Thermal radiation of de Sitter space in the semiclassical JT model

Wontae Kim based on <u>2010.09173</u> [gr-qc] (with Hwajin Eom) Nov. 11, 2020 APCTP, Sungkyunkwan University

Outline

Black hole complementarity,

Firewall and quantum atmosphere

Quantum fields on the background of de Sitter space

De Sitter space embedded in Jackiw-Teitelboim model

Discussion

Black hole complementarity(BHC)

• Hawking (1975)

-black hole temperature and its entropy

-Hawking radiation may be a carrier of information of black holes.

- Black hole complementarity
- -Susskind, Thorlacius and Uglum (1993)
- -Stephens, `t Hooft and Whiting (1994)

BHC: two disconnected patches, two independent observers [solution to information cloning puzzle]

Firewall and quantum atmosphere

- Hawking(1975): highly blue-shifted infinite radiation at the horizon is the origin of Hawking radiation (via pair creations at the horizon)*Commun. Math. Phys.* **43** (1975) 199–220.
- Unruh(1976): no outgoing positive radiation at the horizon→ no firewall *Phys. Rev.* D14 (1976) 870.
- AMPS firewalls (2013): monogamy principle,

JHEP 02 (2013) 062, [1207.3123].

incompatiblity between general covariance and semiclassical quantum field theory

 Giddings(2016): near horizon quantum atmosphere is the source of Hawking radiation → no firewall
 Phys. Lett. B754 (2016) 39–42

No firewalls in the Israel-Hartle-Hawking state

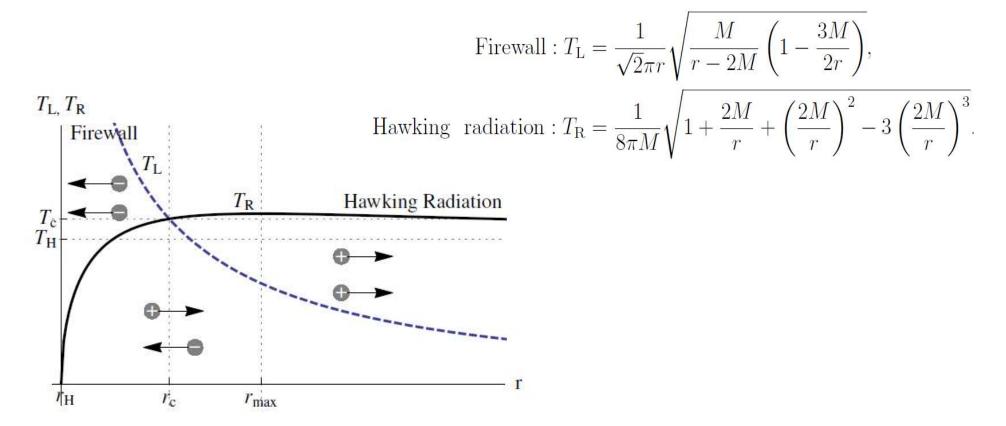
• The Tolman temperature should be written as the effective Tolman temperature,

$$T_{\rm T} = \frac{C}{\sqrt{-g_{00}(r)}} \qquad \Longrightarrow \qquad T_{\rm eff} = \frac{1}{\sqrt{\gamma g}} \sqrt{C_0 - \frac{g}{2} T^{\mu}_{\mu} + \frac{1}{2} \int T^{\mu}_{\mu} dg}$$
$$g_{00} \equiv -g$$

- The Stefan-Boltzmann law should be written as the effective Stefan-Boltzmann law as $\varepsilon = \gamma T_{\rm T}^2 \ \gamma = \pi/6 \quad \Rightarrow \quad \varepsilon = \gamma T_{\rm eff}^2 \frac{1}{2} \langle T_{\mu}^{\mu} \rangle$
- The black hole temperature is (i) non-vanishing even in the free-fall frame (ii) finite everywhere (iii) vanishing at the horizon.

$$\gamma T_{\rm eff}^2 = \frac{1}{g} \left(\langle T_{++} \rangle_{\rm HH} + \langle T_{--} \rangle_{\rm HH} \right)$$

Compatibility between firewall and Hawking radiation <u>arXiv:1604.00465</u>



• Hawking radiation for a asymptotically flat black hole

$$h(\sigma^{-}) = T_{--}^{\text{QT}}(\sigma^{+}, \sigma^{-})|_{\sigma^{+} \to \infty}$$
$$= T_{--}^{\text{bulk}}|_{\sigma^{+} \to \infty} + T_{--}^{\text{boundary}}|_{\sigma^{+} \to \infty}$$
$$= -\frac{1}{12\pi}t_{-}(\sigma^{-}).$$

• Asymptotically AdS geometry (HH vacuum)

$$T_{--}^{\text{bulk}} = -\frac{1}{12\pi} \left[\left(\partial_{-} \rho \right)^{2} - \partial_{-}^{2} \rho \right]$$
$$= -\frac{M}{48\pi\ell^{2}},$$
$$T_{--}^{\text{boundary}} = -\frac{1}{12\pi} t_{-}$$
$$= \frac{M}{48\pi\ell^{2}},$$

• The vanishing radiation in AdS(2)

$$h(\sigma^+, \sigma^-) = T_{--}^{\text{QT}}(\sigma^+, \sigma^-)$$
$$= T_{--}^{\text{bulk}} + T_{--}^{\text{boundary}}$$
$$= 0.$$

Issues

• So far, we have discussed the divergent temperature at the horizon in the Unruh vacuum while the temperature vanishes at the horizon in the Hartle-Hawking vacuum. The question is

" what happens in the de Sitter space"?

cf: especially in the Bunch-Davies vacuum

One method

• Euclidean functional path integral

The Gibbons and Hawking analysis is based on the fact that a well-defined meaning for the Green's function can be given by analytically continuing back to the original Lorentzian spacetime from a region in which the metric is positive definite.

Ex) T in Euclidean = T in Lorentzian,

Other methods

• Bogoliubov transformations or scattering method The condition for a thermal flux is calculated in a certain limit e.g., $\omega \ll 1$,

$$\langle 0|N|0\rangle = \frac{R}{1-R} = \frac{1}{e^{\omega/T_{GH}} - 1}$$

$$T_{GH} = \frac{H}{2\pi}$$

Here, I will take stress tensor approach in the Lorentzian spacetime.

Quantum fields on the background of the de Sitter space

• Hawking temperature (2D and 4D)

$$T_{\rm GH} = \frac{H}{2\pi}$$

• The temperature of the BD vacuum in 4D

$$\rho = -\langle \mathrm{BD} | T_0^0 | \mathrm{BD} \rangle = \frac{H^4}{960\pi^2} = \gamma_{(4)} T_{\mathrm{GH}}^4, \quad \gamma_{(4)} = \frac{\pi^2}{60}$$

The temperature of the BD vacuum in 2D

$$\rho = -\langle \mathrm{BD} | T_0^0 | \mathrm{BD} \rangle = -\frac{H^2}{24\pi} = \gamma_{(2)} T_{\mathrm{GH}}^2, \qquad \gamma_{(2)} = \frac{\pi}{6}$$

12

Explicitly, in 2D

• The line element of dS space (SO(1,2))

$$ds^{2} = -g(r)dt^{2} + \frac{1}{g(r)}dr^{2},$$

$$g(r) = 1 - H^{2}r^{2} \ (r_{H} = 1/H)$$

• Conformal coordinates (or Kruskal coordinates)

$$ds^{2} = -\operatorname{sech}^{2} \left[\frac{H}{2} (\sigma^{+} - \sigma^{-}) \right] d\sigma^{+} d\sigma^{-},$$
$$\sigma^{\pm} = t \pm r^{*}, \ r^{*} = r_{H} \tanh^{-1}(Hr)$$

• Stress tensor

$$\langle T_{\pm\pm}(\sigma) \rangle = \kappa \left[\frac{1}{8} \left(gg'' - \frac{1}{2} (g')^2 \right) - t_{\pm}(\sigma^{\pm}) \right],$$

$$\langle T_{\pm-}(\sigma) \rangle = \frac{\kappa}{8} gg''$$

 $g' = dg/dr, t_{\pm}(\sigma^{\pm})$: integration functions,

 $\kappa = N/(12\pi), \,\, N$: the number of classical matter fields

• Bunch-Davies (BD) vacuum $|\mathrm{BD}
angle$

$$t_{\pm}(\sigma^{\pm}) = -\frac{H^2}{4}$$

$$\Rightarrow$$
 [2d] $\langle \mathrm{BD}|T_{\mu\nu}|\mathrm{BD}
angle = rac{\kappa H^2}{2}g_{\mu\nu}$ [Aalsma *et el.*, JHEP11(2019)136(arXiv:1905.02714)]

(cf) [4d]
$$\langle \text{BD} | T_{\mu\nu} | \text{BD} \rangle = -\frac{H^4}{960\pi^2} g_{\mu\nu}$$
 [Page, Phys.Rev.D.25,1499(1982)]

The sign difference between 2d and 4d was pointed out. [Markkanen <u>arXiv:1703.06898</u>] • The proper energy density

$$\rho = \langle T_{\mu\nu} \rangle u^{\mu} u^{\nu}, \quad u^{\mu} = \left(u^+(\sigma), u^-(\sigma) \right) = \left(\frac{1}{\sqrt{g}}, \frac{1}{\sqrt{g}} \right)$$

(free-fall at rest)

• Usual Stefan-Boltzmann law $ho = \gamma T^2$

$$\Rightarrow \quad \gamma T^2 = \frac{1}{g} \left[\langle \mathrm{BD} | T_{++} | \mathrm{BD} \rangle + \langle \mathrm{BD} | T_{--} | \mathrm{BD} \rangle + 2 \langle \mathrm{BD} | T_{+-} | \mathrm{BD} \rangle \right] = -\frac{\kappa H^2}{2}$$

• The temperature becomes imaginary.

• Modified Stefan-Boltzmann law (Gim and Kim, <u>arXiv:1508.00312</u>)

$$\rho = \gamma T^2 - \frac{1}{2} \langle T^{\mu}_{\mu} \rangle$$

$$\Rightarrow \gamma T^2 = \frac{1}{g} \Big[\langle \mathrm{BD} | T_{++} | \mathrm{BD} \rangle + \langle \mathrm{BD} | T_{--} | \mathrm{BD} \rangle \Big] = 0$$

• The temperature becomes zero (<u>arXiv:2010.09173</u>)

$$T = 0$$

- Another quantum state $|\Psi
angle$

$$t_{\pm}(\sigma^{\pm}) = -\frac{H^2}{2}$$

$$\Rightarrow \langle \Psi | T_{\pm\pm}(\sigma) | \Psi \rangle = \frac{\kappa H^2}{4}, \quad \langle \Psi | T_{+-}(\sigma) | \Psi \rangle = -\frac{\kappa H^2}{4} g(r)$$

• Note that the proper temperature in thermal equilibrium is

$$T = \frac{T_{\rm GH}}{\sqrt{g(r)}}$$

De Sitter space embedded in the JT model

• Actions

$$S_{\rm JT} = \frac{1}{2\pi} \int d^2 x \sqrt{-g} \phi \left[R - 2H^2 \right],$$

$$S_{\rm cl} = \frac{1}{2\pi} \int d^2 x \sqrt{-g} \sum_{i=1}^N \left[-\frac{1}{2} (\nabla f_i)^2 \right],$$

$$S_{\rm qt} = \frac{\kappa}{2} \int d^2 x \sqrt{-g} \left[-\frac{1}{4} R \frac{1}{\Box} R \right]$$

• By using an auxiliary field ψ ,

$$S_{\rm qt} = \frac{\kappa}{4} \int d^2 x \sqrt{-g} \left[R\psi - \frac{1}{2} \left(\nabla \psi \right)^2 \right].$$

19

• Equations of motion

of motion

$$\partial_{+}\partial_{-}\phi + \frac{H^{2}}{2}e^{2\rho}\phi + \langle T_{+-}(\sigma)\rangle = 0,$$

$$\partial_{+}\partial_{-}\rho - \frac{H^{2}}{4}e^{2\rho} = 0,$$

$$\partial_{+}\partial_{-}f_{i} = 0,$$

$$2\partial_{+}\partial_{-}\rho - \partial_{+}\partial_{-}\psi = 0,$$

$$\partial_{\pm}^{2}\phi - 2\partial_{\pm}\rho\partial_{\pm}\phi + \langle T_{\pm\pm}(\sigma)\rangle = 0 \quad \text{(constraint equations)}$$

• Quantum stress tensor

$$\langle T_{\pm\pm}(\sigma) \rangle = -\kappa \left[\left(\partial_{\pm} \rho \right)^2 - \partial_{\pm}^2 \rho \right] - \kappa t_{\pm}(\sigma^{\pm}), \quad \langle T_{\pm-}(\sigma) \rangle = -\frac{\kappa}{2} \partial_{\pm} \partial_{-} \psi$$

$$(t_{\pm}(\sigma^{\pm}) \text{ reflects the nonlocality of the Polyakov action)}$$

- $f_i = 0$ (for simplicity)
- Equations of motion reduce to

$$\begin{split} \partial_+\partial_-\rho &- \frac{H^2}{4}e^{2\rho} = 0, \\ \partial_+\partial_-\phi &+ \frac{H^2}{4}e^{2\rho}\left(\kappa - 2\phi\right) = 0 \;. \end{split}$$

• Solutions

$$e^{2\rho(\sigma^+,\sigma^-)} = \operatorname{sech}^2 \left[\frac{H}{2} \left(\sigma^+ - \sigma^- \right) \right],$$

$$\phi(\sigma^+,\sigma^-) = \left(\tilde{\alpha} + \frac{\kappa H}{4} (1-\alpha) \left(\sigma^+ - \sigma^- \right) \right) \tanh \left[\frac{H(\sigma^+ - \sigma^-)}{2} \right] + \frac{\kappa \alpha}{2}$$

$$(\alpha, \ \tilde{\alpha} \ : \text{integration constants})$$

• From the solutions, the quantum flux is given as

$$\langle T_{\pm\pm}(\sigma) \rangle = -\frac{\kappa H^2}{4} - \kappa t_{\pm}(\sigma^{\pm}).$$

• This should be compatible with the constraint equation so that

$$t_{\pm}(\sigma^{\pm}) = -\frac{H^2}{4}\alpha_{.}$$

• Quantum stress tensor

$$\langle T_{\mu\nu}(\sigma)\rangle = \frac{\kappa H^2}{2}g_{\mu\nu} - \frac{\kappa H^2}{4}(1-\alpha)I_{\mu\nu} \quad (I_{\pm\pm}=1, I_{\pm\mp}=0)$$

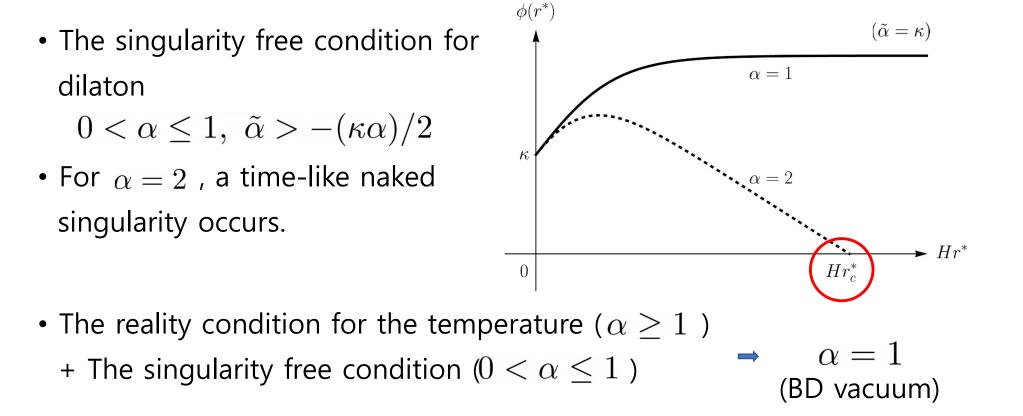
For
$$\alpha = 1$$
, $\langle BD|T_{\mu\nu}(\sigma)|BD \rangle = \frac{\kappa H^2}{2}g_{\mu\nu}$ (symmetric vacuum)
For $\alpha = 2$, $\langle \Psi|T_{\mu\nu}(\sigma)|\Psi \rangle = \frac{\kappa H^2}{2}g_{\mu\nu} + \frac{\kappa H^2}{4}I_{\mu\nu}$ (symmetry breaking vacuum)

• From the modified Stefan-Boltzmann law, the local temperature for an arbitrary α is obtained as

$$T = \sqrt{\alpha - 1} \left(\frac{T_{\rm GH}}{\sqrt{g}} \right).$$

- For a real temperature, $\ \alpha \geq 1$.
- $\alpha = 1$: BD vacuum \Rightarrow T = 0
- $\alpha > 1$ • Tolman's form (Especially, $T = T_{\rm GH}/\sqrt{g}$ for $\alpha = 2$.)

The redshift factor indicates the inhomogeneity of the temperature due to the breaking of de Sitter symmetry except the time-like Killing symmetry ($\xi^{\mu}_{(t)}\partial_{\mu} = \partial_t$).

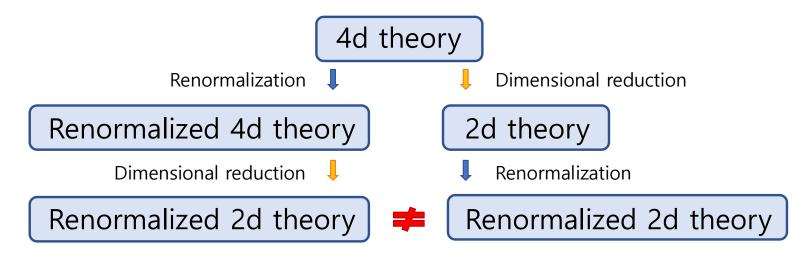


• That is, in the JT model, $\,\, lpha \,$ is determined uniquely as $\, lpha = 1 \,$.

Discussion

- Different definitions between the Euclidean path-integral approach and the Lorentzian stress tensor approach
- Opposite sign of the stress tensors between 2D and 4D is due to the dimensional-reduction anomaly.
 - [Frolov et el. Phys.Rev.D61, 024021(2000) (arXiv:hep-th/9909086)]

- Dimensional-reduction anomaly
- Before renormalization the original higher-dimensional action can be presented as a sum over modes of dimensionally reduced actions, but this property is violated after renormalization.



4d Extension (background method)

In 4d dS space, $\langle T^{\mu}_{\nu} \rangle = \text{diag}(-\rho, p, p, p), \quad -\rho + 3p = \langle T^{\mu}_{\mu} \rangle$

→ Modified Stefan-Boltzmann law

$$\rho = 3\gamma T^4 - \frac{1}{4} \langle T^{\mu}_{\mu} \rangle$$

4d stress tensor in BD vacuum The temperature becomes zero. $\langle BD|T_{\mu\nu}|BD\rangle = -\frac{H^4}{960\pi^2}g_{\mu\nu} \Rightarrow T = 0$