Hadron productions: Theory and Experiment, 25-26, Nov., APCTP

KΛ(1405) photoproduction with an effective Lagrangian approach

Sang-Ho Kim (金相鎬) Asia Pacific Center for Theoretical Physics (APCTP), POSTECH

Contents

$$\gamma p \to K^+ \Lambda^*(1405)$$

- Introduction
- Theoretical Framework
- \otimes Results : total & differential cross sections($\sigma \& d\sigma/d\Omega$)
 - \cdot invariant mass distribution (d σ /dM)
 - \cdot beam asymmetry (Σ_{Y})

♦ Summary

$\gamma p \to K^+ \Lambda^*(1405)$

∧(1405) 1/2 [−]	$I(J^P) = 0(rac{1}{2}^-)$				
Mass $m = 1405.1^{+1.3}_{-1.0}$ MeV Full width $\Gamma = 50.5 \pm 2.0$ MeV Below $\overline{K}N$ threshold					
A(1405) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)			
$\Sigma \pi$	100 %	155			

$\gamma p \to K^+ \Lambda^*(1405)$

A (1405) 1/2 ⁻	$I(J^P) = 0(rac{1}{2}^-)$			
Mass $m = 1405.1^{+1.3}_{-1.0}$ MeV Full width $\Gamma = 50.5 \pm 2.0$ MeV Below $\overline{K}N$ threshold				
A(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)		
$\Sigma \pi$	100 %	155		

Two poles for $\Lambda^*(1405)$ are predicted from a chiral unitary model.

Jido et al, Nucl Phys A725, 181 (2003) Hyodo et al, Prog Part Nucl Phys. 67, 55 (2012)

$\gamma p \to K^+ \Lambda^*(1405)$

A (1405) 1/2 ⁻	$I(J^P) = 0(rac{1}{2}^-)$	
Mass $m = 1405.1$ Full width $\Gamma = 50.$ Below $\overline{K}N$ th	$^{+1.3}_{-1.0}$ MeV 5 \pm 2.0 MeV reshold	
A(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma \pi$	100 %	155

Two poles for $\Lambda^*(1405)$ are predicted from a chiral unitary model.

1. two body process $\gamma p \to K^+ \Lambda^* (1405)$ 2. three body process $\gamma p \to K^+ \pi \Sigma$

Jido et al, Nucl Phys A725, 181 (2003) Hyodo et al, Prog Part Nucl Phys. 67, 55 (2012)

 $\gamma p \rightarrow K^+ \Lambda^*(1405)$

S

Differential photoproduction cross sections of the $\Sigma^0(1385)$, $\Lambda(1405)$, and $\Lambda(1520)$

PHYSICAL REVIEW C 87, 035206 (2013)

Measurement of the $\Sigma \pi$ photoproduction line shapes near the $\Lambda(1405)$

K. Moriya,^{1,*} R. A. Schumacher,^{1,†} (CLAS Collaboration)

 $\gamma p \rightarrow K^+ \Lambda^*(1405)$

S

Differential photoproduction cross sections of the $\Sigma^0(1385)$, $\Lambda(1405)$, and $\Lambda(1520)$

PHYSICAL REVIEW C 87, 035206 (2013)

Measurement of the $\Sigma \pi$ photoproduction line shapes near the $\Lambda(1405)$

K. Moriya,^{1,*} R. A. Schumacher,^{1,†} (CLAS Collaboration)

 $\Lambda(1405)$ photoproduction is less investigated theoretically than other reaction processes.

We analyze this process employing an effective Lagrangian approach combining with a Regge model.

Born term

$\gamma p \to K^+ \Lambda^*(1405)$

$\begin{array}{ccc} \gamma & K^+ \\ & & & \\ & & & \\ & & & \\ \hline p & \underline{\Lambda, \Lambda^*} & \Lambda^* \\ & \text{u channel} \end{array}$

Effective Lagrangians

Electromagnetic interactions

$$\mathcal{L}_{\gamma KK} = -ie[K^{\dagger}(\partial_{\mu}K) - (\partial_{\mu}K^{\dagger})K]A^{\mu},$$

$$\mathcal{L}_{\gamma KK^{*}} = g_{\gamma KK^{*}}\varepsilon^{\mu\nu\alpha\beta}\partial_{\mu}A_{\nu}[(\partial_{\alpha}K_{\beta}^{*-})K^{+} + K^{-}(\partial_{\alpha}K_{\beta}^{*+})],$$

$$\mathcal{L}_{\gamma NN} = -\bar{N}\left[e_{N}\gamma_{\mu} - \frac{e\kappa_{N}}{2M_{N}}\sigma_{\mu\nu}\partial^{\nu}\right]A^{\mu}N,$$

$$\mathcal{L}_{\gamma\Lambda\Lambda^{*}} = \frac{e\mu_{\Lambda^{*}\to\Lambda}}{2M_{N}}(\bar{\Lambda}\gamma_{5}\sigma_{\mu\nu}\partial^{\nu}A^{\mu}\Lambda^{*} - \bar{\Lambda}^{*}\gamma_{5}\sigma_{\mu\nu}\partial^{\nu}A^{\mu}\Lambda),$$

$$\mathcal{L}_{\gamma\Lambda^{*}\Lambda^{*}} = \frac{e\mu_{\Lambda^{*}}}{2M_{N}}\bar{\Lambda}^{*}\sigma_{\mu\nu}\partial^{\nu}A^{\mu}\Lambda^{*} = \frac{-e\mu_{\Lambda^{*}}}{4M_{M}}\bar{\Lambda}^{*}\sigma_{\mu\nu}F^{\mu\nu}\Lambda^{*},$$

$$\mathcal{L}_{\gamma\Lambda^{*}\Lambda^{*}(1670)} = \frac{e\mu_{\Lambda^{*}(1670)\to\Lambda^{*}}}{2M_{N}}\bar{\Lambda}^{*}\sigma_{\mu\nu}\partial^{\nu}A^{\mu}\Lambda^{*} + \text{H.c.},$$

Strong interactions

$$\mathcal{L}_{KN\Lambda} = -ig_{KN\Lambda}\bar{N}\gamma_5\Lambda K + \text{H.c.},$$

$$\mathcal{L}_{KN\Lambda^*} = ig_{KN\Lambda^*}\bar{K}\bar{\Lambda}^*N - ig_{KN\Lambda^*}\bar{N}\Lambda^*K,$$

$$\mathcal{L}_{K^*N\Lambda^*} = g_{K^*N\Lambda^*}\bar{K}^*_{\mu}\bar{\Lambda}^*\gamma^{\mu}\gamma_5N + g_{K^*N\Lambda^*}\bar{N}\gamma^{\mu}\gamma_5\Lambda^*K^*_{\mu},$$

Coupling Constants

	$g_{KN\Lambda^*}$	$g_{K^*N\Lambda^*}$	$g_{KN\Lambda(1670)}$	$\mu_{\Lambda^* \to \Lambda}$	μ_{Λ^*}	$ \mu_{\Lambda(1670)\to\Lambda^*} $
Ref. [2]	1.8(E), 1.9(R)	-1.3	-0.61			
Ref. [3]					0.2 - 0.5	0.023 ± 0.009
Ref. [4]	1.5 - 3.0			-0.1120.224(-0.224)	0.44	

- [2] K. P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro, and A. Hosaka, Phys. Rev. D 84, 094018 (2011).
- [3] D. Jido, A. Hosaka, J. C. Nacher, E. Oset, and A. Ramos, Phys. Rev. C 66, 025203 (2002).
- [4] R. A. Williams, C. R. Ji, and S. R. Cotanch, Phys. Rev. C 43, 452 (1991).

[2] Chiral & Hidden local symmetries[3] Unitarized Chiral Perturbation model[4] Incorporating Crossing and Duality, Use old exp. data

Invariant Amplitudes & Form Factors

$$\begin{aligned} \mathcal{M}_{K}^{\mu} = & eg_{KN\Lambda^{*}} \frac{-2i}{t - M_{K}^{2}} k_{2}^{\mu}, \\ \mathcal{M}_{N}^{\mu} = & eg_{KN\Lambda^{*}} \frac{-i}{s - M_{N}^{2}} (\not{q}_{s} + M_{N}) \left[\gamma^{\mu} + \frac{i\kappa_{p}}{2M_{N}} \sigma^{\mu\nu} k_{1\nu} \right], \\ \mathcal{M}_{K^{*}}^{\mu} = & g_{\gamma KK^{*}} g_{K^{*}N\Lambda^{*}} \frac{-1}{t - M_{K^{*}}^{2}} \epsilon^{\mu\nu\alpha\beta} \gamma_{\nu}\gamma_{5} k_{1\alpha} k_{2\beta}, \\ \mathcal{M}_{\Lambda}^{\mu} = & g_{KN\Lambda} \frac{e\mu_{\Lambda^{*}(1405) \to \Lambda}}{2M_{N}} \frac{-1}{u - M_{\Lambda}^{2}} \sigma^{\mu\nu} k_{1\nu} (-\not{q}_{u} + M_{\Lambda}), \\ \mathcal{M}_{\Lambda^{*}}^{\mu} = & g_{KN\Lambda^{*}} \frac{e\mu_{\Lambda^{*}}}{2M_{N}} \frac{1}{u - M_{\Lambda^{*}}^{2}} \sigma^{\mu\nu} k_{1\nu} (\not{q}_{u} + M_{\Lambda^{*}}), \\ \mathcal{M}_{\Lambda^{*}(1670)}^{\mu} = & g_{KN\Lambda^{*}(1670)} \frac{e\mu_{\Lambda^{*}(1670) \to \Lambda^{*}}}{2M_{N}} \frac{1}{u - M_{\Lambda^{*}(1670)}^{2}} \sigma^{\mu\nu} k_{1\nu} (\not{q}_{u} + M_{\Lambda^{*}}), \\ \mathcal{M}_{\text{total}}^{\mu} (\gamma p \to K^{+}\Lambda^{*}) = (\mathcal{M}_{K} + \mathcal{M}_{N}) \cdot (t - M_{K}^{2}) \cdot P_{K}^{\text{Mod}}(s, t) \cdot F_{c}^{n} \\ & + \mathcal{M}_{K^{*}} \cdot (t - M_{K^{*}}^{2}) \cdot P_{K^{*}}^{\text{Mod}}(s, t) \cdot F_{K^{*}}^{n}(t) + \mathcal{M}_{\Lambda} \cdot F_{\Lambda}^{n}(u) \\ & + \mathcal{M}_{\Lambda^{*}(1405)} \cdot F_{\Lambda^{*}(1405)}^{n} (u) + \mathcal{M}_{\Lambda^{*}(1670)} \cdot F_{\Lambda^{*}(1670)}^{n}(u), \end{aligned}$$

Gauge invariance prescription

Invariant Amplitudes & Form Factors

$$\begin{split} \mathcal{M}_{K}^{\mu} = & eg_{KN\Lambda^{*}} \frac{-2i}{t - M_{K}^{2}} k_{2}^{\mu}, \\ \mathcal{M}_{N}^{\mu} = & eg_{KN\Lambda^{*}} \frac{-i}{s - M_{N}^{2}} (\not{q}_{s} + M_{N}) \left[\gamma^{\mu} + \frac{i\kappa_{p}}{2M_{N}} \sigma^{\mu\nu} k_{1\nu} \right], \\ \mathcal{M}_{K^{*}}^{\mu} = & g_{\gamma KK^{*}} g_{K^{*}N\Lambda^{*}} \frac{-1}{t - M_{K^{*}}^{2}} \epsilon^{\mu\nu\alpha\beta} \gamma_{\nu} \gamma_{5} k_{1\alpha} k_{2\beta}, \\ \mathcal{M}_{\Lambda}^{\mu} = & g_{KN\Lambda} \frac{e\mu_{\Lambda^{*}(1405) \to \Lambda}}{2M_{N}} \frac{-1}{u - M_{\Lambda}^{2}} \sigma^{\mu\nu} k_{1\nu} (-\not{q}_{u} + M_{\Lambda}), \\ \mathcal{M}_{\Lambda^{*}}^{\mu} = & g_{KN\Lambda^{*}} \frac{e\mu_{\Lambda^{*}}}{2M_{N}} \frac{1}{u - M_{\Lambda^{*}}^{2}} \sigma^{\mu\nu} k_{1\nu} (\not{q}_{u} + M_{\Lambda^{*}}), \\ \mathcal{M}_{\Lambda^{*}(1670)}^{\mu} = & g_{KN\Lambda^{*}(1670)} \frac{e\mu_{\Lambda^{*}(1670) \to \Lambda^{*}}}{2M_{N}} \frac{1}{u - M_{\Lambda^{*}(1670)}^{2}} \sigma^{\mu\nu} k_{1\nu} (\not{q}_{u} + M_{\Lambda^{*}}), \\ \mathcal{M}_{\text{total}}^{\mu} (\gamma p \to K^{+}\Lambda^{*}) = (\mathcal{M}_{K} + \mathcal{M}_{N}) \cdot \underbrace{(t - M_{K}^{2}) \cdot P_{K}^{\text{Mod}}(s, t)}_{H \mathcal{M}_{\Lambda^{*}(1670)} \cdot F_{\Lambda}^{n}(u)}_{H \mathcal{M}_{\Lambda^{*}(1405)} \cdot F_{\Lambda^{*}(1405)}^{n}(u) + \mathcal{M}_{\Lambda^{*}(1670)} \cdot F_{\Lambda^{*}(1670)}^{n}(u), \end{split}$$

Gauge invariance prescription

w/o red box: Effective Lagrangian w red box: Regge model A well-known nonperturbative approach to hadron reactions

Most reactions have a tendency to produce a forward peak.
 At high energies, t-channel exchange is crucial.
 => A Regge method works.

Nucleon Resonances in PDG 3 N*

Missing Resonances

3 N*, predicted from constituent quark model Capstick et al, PRD 58, 074011 (1998)

 $\gamma p \to K^+ \Lambda^*(1405)$

Nucleon Resonances in PDG

3 N*

Missing Resonances

3 N*, predicted from constituent quark model Capstick et al, PRD 58, 074011 (1998)

_	-		
	$N(1440) 1/2^+$	****	
	$N(1520) 3/2^{-}$	****	threshold
	$N(1535) 1/2^{-}$	****	= 1.9 Ge
	$N(1650) 1/2^{-}$	****	
	$N(1675) \ 5/2^-$	****	
	$N(1680) 5/2^+$	****	
	N(1685) ??	*	
	$N(1700) 3/2^{-}$	***	
	$N(1710) 1/2^+$	***	
	$N(1720) 3/2^+$	****	
	$N(1860) 5/2^+$	**	
	$N(1875) 3/2^{-}$	***	
	$N(1880) 1/2^+$	**	
	$N(1895) 1/2^{-}$	**	
	$N(1900) \ 3/2^+$	***	
	$N(1990) 7/2^+$	**	
	$N(2000)~5/2^+$	**	
	$N(2040) \ 3/2^+$	*	
	$N(2060) \ 5/2^{-}$	**	
	$N(2100) \ 1/2^+$	*	•
	$N(2120)~3/2^-$	**	
	$N(2190) 7/2^{-}$	****	
	$N(2220) 9/2^+$	****	
	$N(2250) 9/2^{-}$	****	
	$N(2300) \ 1/2^+$	**	
	$N(2570) \ 5/2^{-}$	**	
	$N(2600) 11/2^{-1}$	***	
	N(2700) 13/2	+ **	

$$\begin{array}{cccc}
\gamma & K^{+}_{I} \\
\gamma & K^{+}_{I} \\
\gamma & I \\
\gamma &$$

$$\mathcal{L}_{K\Lambda^*N^*} \left(\frac{1}{2}^{\pm}\right) = -ig_{K\Lambda^*N^*}\bar{K}\bar{\Lambda}^*\Gamma^{(\mp)}N^* + \text{H.c.}$$
$$\mathcal{L}_{K\Lambda^*N^*} \left(\frac{3}{2}^{\pm}\right) = \frac{g_{K\Lambda^*N^*}}{M_K}\partial^\alpha \bar{K}\bar{\Lambda}^*\Gamma^{(\pm)}N^*_{\alpha} + \text{H.c.},$$
$$\mathcal{L}_{K\Lambda^*N^*} \left(\frac{5}{2}^{\pm}\right) = \frac{ig_{K\Lambda^*N^*}}{M_K^2}\partial^\alpha \partial^\beta \bar{K}\bar{\Lambda}^*\Gamma^{(\mp)}N^*_{\alpha\beta} + \text{H.c.},$$

Invariant Amplitudes

$$\mathcal{M}_{N^{*}}\left(\frac{1}{2}^{\pm}\right) = g_{K\Lambda^{*}N^{*}}\frac{eh_{1}}{2M_{N}}\frac{1}{s-M_{N^{*}}^{2}}\Gamma^{(\mp)}(\not\!\!/_{s}+M_{N^{*}})\Gamma^{(\mp)}\sigma^{\mu\nu}k_{1\nu}\epsilon_{\mu},$$

$$\mathcal{M}_{N^{*}}\left(\frac{3}{2}^{\pm}\right) = i\frac{g_{K\Lambda^{*}N^{*}}}{M_{K}}\frac{1}{s-M_{N^{*}}^{2}}\Gamma^{(\pm)}(\not\!\!/_{s}+M_{N^{*}})k_{2}^{\alpha}\Delta_{\alpha\beta}(M_{N^{*}},q_{s})$$

$$\times \left[\frac{eh_{1}}{2M_{N}}\Gamma^{(\pm)}_{\mu}\mp\frac{eh_{2}}{(2M_{N})^{2}}\Gamma^{(\pm)}p_{1\mu}\right](k_{1}^{\beta}\epsilon^{\mu}-k_{1}^{\mu}\epsilon^{\beta}),$$

$$\mathcal{M}_{N^{*}}\left(\frac{5}{2}^{\pm}\right) = i\frac{g_{K\Lambda^{*}N^{*}}}{M_{K}^{2}}\frac{1}{s-M_{N^{*}}^{2}}\Gamma^{(\mp)}(\not\!\!/_{s}+M_{N^{*}})k_{2}^{\alpha_{1}}k_{2}^{\alpha_{2}}\Delta_{\alpha_{1}\alpha_{2};\beta_{1}\beta_{2}}(M_{N^{*}},q_{s})$$

$$\times \left[\frac{eh_{1}}{(2M_{N})^{2}}\Gamma^{(\mp)}_{\mu}\pm\frac{eh_{2}}{(2M_{N})^{3}}\Gamma^{(\mp)}p_{1\mu}\right]k_{1}^{\beta_{2}}(k_{1}^{\beta_{1}}\epsilon^{\mu}-k_{1}^{\mu}\epsilon^{\beta_{1}}),$$

Form Factors

$$F_B(p^2) = \frac{\Lambda^4}{\Lambda^4 + (p^2 - M^2)^2}$$

$\gamma p \to K^+ \Lambda^*(1405)$

Transition magnetic moment h1, h2

Oh, Ko, Nakayama, PRC 77, 045204 (2008)

$$\begin{cases} A_{1/2}(\frac{1}{2}^{\pm}) = \mp \frac{ef_1}{2M_N} \sqrt{\frac{k_{\gamma}M_R}{M_N}}, \\ A_{1/2}(\frac{3}{2}^{\pm}) = \mp \frac{e\sqrt{6}}{12} \sqrt{\frac{k_{\gamma}}{M_N M_R}} \left[f_1 + \frac{f_2}{4M_N^2} M_R(M_R \mp M_N) \right] \\ A_{3/2}(\frac{3}{2}^{\pm}) = \mp \frac{e\sqrt{2}}{4M_N} \sqrt{\frac{k_{\gamma}M_R}{M_N}} \left[f_1 \mp \frac{f_2}{4M_N} (M_R \mp M_N) \right], \\ A_{1/2}(\frac{5}{2}^{\pm}) = \pm \frac{e}{4\sqrt{10}} \frac{k_{\gamma}}{M_N} \sqrt{\frac{k_{\gamma}}{M_N M_R}} \\ \times \left[f_1 + \frac{f_2}{4M_N^2} M_R(M_R \pm M_N) \right], \\ A_{3/2}(\frac{5}{2}^{\pm}) = \pm \frac{e}{4\sqrt{5}} \frac{k_{\gamma}}{M_N^2} \sqrt{\frac{k_{\gamma}M_R}{M_N}} \left[f_1 \pm \frac{f_2}{4M_N} (M_R \pm M_N) \right], \end{cases}$$

$\gamma p \to K^+ \Lambda^*(1405)$

$$\Gamma(N^* \to K\Lambda^*) = \sum_{\ell} |G(\ell)|^2$$

$$\Gamma(\frac{1}{2}^{\pm} \to K\Lambda^{*}) = \frac{1}{4\pi} \frac{q}{M_{N^{*}}} g_{K\Lambda^{*}N^{*}}^{2} (E_{\Lambda^{*}} \pm M_{\Lambda^{*}}),$$

$$\Gamma(\frac{3}{2}^{\pm} \to K\Lambda^{*}) = \frac{1}{12\pi} \frac{q^{3}}{M_{N^{*}}} \frac{g_{K\Lambda^{*}N^{*}}^{2}}{M_{K}^{2}} (E_{\Lambda^{*}} \mp M_{\Lambda^{*}}),$$

$$\Gamma(\frac{5}{2}^{\pm} \to K\Lambda^{*}) = \frac{1}{30\pi} \frac{q^{5}}{M_{N^{*}}} \frac{g_{K\Lambda^{*}N^{*}}^{2}}{M_{K}^{4}} (E_{\Lambda^{*}} \pm M_{\Lambda^{*}}),$$

 $\gamma p \to K^+ \Lambda^*(1405)$

$\gamma p \to K^+ \Lambda^*(1405)$

Transition magnetic moment h1, h2 Strong coupling constants g

PDG N*	A_1	A_3	h_1	h_2	$G(\ell) = g_{K\Lambda^*N^*}$
$N\frac{5}{2}^+(2000)$	(2000) 31 ± 10 -43 ± 8 0.0		0.024	1.62	$-0.6^{+0.6}_{-1.6}$ -0.912
$N \frac{1}{2}^+(2100)$	10 ± 4		-0.045		$+5.2 \pm 0.8$ 0.785
$N \frac{3}{2}^{-}(2120)$	130 ± 50	160 ± 65	-0.753	2.09	$+3.9^{+1.3}_{-2.7}$ $-1.16?$
Helicity Amplitudes A1, A3				1	Decay Amplitudes G(l)
missing N*	A_1	A_3	h_1	h_2	$G(\ell) = q_{K\Lambda^*N^*}$
$N\frac{1}{2}$ (2030)	20		0.094		$+1.2^{+0.9}_{-1.1}$ 1.78
$N\frac{3}{2}^{-}(2055)$	16	0	-0.372	-1.25	$+1.2^{+0.5}_{-0.9}$ -0.467
$N\frac{3}{2}^{-}(2095)$	-2	-6	0.138	0.0072	$+0.7^{+0.2}_{-0.4}$ -0.228

 $\gamma p \to K^+ \Lambda^*(1405)$

 $\gamma p \to K^+ \Lambda^*(1405)$

$$F_{\rm M}(p^2) = \frac{\Lambda^2 - M^2}{\Lambda^2 - p^2}, \quad F_B(p^2) = \frac{\Lambda^4}{\Lambda^4 + (p^2 - M^2)^2}$$
$$F_c = F_{t,K} + F_{s,N} - F_{t,K} \cdot F_{s,N}$$

 $n_{{
m GI},{
m K}^{*}} = 2, n_{\Lambda,\Lambda^{*}} = 2, n_{N^{*}} = 2$ $\Lambda_{{
m Born}} = 1.1 \,{
m GeV}, \, \Lambda_{N^{*}} = 1.0 \,{
m GeV}$

 $\gamma p \to K^+ \Lambda^*(1405)$

$$F_{\rm M}(p^2) = \frac{\Lambda^2 - M^2}{\Lambda^2 - p^2}, \quad F_B(p^2) = \frac{\Lambda^4}{\Lambda^4 + (p^2 - M^2)^2}$$
$$F_c = F_{t,K} + F_{s,N} - F_{t,K} \cdot F_{s,N}$$

 $n_{{
m GI},{
m K}^*} = 2, n_{\Lambda,\Lambda^*} = 2, n_{N^*} = 2$ $\Lambda_{{
m Born}} = 1.1 \,{
m GeV}, \, \Lambda_{N^*} = 1.0 \,{
m GeV}$

differential cross section

invariant mass distribution

invariant mass distribution

differential cross section

beam asymmetry

Results

$\gamma p \to K^+ \Lambda^*(1405)$

The role of a triangle singularity in the $\gamma p \to K^+\Lambda(1405)$ reaction ArXiv:1610.07117

Results

 $\gamma p \to K^+ \Lambda^*(1405)$

- $\Diamond \Lambda^*(1405)$ photoproduction, $\gamma p \rightarrow K\Lambda^*(1405)$, is reanalyzed using an effective Lagrangian model.
- ♦ A bump structure is observed at CLAS (2013) Collaboration near the threshold region.
- N* contribution should be considered for this description.
 PDG N* resonances, i.e., N(2000), N(2100), N(2120), may give the dominant contribution.
- Future work:
- \diamond Check other scenarios such as

rescattering process, initial and final state interactions.

Summary

 $\gamma p \to K^+ \Lambda^*(1405)$

Future work:

 \diamond Study three-body process $\gamma p \to K^+ \pi \Sigma$,

considering the two-pole structure.

Summary

 $\gamma p \rightarrow K^+ \Lambda^*(1405)$

Future work:

 \diamond Study three-body process $\gamma p \to K^+ \pi \Sigma$,

considering the two-pole structure.

Thank you very much

Back Up

Born term

$\gamma p \to K^+ \Lambda^*(1405)$

$$\mathcal{M}_{\text{total}}(\gamma p \to K^+ \Lambda^*) = (\mathcal{M}_K + \mathcal{M}_N) \cdot (t - M_K^2) \cdot P_K^{\text{Mod}}(s, t) \cdot F_c^n + \mathcal{M}_{K^*} \cdot (t - M_{K^*}^2) \cdot P_{K^*}^{\text{Mod}}(s, t) \cdot F_{K^*}^n(t) + \mathcal{M}_\Lambda \cdot F_\Lambda^n(u) + \mathcal{M}_{\Lambda^*(1405)} \cdot F_{\Lambda^*(1405)}^n(u) + \mathcal{M}_{\Lambda^*(1670)} \cdot F_{\Lambda^*(1670)}^n(u),$$

Regge Propagators

$$\begin{split} P_K^{\text{Regge}}(s,t) = & \begin{pmatrix} 1\\ e^{-i\pi\alpha_K(t)} \end{pmatrix} \begin{pmatrix} \frac{s}{s_K} \end{pmatrix}^{\alpha_K(t)} \Gamma[-\alpha_K(t)] \alpha'_K, \\ P_{K^*}^{\text{Regge}}(s,t) = & \begin{pmatrix} 1\\ e^{-i\pi\alpha_{K^*}(t)} \end{pmatrix} \begin{pmatrix} \frac{s}{s_{K^*}} \end{pmatrix}^{\alpha_{K^*}(t)-1} \Gamma[1-\alpha_{K^*}(t)] \alpha'_{K^*}, \\ P_{K,K^*}^{\text{Born}}(t) = & 1/(t-M_{K,K^*}^2) \end{split}$$

• The bybrid Reggeized treatment should interpolate smoothly to low energy region.

Born term

$\gamma p \to K^+ \Lambda^*(1405)$

Regge model

 α (t) categorizes hadrons with the same internal quantum numbers, M and J are the mass and the spin of related hadrons.

9

Born term

$$\gamma p \to K^+ \Lambda^*(1405)$$

The three-body phase space for the decay $ab \rightarrow 123$ can be decomposed into the two-body one $ab \rightarrow 1X \rightarrow 23$ as follows:

$$\begin{aligned} \sigma_{ab\to123} &= \mathcal{F}_{ab} \int d\Phi_3 (ab \to 123) |\mathcal{M}_{ab\to123}|^2 = \int d\Phi_2 (ab \to 1X) \frac{M_X^2}{2\pi} d\Phi_2 (X \to 23) |\mathcal{M}_{ab\to123}|^2 \\ &= \mathcal{F}_{ab} \int d\Phi_2 (ab \to 1X) \frac{dM_{23}^2}{2\pi} d\Phi_2 (X \to 23) \sum_X^{\text{spin}} \frac{|\mathcal{M}_{ab\to1X} \mathcal{M}_{X\to23}|^2}{(M_{23}^2 - M_X^2)^2 + M_X^2 \Gamma_X^2} \\ &\approx \frac{\mathcal{F}_{ab}}{2M_X \Gamma_X} \int d\Phi_2 (ab \to 1X) d\Phi_2 (X \to 23) \sum_X^{\text{spin}} |\mathcal{M}_{ab\to1X} \mathcal{M}_{X\to23}|^2 \\ &= \frac{\Gamma_{X\to23}}{\Gamma_X} \mathcal{F}_{ab} \int d\Phi_2 (ab \to 1X) \sum_X^{\text{spin}} |\mathcal{M}_{ab\to1X}|^2 = \frac{\Gamma_{X\to23}}{\Gamma_X} \sigma_{ab\to1X}, \end{aligned}$$
(15)

where \mathcal{F}_{ab} stands for the flux factor for the initial state with a and b. In deriving Eq. (15), we have used the narrow-width approximation for the intermediate particle X: $\Gamma_X/M_X \ll 1$, and taken into account that the invariant amplitudes \mathcal{M} are insensitive to M_{23} . Considering the above decomposition, the invariant-mass distribution can be written by

$$\frac{d\sigma_{ab\to123}}{dM_{23}} = \mathcal{F}_{ab} \int d\Phi_2(ab\to1X) \frac{M_{23}}{\pi} d\Phi_2(X\to23) \sum_X^{\text{spin}} \frac{|\mathcal{M}_{ab\to1X}\mathcal{M}_{X\to23}|^2}{(M_{23}^2 - M_X^2)^2 + M_X^2 \Gamma_X^2} \\
= \mathcal{F}_{ab} \int d\Phi_2(ab\to1X) \frac{2M_X M_{23}}{2M_X \pi} d\Phi_2(X\to23) \sum_X^{\text{spin}} \frac{|\mathcal{M}_{ab\to1X}\mathcal{M}_{X\to23}|^2}{(M_{23}^2 - M_X^2)^2 + M_X^2 \Gamma_X^2} \\
\approx \mathcal{F}_{ab} \int d\Phi_2(ab\to1X) \frac{2M_X M_{23}}{\pi} \sum_X^{\text{spin}} \frac{|\mathcal{M}_{ab\to1X}|^2 \Gamma_{X\to23}}{(M_{23}^2 - M_X^2)^2 + M_X^2 \Gamma_X^2} \\
= \frac{2M_X M_{23}}{\pi} \frac{\sigma_{ab\to1X} \Gamma_{X\to23}}{(M_{23}^2 - M_X^2)^2 + M_X^2 \Gamma_X^2}.$$
(16)

Although there can be complicated interference effects due to other processes via a different intermediate particle X', i.e. $ab \rightarrow 2X' \rightarrow 13$ for instance, for brevity, we ignored them here.