$\Xi(1690)$ as a $\overline{K}\Sigma$ molecular state

Takayasu SEKIHARA

(Japan Atomic Energy Agency)

1. Introduction

2. Formulation

3. Results and discussions

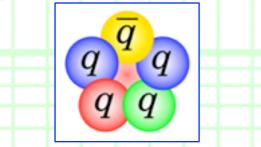
4. Summary

5. Furthermore on exotic hadrons

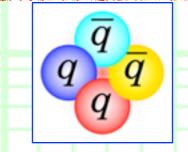
Key words: $\Xi(1690)$, Hadronic molecules, Compositeness,

Chiral unitary approach.

[1] <u>T.S.</u>, *Prog. Theor. Exp. Phys.*, <u>2015</u>, 091D01.

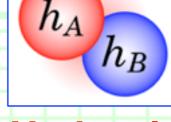


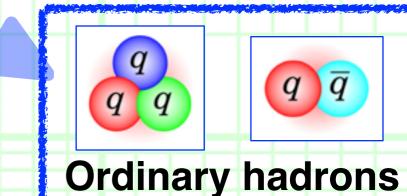
++ Exotic hadrons and their structure ++


Exotic hadrons --- not same quark component as ordinary hadrons

= not qqq nor $q\overline{q}$.


J AEA


(JAEA



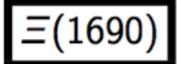
Penta-quarks Tetra-quarks

<u>Glueballs</u>

Hadronic molecules

- --- Actually <u>some hadrons cannot be</u> <u>described by the quark model</u>.
 - Do exotic hadrons really exist ?

- If they do exist, how are their properties ?
 - --- Re-confirmation of quark models.
 - --- Constituent quarks in multi-quarks? "Constituent" gluons?


If they do not exist, what mechanism forbids their existence ?
 -- We know very few about hadrons (and dynamics of QCD).

++ The E(1690) resonance ++

The E(1690) resonance may be an exotic hadron.

--- <u>Status: ***</u> = existence ranges from very likely to certain, but

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

$$I(J^{P}) = \frac{1}{2}(?^{?})$$
 Status: ***

AUBERT 08AK, in a study of $\Lambda_c^+ \rightarrow \Xi^- \pi^+ K^+$, finds some evidence that the $\Xi(1690)$ has $J^P = 1/2^-$.

DIONISI 78 sees a threshold enhancement in both the neutral and negatively charged $\Sigma \overline{K}$ mass spectra in $K^- p \rightarrow (\Sigma \overline{K}) K \pi$ at 4.2 GeV/c. The data from the $\Sigma \overline{K}$ channels alone cannot distinguish between a resonance and a large scattering length. Weaker evidence at the same mass is seen in the corresponding $\Lambda \overline{K}$ channels, and a coupled-channel analysis yields results consistent with a new Ξ .

BIAGI 81 sees an enhancement at 1700 MeV in the diffractively produced ΛK^- system. A peak is also observed in the $\Lambda \overline{K}^0$ mass spectrum at 1660 MeV that is consistent with a 1720 MeV resonance decaying to $\Sigma^0 \overline{K}^0$, with the γ from the Σ^0 decay not detected.

BIAGI 87 provides further confirmation of this state in diffractive dissociation of Ξ^- into ΛK^- . The significance claimed is 6.7 standard deviations.

ADAMOVICH 98 sees a peak of 1400 \pm 300 events in the $\Xi^-\pi^+$ spectrum produced by 345 GeV/c Σ^- -nucleus interactions.

further confirmation is desirable and/or <u>quantum numbers</u>, branching fractions, etc. are <u>not well determined</u>.

E(1690) MASSES

MIXED CHARGES

<u>VALUE (MeV)</u> **1690±10 OUR ESTIMATE** This is only an educated guess; the error given is larger than the error on the average of the published values.

Ξ(1690) WIDTHS

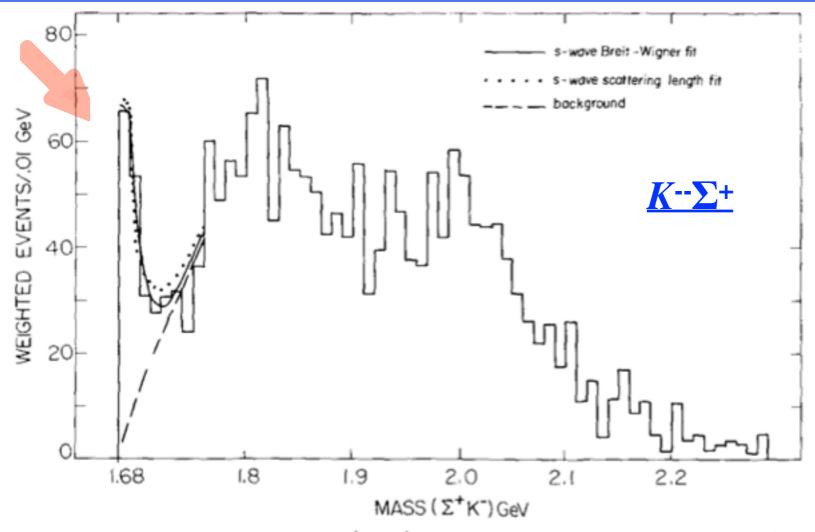
MIXED CHARGES

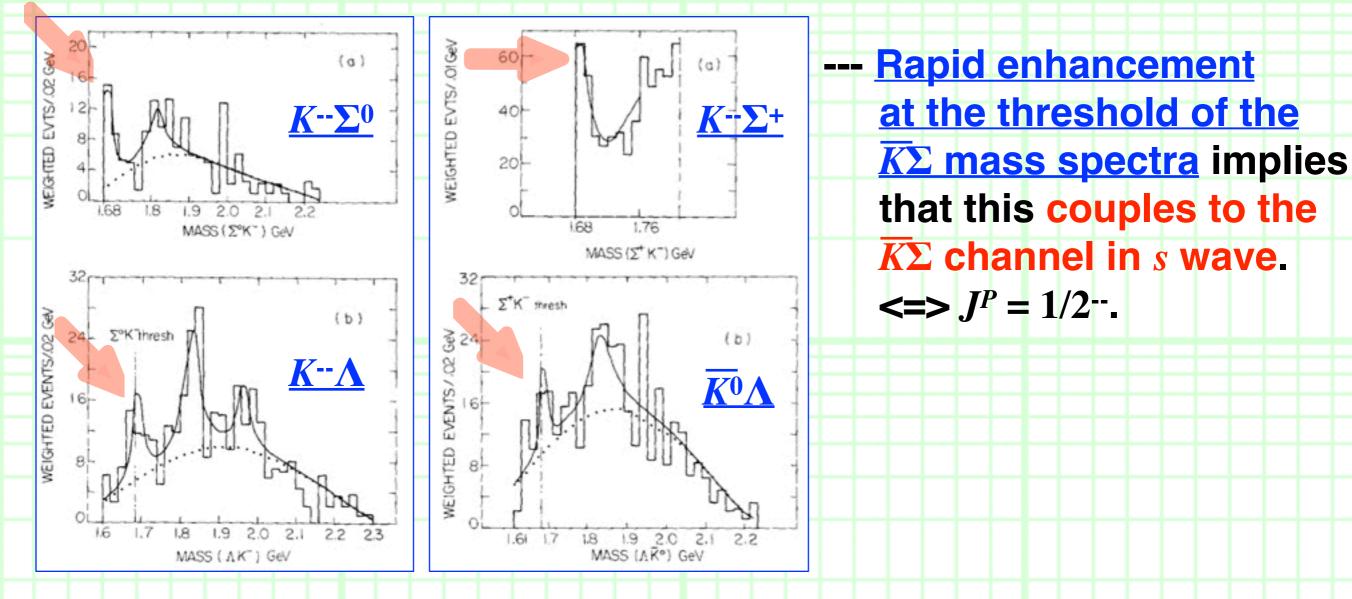
VALUE (MeV)
<30 OUR ESTIMATE</p>

DOCUMENT ID

Particle Data Group.

++ Experiments of the $\Xi(1690)$ resonance ++ • Historically $\Xi(1690)$ was discovered as a threshold enhancement in both the neutral and charged $\overline{K\Sigma}$ mass spectra in the $K^{--} p \rightarrow (\overline{K\Sigma}) K \pi$ reaction at 4.2 GeV/c.

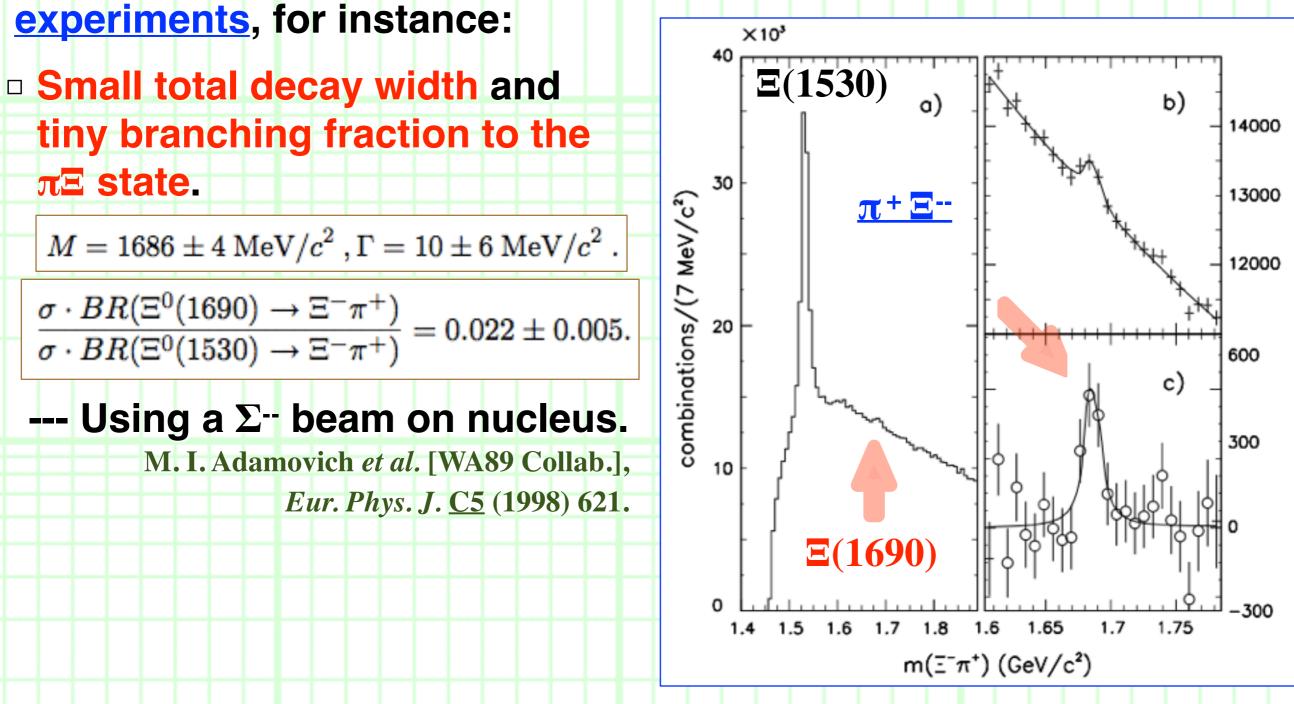



Fig. 1. The Σ^+K^- mass spectrum for the reaction $K^-p \to \Sigma^+K^-K^+\pi^-$ after elimination of ϕ events mass (K^+K^- less than 1.03 GeV). The origin of the curves is indicated.

Hadron productions: Theory and Experiment @ APCTP (Nov. 25-26, 2016)

C. Dionisi et al., Phys. Lett. <u>B80</u> (1978) 145.

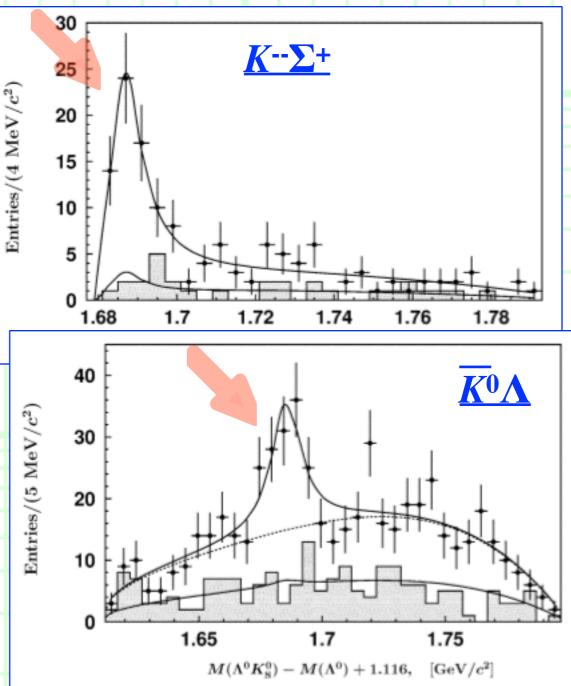
++ Experiments of the Ξ(1690) resonance ++
Historically Ξ(1690) was discovered as a threshold enhancement in both the neutral and charged KΣ mass spectra in the K⁻⁻ p --> (KΣ) K π reaction at 4.2 GeV/c.



C. Dionisi et al., Phys. Lett. <u>B80</u> (1978) 145.

++ Experiments of the $\Xi(1690)$ resonance ++

Ξ(1690) has been <u>observed and investigated in several</u>

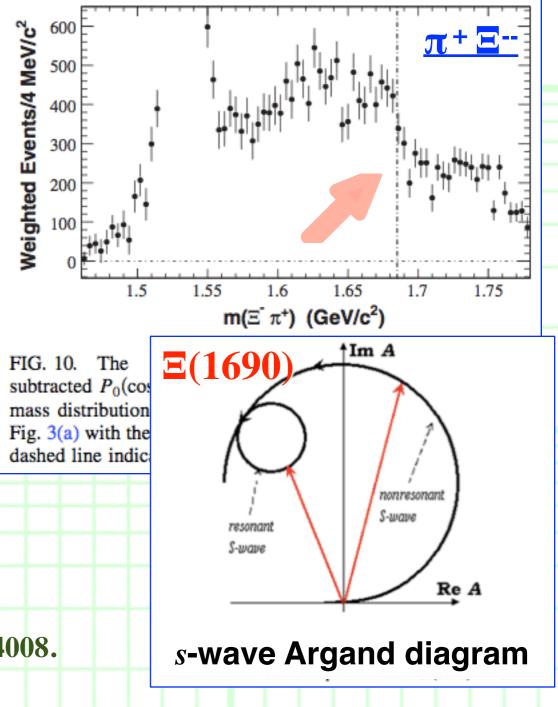

++ Experiments of the $\Xi(1690)$ resonance ++

Ξ(1690) has been <u>observed and investigated in several</u>
 <u>experiments</u>, for instance:

- Small total decay width and tiny branching fraction to the πΞ state.
- Ξ(1690) can be observed in decay
 of heavy hadrons as well, giving
 mass spectra, branching fractions,
 and their ratios involving Ξ(1690).

 $\frac{\mathcal{B}(\Xi(1690)^0 \to \Sigma^+ K^-)}{\mathcal{B}(\Xi(1690)^0 \to \Lambda^0 \overline{K}^0)} = 0.50 \pm 0.26.$

---- Using e + e -- colliders. K. Abe et al. [Belle Collab.], Phys. Lett. <u>B524</u> (2002) 33; M. Ablikim et al. [BES III], Phys.Rev. <u>D91</u> (2015) 092006.



++ Experiments of the $\Xi(1690)$ resonance ++

Ξ(1690) has been <u>observed and investigated in several</u>
 <u>experiments</u>, for instance:

- Small total decay width and tiny branching fraction to the πΞ state.
- Ξ(1690) can be observed in decay
 of heavy hadrons as well, giving
 mass spectra, branching fractions,
 and their ratios involving Ξ(1690).
- A dip in the P₀(cos θ) moment of the π+Ξ·· mass spectrum appears in the vicinity of Ξ(1690), which implies that Ξ(1690) has J^P = 1/2··.

B. Aubert et al. [BaBar Collab.], Phys. Rev. D78 (2008) 034008.

++ Experiments of the $\Xi(1690)$ resonance ++

- Ξ(1690) has been <u>observed and investigated in several</u> <u>experiments</u>, for instance:
 - Small total decay width and tiny branching fraction to the πΞ state.
 - Ξ(1690) can be observed in decay of heavy hadrons as well, giving mass spectra, branching fractions, and their ratios involving Ξ(1690).
 - A dip in the P₀(cos θ) moment of the π+Ξ--mass spectrum appears in the vicinity of Ξ(1690), which implies that Ξ(1690) has J^P = 1/2--.

- The small decay width and tiny branching fraction to the πΞ state are un-natural.
 Ξ(1690) might have a some non-trivial structure than
 - usual qqq state ?

q

q q

 h_A

++ Theories of the $\Xi(1690)$ resonance ++

Ξ(1690) and other Ξ* resonances has been investigated in several theoretical frameworks as well, for instance:

Quark models.

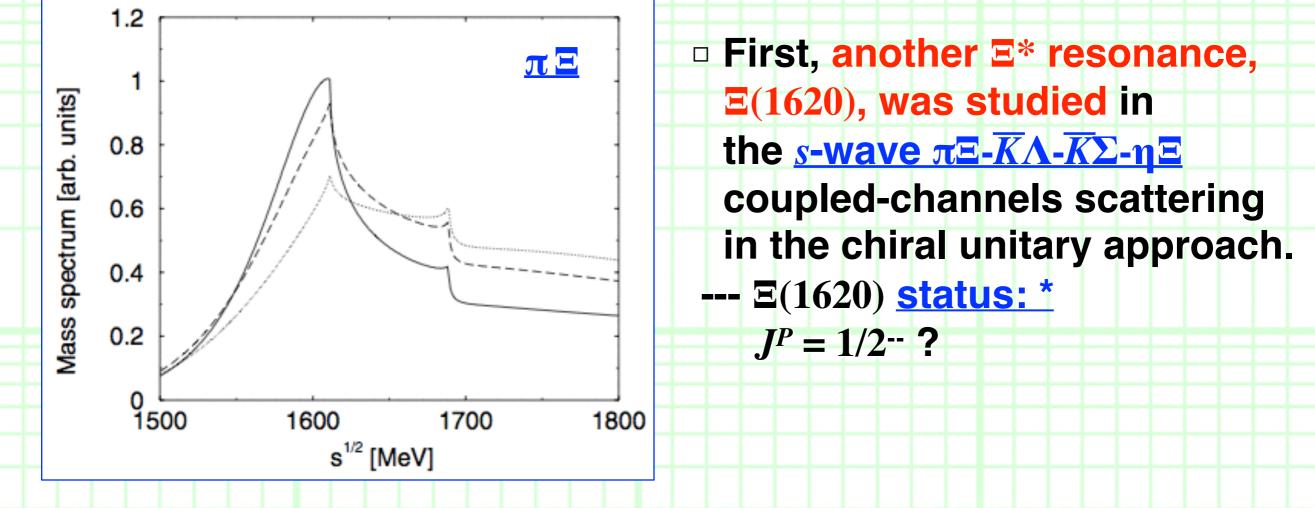
- K. T. Chao, N. Isgur and G. Karl, *Phys. Rev.* <u>D23</u> (1981) 155;
- S. Capstick and N. Isgur, Phys. Rev. D34 (1986) 2809;
- M. Pervin and W. Roberts, *Phys. Rev.* <u>C77</u> (2008) 025202;
- L. Y. Xiao and X. H. Zhong, Phys. Rev. <u>D87</u> (2013) 094002;
- N. Sharma, A. Martinez Torres, K. P. Khemchandani and H. Dahiya, Eur. Phys. J. A49 (2013) 11;

Skyrme model.

Y. Oh, Phys. Rev. D75 (2007) 074002.

Chiral unitary approach.

A. Ramos, E. Oset and C. Bennhold, *Phys. Rev. Lett.* <u>89</u> (2002) 252001;


- C. Garcia-Recio, M. F. M. Lutz and J. Nieves, Phys. Lett. <u>B582</u> (2004) 49;
- D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, Phys. Rev. <u>D84</u> (2011) 056017.

++ E* resonances in chiral unitary approach ++

Ξ* resonances in chiral unitary approach.

--- Based on the combination of the chiral perturbation theory and the unitarization of the scattering amplitude.

A. Ramos, E. Oset and C. Bennhold, Phys. Rev. Lett. 89 (2002) 252001.

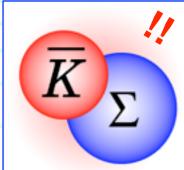
++ Ξ* resonances in chiral unitary approach ++
■ Ξ* resonances in chiral unitary approach.

--- Based on the combination of the chiral perturbation theory and the unitarization of the scattering amplitude.

$(\frac{1}{2}, -2)$		$[\pi \Xi]$ 7.5	5.6	seen	2.6	Then, systematic studies
$\Xi(1620)^{*}$		[ĒΛ] 5.2	2.8	seen	-1.5	
$M \approx 1620$	1565	$[\bar{K}\Sigma] 0.7$	2.6	0	-0.8	were done for several Ξ^*
$\Gamma = 23$	247	$[\eta \Xi] 0.3$	4.9	0	0.3	states together with
$(\frac{1}{2}, -2)$		$[\pi \Xi] 0.02$	0.1	seen	-0.1	many other resonances.
$\Xi(1690)^{***}$		[ĒΛ] 0.16	6.0	seen	0.9	
$M = 1690 \pm 10$	1663	[ĒΣ] 5.15	3.1	seen	-2.5	C. Garcia-Recio, M. F. M. Lutz and J. Nieves,
$\Gamma = 10 \pm 6$	4	$[\eta \Xi] 2.28$	3.2	0	-1.7	<i>Phys. Lett.</i> <u>B582</u> (2004) 49.

				-	lancala							manda		remen				_		N
	8 (1134)	2037–24i	0.6	0.6	0.3	0.2	0.3	† 0.5	1.5	0.6	1.8	2.4	1.1	0.2	1.0	2.1			7	-
-	10	1729–46i	0.6	14	0.4	1.6	14	2.1	1.0	0.4	3.3	1.5	0.4	0.2	1.6	1.0	Ξ(1950)			f
	(70)	1729-401	0.0	1.4	0.4	11.0	1.4	4.1	1.0	0.4	5.5	1.5	0.4	0.2	1.0	1.0	***			
	8	1651–2i	0.2	0.3	† 2.2	1.3	1.0	2.6	0.2	0.6	0.9	0.4	0.2	1.7	0.4	0.2	Ξ(1690)			5
	(70)																***			
	8	1577-139i	2.6	† 1.7	0.5	0.1	0.8	1.0	0.7	0.1	0.6	1.3	0.3	0.1	0.2	1.2	Ξ(1620)			_
	(56)																*			
	-																			

 Narrow width for ±(1690) !
 But its mass is lower than
 Exp. value.


D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, Phys. Rev. D84 (2011) 056017.

++ In this study ... ++

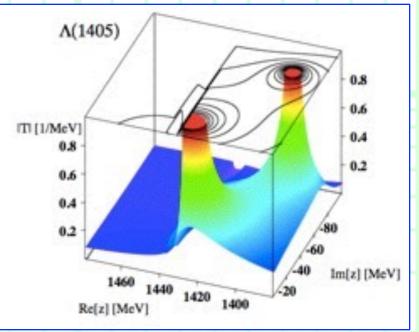
- In this study we concentrate on the phenomena near the $\overline{K}\Sigma$ threshold and on the $\Xi(1690)$ resonance.
- By using the chiral unitary approach and adjusting parameters, we show the narrow $\Xi(1690)$ state, which was studied in the previous studies, can exist near the $\overline{K\Sigma}$ threshold with $J^P = 1/2^{--}$, and it reproduces experimental mass spectra qualitatively well.
- We investigate and clarify properties of the ±(1690) state, including its small decay width, molecular structure, etc.
 We especially show that the ±(1690) resonance can be indeed

an *s*-wave $\overline{K\Sigma}$ molecular state in terms of the <u>compositeness</u>.

Hyodo-Jido-Hosaka (2012), Aceti-Oset (2012), Nagahiro-Hosaka (2014), See Hyodo, *Int. J. Mod. Phys.* <u>A28</u> (2013) 1330045; <u>T. S.</u>, Hyodo and Jido, *PTEP* (2015) 063D04.

++ Chiral unitary approach ++

• We employ the chiral unitary approach for the <u>s-wave $K\Sigma - K\Lambda - \pi \Xi - \eta \Xi$ </u> coupled-channels scattering.


$$T_{jk}(w) = V_{jk}(w) + \sum_{l} V_{jl}(w)G_{l}(w)T_{lk}(w)$$

T is the scattering amplitude which we want to obtain.

- V is the interaction kernel taken from the chiral perturbation theory projected to s-wave.
- G is the loop function for the mesonbaryon two-body system.

The chiral unitary approach is most success-

ful in the KN interaction and Λ(1405). Kaiser-Siegel-Weise (1995), Oset-Ramos (1998), Oller-Meissner (2001), Lutz-Kolomeitsev (2002), Jido *et al.* (2003),

Hyodo and Jido (2012).

++ Interaction kernel ++

In this study we use the Weinberg-Tomozawa interaction for V.

- <u>The leading order term</u> in s wave:

$$V_{jk}(w) = -rac{C_{jk}}{4f_j f_k} (2w - M_j - M_k) \sqrt{rac{E_j + M_j}{2M_j}} \sqrt{rac{E_k + M_k}{2M_k}}$$

The meson decay constant f_i is chosen at their physical values:

 $f_{\pi}=92.2~{
m MeV},~~f_{K}=1.2f_{\pi},~~f_{\eta}=1.3f_{\pi}$ Particle Data Group.

The Clebsch-Gordan coefficient C_{jk} is determined from the group structure of the flavor SU(3) symmetry:

	$K^-\Sigma^+$	$ar{K}^0\Sigma^0$	$ar{K}^0\Lambda$	$\pi^+ \Xi^-$	$\pi^0 \Xi^0$	$\eta \Xi^0$
$K^-\Sigma^+$	1	$-\sqrt{2}$	0	0	$-1/\sqrt{2}$	$-\sqrt{3/2}$
$ar{K}^0\Sigma^0$	$-\sqrt{2}$	0	0	$-1/\sqrt{2}$	-1/2	$\sqrt{3/4}$
$ar{K}^0\Lambda$	0	0	0	$-\sqrt{3/2}$	$\sqrt{3/4}$	-3/2
$\pi^+ \Xi^-$	0	$-1/\sqrt{2}$	$-\sqrt{3/2}$	1	$-\sqrt{2}$	0
$\pi^0 \Xi^0$	$-1/\sqrt{2}$	-1/2	$\sqrt{3/4}$	$-\sqrt{2}$	0	0
$\eta \Xi^0$	$-\sqrt{3/2}$	$\sqrt{3/4}$	-3/2	0	0	0

--- We have no free parameters in the interaction kernel.

++ Loop function ++

For the loop function we take a covariant expression:

$$G_j(w) = i \int rac{d^4 q}{(2\pi)^4} rac{1}{(P/2+q)^2 - m_j^2 + i0} rac{2M_j}{(P/2-q)^2 - M_j^2 + i0}$$

- The integral is calculated with the dimensional regularization, and an infinite constant is replaced with <u>a subtraction constant</u> in each channel.
- --> Subtraction constants are free parameters.
- We assume the isospin symmetry for the subtraction constants, so we have 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$), which are fixed so 40 as to reproduce K₀A *K*--Σ+ 25 $\frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}$ $Sutries/(4 MeV/c^2)$ 30 the mass spectra 20 15 20 by Belle. 10 ---- Neutral $\Xi(1690)$. 10 K. Abe et al. [Belle Collab.], 1.651.75

Hadron productions: Theory and Experiment @ APCTP (Nov. 25-26, 2016)

 $M(\Lambda^0 K_s^0) - M(\Lambda^0) + 1.116$,

1.78

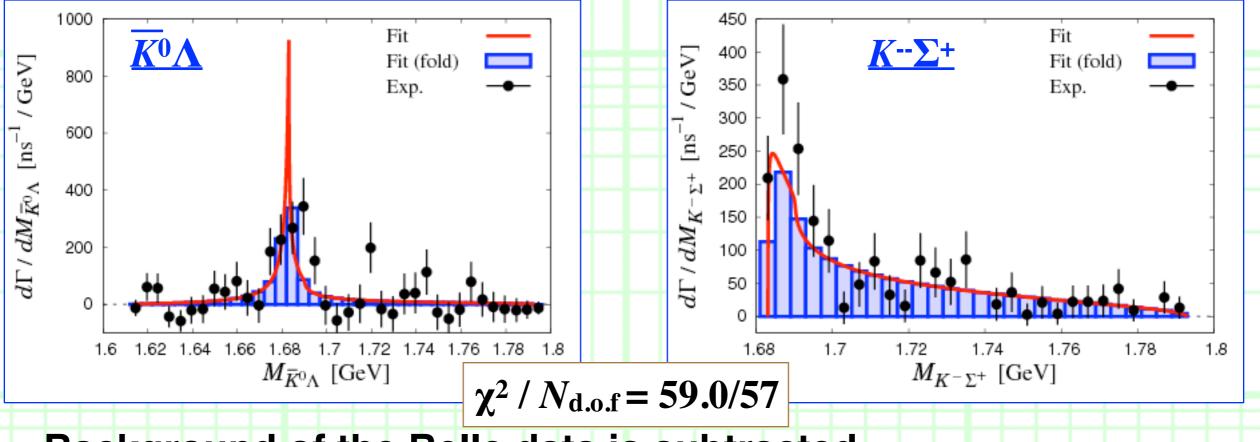
 $[\text{GeV}/c^2]$

1.7

1.68

1.72

1.74


 $M(\Sigma^+K^-) - M(\Sigma^+) + 1.189,$

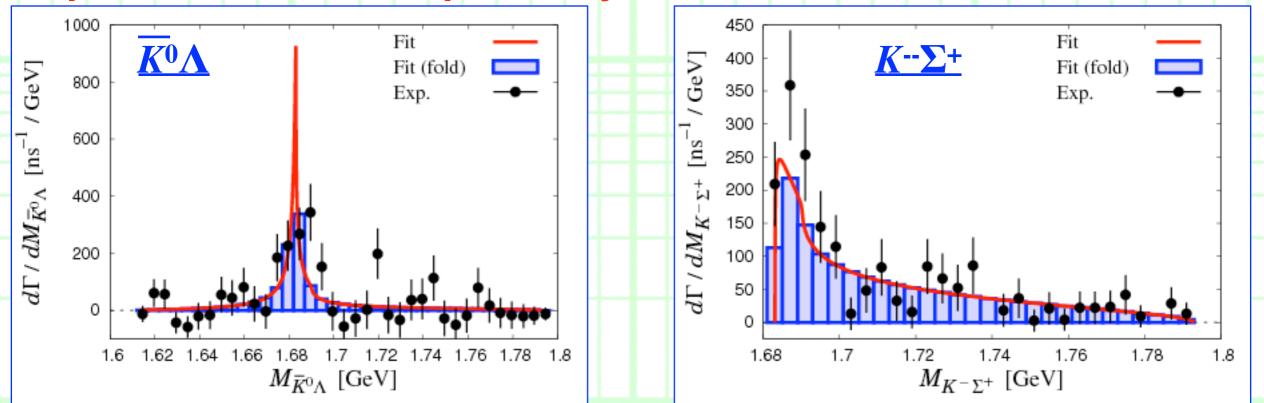
++ Fitting to the Belle data ++

• We fix 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$) so as to

reproduce the mass spectra by Belle. The result of the best fit is:

Background of the Belle data is subtracted.

□ Relative scale between $\overline{K^0}\Lambda$ and $K^-\Sigma^+$ is fixed with the branching fractions: $\mathcal{B}[\Lambda_c^+ \to \Xi(1690)^0 K^+ \to (K^-\Sigma^+) K^+] = (1.3 \pm 0.5) \times 10^{-3}$


$$\mathcal{B}[\Lambda_c^+ \to \Xi(1690)^0 K^+ \to (\bar{K}^0 \Lambda) K^+] = (8.1 \pm 3.0) \times 10^{-4}$$

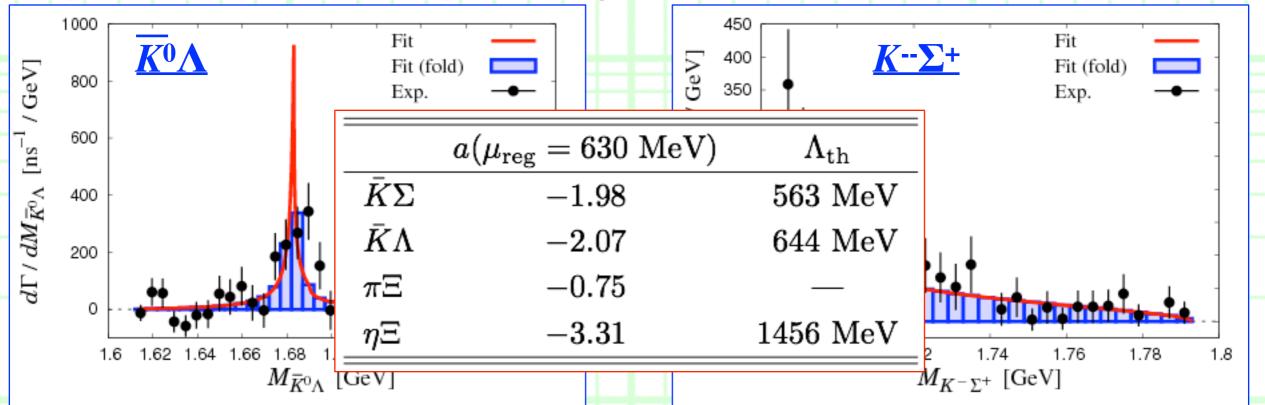
++ Fitting to the Belle data ++

• We fix 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$) so as to

reproduce the mass spectra by Belle. The result of the best fit is:

 The Belle data on Ξ(1690) are reproduced qualitatively well with very small width ~1 MeV.

--- We can calculate the ratio $R \equiv \frac{\mathcal{B}[\Lambda_c^+ \to \Xi(1690)^0 K^+ \to (K^- \Sigma^+) K^+]}{\mathcal{B}[\Lambda_c^+ \to \Xi(1690)^0 K^+ \to (\bar{K}^0 \Lambda) K^+]}$

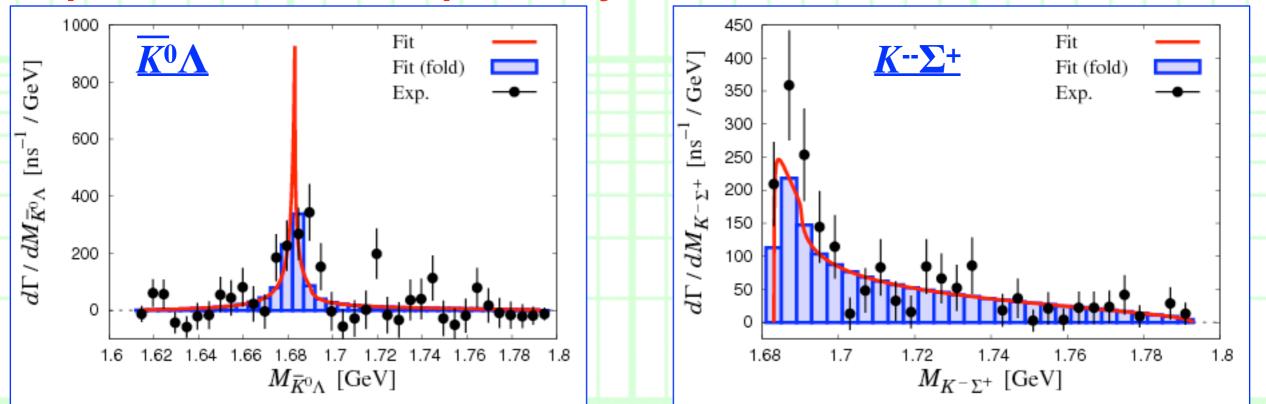

$$R_{\rm th} = 1.06 \iff R_{\rm exp} = 0.62 \pm 0.33.$$
 --- $\ln 2\sigma$ errors

++ Fitting to the Belle data ++

• We fix 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$) so as to

reproduce the mass spectra by Belle. The result of the best fit is:

1. The Belle data on $\Xi(1690)$ are reproduced qualitatively well.

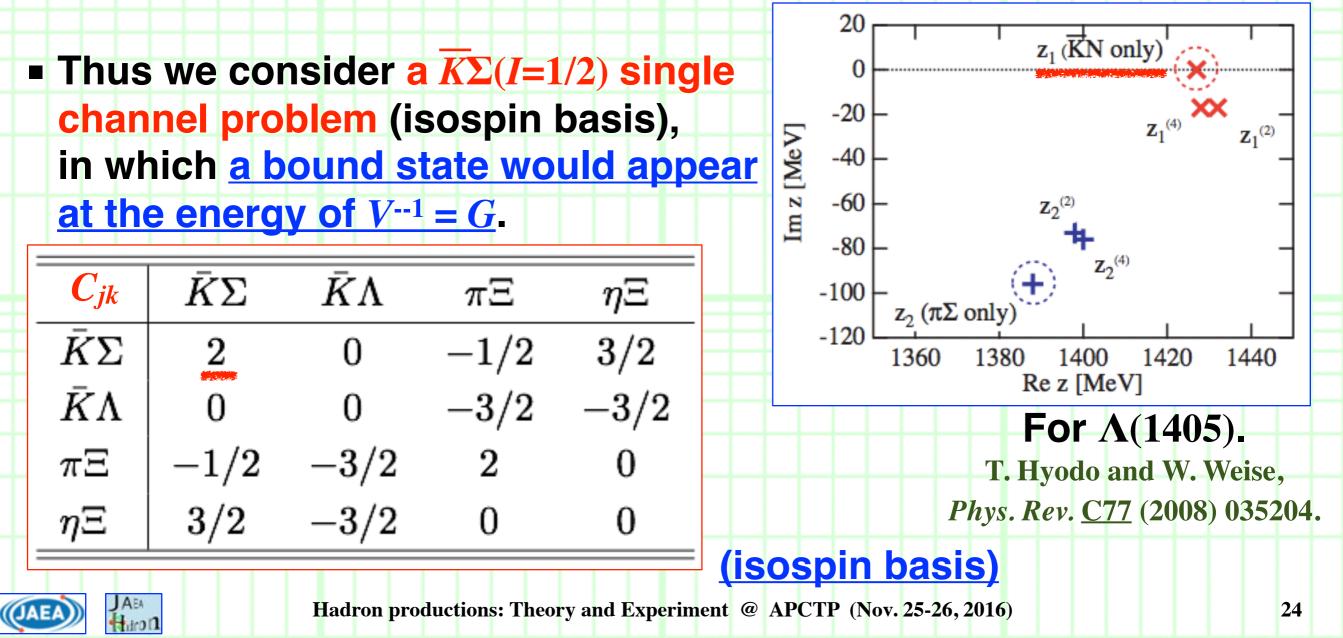

2. Subtraction constants are "natural" (except for $a_{\pi\Xi}$), as the values of the corresponding three-dimensional cut-off at the threshold, Λ_{th} , is about 500 - 1500 MeV. --- The $\pi\Xi$ channel negligibly contributes to $\Xi(1690)$.

++ Fitting to the Belle data ++

• We fix 4 free parameters ($a_{K\Sigma}$, $a_{K\Lambda}$, $a_{\pi\Xi}$, and $a_{\eta\Xi}$) so as to

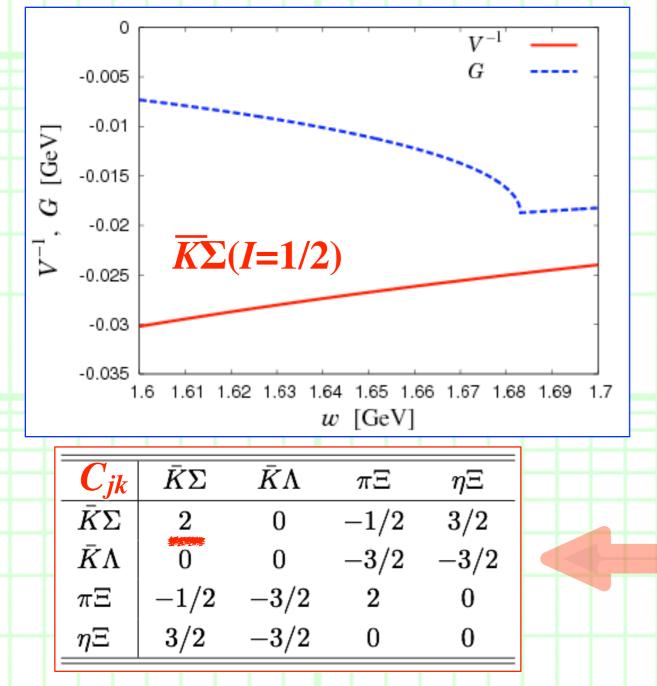
reproduce the mass spectra by Belle. The result of the best fit is:

1. The Belle data on $\Xi(1690)$ are reproduced qualitatively well.


2. Subtraction constants are "natural" (except for $a_{\pi\Xi}$).

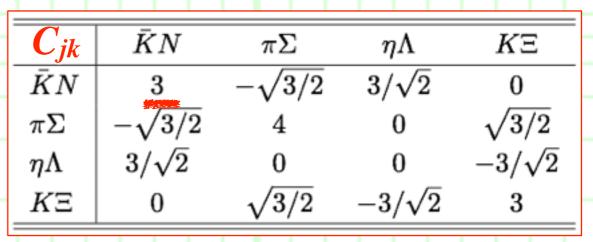
J AEA

3. The Ξ(1690) pole is dynamically generated at 1684.3 -- 0.5 *i* MeV, whose real part is between the K-- Σ+ and the K0 Σ0 thresholds.
--- Pole in the first Riemann sheet of both KΣ channels. --> "Cusp".

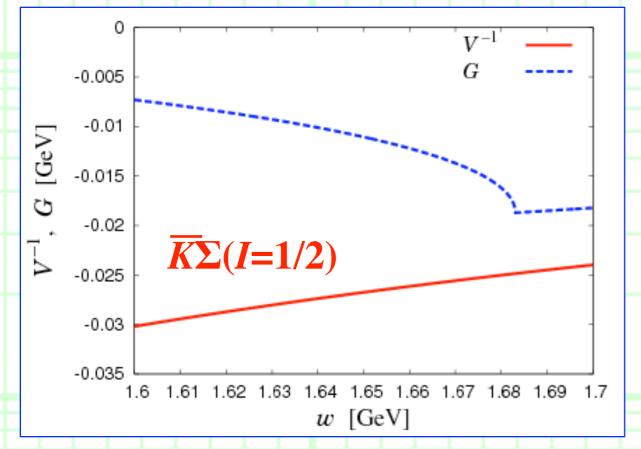

++ Origin of **E**(1690) ++

- We naively expect that the $\Xi(1690)^{0}$ (pole at 1684.3 -- 0.5 *i* MeV) would originate from the $\overline{K}\Sigma(I=1/2)$ bound state generated by the strongly attractive interaction between $\overline{K}\Sigma(I=1/2)$.
- --- *cf.* The strongly attractive $\overline{KN}(I=0)$ interaction for $\Lambda(1405)$.

++ Origin of **E**(1690) ++


• We consider a $\overline{K\Sigma}(I=1/2)$ single channel problem (isospin basis), in which a bound state would appear at the energy of $V^{-1} = G$.

JAEA


Haron

 V-1 is below G, which means that the chiral KΣ interaction is attractive but not strong enough to generate a bound state in a single channel case.
 In contrast to the KN(I=0) Int., which can solely generate a bound state for Λ(1405).

++ Origin of **E**(1690) ++

• We consider a $\overline{K\Sigma}(I=1/2)$ single channel problem (isospin basis), in which a bound state would appear at the energy of $V^{-1} = G$.

 V⁻¹ is below G, which means that the chiral KΣ interaction is attractive but not strong enough to generate a bound state in a single channel case.
 In contrast to the KN(I=0) Int., which can solely generate a bound state for Λ(1405).

• This fact implies that the multiple scatterings, such as $\overline{K}\Sigma \rightarrow \eta\Xi$ $\rightarrow \overline{K}\Sigma$, assist the $\overline{K}\Sigma$ interaction in dynamically generating $\Xi(1690)$ as a $\overline{K}\Sigma$ quasi-bound state which is located very close to the $\overline{K}\Sigma$ threshold.

++ Small decay width ++

• In addition, the structure of the interaction strength qualitatively explains a remarkable property of $\Xi(1690)^0$, its very small width: $\Gamma = -2 \operatorname{Im}(w_{\text{pole}}) \sim 1 \operatorname{MeV}$. $\overline{C_{jk}} \quad \overline{K\Sigma} \quad \overline{K}\Lambda \quad \pi\Xi \quad \eta\Xi$

 $\bar{K}\Sigma$

 $ar{K}\Lambda$

 $\pi \Xi$

 $\eta \Xi$

2

0

-1/2

0

0

3/2 - 3/2

 C_{jk}

 $\bar{K}N$

 $\pi\Sigma$

-3/2

 $\bar{K}N$

3

 $-\sqrt{3/2}$

-1/2

-3/2

 $\mathbf{2}$

0

(I = 1/2, isospin basis)

 $\pi\Sigma$

 $-\sqrt{3/2}$

 $\eta \Lambda$

 $3/\sqrt{2}$

0

- 1. <u>Transition of $\overline{K\Sigma} < --> \overline{K}\Lambda$ is</u> <u>forbidden at the leading order</u> $(C_{jk} = 0)$, so the $\overline{K\Sigma} --> \overline{K}\Lambda --> \overline{K\Sigma}$ multiple process gives zero.
- 2. $\overline{K\Sigma} < --> \pi \Xi$ is not strong compared to, *e.g.*, $\overline{KN}(I=0) < --> \pi \Sigma$. --- $C_{jk} = --0.5$ vs. $--\sqrt{1.5} = --1.22$...
- 3. $\overline{K}\Sigma < --> \eta \Xi$ is the strongest.

J AEA

--> As a consequence, the $\eta \Xi$ channel is most important in the multiple scatterings for $\overline{K}\Sigma$ to dynamically generate $\Xi(1690)$ which cannot couple strongly to $\overline{K}\Lambda$ nor $\pi\Xi$. --- This reproduces small decay width and tiny BR fraction to $\pi\Xi$.

3/2

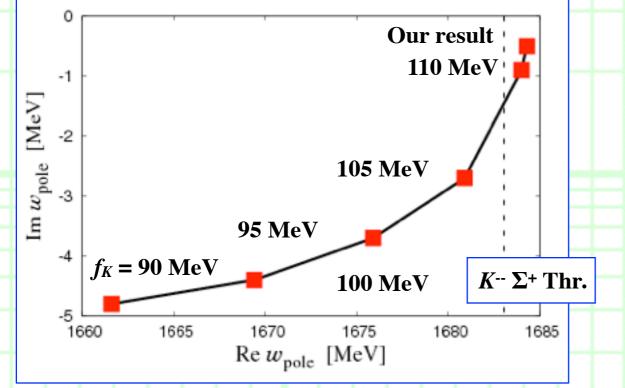
-3/2

0

 $K\Xi$

 $\sqrt{3/2}$

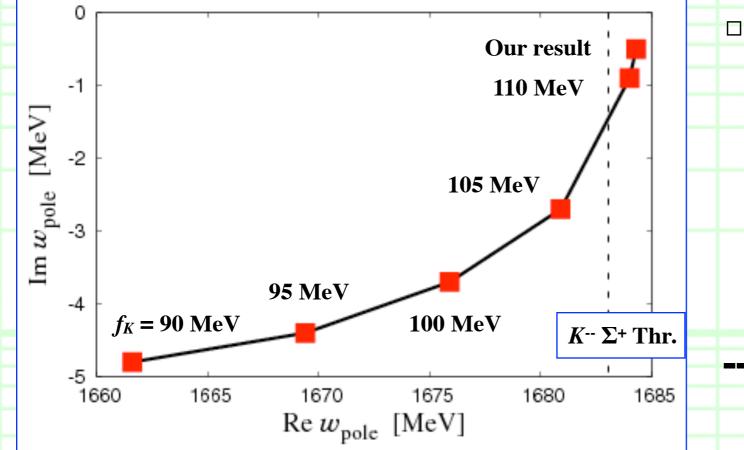
++ Comparison with previous ChUA calculations ++
 The discussion on the KΣ interaction can be further utilized for comparison of our result on Ξ(1690) (pole at 1684.3 -- 0.5 i MeV) with previous ones in chiral unitary approach.


 $(\frac{1}{2}, -2)$		[πΞ] 7.5	5.6	seen	2.6	<> Qualitatively similar, but
 $\Xi(1620)^*$		[ĒΛ] 5.2	2.8	seen	-1.5	the mass (= real part of
 $M \approx 1620$	1565	[Ē Σ] 0.7	2.6	0	-0.8	the pole position) of our
 $\Gamma = 23$	247	$[\eta \Xi] 0.3$	4.9	0	0.3	
$(\frac{1}{2}, -2)$		$[\pi \Xi] 0.02$	0.1	seen	-0.1	result is 20 - 30 MeV
 $\Xi(1690)^{***}$		[Κ Λ] 0.16	6.0	seen	0.9	larger than others.
$M = 1690 \pm 10$	1663	[K Σ] 5.15	3.1	seen	-2.5	C. Garcia-Recio, M. F. M. Lutz and J. Nieves,
$\frac{\Gamma = 10 \pm 6}{10}$	4	$[\eta \Xi] 2.28$	3.2	0	-1.7	Phys. Lett. <u>B582</u> (2004) 49.

-	8	2037–24i	0.6	0.6	0.3	0.2	0.3	† 0.5	1.5	0.6	1.8	2.4	1.1	0.2	1.0	2.1	
_	(1134)																
	10	1729-46i	0.6	1.4	0.4	1.6	1.4	2.1	1.0	0.4	3.3	1.5	0.4	0.2	1.6	1.0	Ξ(1950)
	(70)																***
	8 (70)	1651–2i	0.2	0.3	† 2.2	1.3	1.0	2.6	0.2	0.6	0.9	0.4	0.2	1.7	0.4	0.2	\appa(1690)
	8 (56)	1577–139i	2.6	† 1.7	0.5	0.1	0.8	1.0	0.7	0.1	0.6	1.3	0.3	0.1	0.2	1.2	\ Ξ(1620) ★

D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, Phys. Rev. <u>D84</u> (2011) 056017.

- ++ Comparison with previous ChUA calculations ++
 The discussion on the KΣ interaction can be further utilized for comparison of our result on Ξ(1690) (pole at 1684.3 -- 0.5 i MeV) with previous ones in chiral unitary approach.
 - In Ref. [1] they used the meson decay constant <u>f = 90 MeV in</u> <u>all channels</u>, while we use their physical values (f_K = 110.64 MeV).
 --> The Ξ(1690) pole moves as:



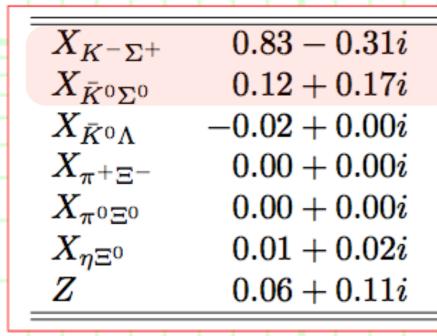
 In Ref. [2] they introduced channels with vector mesons, which would assist more the KΣ interaction, and hence the mass of Ξ(1690) shifted to lower energies.

[1] C. Garcia-Recio, M. F. M. Lutz and J. Nieves, *Phys. Lett.* <u>B582</u> (2004) 49.

[2] D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, *Phys. Rev.* <u>D84</u> (2011) 056017.

++ Compositeness for Ξ(1690) ++
 Our Ξ(1690) pole exists at 1684.3 -- 0.5 *i* MeV, whose real part is very close to the *K*⁻⁻ Σ⁺ threshold (= 1863.1 MeV).
 --- The pole exists in the first Riemann sheet of the *K*⁻⁻ Σ⁺ channel.

 Our Ξ(1690) state should be genuinely KΣ composite ! (coupled-channels version)


<u>"Theorem" (single channel):</u> The bound state with the field renormalization const. $Z \sim 0$ naturally appears when the state exists near the threshold, and especially Z vanishes in the limit $B \rightarrow 0$. --> The state should be genuinely composite. T. Hyodo, Phys. Rev. C90 (2014) 055208; C. Hanhart, J. R. Pelaez and G. Rios, Phys. Lett. B739 (2014) 375.

++ Compositeness for $\Xi(1690)$ ++

- Our $\Xi(1690)$ pole exists at 1684.3 -- 0.5 *i* MeV, whose real part is very close to the *K*-- Σ + threshold (= 1863.1 MeV).
- --- The pole exists in the first Riemann sheet of the $K^{--} \Sigma^+$ channel.
 - Its KΣ component can be measured in terms of the compositeness, which is defined as the contribution of the two-body component to the normalization of the total wave function. Hyodo, Int. J. Mod. Phys. A28 (2013) 1330045; T.S., Hyodo and Jido, PTEP (2015) 063D04.

$$\langle \tilde{\Psi} | \Psi
angle = X + Z = 1$$
 $X = \int \frac{d^3 q}{(2\pi)^3} \langle \tilde{\Psi} | \mathbf{q}
angle \langle \mathbf{q} | \Psi
angle = \int \frac{d^3 q}{(2\pi)^3} \left[\tilde{\psi}(\mathbf{q}) \right]^2$ h_A

JAEA Hidron From the result of compositeness, <u>the KΣ compositeness really dominates</u> <u>the sum rule</u> with small imaginary part.

 Strongly indicates that Ξ(1690) is indeed a KΣ molecular state.

++ Charged E(1690) ++

 Finally we consider the charged Ξ(1690) in the same parameter set as the neutral one. As a result, we obtain the Ξ(1690)⁻⁻ pole as:

$w_{ m pole}$	$1693.4-10.5i~{\rm MeV}$
$X_{ar{K}^0\Sigma^-}$	0.86 - 0.50i
$X_{K^-\Sigma^0}$	-0.27 + 0.31i
$X_{K^-\Lambda}$	-0.02 + 0.04i
$X_{\pi^-\Xi^0}$	0.00 + 0.00i
$X_{\pi^0\Xi^-}$	0.00 + 0.00i
$X_{\eta \Xi^-}$	0.07 + 0.03i
Z	0.36 + 0.12i

 The Ξ(1690)- pole is located <u>between</u> <u>the K-Σ⁰ and K⁰Σ- thresholds;</u>
 The pole is in the first Riemann sheet of the K⁰Σ- and ηΞ- channels and in the second Riemann sheet of the K-Λ, K-Σ⁰, π- Ξ⁰, and π⁰Ξ- channels.

□ The pole position has a larger imaginary part ~ 10 MeV compared to the neutral case, since it exists above the $\overline{K^0\Sigma^{--}}$ threshold in its second Riemann sheet and hence the decay to $\overline{K^0\Sigma^{--}}$ is allowed.

□ Although both $X_{K^0\Sigma}$ - and $X_{K^-\Sigma^0}$ have large imaginary part, sum of them is the dominant contribution with its small imaginary part, which implies that the $\Xi(1690)^{--}$ state is also a $\overline{K\Sigma}$ molecular state.

4. Summary

4. Summary

++ Summary ++

- We have investigated dynamics of $\overline{K\Sigma}$ and its coupled channels in the chiral unitary approach.
 - We employ the simplest interaction: Weinberg-Tomozawa term.
 - Subtraction constants as free parameters are fixed by fitting the $\overline{K^0}\Lambda$ and $\overline{K^-\Sigma^+}$ mass spectra to the experimental data.
- As a result, we have found that:
 - □ The obtained scattering amplitude can <u>qualitatively reproduce</u> the experimental data of the $\overline{K^0}\Lambda$ and $K^-\Sigma^+$ mass spectra.
 - Dynamically generates a Ξ^* pole near the $\overline{K}\Sigma$ threshold as a $\overline{K}\Sigma$ molecule, which can be identified with the $\Xi(1690)^0$ resonance.
 - However, the $\overline{K\Sigma}$ interaction alone is slightly insufficient to bring
 - a $\overline{K\Sigma}$ bound state, so multiple scattering is important for $\Xi(1690)$.
 - The small or vanishing couplings of the $\overline{K}\Sigma$ channel to others can <u>naturally explain small decay width of $\Xi(1690)$ </u>.

4. Summary

++ Outlook ++

Theoretical study:

- Propose reactions which can <u>clarify properties</u> of the Ξ(1690) resonance in experiments, both neutral and charged states.
- $\ \ \, \square \ \, \underline{Predict \ the \ \, \Xi(1690) \ \, production \ \, cross \ \, section}. \ \ \,$
- Improvement of model by, e.g., introducing s- and u-channel Born terms.
- Experimental study:
 - Determine J^{P} of the $\Xi(1690)$ resonance.
 - Measure the $\overline{K}\Lambda$ and $\overline{K}\Sigma$ mass spectra and ratio of their branching fractions.
 - □ Furthermore, precise determination of its pole position should be important to discuss the internal structure of Ξ(1690).
 - --- Flatte parameterization may be necessary since it exists near the $\overline{K}\Sigma$ threshold.

5. Furthermore on exotic hadrons

++ Identify exotic hadrons ++

How can we identify exotic hadrons, especially in Exps.?

 \overline{q}

- --> The constituent quark models can <u>support</u> the exotic nature of <u>exotic hadrons = not qqq nor qq</u>.
- However, constituent quark models (or, in general, any effective models) cannot provide <u>undoubted evidences</u> of the exotic nature, because constituent quarks are not "universal" for hadrons.
 - Constituent quarks are not asymptotic states of QCD !
- --> We need some <u>approaches which do not rely on effective models</u> of QCD to identify the exotic hadrons.

++ Identify exotic hadrons ++

How can we identify exotic hadrons, especially in Exps.?

(q)

- Spatial structure (= spatial size) of hadronic molecules.
- ---- Loosely bound hadronic molecules will have large spatial size.

<u>T. S.</u>, T. Hyodo and D. Jido (2008), (2011); <u>T. S.</u> and T. Hyodo (2013).

q

of constituents is different.

 $q \overline{q}$

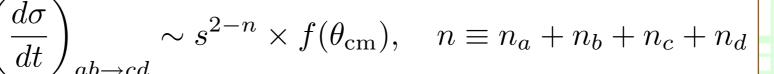
q q

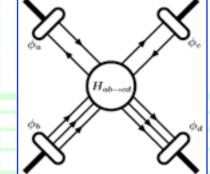
---- However, # of constituents is usually not conserved

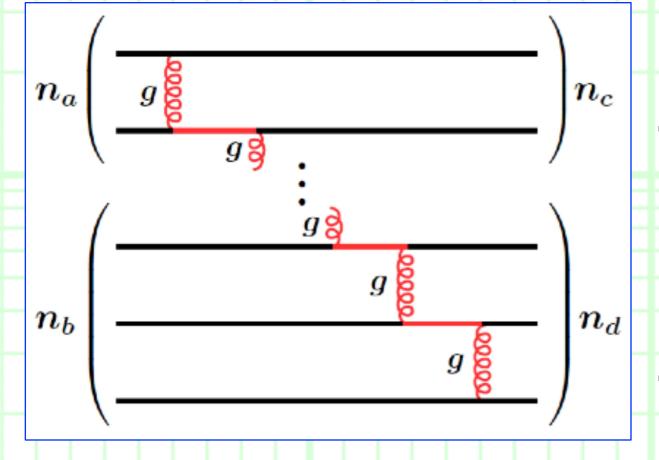
due to the creation/annihilation of $q\overline{q}$ (e.g. $\overline{KN} <--> uds$ transition).

--> "Count" it by using the counting rule in high energy scattering.

H. Kawamura, S. Kumano and <u>T. S.</u>, *Phys. Rev.* <u>D88</u> (2013) 034010.

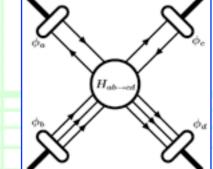

Compositeness is introduced to identify hadronic molecules.


Hyodo, Int. J. Mod. Phys. A28 (2013) 1330045; T.S., T. Hyodo and D. Jido, PTEP 2015 063D04; ...

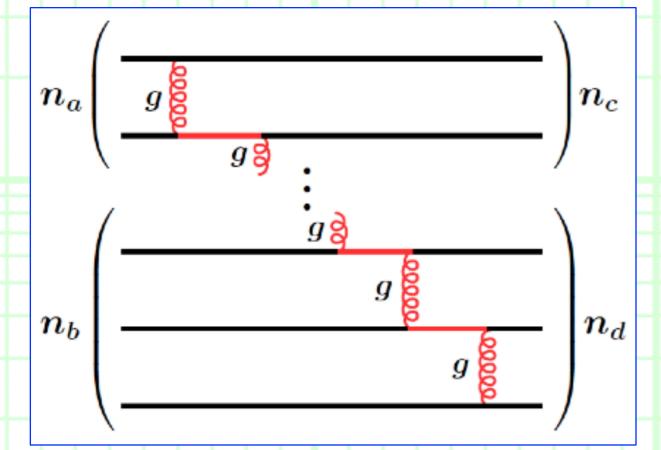

 h_A

++ Counting rule for constituent quarks ++ The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

Brodsky and Farar ('73, '75); Matveev et al. ('73).

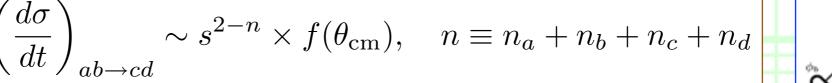


 Consider a b --> c d reaction in a large-angle exclusive process.
 --- # of constituents: n_a + n_b + n_c + n_d.
 Connect quarks by gluons.
 Each gluon propagator ~ 1 / s.
 Each quark propagator ~ 1 / s^{1/2}.


--> Count the power of 1 / s to obtain the scaling law.

++ Counting rule for constituent quarks ++ The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

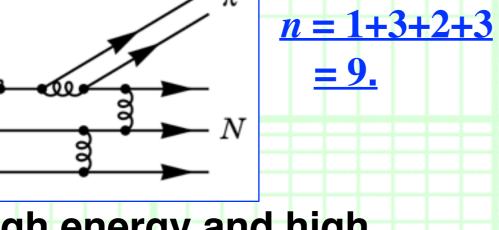
 $\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$



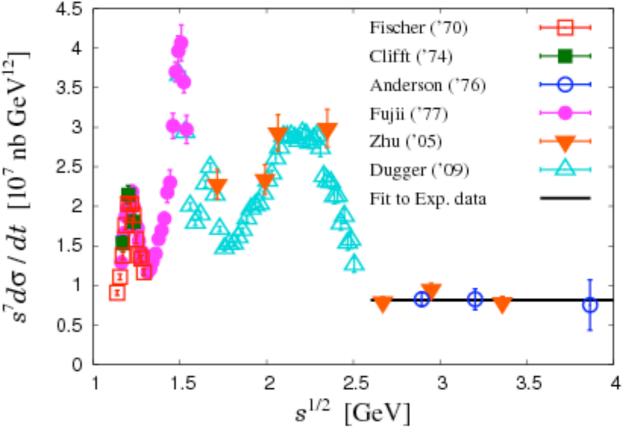
Brodsky and Farar ('73, '75); Matveev et al. ('73).

- Consider a b --> c d reaction in a large-angle exclusive process.
 1. <u>High momentum reaction</u> so as to apply pQCD.
 - 2. <u>Large scattering angle</u> so as to share the momenta.
- ---- Applicable to any hadrons as long as we can observe them.

++ Counting rule for constituent quarks ++ The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

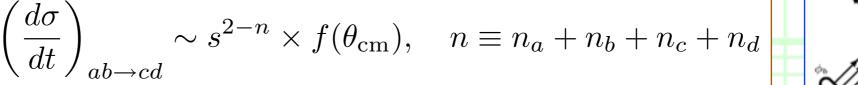


Brodsky and Farar ('73, '75); Matveev et al. ('73).

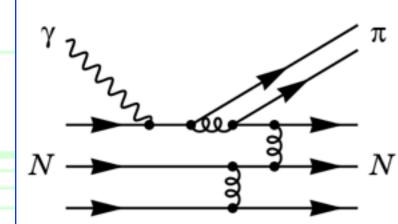


 $\sim 1/t \sim 1/u \sim 1/s$.

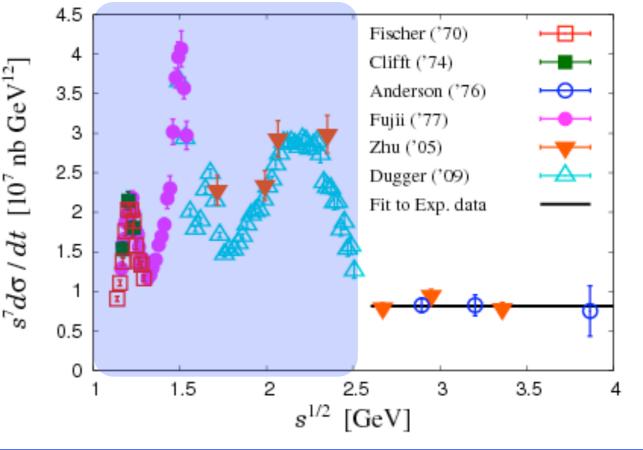
--- At High energy and high momentum transfer region, propagators scales as


L.Y. Zhu et al., Phys. Rev. Lett. 91 (2003) 022003;

H. Kawamura, S. Kumano, and T. S. (2013).

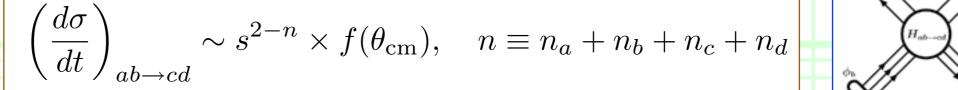

 ++ Counting rule for constituent quarks ++
 The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

n = 1 + 3 + 2 + 3

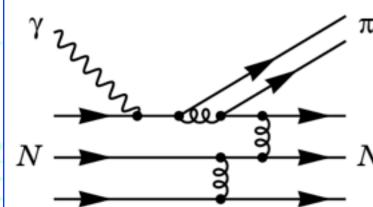

Brodsky and Farar ('73, '75); Matveev et al. ('73).

 $\sim 1/t \sim 1/u \sim 1/s$.

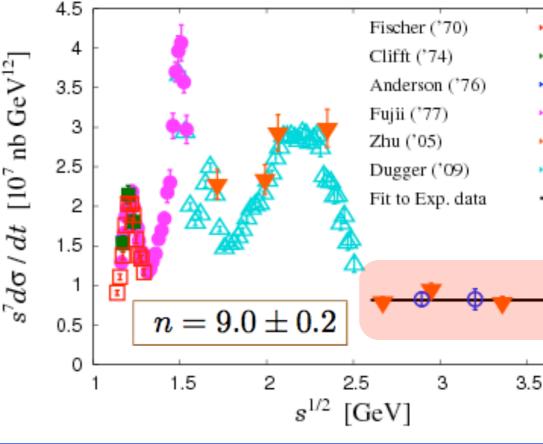
---- At High energy and high momentum transfer region, propagators scales as


L.Y. Zhu et al., Phys. Rev. Lett. 91 (2003) 022003;

H. Kawamura, S. Kumano, and T. S. (2013).


 ++ Counting rule for constituent quarks ++
 The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

n = 1 + 3 + 2 + 3

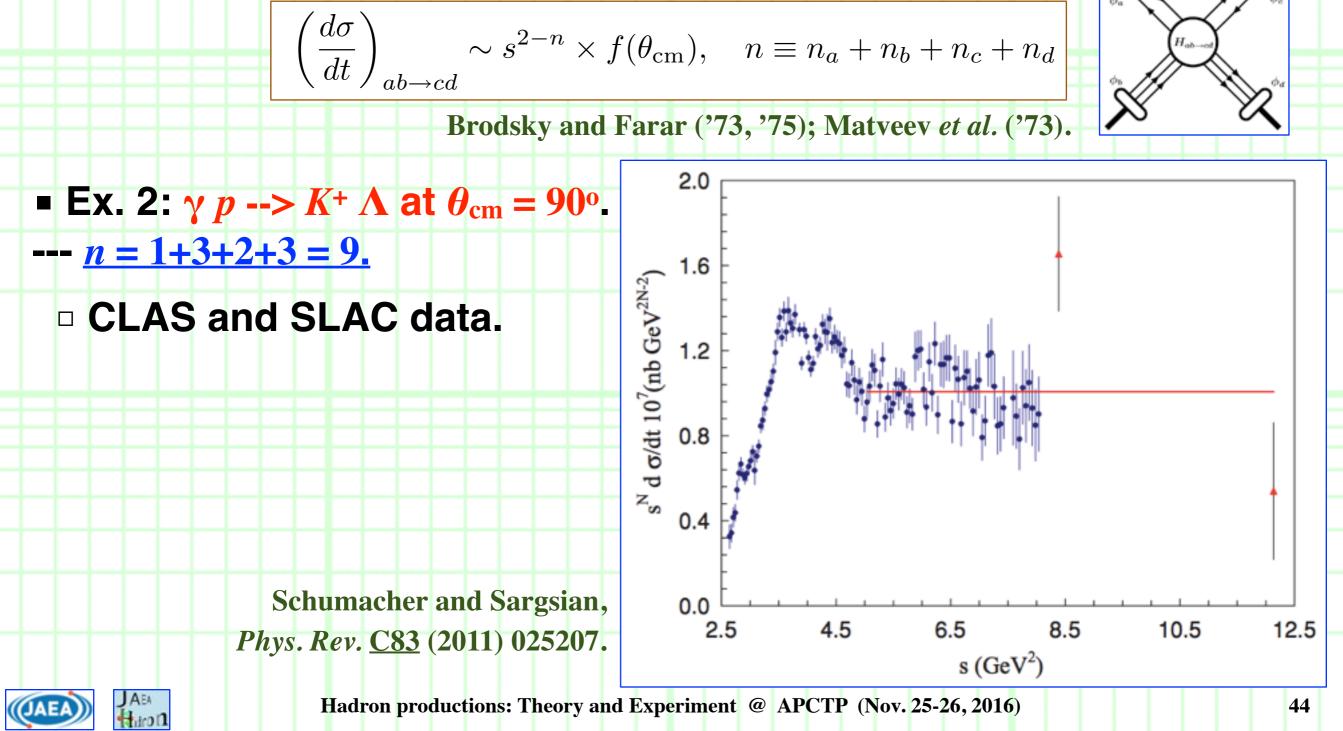

Brodsky and Farar ('73, '75); Matveev et al. ('73).

 $\sim 1/t \sim 1/u \sim 1/s$.

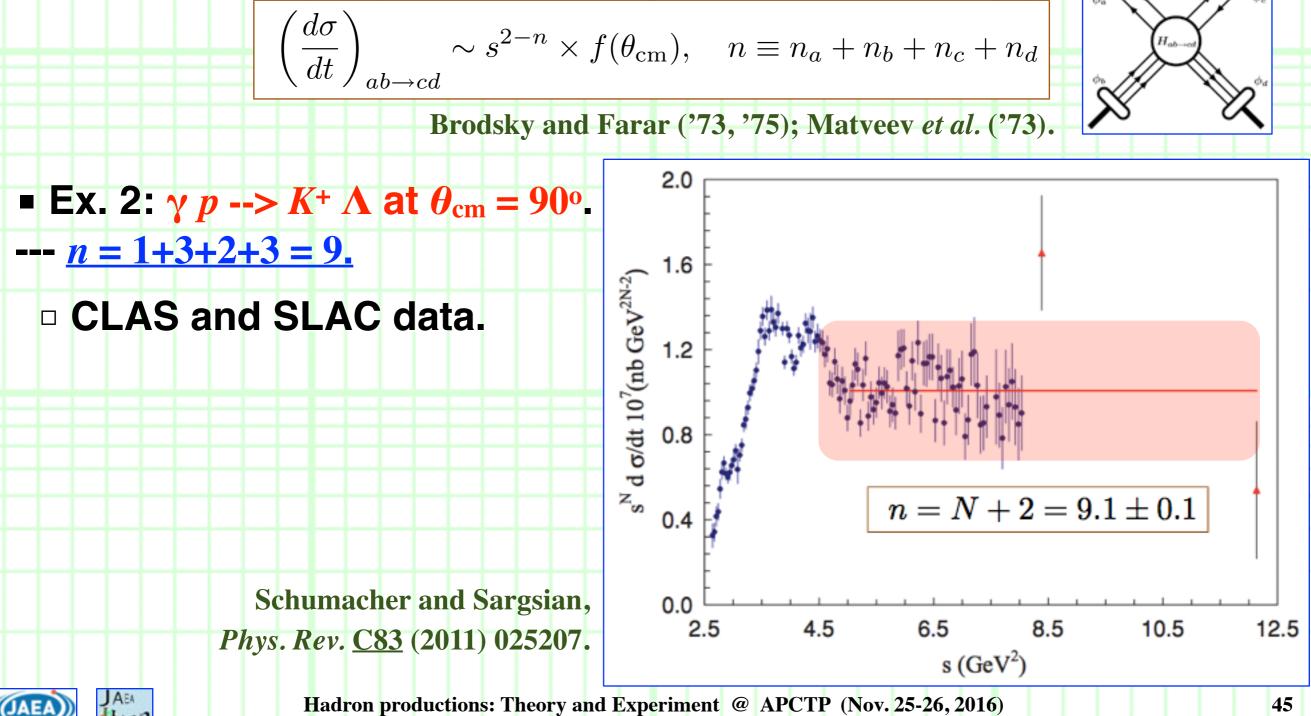
--- At High energy and high momentum transfer region, propagators scales as

L.Y. Zhu et al., Phys. Rev. Lett. 91 (2003) 022003;

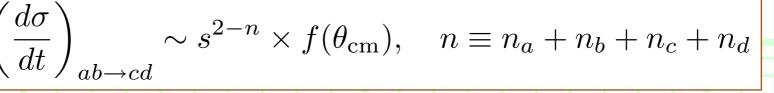
H. Kawamura, S. Kumano, and T. S. (2013).

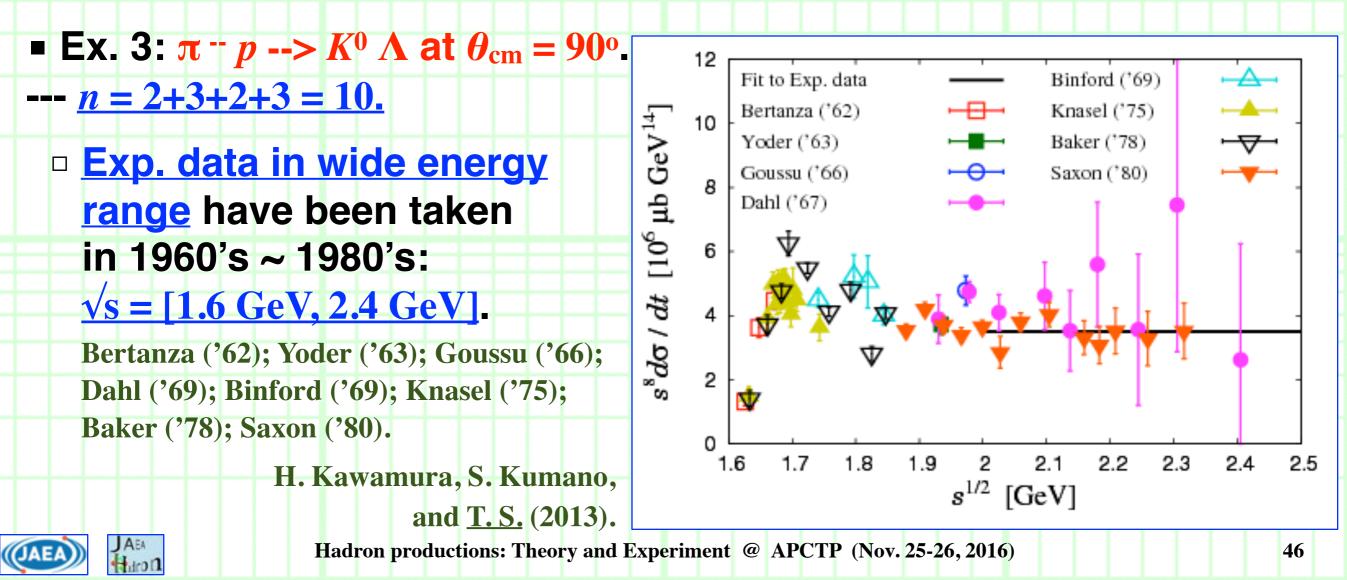

JAEA Hidron

Hadron productions: Theory and Experiment @ APCTP (Nov. 25-26, 2016)

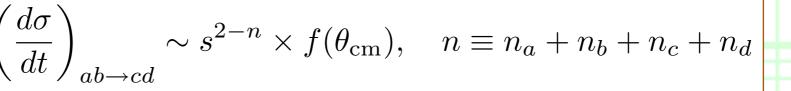


-0-

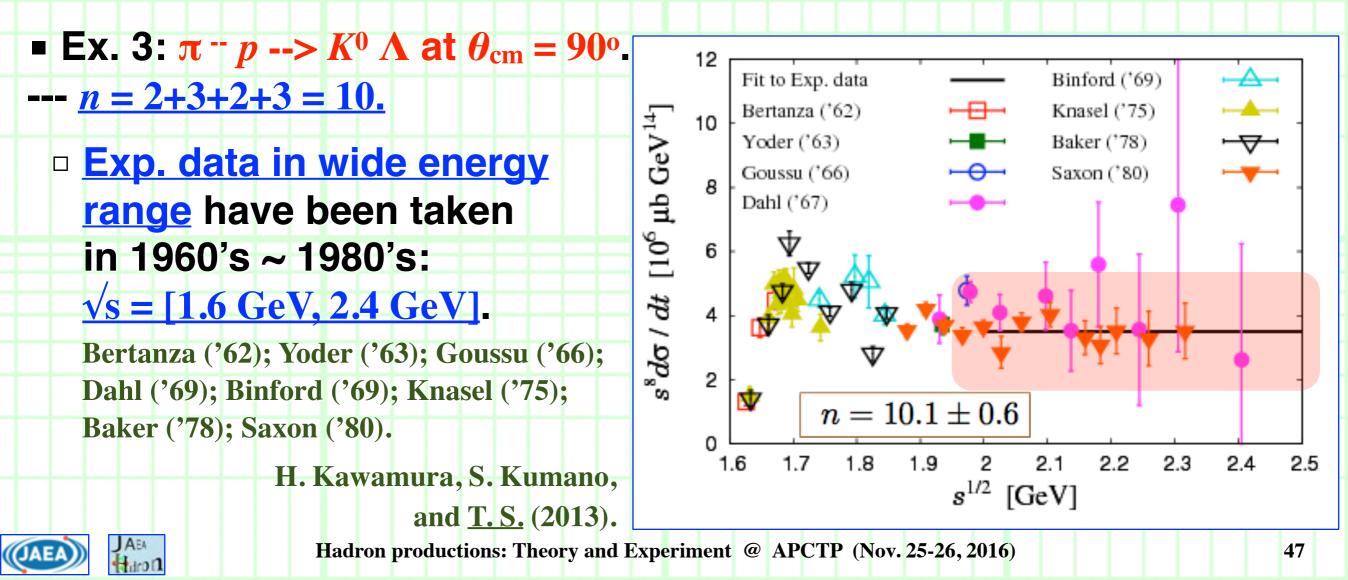




++ Counting rule for constituent quarks ++ The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

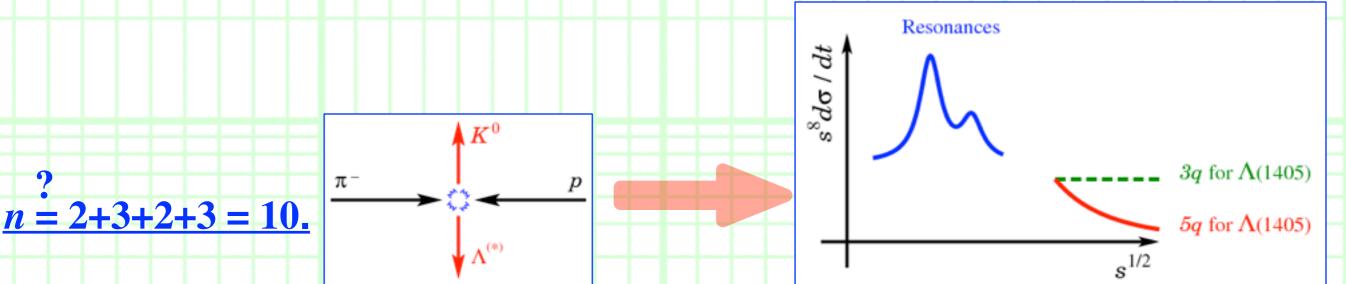


on the second se


Brodsky and Farar ('73, '75); Matveev et al. ('73).

++ Counting rule for constituent quarks ++ The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

Brodsky and Farar ('73, '75); Matveev et al. ('73).

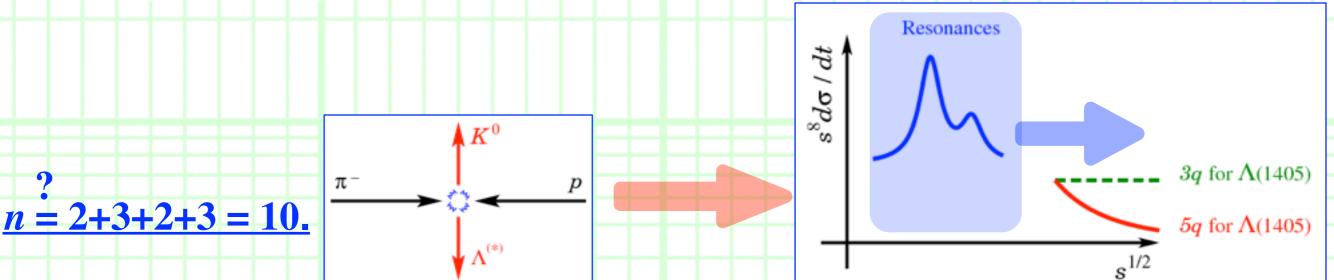

++ Counting rule for constituent quarks ++

The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

 $\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$

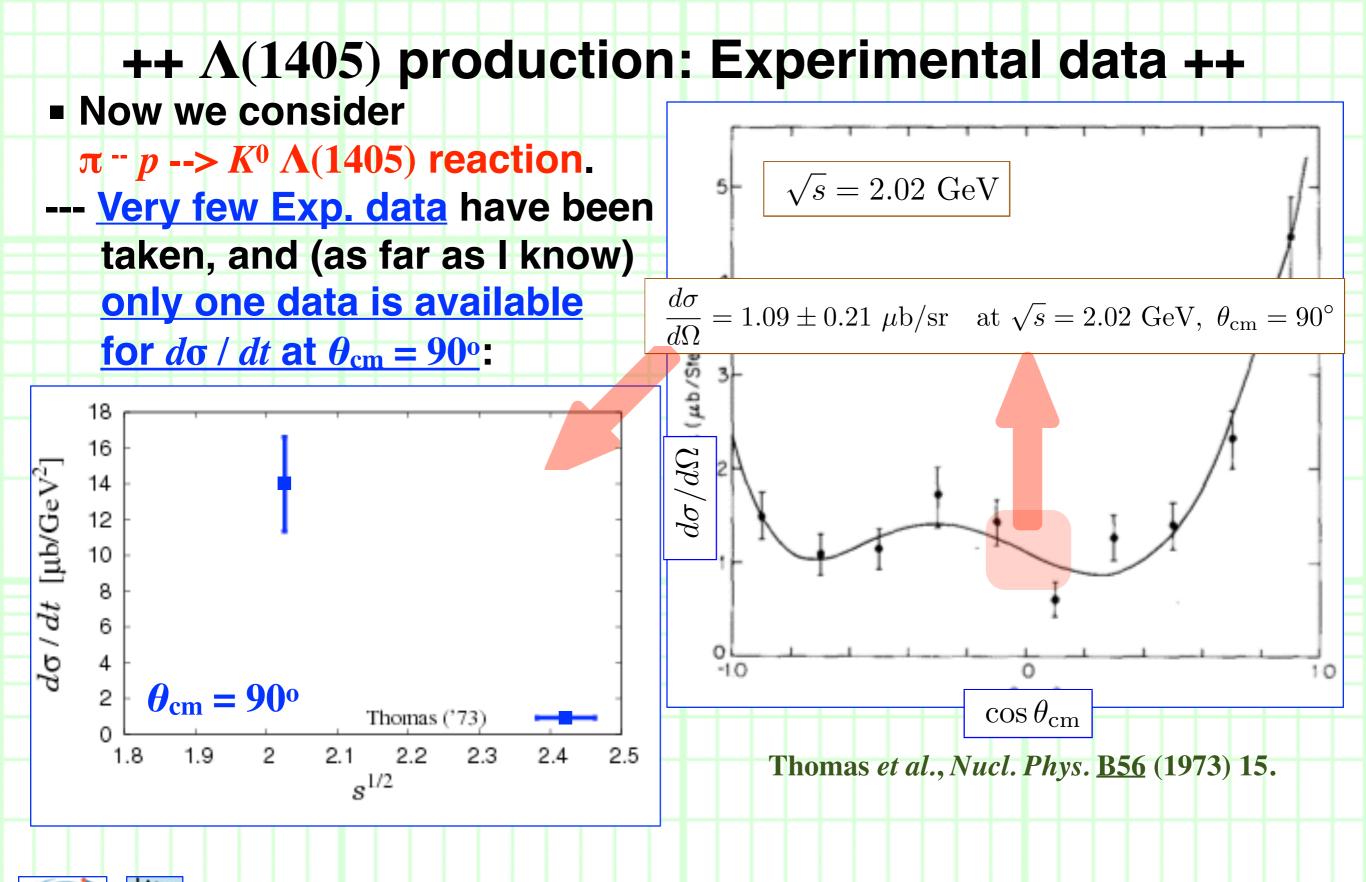
Brodsky and Farar ('73, '75); Matveev et al. ('73).

• Then how cross section of $\pi - p \rightarrow K^0 \Lambda(1405)$ at $\theta_{cm} = 90^\circ$ behaves at high energy and high momentum transfer region?

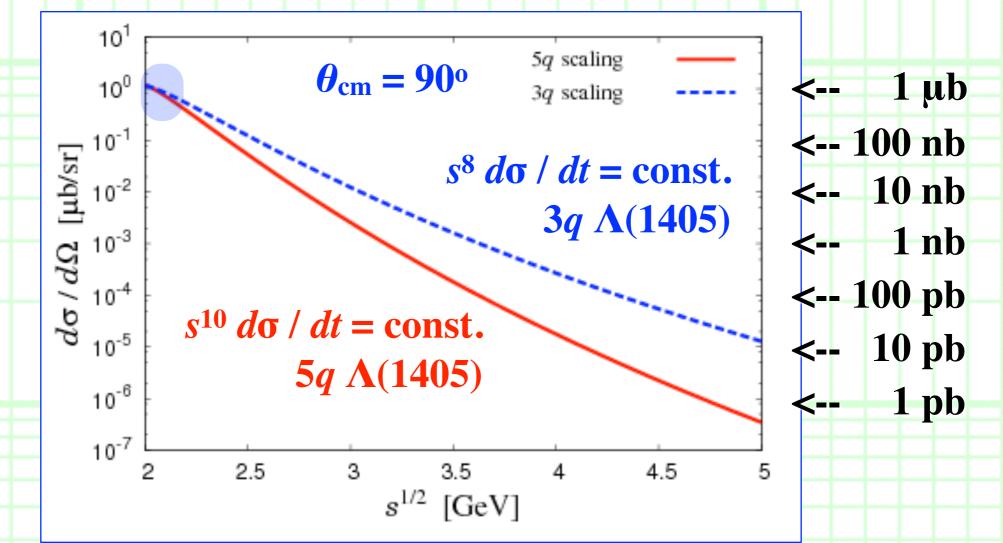

++ Counting rule for constituent quarks ++

The constituent counting rule emerges in exclusive reactions at high energy and high momentum transfer region:

 $\left(\frac{d\sigma}{dt}\right)_{ab\to cd} \sim s^{2-n} \times f(\theta_{\rm cm}), \quad n \equiv n_a + n_b + n_c + n_d$


Brodsky and Farar ('73, '75); Matveev et al. ('73).

• Then how cross section of $\pi - p \rightarrow K^0 \Lambda(1405)$ at $\theta_{cm} = 90^\circ$ behaves at high energy and high momentum transfer region?

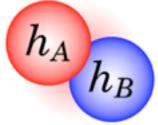


--> We "estimate" cross section of $\pi - p \to K^0 \Lambda(1405)$ at $\theta_{cm} = 90^\circ$ as a function of *s* from the resonance region to the pQCD one.

++ Λ(1405) production: Estimation ++ Estimate cross section at higher energies by using Exp. data at √s = 2.02 GeV with s¹⁰ dσ / dt = const. or s⁸ dσ / dt = const.

Ratio of the cross section for 3q **and** 5q **\Lambda(1405) is about 10:1 (~ 10 nb : 1 nb) at** \sqrt{s} = 3 GeV and more at higher energies.

Thank you very much for your kind attention !



Appendix

++ Uniqueness of hadronic molecules ++
 Hadronic molecules should be unique, because they are composed of hadrons themselves, which are color singlet.

Hadronic molecules (cf. deuteron)

q

- Large spatial size due to the absence of strong confining force.
- Hadron masses are "observable", in contrast to quark masses.
 --> Expectation of the existence around two-body threshold.

Treat them without complicated calculations of QCD.

- --- With appropriate interactions, we can use quantum mechanics.
- --> <u>Wave function</u> and its norm = compositeness.

Hadron productions: Theory and Experiment @ APCTP (Nov. 25-26, 2016)

 $q \overline{q}$

q

q

q