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Introduction

Gao, Jafferis and Wall realized that wormholes in AdS can be made
traversable by coupling the two asymptotic boundaries;

From the perspective of the boundary theory, the traversability of
wormholes in AdS can be thought of as a teleportation protocol
[Maldacena, Stanford and Yang 2017];

Most works regarding traversable wormholes only consider lower
dimensional systems
e.g. BTZ eternal black hole, JT gravity, etc.

In this work, we study d + 1 dimensional traversable wormholes that
appear in the context of Rindler-AdS/CFT.
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Motivation:

The Rindler-AdSd+1 geometry allows us to obtain analytic results;

To understand how bounds on information transfer change in higher
dimensional (possibly more realistic) setups;

To study the interplay between traversability and scrambling:

e.g. what is the role of the butterfly speed vB in traversability?

scrambling: 〈V (0)W (t, x)V (0)W (t, x)〉 = c0 − c1e
2πT

(
t− |x|vB

)
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Rindler wedges of AdS

AdSd+1 = universal cover of the hyperboloid: −T 2
1 − T 2

2 + X 2
1 + · · ·+ X 2

d = −`2

with ambient metric: ds2 = −dT 2
1 − dT 2

2 + dX 2
1 + · · ·+ dX 2

d

Right wegdeLeft wegde

Rindler coordinates:

T1 =
√

r2 − 1 sinh t , T2 = r coshχ , Xd =
√

r2 − 1 cosh t , X 2
1 + · · · + X 2

d−1 = r2 sinh2 χ

ds2 = −(r2 − 1)dt2 +
dr2

r2 − 1
+ r2dH2

d−1 , dH2
d−1 = dχ2 + sinh2 χdΩ2

d−2
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Maximally extended geometry in Kruskal coordinates
[Czech, Karczmarek, Nogueira, Raamsdonk 2012]

CFTRCFTL

Boundary: R× Hd−1

ds2 = − 4dUdV

(1 + UV )2
+

(1− UV )2

(1 + UV )2
dH2

d−1

Thermofield double (TFD) state = Two-sided black hole Maldacena 2001

|TFD〉 =
1

Z (β)1/2

∑
n

e−βEn/2 |n〉L |n〉R =

Z (β) = Tre−βH
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Average Null Energy Condition (ANEC):∫
Tµνk

µkνdλ ≥ 0 Morris, Thorne, Yurtsever 88

kµ tangent vector, λ affine parameter

∆
V

ANEC implies ∆V > 0

Matter backreaction: ds2 → ds2 + hUUdU
2

Null shift: ∆V ∼
∫
hUUdU ∼ GN

∫
TUUdU ≥ 0
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Gao-Jafferis-Wall traversable wormhole

∆V

Double trace deformation: H → H + δH, with

δH = −
∫

dx h(t, x )OL(−t, x)OR(t, x)

Negative energy in the bulk violates ANEC: ∆V ∼
∫
TUUdU < 0
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Computing 〈Tµν〉 by point-splitting

Scalar field action: Sscalar = − 1
2

∫
dd+1x

√
−g
(
gµν∂µφ∂νφ+ m2φ2

)
Classical stress tensor: Tµν = ∂µφ∂νφ− 1

2gµνg
αβ∂αφ∂βφ− 1

2gµν m
2φ2

The 1-loop expectation value of Tµν can be compute as follows:

Tµν (x) = ∂µφ(x)∂νφ(x) + ...→ Tµν (x, x′) = ∂µφ(x)∂′νφ(x′) + ...

〈Tµν〉 = limx′→x ∂µ∂
′
ν〈φ(x)φ(x′)〉 + ...

〈Tµν〉 = limx′→x ∂µ∂
′
νG (x , x ′)−− 1

2gµνg
αβ∂α∂

′
βG (x , x ′)− 1

2gµν m
2G (x , x ′)

where G (x , x ′) = 〈φ(x)φ(x ′)〉 (deformed bulk 2-pt function)
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Evaluating G (x , x ′) at first order in perturbation theory

Interaction picture:

G (x , x ′) = 〈φH(t, r , x)φH(t ′, r ′, x′)〉
= 〈U−1(t, t0)φI (t, r , x)U(t, t0)U−1(t ′, t0)φI (t ′, r ′, x′)U(t ′, t0)〉

where U(t, t0) = T e−i
∫ t
t0
δH(t′)dt′

, with δH = −h
∫
dx θ(t − t0)OL(−t, x)OR(t, x)

Small h expansion:

G (x , x ′) = G0(x , x ′) + Gh(x , x ′)h + ... 〈Tµν〉 = 〈Tµν〉0 + 〈Tµν〉hh + ...

〈Tµν〉0 = limx′→x ∂µ∂
′
νG0(x , x ′) + ... =⇒

∫
dU〈TUU〉0 = 0

〈Tµν〉h = limx′→x ∂µ∂
′
νGh(x , x ′) + ... =⇒

∫
dU〈TUU〉h 6= 0

ANEC is violated for h > 0
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ANEC violation in Rindler-AdSd+1

U = et0 , t0 = time at which the deformation is turned on deformation: δH ∼ −h
∫
OLOR

∆ = scaling dimension of OL and OR
d−2

2
≤ ∆ ≤ d

2
, our formulas hold at least up to ∆ = d+1

2

d = 2, GJW result

d = 3

d = 4

d = 4

d = 5

d = 6

For fixed h, |
∫
TUUdU| quickly decreases as we increase d
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Maldacena-Stanford-Yang two-sided correlator

Two-sided correlator: 〈[ψR , e
−igVψLe

igV ]〉

V = 1
K

∑K
j=1

∫
dt ′dx′ h(t ′, x′)Oj

L(−t ′, x′)Oj
R(t ′, x′)

It is convenient to work with:

C = Im
(
〈[ψR , e

−igVψLe
igV ]〉

)
C = 〈e−igVψLe

igVψR〉 ≈ e−ig〈V 〉〈ψLe
igVψR〉 large-K , small-GN approx.

C̃ = 〈ψLe
igVψR〉 is an OTOC-like quantity that can be computed using

the eikonal approximation OTOCs via eikonal approx.: [Shenker, Stanford 2014]
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C̃ = 〈ψLe
igVψR〉 via eikonal approximation

At first order in g : C̃1 = ig〈ψLVψR〉 = ig
K

∑K
j=1

∫
h 〈ψLOj

LO
j
RψR〉︸ ︷︷ ︸

OTOC

Using the eikonal approximation, we find:

C̃1 = igα

∫
dp dx p ΨψR

ΨψL
(x, p)︸ ︷︷ ︸

signal

∫
dt ′ dx ′ h dq dy q ΨOR

ΨOL
(y, q)︸ ︷︷ ︸

O−quanta

e iδ(p q)︸ ︷︷ ︸
interaction

At all orders in g the result exponentiates

C̃ = α
∫
dp dxΨψR

(x, p) p ΨψL
(x, p)e[ig

∫
dt′ dx′ h dq dy q ΨOR

(y,q)ΨOL
(y,q)e iδ(p q)]

JT gravity: [Maldacen, Stanford, Yang 2017] BTZ: [Almheiri, Mousatov, Shyani1 2018],

In this work, we study C = e−ig〈V 〉C̃ in a Rindler-AdSd+1 geometry

Viktor Jahnke (GIST, Korea) SGC2020 Nov 20, 2020 13 / 25



Probe approximation

Treating the signal in the probe approximation, we can show that

Cprobe = 〈ψLe
i∆V P̂VψR〉

For homogeneous operators, we find

∆V = −α b2
O

∆OΓ(2∆O)

2
vol(Sd−1)

∫
dt ′dχ′

16πGN

coshχ′2∆O+1

h(t ′)

cosh t ′2∆O+1
,

which is perfectly consistent with the result obtained via point splitting.

This shows that Gao-Jafferis-Wall and Maldacena-Stanford-Yang methods
agree at the quantitative level.

roughly speaking, the reduction of |∆V | as we increase d comes from the
window for the conformal dimension of O: d−2

2 ≤ ∆O ≤ d
2 .
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Backreaction effect

The backreaction of the signal closes the wormhole: ∆V becomes less negative

∆V → ∆Vback with |∆Vback| < |∆V |

ΨOR
→ e iA

UpU ΨOR

AU = 16πGNq
tot, qtot is the total momentum of the signal
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Backreaction effect

Considering homogeneous perturbations and taking h(t, x) = δ(t − t0), we find:

∆Vback

4πGNq
tot

cosh t0

Here: ∆O = d−1
2

Results for Rindler-AdSd+1
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Bounds on information transfer

For a signal with Nbits particles and total momentum qtot
V , one can show that:

Nbits . max
[
qtot
V |∆Vback|

]
Nbits =

qtot
v

qeach
v

, uncertainty principle: ∆Veachq
each
v & 1, condition for each particle to fit in the wormhole: ∆Veach ≤ |∆Vback|

1
qeach
v

. ∆Veach ≤ |∆Vback| =⇒ Nbits =
qtot
v

qeach
v

. qtot
V |∆Vback|

∆
V

b
a

ck
q

to
t

V

4πGNq
tot
V

cosh t0

Here: ∆O = d−1
2

Results for Rindler-AdSd+1
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Parametric bounds on information transfer

Nbits . qtot
V |∆V |

The probe approximation implies: qtot
V . rd−1

0
GN

Our calculation gives: |∆V | ∼ h GN K

Combining the above results we find: Nbits . h K rd−1
0

[Freivogel et al 2020] argue that K . 1
GN

. This implies:

Nbits . h
rd−1
0

GN
∼ h SBH (homogeneous shocks)

We are currently investigating whether is possible to derive sharper bounds for

localized shocks
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The two-sided correlator:

C (T ,X ) = 〈e−igVψL(−T ,X )e igVψR(T ,X )〉

In the probe approximation, we find:

Cprobe(T ,X ) ∼
∫

dχ1

[
cosh(χ1 − X ) +

D1(χ1)

4
eT
]−2∆ψ

where

D(χ1) ∼ GN

∫ ∞
0

dχ4
e−µ|χ1−χ4|

(coshχ4)2∆O+1
, µ = d − 1 =

1

vB
.

where µ = d − 1 = 1
vB

.
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Sweet spot for traversability: the butterfly cone

[Couch et al 2020] studied the correlator C (T ,X ) for a BTZ black hole and

showed that the sweet spot for traversability is controlled by a light-cone:

Figure from [Couch et al 2020, arXiv:1908.06993]

Here vB = 1

Local perturbation:

δH = hOL(t0, x0)OR (t0, x0)

Im(C )

X
T

For a Rindler-AdSd+1, we find a butterfly cone, with vB = 1
d−1 .
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Conclusions

We show the equivalence between the Gao-Jafferis-Wall point splitting
method and Maldacena-Stanford-Yang eikonal method and extend their
calculations to a higher dimensional setup;

The ANEC violation (the opening of the wormhole) reduces as we increase
the dimensionality of the spacetime;

The amount of information that can be transferred through the wormhole
also reduces as we increase d ;

The Rindler-AdSd+1 geometry allows us to obtain several analytic results
which can be used for further investigations;
e.g. we have an analytic result for δSBH that can in principle be computed in terms of quantum extremal surfaces

Our preliminary results suggest that the sweet spot for traversability is
defined by the butterfly cone.
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THANK YOU
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Gravity Dual of OTOCs Shenker Stanford 2013-2014

〈V (0)W (t)V (0)W (t) 〉 =

V-particle W-particle

OTOCs are related to a high energy collision that takes place close to
the black hole horizon;

the special properties of the black hole horizon give rise to the
universal behavior of OTOCs.

Viktor Jahnke (GIST, Korea) SGC2020 Nov 20, 2020 23 / 25



Bulk representation of ‘In’ and ‘Out’ states

〈TFD|Vx1(t1)Wx2(t2)Vx3(t3)Wx4(t4)|TFD〉 = 〈out|in〉

|in〉 = Vx3(t3)Wx4(t4)|TFD〉 , |out〉 = Wx2(t2)†Vx1(t1)†|TFD〉 .

These two-particle states are described by a shock wave geometry:

ds2
shock = ds2

0 + hUUdU
2 + hVV dV

2
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The eikonal approximation ’t Hooft 87 Verlinde2 92 Kabat, Ortiz 92

〈V0(0)Wx(t)V0(0)Wx(t)〉 =

∫ bulk-bdry propagators︷ ︸︸ ︷
KVKWKVKW 〈φVφWφVφW 〉︸ ︷︷ ︸

bulk 4pt-function

Using the eikonal approximation, we can write

〈φVφWφVφW 〉 = e iδ(s,b)

where s = −(p1 + p2)2 and b = |x| is the collision impact parameter.

Assumptions:

Linearized gravity: GN << 1

Regge limit: s = E 2
CM >> 1 and fixed b

The gravitational interaction dominates → Universality of OTOCs
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