}}{M_{W}^{2}}W^{+}_{\mu\nu}W^{-}_{\nu\rho}V_{\rho\mu} + g_{5}^{V}\epsilon_{\mu\nu\rho\sigma}(W^{+}_{\mu}\overleftrightarrow{\partial}_{\rho}W^{-}_{\nu})V_{\sigma} - g_{4}^{V}W^{+}_{\mu}W^{-}_{\nu}(\partial_{\mu}V_{\nu} + \partial_{\nu}V_{\mu}) + i\tilde{\kappa}_{V}W^{+}_{\mu}W^{-}_{\nu}\tilde{V}_{\mu\nu} + \frac{i\tilde{\lambda}_{V}}{M_{W}^{2}}W^{+}_{\lambda\mu}W^{-}_{\mu\nu}\tilde{V}_{\nu\lambda},$$

4-3 Higgs physics

- No gluon-gluon fusion
- VBF production is dominant!
- Separate NC from CC production
- Higgs couplings with high precision

No cuts

		10% h accontanco
The integrated Inuminosity	Bounds of the κ_{λ}	iv /o ii acceptance
$\mathcal{L} = 1 \text{ ab}^{-1}$	[-0.63, 4.61]	[-2.65, 6.62]
$\mathcal{L} = 2 \text{ ab}^{-1}$	[-0.28, 4.25]	[-1.95, 5.93]
$\mathcal{L} = 3 \text{ ab}^{-1}$	[-0.11, 4.08]	[-1.59, 5.57]

Results can be significantly improved. Sensitivity will help the HL-LHC: $0 \times 1 \times 1 \times 1$

 $0.5 < k_{\rm v} < 1.5$

Total cross sections, in fb, for inclusive Higgs production

Parameter	Unit	LHeC	HE-LHeC	FCC-eh	FCC-eh
$\frac{E_p}{\sqrt{s}}$	$\begin{array}{c} {\rm TeV} \\ {\rm TeV} \end{array}$	$7\\1.30$	$\begin{array}{c} 13.5 \\ 1.77 \end{array}$	$\begin{array}{c} 20\\ 2.2 \end{array}$	$50\\3.46$
$\sigma_{CC} \ (P = -0.8)$	fb	197	372	516	1038
$\sigma_{NC} \ (P = -0.8)$	fb	24	48	70	149
$\sigma_{CC} \ (P=0)$	fb	110	206	289	577
$\sigma_{NC} \ (P=0)$	fb	20	41	64	127
HH in CC	fb	0.02	0.07	0.13	0.46

Charm tagging at the LHC

- CMS: MVA–based discriminator PAS BTV-16-001
 - displaced tracks
 - secondary vertices
 - soft leptons

- ATLAS: ATL-PHYS-PUB-2015-001
 - impact parameter
 - secondary-vertex (reconstruct b to c decay vertex)
 - calibration multi-jet events with reconstructed D mesons, t-tbar pairs

Tagging efficiency is too small at the LHC.

$Charm{}_{1}tagging{}_{2}at the LHeC_{2}$

C-jet efficiency vs light-jet efficincy

Significant improvement in charm jet tagging efficiency from 23-24% for a R = 0.9 to 30% using R = 0.5 anti-kt jets and half nominal vertex resolution at light jet tagging efficiency 5%.

0.2

• Precision of coupling constants are estimated to be

Hbb: 0.5%
Hcc: 4%

assuming 1 ab-1 at LHeC. (Statistics error only.)
 Big potential for measurements of Higgs coupling.

4-4 BSM at the LHeC

- Leptoquarks
- Charged Higgs
- SUSY
- Triple Gauge Couplings
- Axion-Like Particles

- Vector-Like Quarks
- heavy fermions, neutrinos
- Charged Higgs
- Neutral heavy higgs
- long-lived particles
- dark photons

Georgi-Machacek model

• Extended Higgs sector, with isospin triplets, satisfying the custodial symmetry at tree level

$$ho = rac{m_W^2}{m_Z^2\cos heta_W} = 1$$

- Higgs bidoublet and two triplets (one real and one complex) arranged as a bitriplet
- physical spectrum includes fiveplet without couplings to fermions.

$$H_5^{++}, \hspace{0.2cm} H_5^+, \hspace{0.2cm} H_5^0, \hspace{0.2cm} H_5^-, \hspace{0.2cm} H_5^{--}.$$

• only produced by VBF

G.A., H. Sun and K. Wang, arXiv:1712.07505

The significance contour bands in the plane of production cross section times branching ratio

7. Conclusions

- LHeC is an energy frontier collider.
- Ordinary QCD physics shall be precise probed.
- Higgs physics has a new window.
- Some BSM models can be also probed.